

Numerical Simulations of physical processes driving galaxy evolution

Lecture 3: Simulation Types

Rhea-Silvia Remus

Canary Islands Winter School, 26.11.2021

Disclaimer

This lecture was designed for presentation with movie media. If no specific URL is provided, movies can be found at

www.usm.uni-muenchen.de/~rhea/teaching/movies

Movies are marked by a *

Summary: Computational Methods

Smooth Particle Hydrodyn.

Courtesy M. Niemeyer, K. Dolag

- Very good conservation properties (mass, momentum, total energy, angular momentum, entropy)
 shape invariant
- Instabilities do not grow sufficiently
- Mixing behind shocks not sufficient
- Shocks captured by artificial viscosity

Adaptive Mesh Refinement

https://www.astro.prin ceton.edu/~jstone/Ath ena/tests/kh/kh.html

- ✓ Instabilities nicely grow
- ✓ Mixing between phases works well
- Energy conservation issues (especially for fast moving elements)
- Flow over cell boundaries becomes an issue for adaptive meshs
- Not shape invariant

Moving Mesh

Courtesy M. Niemeyer, K. Dolag

- $\checkmark\,$ All good things from the other two
- Flow over cell boundaries (only pseudo-Lagrangian)

Summary: Including Physics

Basic Assumption:

- Optically thin
- Ionization equilibrium (H, H⁺, He, He⁺, He⁺⁺, e⁻)
- 2-body processes ($\sim n^2$)

BUT: Cooling Catastrophe

Star formation subgrid model:

- Self-regulated star formation
- Set of differential equations needs to be solved.
- Produces reasonable galaxies at low z

BUT: star formation rates at high z not captured

Feedback

Feedback comes from two different sources:

- Massive Stars and Supernovae
- Supermassive Black Holes (AGN)

Stops the Overcooling Catastrophe

BUT: Burns holes into disks

Numerical Simulations: Simulation Types

Making Galaxies (and (Proto)-Clusters)

Introduction: why do we care about galaxies?

NASA, ESA & The Hubble Heritage Team (STScI/AURA)

Galaxies come in many different flavours, not just the well known regular shapes but a multitude of distorted features that need to be explained

Edwin Hubble's Galaxy Classification

Introduction: why do we care about galaxies?

Numerical Simulations

When was the first simulation of two merging galaxies performed?

- 1. 1941
- 2. 1972
- 3. 1985
- 4. 2001

When was the first simulation of two merging galaxies performed?

- 1. 1941
 2. 1972
- 3. 1985
- 4. 2001

First Simulation

1941: Erik Holmberg performed a merger of two galaxies using Light Bulbs. He calculated the acceleration by integrating the light at a given position with a photocell.

Gravity: Acceleration
$$a = \frac{G M}{r^2} \propto \frac{1}{r^2}$$

Light: Flux $F = \frac{L}{4\pi r^2} \propto \frac{1}{r^2}$

Holmberg 1941

First Simulation

1941: Erik Holmberg performed a merger of two galaxies using Light Bulbs. He calculated the acceleration by integrating the light at a given position with a photocell

RR

Next one: Toomre and Toomre

30 years later....

Galactic Bridges and Tails by Toomre & Toomre, 1972

A simple fly-by already can make arms and tidal tails

N-Body Simulations

30 years later....

Galactic Bridges and Tails by Toomre & Toomre, 1972

30 years later....

Galactic Bridges and Tails by Toomre & Toomre, 1972

N-Body Simulations

FIG. 1.—A flat retrograde ($i = 180^{\circ}$) parabolic passage of a companion of equal mass. The two small filled circles denote test particles from the $0.6R_{\min}$ ring which, in the absence of the encounter, would have reached positions exactly to the right and left of the victim mass at t = 0. The filled squares at t = 5 depict additional test particles from $0.7R_{\min}$. (Note the partial interpenetrations of the outermost rings at t = 4, 5, and 6, and their continuing oscillations thereafter.)

Isolated Merger Simulations

 $R_{\mathcal{F}}$ R

Cosmological Zoom-Simulations

Cosmological Box Simulations

Isolated (Binary Merger) Simulations

Artificially set up galaxies with defined mass distributions.

Set two (or more) on a collision orbit with clearly defined orbital parameters (controlled initial conditions).

Isolated (Binary Merger) Simulations

Isolated (Binary Merger) Simulations

Artificially set up galaxies with defined mass distributions.

Set two (or more) on a collision orbit with clearly defined orbital parameters

*

Credit: Credit: Frank Summers http://www.tapir.caltech.edu/~phopkins/Site/animations/Mergers/sims-versus-observations.html

Evolution of simulating the Antennae Galaxies

Image Data: Subaru, NAOJ, NASA/ESA/Hubble, R.W. Olsen - Processing: Federico Pelliccia and Rolf Wahl Olsen (APOD)

RAR

Overview: Galaxy Formation Simulations

Isolated Merger Simulations

Cosmological Zoom-Simulations

Cosmological Box Simulations

Simulate a full universe starting with dark matter and gas in a cubic volume.

