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USM Why “expanding” atmospheres?

3Radiative transfer in the envelopes of early type stars, and related problems

Observational findings:
early type star have outflows, at least quasi-stationary
only small variability of global quantities

have to be explained
diagnostic tools have to be developed
predictions have to be given

(M, v )∞
�

M, v ,v(r)∞
�

‒ Morton & Underhill 
1977
‒ Howarth (p.c.)
∆t several years

vmax≈2,500 
km/s
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USM

driven by radiative line acceleration, 
supersonic outflows:

Radiative transfer in expanding media required, 
both to calculate line acceleration, and to 
synthesize SEDs (quantitative spectroscopy)

7 5
sun10 ...10  M / yr, v 200 ... 3,000 km/sM − −

∞≈ ≈
i

pioneering investigations by
Lucy & Solomon, 1970
Castor, Abbott & Klein, 1975 (CAK)

reviews by Kudritzki & Puls, 2000
Puls et al. 2008

dramatic impact on stellar evolution of massive stars 
(mass-loss rate vs. life time!) 
line driven winds important for chemical evolution of (spiral) 
Galaxies, in particular for starbursts
transfer of momentum (=> might induce star formation), 
energy and nuclear-processed material to surrounding 
environment

4

Line-driven winds from early type stars

Prerequisites for radiative driving
large number of photons and
large number of lines close to flux maximum required
(typically some 104...105 lines relevant)
… with high interaction probability  
(=> mass-loss dependent on metal abundances)

Radiative transfer in the envelopes of early type stars, and related problemsXXIX Canary Island 
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USM Two major issues …

… relevant for the radiative transfer in early type stars

sphericity
(affects radiation field and density)

velocity fields 
(mostly affect line-transfer, due to Dopper-shift)

5Radiative transfer in the envelopes of early type stars, and related problemsXXIX Canary Island 
Winter School
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Chapter 1
From plane-parallel to spherical 
atmospheres with velocity fields

6

light ray through atmosphere

lines of constant temperature and density (isocontours)

curvature of atmosphere 
insignificant for photons' path: 
α = β

significant curvature: 
α ≠ β

examples
solar photosphere / cromosphere solar corona
atmospheres of                                      expanding envelopes (stellar winds) 

“cool” main sequence stars                  of OBA stars, red giants and supergiants
white dwarfs

as long as  Δr / R << 1
=>  plane-parallel (p-p) symmetry

Radiative transfer in the envelopes of early type stars, and related problemsXXIX Canary Island 
Winter School
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Radiative transfer in the envelopes of early type stars, and related problems
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USM Hydrostatic equilibrium
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When is (quasi-)hydrostatic 
approach justified?
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Conclusion: 
for v << vsound, hydrodynamic density stratification becomes (“quasi”-) hydrostatic
this is reached in deeper photospheric layers, well below the sonic point, defined by v(rs)=vsound

Thus: p-p atmospheres using hydrostatic equilibrium give reasonable results 
even in the presence of winds as long as investigated features (continua, lines) 
are formed below the sonic point (see also slide 12)
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Unified atmospheres ‒
density/velocity stratification 

for stars with winds

11

photosphere + wind = unified atmosphere (Gabler et al. 1989)

Two possibilities: 
a) stratification from theoretical wind models [Castor et al. 1975, Pauldrach et al. 1986, 

WM-Basic (Pauldrach et al. 2001), Appendix A]
Disadvantage: difficult to manipulate if theory not applicable or too simplified

b) combine quasi-hydrostatic photosphere and empirical wind structure [PHOENIX 
(Hauschildt 1992), CMFGEN (Hillier & Miller 1998), PoWR (Gräfener et al. 2002), 
FASTWIND (Puls et al. 2005), Appendix A]
Disadvantage: transition regime ill-defined 
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Unified atmospheres ‒ 
density/velocity stratification

12XXIX Canary Island 
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Radiative transfer in the envelopes of early type stars, and related problems

dotted: hydrostatic
solid: unified model with thin wind
dashed: unified model with dense wind

dotted: hydrodynamic, from wind-theory
solid: unified model, with similar v∞ and β=0.8

corresponds to log ρ = log m – log H

cores of
strong lines
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NOTE: at same τ or m, wind-density (for v ≥ vsound ) lower than if in hydrostatic equilibrium
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Plane-parallel or 
unified model atmospheres?

