

Numerical Simulations of physical processes driving galaxy evolution

Lecture 2: Subgrid Physics

Rhea-Silvia Remus

Canary Islands Winter School, 24.11.2021

Summary: Computational Methods

Smooth Particle Hydrodyn.

Courtesy M. Niemeyer, K. Dolag

- Very good conservation properties (mass, momentum, total energy, angular momentum, entropy)
 shape invariant
- Instabilities do not grow sufficiently
- Mixing behind shocks not sufficient
- Shocks captured by artificial viscosity

Adaptive Mesh Refinement

https://www.astro.prin ceton.edu/~jstone/Ath ena/tests/kh/kh.html

- ✓ Instabilities nicely grow
- ✓ Mixing between phases works well
- Energy conservation issues (especially for fast moving elements)
- Flow over cell boundaries becomes an issue for adaptive meshs
- Not shape invariant

Moving Mesh

Courtesy M. Niemeyer, K. Dolag

- $\checkmark~$ All good things from the other two
- Flow over cell boundaries (only pseudo-Lagrangian)

Numerical Simulations: (Subgrid) Physics

Getting the Universe alight

Apart from gravity and the general treatment of gas as either particles (SPH) or fluids (AMR), the physics that affect the baryons, like star formation processes, gas cooling, metal formation, AGN feedback, need to be modelled

Extended Disk of Galaxy M83

GALEX • NUV • FUV VERY LARGE ARRAY • RADIO

Numerical Simulations

For stars to form, gas has to condense and cool down. This cooling is a function of density and temperature:

Basic Assumptions

- Optically thin
- Ionization equilibrium (*H*, *H*⁺, *He*, *He*⁺, *He*⁺⁺, *e*⁻)
- 2-body processes ($\sim n^2$)

Cooling

- Optically thin
- Ionization equilibrium $(H, H^+, He, He^+, He^{++}, e^-)$
- 2-body processes ($\sim n^2$)

Cooling happens through:

- Recombination cooling
- Metal line cooling
- Bremsstrahlung cooling/free-free emission
- Compton cooling/heating

 $\Lambda(T)/n^2$ Lets be more specific: $\Lambda(T)/n_e n_H$

But since $n_e \approx n_H$

 $\Lambda(T)/n_H^2$

Cooling

- Optically thin
- Ionization equilibrium (*H*, *H*⁺, *He*, *He*⁺, *He*⁺⁺, *e*⁻)
- 2-body processes ($\sim n^2$)

Cooling happens through:

- Recombination cooling
- Metal line cooling
- Bremsstrahlung cooling/free-free emission
- Compton cooling/heating

But in fact there are counter processes: heating also happens, mostly photoionization heating, but luckily the cooling usually wins $\Lambda(T)/n^2$ Lets be more specific:

 $\Lambda(T)/n_e n_H$

But since $n_e \approx n_H$

 $\Lambda(T)/n_H^2$

 $\Lambda(T)/n^2$

Basic Assumptions

- Optically thin
- Ionization equilibrium (*H*, *H*⁺, *He*, *He*⁺, *He*⁺⁺, *e*⁻)
- 2-body processes ($\sim n^2$)

This cannot be calculated on the fly! Too many calculation needed!

Thus, cooling tables are used

?

 $R_{\mathcal{F}}$ R

Basic Assumptions

- Optically thin
- Ionization equilibrium (*H*, *H*⁺, *He*, *He*⁺, *He*⁺⁺, *e*⁻)
- 2-body processes ($\sim n^2$)

 $\Lambda(T)/n^2$

Cooling

Basic Assumptions

- Optically thin
- Ionization equilibrium (H, H^+, He, He^+, He^+)
- 2-body processes ($\sim n^2$)
- Add Metals to the Cooling Process

 $\Lambda(T)/n^2$

Cooling

Basic Assumptions

- Optically thin
- Ionization equilibrium ($H, H^+, He, He^+, He^{++}, e^{-1}$)
- 2-body processes ($\sim n^2$)
- Add Metals to the Cooling Process
- Below $T \sim 10^4 K$:
 - Solving balance equations
 - Cooling by molecules that need to be traced $(H_2, HD, ...)$
 - Plus fine-structure transitions in metals (FeII, OI, SiII, CII...)

10-20

10-21

Basic Assumptions

• Optically thin

• • 2 • /	Cooling Catastrophe	
• [Solving balance equations 	

Maio et al., 2007

- Cooling by molecules that need to be traced (*H*₂, *HD*, ...)
- Plus fine-structure transitions in metals (FeII, OI, SiII,CII...)