Galaxies form due to initial perturbations – you have to take what you get.

Simulations were performed at the National Centre for Supercomputer Applications by Andrey Kravtsov (The University of Chicago) and Anatoly Klypin (New Mexico State University). Visualizations by Andrey Kravtsov.

The most massive structures are formed in the crossings of filaments

Note: small boxes always show a crosslike structure in the cosmic web due to the larges mode in growth

Movie credit: Rhea-Silvia Remus

Initial Conditions:

Box volume with periodic boundary conditions, particles set up homogeneous and isotropic.

From A. Knebe: http://popia.ft.uam.es/aknebe/page3/files/ComputationalCosmology/05ICs.pdf

Initial Conditions:

Box volume with periodic boundary conditions, particles set up homogeneous and isotropic.

Then perturb the initial distribution due to chosen cosmology.

From A. Knebe: http://popia.ft.uam.es/aknebe/page3/files/ComputationalCosmology/05ICs.pdf

Sidestep: Semi-Analytic Models

Semi-Analytic Models and Empirical Models

Image Credit: NASA, ESA, Jennifer Lotz and the HFF Team (STScI)

> Millennium-Simulation, image credit: V. Springel https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/#pictures

Magneticum Pathfinder Simulations by Klaus Dolag

www.magneticum.org

Magneticum Pathfinder Simulations by Klaus Dolag

www.magneticum.org

Credit: Benjamin Seidel

Isolated Merger Simulations

?

 $R_{\mathcal{F}}$ R

Cosmological Zoom-Simulations

Cosmological Box Simulations

Initial Conditions:

Chose a galaxy of interest from a cosmological dark matter box volume.

Then split the dark matter particles into dark matter and gas in the region of interest, while the remaining box volume stays on low resolution dark matter only

Initial Conditions:

Chose a galaxy of interest from a cosmological dark matter box volume.

Then split the dark matter particles into dark matter and gas in the region of interest, while the remaining box volume stays on low resolution dark matter only.

Only a small part of the cosmological box is simulated in high resolution.

Ν

Э

R

COMPASS ZOOM SIMULATIONS. Image Credit: D. Schlachtberger

*

Isolated Merger Simulations

?

 $R_{f}R$

Cosmological Zoom-Simulations

Cosmological Box Simulations

Isolated Merger Simulations

+ high resolution (temporal & spatial)
+ controlled conditions
+ parameter study (orbits, masses...)

no cosmological formation
not statistical representative
no redshift evolution

Cosmological Zoom-Simulations

- + high resolution (temporal & spatial)
 + cosmological formation
 + target objects (special environment...)
- biased selection of targetsnot statistical representative
- no parameter control

Cosmological Box Simulations

- + cosmological formation+ statistical representative+ no selection bias
- low resolution
- no parameter control
- computationally expensive

Isolated Merger Simulations

 $R_{
m p}R$

There are a lot of different idealized merger simulations, but most of them do not have a fancy name

Cosmological Zoom-Simulations

Galaxies (Dwarf to Groups)

- Oser/Naab
- NiHAO
- Fire
- Aquarius
- E-Mosaics

Clusters:

- The 300 Project
- CEagle/Hydrangea
- Romulus-C

Cosmological Box Simulations

- Eagle
- Magneticum
- HorizonAGN
- Illustris/IllustrisTNG
- MassiveBlack

Isolated Merger Simulations

Cosmological Zoom-Simulations

Cosmological Box Simulations

Disclaimer: This is by no means a complete list!

There are a lot of different

idealized merger simulations, but most of them do not have a fancy name

Galaxies (Dwarf to Groups)

- Oser/Naab
- NiHAO
- Fire
- Aquarius
- E-Mosaics

Clusters:

- The 300 Project
- CEagle/Hydrangea
- Romulus-C

- Eagle
- Magneticum
- HorizonAGN
- Illustris/IllustrisTNG
- MassiveBlack

RR

Overview: Galaxy Formation Simulations

Isolated Merger Simulations

Cosmological Zoom-Simulations

Cosmological Box Simulations

Why do we need them all?

There are a lot of different idealized merger simulations, but most of them do not have a fancy name

Galaxies (Dwarf to Groups)

- Oser/Naab
- NiHAO
- Fire
- Aquarius
- E-Mosaics

Clusters:

- The 300 Project
- CEagle/Hydrangea
- Romulus-C

- Eagle
- Magneticum
- HorizonAGN
- Illustris/IllustrisTNG
- MassiveBlack

Why so many different simulation types?

Example: Why different Cosmological Simulations

Simulations versus Observations

Simulations versus Observations

Example: Why different Galaxy Simulations?

