Numerical Simulations of physical
processes driving galaxy evolution

Rhea-Silvia Remus

Canary Islands Winter School, 24.11.2021 )
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Numerical Simulations: (Subgrid) Physics O
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Introduction: It all starts with the gas
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Apart from gravity and the general
treatment of gas as either particles
(SPH) or fluids (AMR), the physics that
affect the baryons, like star formation
processes, gas cooling, metal formation,
AGN feedback, need to be modelled



(SubGrid) Physics

Numerical Simulations

Backbone Codes Simulation Types




For stars to form, gas has to condense and cool down. This cooling is a
function of density and temperature:
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Basic Assumptions
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;@/@ Cooling

Basic Assumptions

e Optically thin
* lonization equilibrium (H, H*, He, He*, He™*,e™)
 2-body processes (~n?)

Add Metals to the Cooling Process

Below T~10%K:

* Solving balance equations
e Cooling by molecules that need to be traced (H,, HD, ...)
* Plus fine-structure transitions in metals (Fell, Ol, Sill,ClII...)




M%@ Cooling

Basic Assumptions

* Optically thin
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Cooling Catastrophe
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Star Formation

In nature, cooled gas will form stars —— on scales way below our resolution!
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Star Formation

More elaborated: a multi-phase model s

» Cold clouds p, in pressure equilibrium with hot gas py, Stars
» Cold clouds condense and grow out of hot gas by thermal
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instability: %= — *




%;%/@ Star Formation

More elaborated: a multi-phase model s

Self-regulated star-formation, but a complex set of Stars
differential equations needs to be solved *

* *
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%}" Star Formation

R

Star formation timescale can only
be adjusted using Kennicutt-law

(Kennicutt 1998)
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Kennicutt & Evans, 2012



Star Formation
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But:

Fail to reproduce high star formation rates
seen at high redshifts, for example in proto
clusters
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Star Formation

How to improve?

 Schmitt-Kennicutt assumption is not correct for higher redshifts
e Star formation efficiency should be coupled to molecular gas, not cold
gas in general
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. Necessary for gas to be able to

. Drives ionization in the early universe
. Everything not hydrogen or helium
. Basic process that transforms gas

. Thermal, Kelvin—Helmholtz,

. Radiation from (hot) stars causes
. What star particles and countries
. A criterion for collapse but also a

. Happens to gas through stellar death

form stars

Take a Break:

Rayleigh—Taylor
cloud

have in common
fashion item

and at the stock market

The force that dropped an apple
onto Newton

An IMF
Diffuse component in a galaxy cluster

Time-independent predictions are
only possible for

Basic physics that describes baryons

To partition a plane into regions with
certain properties

Caused by high-Mach-number flows

Most of the matter is like this
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Feedback

Feedback comes from two different sources:
1) Massive Stars and Supernovae
2) Supermassive Black Holes (AGN
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u Feedback: Supernovae

Our stellar particles are not just single stellar Solpeter 1955 —
. roupo

particles but rather conglomerates of stars. Thies &?gg‘;gg 2005 - =

Every time a star is born, it actually is a whole 120\ ¢ Morehi & Poresce 2001~

population of stars.
Here, we use an IMF to emulate the population

0.01 0.10 1.00 10.00 100.00
M (Mo)

Offner et al., 2014




%%%@ Feedback: Supernovae

Fielding et al., 2017
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But not just Supernovae, also massive Solpeter 1955 ——

Kroupa 2001
stars have winds that drive (kinetic) Thies & Kroupo 2007 -

de Marchi & Paresce 2001 ..
feedback
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The existence of a Black Hole is often ME%
revealed by a jet that can be observed,

as for example in M87, the second
brightest galaxy of the Virgo cluster.