 $\begin{array}{c}
10^{-27} \\
10^{-28} \\
10^{-29} \\
10^{1} \\
10^{2} \\
10^{3} \\
10^{4} \\
10^{5} \\
10^{6} \\
10^{7} \\
10^{8} \\
T [K]
\end{array}$

In nature, cooled gas will form stars \longrightarrow on scales way below our resolution!

In nature, cooled gas will form stars \longrightarrow on scales way below our resolution!

Basic Assumptions

- Convergent flow: $\nabla v < 0$
- High density region: $\rho > 0.1 A toms/cm^3$
- Jeans instability: ${}^{h}\!/_{c} > t_{dyn}$ with $t_{dyn} = (4\pi G \rho)^{-0.5}$

In nature, cooled gas will form stars \longrightarrow on scales way below our resolution! Basic Assumptions

- Convergent flow: $\nabla v < 0$
- High density region: $\rho > 0.1 A toms / cm^3$
- Jeans instability: $h/c > t_{dyn}$ with $t_{dyn} = (4\pi G\rho)^{-0.5}$
- > Conversion of cold gas into stars: $\frac{d\rho_*}{dt} = -\frac{d\rho}{dt} = \frac{c_*\rho}{t}$;

 c_* : star formation efficiency ($\approx 10\%$); t_* : star formation time (max. of t_{dyn} and t_{cool})

In nature, cooled gas will form stars \longrightarrow on scales way below our resolution! Basic Assumptions

- Convergent flow: $\nabla v < 0$
- High density region: $\rho > 0.1 A toms/cm^3$
- Jeans instability: ${}^{h}/{}_{c} > t_{dyn}$ with $t_{dyn} = (4\pi G\rho)^{-0.5}$
- > Conversion of cold gas into stars: $\frac{d\rho_*}{dt} = -\frac{d\rho}{dt} = \frac{c_*\rho}{t_*}$;

 c_* : star formation efficiency ($\approx 10\%$); t_* : star formation time (max. of t_{dyn} and t_{cool})

 \succ Heating of the gas by Type-II Supernovae (10⁵¹erg/SN). Number of SNII from IMF

In nature, cooled gas will form stars \longrightarrow on scales way below our resolution! Basic Assumptions

- Convergent flow: $\nabla v < 0$
- High density region: $\rho > 0.1 A toms/cm^3$
- Jeans instability: ${}^{h}/{}_{c} > t_{dyn}$ with $t_{dyn} = (4\pi G\rho)^{-0.5}$
- > Conversion of cold gas into stars: $\frac{d\rho_*}{dt} = -\frac{d\rho}{dt} = \frac{c_*\rho}{t_*}$;

 c_* : star formation efficiency ($\approx 10\%$); t_* : star formation time (max. of t_{dyn} and t_{cool})

> Heating of the gas by Type-II Supernovae (10⁵¹erg/SN). Number of SNII from IMF

> When a significant fraction of gas is converted into stars, spawn new star particles

More elaborated: a multi-phase model Springel & Hernquist 2002

More elaborated: a multi-phase model Springel & Hernquist 2002

 \succ Cold clouds ρ_c in pressure equilibrium with hot gas ρ_h

More elaborated: a multi-phase model Springel & Hernquist 2002

 \succ Cold clouds ρ_c in pressure equilibrium with hot gas ρ_h > Cold clouds condense and grow out of hot gas by thermal instability: $\frac{d\rho_c}{dt} = -\frac{d\rho_h}{dt} = \frac{1}{u_h - u_c} \Lambda(\rho_h, u_h)$ **Cooling function**

More elaborated: a multi-phase model Springel & Hernquist 2002

 \succ Cold clouds ρ_c in pressure equilibrium with hot gas ρ_h Cold clouds condense and grow out of hot gas by thermal instability: $\frac{d\rho_c}{dt} = -\frac{d\rho_h}{dt} = \frac{1}{u_h - u_c} \Lambda(\rho_h, u_h)$ $\succ \text{ Cold clouds form stars: } \frac{d\rho_*}{dt} = \frac{\rho_c}{t} - \beta \frac{\rho_c}{t_*} + \beta \frac$ formation timescale Supernova mass traction