Unified models required if τRoss ≥ 10-2 at transition 
between photosphere and wind (roughly at 0.1*vsound)

rule of thumb using a typical velocity law (β=1)

if 

→ plane-parallel, hydrostatic models possible for optical spectroscopy of 
late O-dwarfs and B-stars up to luminosity classes II (early subtypes) 
or Ib (mid/late subtypes)

check required!

2
max Ross sound

8 1
1

v( 10  at 0.1 v )
10 100

6
0

10 RM M
R kms

M yrτ − − ∗ ∞
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−⋅= = ≈ ⋅ ⋅
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� �
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max       (actual) <  for considered object, 
then    (most) diagnostic features formed in quasi-hydrostatic part of atmosphere
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Chapter 2
RT: from p-p to spherical symmetry
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general case:
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Moments of the RTE
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the following method ( ) works 
ONLY for spherically symmetric problems and no Doppler-shifts!
a) define p-rays (impact-parameter) ta

based on Hummer & Rybicki 1

ngential to each discrete r

971

adi
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al s

2 2

hell
b) augment those by a bunch of (equidistant) p-rays resolving the core
c) use only the forward hemisphere, i.e.,
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+ -In fact, the RTE is not solved for  seperately,  but for a linear combination of  and , 
using the so-called Feautrier-variables  and v , which allows to construct a 2nd order scheme
as in the 

I I I
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plane-parallel case: higher accuracy, diffusion limit can be easily represented
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inner boundary: for core rays, first order, using the diffusion approximation; for non-core rays, 2nd order, using symmetry arguments
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max( , ) 0,  (e.g., shortward of HeII Lyman edge)
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affected by inaccuracies, 
due to specific way of discretization, but ratios of  moments much more precise (errors cancel to a large part)
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Continuum transfer in 
extended atmospheres
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Thus: 
solve the moments equations (only radius-dependent),  and use Eddington-factors from formal solution
to close the relations. Ensures

variable Eddingt

 high accuracy (

on-factor 

since dire

method

ct solution for angle-averaged quantities, and 2nd order scheme), 
whilst Eddington-factors (from the formal solution) quickly stablilize in the course of global iterations.

Additional advantage: when using moments equations, optimum diagonal accelerated lambda-operator (see Chap. 4) 
can be easily calculated.
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Problem (to be detailed below)
When standard (observers’s frame) RT-methods applied, 
very high resolution  in radial grid (∆v=O(vth/3)) required
(for specific methods, also very high resolution in μ required).
E.g., for v∞=2000 km/s, and vth(O)=8km/s, N=750 radial grid points!
(problem becomes mitigated, when large “micro-turbulence” of order 100 km/s ‒ due to inhomogeneous 
wind structure ‒ considered)

NOTE as well: 
Use only RTE (maybe cast into “Rybicki form” if separation into scattering and thermal part 
possible), but do NOT use moments equations as before, since only general 
formulation (top of slide 16) valid if opacities strongly μ-dependent (due to Doppler-shifts)

In the following, we mostly consider the pure line case (except when stated differently),
assuming that the continuum is optically thin (not so wrong for “normal” OB-star winds, 
but invalid, e.g., for WR-stars with much larger mass-loss rates).

Moreover, we assume pure Doppler-broadening, which captures the essential contribution 
when calculating occupation numbers etc. (→ scattering integral J̅̅ ). 
For the calculation of emergent profiles, other broadening functions might/should be used 
if necessary (e.g., Stark- and Voigt-profiles)

Chapter 3
Line transfer in (rapidly) 
expanding atmospheres
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the radiation field at corresponding comoving frame (CMF) freq , and absoruen b/cies emit
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CMF

photons according to

( ),   when the observer's frame frequency is ,   and ( ) v( )   in spherical symmetry.