Image credit: NASA, ESA and the Hubble Heritage Team (STScl/AURA);
Acknowledgment: P. Cote (Herzberg Institute of Astrophysics) and E. Baltz (Stanford University)
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AR

The existence of a Black Hole is often '\/'3‘7.'
revealed by a jet that can be observed,
as for example in M87, the second

Credit: EHT Collaboration

Image credit: NASA, ESA and the Hubble Heritage Team (STScl/AURA);
Acknowledgment; P. Cote (Herzberg Institute of Astrophysics) and E. Baltz (Stanford University)



Feedback: AGN

Black Holes are included in the simulations as sink particles
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R

Black Holes are included in the simulations as sink particles

Either seeding at a constant mass, or on the mgy- o relation

Seeding
Accretion onto BH ol e o
Feedback

l

Merging

200 300 400
a, (km s7")




%/@ Feedback: AGN

Black Holes are included in the simulations as sink particles

: S— Gas density

Seefing Bondi Accretion:
' Sound d
Accretion onto BH Eddington Limit: ound spee

4G Mgy m,

El‘ (_TT C

Mgy = min(Mgqq, Mp).

Springel et al., 2005
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Black Holes are included in the simulations as sink particles

Seeding




2 Feedback: AGN

Black Holes are included in the simulations as sink particles

Lyo; = 0.1Mpyc?

Efeedback = f Lpoi
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Black Holes are included in the simulations as sink particles

Lyo; = 0.1Mpyc?

Efeedback = f Lpoi

~

efficiency
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Feedback: AGN

Black Holes are included in the simulations as sink particles

Seeding
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How feedback influences -~ Weller et. al. 2005
: Bell et. al. 2003
galaxies
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Radial Density Profiles

Stars Total radial density profiles can be fit by a single

DM power law.
~ Total Inner part: Stars dominate the total profiles.
Hittotota Outer part: Dark Matter dominates the total profiles.

Most ETGs have slopes close to isothermal, i.e.
Vot = -2, but they can be as steep as y,, = -3.

10 15 20 25
log (r) [kpc]




The Role of Feedback

To understand the impact of the different
feedback models on the implementation of these
scaling relations, we use ETGs from simulations
with different feedback models:

Magneticum  Improved Yes Weak Incl. metals Hirschmann et al., 2014; Teklu et al., 2015
Oser Standard No No Primordial Oser at al., 2010;2012
Wind Standard No Strong Incl. metals Hirschmann et al., 2013; 2015




Central Dark Matter Fractions

Magneticum z=0 @

Magneticum z>0 ©
Oser z=0 @
Oser z>0 o
Wind z=0
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The fraction of dark matter within the
halfmass radius is lower at higher
redshifts, and it is strongly correlated with
the slope of the total density profiles.
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Central Dark Matter Fractions
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Central Dark Matter Fractions

—1.0 The fraction of dark matter within the
halfmass radius is lower at higher
redshifts, and it is strongly correlated with
the slope of the total density profiles.
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Co-Evolution of Dark Matter Fractions and Density Profiles

Simulations Observations
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How feedback influences - - - Weller et. al. 2005
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galaxies
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... but it burns
holes into disks
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Summary: Including Physics

Basic Assumption:

e Optically thin

* lonization equilibrium (H, H*, He,
He™,He*t,e)

« 2-body processes (~n?)

BUT: Cooling Catastrophe

A(T)/n*

Star Formation

Credit: Klaus Dolag

Star formation subgrid model:

* Self-regulated star formation

* Set of differential equations needs to be
solved.

* Produces reasonable galaxies at low z

BUT: star formation rates at high z not captured

Feedback

- - - Weller et. al. 2005
- Bell et. al. 2003

¢.=2.5e—14
M,=1.31e11
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Feedback comes from two different sources:
* Massive Stars and Supernovae

* Supermassive Black Holes (AGN)

Stops the Overcooling Catastrophe

BUT: Burns holes into disks
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1. Necessary for gas to be able to
form stars

. Drives ionization in the early universe

. Everything not hydrogen or helium

. Basic process that transforms gas
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. Thermal, Kelvin—Helmholtz,
Rayleigh—Taylor

6. Radiation from (hot) stars causes
cloud
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7. What star particles and countries
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8. A criterion for collapse but also a
fashion item
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9. Happens to gas through stellar death
| T Y and at the stock market

10. The force that dropped an apple
onto Newton

11. An IMF
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12. Diffuse component in a galaxy cluster

13. Time-independent predictions are
only possible for
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14. Basic physics that describes baryons
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15. To partition a plane into regions with
certain properties
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16. Caused by high-Mach-number flows
17. Most of the matter is like this
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