More elaborated: a multi-phase model Springel & Hernquist 2002

 \succ Cold clouds ρ_c in pressure equilibrium with hot gas ρ_h Cold clouds condense and grow out of hot gas by thermal instability: $\frac{d\rho_c}{dt} = -\frac{d\rho_h}{dt} = \frac{1}{u_h - u_c} \Lambda(\rho_h, u_h)$ > Cold clouds form stars: $\frac{d\rho_*}{dt} = \frac{\rho_c}{t} - \beta \frac{\rho_c}{t}$ \succ Cloud evaporation: $\frac{d\rho_h}{dt} = A\beta \frac{\rho_c}{t_*}$ through heating from SN-II Cloud evaporation

More elaborated: a multi-phase model Springel & Hernquist 2002

 \triangleright Cold clouds ρ_c in pressure equilibrium with hot gas ρ_h Cold clouds condense and grow out of hot gas by thermal instability: $\frac{d\rho_c}{dt} = -\frac{d\rho_h}{dt} = \frac{1}{u_h - u_c} \Lambda(\rho_h, u_h)$ > Cold clouds form stars: $\frac{d\rho_*}{dt} = \frac{\rho_c}{t} - \beta \frac{\rho_c}{t}$ \succ Cloud evaporation: $\frac{d\rho_h}{dt} = A\beta \frac{\rho_c}{t}$ through heating from SN-II

Self-regulated star-formation, but a complex set of differential equations needs

More elaborated: a multi-phase model

Springel & Hernquist 2002

Self-regulated star-formation, but a complex set of differential equations needs to be solved

At the end, there are three free parameters left to adjust: the thermal instability density parameter, an evaporation efficiency parameter, and the star formation timescale. First two can be constrained by assumptions regarding the temperature range of the ISM.

Star formation timescale can only be adjusted using Kennicutt-law (Kennicutt 1998)

Star formation timescale can only be adjusted using Kennicutt-law

(Kennicutt 1998)

$$\Sigma_{\rm SFR} = (2.5 \pm 0.7) \times 10^{-4} \left(\frac{\Sigma_{\rm gas}}{M_{\odot} {\rm pc}^{-2}}\right)^{1.4 \pm 0.15} \frac{M_{\odot}}{{\rm yr\,kpc}^2}$$

But:

Fail to reproduce high star formation rates seen at high redshifts, for example in proto clusters

3

2

8

og(SFR) [M_o/yr]

10000

Remus et al., 2022

SPT 2349-56: Miller et al., 2018

How to improve?

- Schmitt-Kennicutt assumption is not correct for higher redshifts
- Star formation efficiency should be coupled to molecular gas, not cold gas in general

How to improve?

- Schmitt-Kennicutt assumption is not correct for higher redshifts
- Star formation efficiency should be coupled to molecular gas, not cold gas in general

$$\frac{d\rho_*}{dt} = (1-\beta)\frac{\rho_0}{t_*}$$

Replace ρ_c by a mass loading that is coupled to the molecular hydrogen mass:

$$\dot{M_{SF}} = f_* \frac{M_{H_2}}{t_{dyn}}$$

Blitz & Rosolowsky 2006, Murante et al., 2010

- 1. Necessary for gas to be able to form stars
- 2. Drives ionization in the early universe
- 3. Everything not hydrogen or helium
- 4. Basic process that transforms gas
- 5. Thermal, Kelvin–Helmholtz, Rayleigh–Taylor
- 6. Radiation from (hot) stars causes cloud _____
- 7. What star particles and countries have in common
- 8. A criterion for collapse but also a fashion item
- 9. Happens to gas through stellar death and at the stock market
- 10. The force that dropped an apple onto Newton
- 11. An IMF
- 12. Diffuse component in a galaxy cluster
- 13. Time-independent predictions are only possible for _____
- 14. Basic physics that describes baryons
- 15. To partition a plane into regions with certain properties
- 16. Caused by high-Mach-number flows
- 17. Most of the matter is like this

Riddle

Feedback comes from two different sources:1) Massive Stars and Supernovae2) Supermassive Black Holes (AGN)

Our stellar particles are not just single stellar particles but rather conglomerates of stars. Every time a star is born, it actually is a whole population of stars.

Our stellar particles are not just single stellar particles but rather conglomerates of stars. Every time a star is born, it actually is a whole population of stars. Here, we use an initial mass function (IMF) to emulate the population

RR

Feedback: Supernovae

Our stellar particles are not just single stellar particles but rather conglomerates of stars. Every time a star is born, it actually is a whole population of stars.