Thus, the profile function has to be evaluated at the CMF-frequency,

( ,

r
c

r

νν ν ν μ

φ ν

≈ − ⋅ ⋅ =n v r n v r
�

2

DD

1 v( ) /) exp .
( )( )
r c
rr

ν ν μ ν
νν π

⎡ ⎤⎛ ⎞− −⎢ ⎥= −⎜ ⎟ΔΔ ⎢ ⎥⎝ ⎠⎣ ⎦

� �

th

th

For simplicity, in the following we assume a spatially constant thermal speed,  v ,  and measure frequencies 
in Doppler-units w.r.t. to this speed (a generalization to depth-dependent v (r) is provid
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( )

[ ]

2
CMF

D

In this notation,
1( , ) ( v', ) exp v'( ) ,   

the profile function has still units "per frequency", =s, and is only expressed with argument .

x r x r x r

x

ν νφ φ μ μ
ν π

φ

⎡ ⎤= − = − −⎣ ⎦Δ

1
DTo simplify the following considerations, we include the factor ( )   from above into the opacity; 

then the profile function has units "per Doppler-shift" (i.e., it's dimensionless and normalized w
ν −Δ

( )

-1
L D

2L L L
CMF CMF CMF

D D th

th th

.r.t. ),  
whilst [ ( ) / ] [cm ]

( ) ( ) ( )1( , )  ( , )   with   ( , ) exp v'( )  ,  and   ;
v

v vNote that since v'( ) [ , ],   needs to vary in the sam
v v

x
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r r rx r x r x r x r
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ν
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χ χ χ λ
χ φ φ μ

ν νπ

μ ∞ ∞

Δ =
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( )e range essentially, , ,   and not only 

over a few thermal Doppler widths.

x⎡ ∈ −∞ ∞ ⎤⎣ ⎦

For various integrals involving Φ, see Appendix B.2
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line processes only effective in a very 
localized region, the so-called 
resonance-zone, whenever Φ(xCMF) 
is non-negligible, i.e. when 
(x-μv‘) ϵ [-∆xDop,+∆xDop] ≈ [-3,3]

d v'( ) dSince v'( )  part of argument of , we need to know   along path d    (remember: )
d d

To calulate this quantity, we again make use of the p-z geometry in spherical symmetry (rotate such t

rr s
s s

μμ φ ⋅∇ =n

2 2

hat )

d v'( ) d v'( ) dv' d d dv' v' dv'v' (1 ) 0   for v' > 0 and 0!  
d d d d d d d

[In contrast to             , 0 implies here 0, i.e., for negative angles we consider the back-hemisp
p p p

z

r r r
s z r z z r r r

z

μ μ μμ μ μ

μ

→ = + = + − > >

< <

n

In spherical symmetry,  v'( ) increases  monotonically along any given direction ,  as long as v' 0 is monotonically inc
here]

reasing.rμ >n
slide 17

I(x1+Δx)

[μv‘](z)= μ(z)v‘(r(z)), i.e.,v‘>0 always (for outflows)

I(xobs)

I(x1)

I0 exp[-τx(zend)]   for pure abs.

I(x1-Δx)

of resonance zone for x1=μv‘1

(blue edge) begin end (red edge)center

I0

μv‘1(z1)
μv‘1-Δx μv‘1+Δx

1 1 1 1  varie( ) ( , ) ( v' , ) d      sI z I x z x z xxν φ μ= −∫

[ ]( )
min

z
L

D

( ')( )  v' ( '), '  d '         variesx
z

zzz x z z zχ
τ φ μ

ν
= −

Δ∫
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Both freq. grid (x) and μv‘(z) need to be highly resolved, on scales corresponding to vDop. 
if μv‘(z)-spacing too coarse: resonance zone missed or not resolved, intensity remains constant (or too 

large),  and I ̅ becomes too large!  (red, blue and green curves would become constant at I0)
if  x-spacing too coarse: variation of I(x)  (“neighboring” resonance zones) not sufficiently sampled. 