Kinematically Distinct Cores in ETGs come in two flavors:

Small (<1kpc) core with a young stellar population, mostly inside fast rotators Large core with an old stellar population, usually in massive slow rotators

McDermid et al., 2006 but also in dwarf galaxies (Rys et al., 2013)

Old KDCs: Cosmological Simulation

Large KDCs are found in cosmological simulations to be made from an old rotating disks already build up at z=2, which then only accreted minor or mini mergers with ratios smaller than 1:10. These mergers destroy the rotation in the outskirts, but cannot reach the central areas of a galaxy (see Schulze et al., 2020 and Karademir et al., 2019)

Schulze et al., 2020; see also Schulze et al., 2018 for kinematic maps within $1R_{half}$ and correlations with kinematic type

Young KDCs: Isolated Merger Simulations

Young, small KDC are formed in gas-rich major merger events, and they are dominated by z-tube orbits. They are only formed by mergers with gas fractions of 15-40%

Hoffman et al., 2010

Young KDCs: Isolated Merger Simulations

KDC made from mostly newly-formed stars that keep the memory of the angular momentum of the merger: performs a motion comparable to the precession of a gyroscope in a gravitational potential; superposition of an intrinsic rotation and a global precession that gets gradually damped over cosmic time.

✻

Lifetime of a young KDC: stable for \approx 3Gyrs after the merger, damped over \approx 1.5Gyrs.

Schulze et al., 2017

Chose the right simulation type for your question!

Comparison to Observations

Abell 2744

- z = 0.308
- Dynamically active
- In 1.3Mpc aperture:

 ${
m M_{tot}}(<1.3{
m Mpc})=~2.3\cdot10^{15}{
m M_{\odot}}$

Image credit: Jauzac et al. 2016

Abell 2744

- z = 0.308
- Dynamically active
- In 1.3Mpc aperture:

 ${
m M_{tot}}(<1.3{
m Mpc})=~2.3\cdot10^{15}{
m M_{\odot}}$

Image credit: Jauzac et al. 2016

II. No Dark Matter in Disks at z=2?

II. No Dark Matter in Disks at z=2?

At z=2, approximately half of the Magneticum disk galaxies have declining rotation curves in agreement with observations by Genzel et al., 2017, and similar central dark matter fractions.

Total radial density profiles can be fit by a single power law.

Inner part: Stars dominate the total profiles. Outer part: Dark Matter dominates the total profiles.

Most ETGs have slopes close to isothermal, i.e. $\gamma_{tot} \approx -2$, but they can be as steep as $\gamma_{tot} \approx -3$.

This is independent of the included feedback models

Remus et al., 2013, 2017

"Mocking" the simulated ETGs:

- $M_{tot}(R_{Ein})$
- $R_{eff} \rightarrow R_{1/2}$
- $R_{Ein} = 1.5 R_{1/2}$ following Sonnenfeld et al., 2013

• $\sigma_{LOS}(R_{1/2}/2)$

Program kindly provided by A. Sonnenfeld, see Sonnenfeld et al., 2013,2015a,b

Remus et al., 2017

We find the same redshift evolution trend as the strong lensing observations if we use the observers' program to mock our simulated ETGs

Isolated Merger Simulations

 $R_{
m p}R$

There are a lot of different idealized merger simulations, but most of them do not have a fancy name

Cosmological Zoom-Simulations

Galaxies (Dwarf to Groups)

- Oser/Naab
- NiHAO
- Fire
- Aquarius
- E-Mosaics

Clusters:

- The 300 Project
- CEagle/Hydrangea
- Romulus-C

Cosmological Box Simulations

- Eagle
- Magneticum
- HorizonAGN
- Illustris/IllustrisTNG
- MassiveBlack

Summary

Smooth Particle Hydrodyn.

- Very good conservation properties (mass, momentum, total energy, angular momentum, entropy)
- ✓ shape invariant
- Instabilities do not grow sufficiently
- Mixing behind shocks not sufficient
- Shocks captured by artificial viscosity

Basic Assumption:

- Optically thin
- Ionization equilibrium $(H, H^+, H He^+, He^+, e^-)$
- 2-body processes ($\sim n^2$) $\Lambda(T)/$

UT: Cooling Catastrophe

Adaptive Mesh Refinement

- ✓ Instabilities nicely grow
- Mixing between phases works well
- Energy conservation issues (especially for fast moving elements)
- Flow over cell boundaries becomes an issue for adaptive meshs
 Not shape invariant

Star Formation

r formation subgrid model:

- Set of differential equations needs to be solved.
- Produces reasonable galaxies at low

BUT: star formation rates at high

Moving Mesh

- ✓ All good things from the other two
- Flow over cell boundaries (only pseudo-Lagrangian)

Isolated Merger Simulations

- + high resolution (temporal & spatial)
- + controlled conditions
- + parameter study (orbits, masses...)

no cosmological formation
not statistical representative
no redshift evolution

Cosmological Zoom-Simulations

+ high resolution (temporal & spatial)
+ cosmological formation
+ target objects (special environment...)

biased selection of targetsnot statistical representativeno parameter control

Cosmological Box Simulations

+ cosmological formation
+ statistical representative
+ no selection bias

low resolution no parameter control computationally expensive

 6
 8
 10
 12
 14

 6
 0
 12
 14
 14

 Log₁₀(M/Msun)
 12
 14
 2005

- Massive Stars and Supernovae
 Supernovae
- Supermassive Black Holes (AGN

Stops the Overcooling Catastroph

ptured BUT: Burns holes into disks