Here, we use an IMF to emulate the population

Feedback: Supernovae

Fielding et al., 2017

Feedback: Supernovae

But not just Supernovae, also massive stars have winds that drive (kinetic) feedback

The existence of a Black Hole is often revealed by a jet that can be observed, as for example in M87, the second brightest galaxy of the Virgo cluster.

Acknowledgment: P. Cote (Herzberg Institute of Astrophysics) and E. Baltz (Stanford University)

M87

The existence of a Black Hole is often revealed by a jet that can be observed, as for example in M87, the second brightest galaxy of the Virgo cluster.

Credit: EHT Collaboration

Black Holes are included in the simulations as sink particles

 $|L_{bol}=0.1\dot{M}_{BH}c^2|$

Black Holes are included in the simulations as sink particles

 $L_{bol} = 0.1 \dot{M}_{BH} c^2$ $\dot{E}_{feedback} = f L_{bol}$ efficiency

Black Holes are included in the simulations as sink particles

Seeding Accretion onto BH Feedback

Pinning or no pinning?

Feedback

How feedback influences galaxies

Radial Density Profiles

Total radial density profiles can be fit by a single power law.

Inner part: Stars dominate the total profiles. Outer part: Dark Matter dominates the total profiles.

Most ETGs have slopes close to isothermal, i.e. $\gamma_{tot} \approx -2$, but they can be as steep as $\gamma_{tot} \approx -3$.

This is independent of the included feedback models

see Remus et al., 2013; 2017

The Role of Feedback

To understand the impact of the different feedback models on the implementation of these scaling relations, we use ETGs from simulations with different feedback models:

	SPH	AGN	Stellar Wind	Cooling	References
Magneticum	Improved	Yes	Weak	Incl. metals	Hirschmann et al., 2014; Teklu et al., 2015
Oser	Standard	No	No	Primordial	Oser at al., 2010;2012
Wind	Standard	No	Strong	Incl. metals	Hirschmann et al., 2013; 2015

The fraction of dark matter within the halfmass radius is lower at higher redshifts, and it is strongly correlated with the slope of the total density profiles.

The fraction of dark matter within the halfmass radius is lower at higher redshifts, and it is strongly correlated with the slope of the total density profiles.

The correlation between the dark matter fraction and the total density slope already establishes at high redshifts

Remus et al., 2017

The fraction of dark matter within the halfmass radius is lower at higher redshifts, and it is strongly correlated with the slope of the total density profiles.

The fraction of dark matter within the halfmass radius is lower at higher redshifts, and it is strongly correlated with the slope of the total density profiles.

The slope of this relation can be used to test the different feedback models

Remus et al., 2017

Co-Evolution of Dark Matter Fractions and Density Profiles

Observations: SPIDER & ATLAS^{3D} : Tortora et al., 2014 Coma: Thomas et al., 2007 SLACS: Barnabé et al., 2011

Feedback

Feedback

How feedback influences galaxies

... but it burns holes into disks

Summary: Including Physics

Basic Assumption:

- Optically thin
- Ionization equilibrium (H, H⁺, He, He⁺, He⁺⁺, e⁻)
- 2-body processes ($\sim n^2$)

BUT: Cooling Catastrophe

Star formation subgrid model:

- Self-regulated star formation
- Set of differential equations needs to be solved.
- Produces reasonable galaxies at low z

BUT: star formation rates at high z not captured

Feedback

Feedback comes from two different sources:

- Massive Stars and Supernovae
- Supermassive Black Holes (AGN)

Stops the Overcooling Catastrophe

BUT: Burns holes into disks

- 1. Necessary for gas to be able to form stars
- 2. Drives ionization in the early universe
- 3. Everything not hydrogen or helium
- 4. Basic process that transforms gas
- 5. Thermal, Kelvin–Helmholtz, Rayleigh–Taylor
- 6. Radiation from (hot) stars causes cloud _____
- 7. What star particles and countries have in common
- 8. A criterion for collapse but also a fashion item
- 9. Happens to gas through stellar death and at the stock market
- 10. The force that dropped an apple onto Newton
- 11. An IMF
- 12. Diffuse component in a galaxy cluster
- 13. Time-independent predictions are only possible for _____
- 14. Basic physics that describes baryons
- 15. To partition a plane into regions with certain properties
- 16. Caused by high-Mach-number flows
- 17. Most of the matter is like this