(blue/green curves might be absent, and red curve not centered, if no frequency where x-μv‘=0)

In spherical geometry, the first point is a specific problem, 
since the general spacing has to be provided for the radial 
grid (and not for specific p-rays), and a high resolution in 
v’(r) does not guarantee a high resolution in μv‘(z).
In models using Cartesian co-ordinates (μ=const along a 
specific ray), this leads to the condition that ∆μ=∆x/v‘max
(intricate coupling of frequency and angle!) I(x1+Δx)

[μv‘](z)= μ(z)v‘(r(z)), i.e.,v‘>0 always (for outflows)

I(xobs)

I(x1)
I(x1-Δx)

of resonance zone for x1=μv‘1

(blue edge) begin end (red edge)center

I0

μv‘1(z1)
μv‘1-Δx μv‘1+Δx

1 1 1 1  varie( ) ( , ) ( v' , ) d      sI z I x z x z xxν φ μ= −∫

[ ]( )
min

z
L

D

( ')( )  v' ( '), '  d '         variesx
z

zzz x z z zχ
τ φ μ

ν
= −

Δ∫

I0 exp[-τx(zend)]   for pure abs.
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From the slides before, it is evident that line processes (contrasted to continuum ones)
occur in a very localized region in the wind. V. Sobolev (1960; but work done during world-
war II) was the first to obtain a completely local approximation which is quite close to reality 
(and can be extended to become even more precise). 
The following derivation follows (in part) Owocki & Puls (1996);
for an alternative derivation (very insightful), see Rybicki & Hummer (1978)

th th

l

For simplicity, in the following
(i) we concentrate on outflows, i.e., v( ) 0  [though dv/d 0 is not excluded],
(ii) adopt, as before, a spatially constant thermal speed v ( ) v , and

(iii) define (

r r
r

χ

> <
=

L

D

( )) rr χ
ν

=
Δ

( )
1 2

1 2

1 2
max( , )

2 2
1 2 l

min( , )

The optical depth difference (along impact parameter ) between two points  and  is given by

'( , , , , ) ( ') 'v'(r ') d '      with (as usual)  ' ,  and  ' ' .   
'

z z

z z

p z z

zt x p z z r x z r z p
r

χ φ μ μ= − = = +∫

*

( , , , )( , , , ) - ( , , , ')
core 0

direct component, only present diffuse component (from radiation scattered or emfor >0 and 

Then, without any approx.,
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p R

I x p z I S r t x p z zν
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≤

= + ∫���	��

* *

itted in the wind)

  for 0,   
    with 

  else

The above equation is valid for both outward ( 0) and inward  ( 0) directed rays, in dependence of the sign of .
Here, we us

B

z z p R
z

zμ μ

> ≤⎧
= ⎨−∞⎩

≥ <

�������	������


e a p-z geometry , with   0 for the front extending over both hemis and 0 for the back hepher misphere!es z z> <
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*

( , , , )( , , , ) - ( , , , ')
core 0

direct component, only present diffuse component (from radiation scattered or emitted in the wind)for >0 and 

( , , ) e ( ')e d ( , , , ')B
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1

1

  for 0,   
    with 

  else

To calculate the scattering integrals, we first integrate over ( )d

( , ) ( , , ) v'( ) d     and then over d ,

1( ) ( , )d
2
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z z p R
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x x
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( )

the integrands provide a contribution only if ' v'( ')  v'(r), respectivNow we consider that or  
due to the behaviour of . For the optical depth difference, 

( , , , , ) ( ') ' v'(r ')

ely

'

 

d

,

B lt x p z z r
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φ

μ

μ
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μ
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( )

[ ]
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zmax( , )

l 0
min( , ) z

0

2
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0

    ( ) ' v'(r ') d ',   

where  is the position of the corresponding resonance zone, and needs to be calculated from 

v' ( ) ,   i.e., 1- v'( )   (non-linear eq

B

B

z z

z z

r x z

r

pr x r x
r

χ φ μ

μ

→ −

= ± =

∫ ∫

.),

which has a unique solution for strictly monotonic flows (otherwise there is more than one resonance zone). 

This is the Sobolev approximation:
opacities (and source functions) are

assumed to be constant over the 
resonance zone
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CMF

2 2CMF

Moreover, we switch from an integration over d '   to an integration over CMF-frequency,  
d d( v'(r'))

d d( v') dv' v'(see             ) (1 ) : ( , ). 0  For ,  
d d d

by consi
pp

z
x x

x
Q r

z z r
Q

r

μ

μ μ μ μ

= −

⎛ ⎞= − = = − + − >= −⎜ ⎟
⎝ ⎠

CMF CMFdering boundaries: ( ) v'(r),   ( )   [blueward of blue edge of resonance zone],
and by putting ( , ) in front of the integral [same argument as before], we arrive at

Bx z x x z
Q r

μ
μ

= − → ∞
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This result can be generalized for ,  if we define

In the general case,  is the  directional derivative 
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( )( , , , ) ( , , , )- ( , , , ') '
0 00

0

Since also the integrand of the diffuse component contributes only for  'v', 

( ')e d ( , , , ')    ( ) e d '   =  ( ) 1 e ,      
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Only inside the resonance zone, the optical depth increases, and the intensity v
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( )S 0 0 CMF S 0 0 CMF( , ) ( ) ( , ) ( )
core 0 CMF

CMF

Now comes the 2nd  "trick" ....  As outlined, we first calculate 
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 (ii) the angular integration does NOT require a highly resolved angular grid 
       (since the interaction between , , and  has been already accounted for)x rμ
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that 
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2

1 2

2
2 *

with ( )  , we obtain
4 v(r)

v1 1 v(r)( )     ( )   for =0.5,  and    ( )  for =1     , 
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This means that a strong UV-line (e.g., CIV 1548/1550, Fig. 1) will remain optically thick 
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c core

- ( )
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( )
In Chap. 4, we will show that in 

2. Source function for a pure scattering resonance line
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Radiative line acceleration

S

*

1 ( , )
L L

rad core
S

The approximate radiative line acceleration due to ONE line is provided by

4 1 2 1 e( ) d ( , ) d ,
2 ( , )

since the contribution from the source term (even in ) cancel

r

g I I
c c r

τ μ

μ

χ χπ π
μ μ μ μ ν μ μ

ρ ρ τ μ

μ

−−
= ≈∫ ∫

L L
rad

D

s when integrating over d  with [-1,1].

Note t  and nhat    Appeno dix [see ]  Btg

μ μ μ
χ χ
ρ ρ ν

∈

∝
Δ
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Sobolev length

The Sobolev length is roughly the (half-)width of the resonance zone. 
More precisely, it is the length scale where v(r) changes by 1 vth, accounting for the 
most decisive part of the profile function:

th
th Sob Sob

th
th Sob Sob

2 2 2 2

th
Sob

vdv 1v v :                   for radial rays
d dv/d dv'/d

vd( v) 1v v :           for spherical symmetry
dv v dv' v'dz (1 ) (1 )
d d

vmost generally:    
( )

L L
r r r

L L

r r r r

L

μ

μ μ μ μ

Δ = = ⇒ = =

Δ = = ⇒ = =
+ − + −

=
⋅ ∇ ⋅n n v

in direction n

For small vmicro, LSob depends on mion
-1/2
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Thus, the Sobolev approximation is valid (regarding an opacity propto ρ)
i. as long as v(r) > vth, and
ii. as long as r/R* < v∞/(2vth) = O(100), i.e., for all relevant radii

1

Sob

Let's define a characteristic length scale, ,  for a macro-variable ,  defined via

d d ln,  i.e., 
d d
To warrant the validity of the Sobolev approximation (SA),  must be smaller tha

x

x x

l x

x xl x l
r r

L

−
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

Sob

th

d

n

l

,

n 1
dv/v

x

x

L x

l

l
= <

L

 let's consider the opacity (previously assumed as being roughly constant over the 
resonance zone when evaluating the optical-depth integrals). 

For (UV-) resonance lines, ( ) ( ),  and a typ

Example:

r rχ ρ∝ *

Sob th th

*

ical velocity field reads v( ) v (1 )   

with 1. Then,

v 2v
v v

Rr
r

L r
l R

β

χ

β

∞

∞

= −

=

= +
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As it turns out, a similar condition applies for the source-function. 
The only regions where the SA fails is 

the sub-thermal region (density decreases exponentially within a very extended 
resonance zone), and 

the transition zone between quasi-hydrostatic photosphere and wind, where the 
resonance zone is still broad, however the velocity-field has a significant curvature 
(and not a constant gradient).
[Unfortunately, this zone is very important regarding the radiative line-acceleration, 
and is badly described when using the SA (see Owocki & Puls 1999)]

Interestingly, the SA is almost perfectly valid in a Supernova remnant, 
due to a velocity field v ~ r, i.e., a constant gradient

Note also that the SA fails in a correct description of the reaction of the line acceleration 
onto disturbances. Most important, the so-called line-driven instability (LDI) cannot be
represented in the framework of SA.
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Coupling with continuum: Hummer & Rybicki 1985
Important when continuum is no longer optically thin

( ) ( )

S

___________

c inc L c L S P

1 ( , )___________
inc inc

c inc
S1

( ) ( )   1 ( ) ( )  +  ( ) ( ) ( , ) 

1 1 ewith  ( ) ( , ) d ,    and  ( , )  the intensity incident at the considered 
2 ( , )

location (re

r

J r r I r S r S r S r U

r I I r I r
r

τ μ

β β τ β

β μ μ μ
τ μ

−

−

= + − −

−
= ∫

( ) c S P

sonance zone), usually the continuum intensity;

( ) is the conventional  escape probability,  ( ) the continuum source-function,  and ( , ) is a function 

describing the actual coupling of the opacit

r S r Uβ τ β

c
P

L

ies in the resonance zone, with  the ratio of continuum 
/

and line opacity. The function  can be obtained, e.g.,  from pre-calculated tab (Taresch et al. 199les .

Often, the last term can 

7

be

)
D

U

χ
β

χ ν
=

Δ

 neglected, but at least the first term (modified compared to the previous expression) 
needs to be considered when the continuum is non-neglibile ...
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S ( , ( ) )___________

c inc
S

Accounting also for the optically thin case, one finds to a good approximation

1 e( ) ( )      ,  and avoids the angular integration 
( , ( ))

by evaluating the SA-opt

r f r

r I J r
r f r

ντ μ

ν
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β
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− =−
≈

=

S ( , 1/ 3)

S

ical depth at ( ).  
A similar reasoning yields an approximation for the escape probability, 
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− =

=

−
≈
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... either one uses the intensities from the continuum transfer, or applies the following reasoning
(unpublished thus far):
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Inclusion of source-function gradients: Sobolev 1957, Castor 1974, 
Puls & Hummer 1988

important when calculating the line-acceleration:
constant source function does not contribute, but gradient does (see also 
Owocki & Puls 1999); inclusion of continuum terms essential.

Inclusion of multi-line effects: Puls 1987 (see also Friend & Castor 1983)
important when calculating the  total line-acceleration, Σi gi

rad
different lines can interact with each other, due to Doppler-induced frequency shifts

Incl. of non-monotonic velocity fields: Puls, Owocki & Fullerton 1996 
more than one resonance zone, 
important when calculating line-acceleration in time-dependent winds
prone to the LDI (line-driven instability)

( ) ( )
obs 1

1 2 2 1
2 1

1

e.g., for the same , there might be an interaction  with a line at  in the inner wind, 
v v

and  subsequently in the more outer part with a line at < , if 

In other words, th
c c

ν ν
μ μν νν ν

ν
−

≈ −

�

� �� �
�

( )
( )

22

1 1

e radiation incident at v  (determining the radiation field for )

has already been processed before, by line  at v

μ ν

ν μ

�

�
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When calculating line-profiles (specifically, 
UV P Cygni lines) and using the SA exclusively
(i.e., to determine the source function AND the 
emergent profile), the accuracy ‒ compared to 
“exact” methods ‒ is quite low.

A better approach is to calculate the scattering 
integral (and thus the source-function, either in 
a complete NLTE or a two-level-approach) 
using the SA, and then to derive the emergent 
line profile from an “exact”  formal solution 
using such source-function.

First noted by Hamann (1981), and explicitly 
suggested by Lamers et al. (1987): “SEI”
[independently used by Puls 1987, for the case 
of a large number of  overlapping lines, in the 
context of NLTE wind modeling/spectrum 
synthesis]

emergent profiles with S=J̅ , for intermediate (left)  
and strong (right) wind lines, and different opacity 
stratifications. Solid: ‘exact’ (CMF), dashed-dotted: SEI.
From Puls (1985, Diploma Thesis). 
Note: Blue frequencies on the right!
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… assuming a strong resonance line, 
remaining optically thick until v_m
(corresponding to the terminal velocity)

due to Dopplershifts, all obs. frame frequencies
corresponding to [+v_m, -v_m] can contribute

absorption in region A in front of stellar disk 
(approaching material → blue frequencies )

asymmetric emission from region A’/B 
in front hemisphere (blue emission due to 
approaching material), and region C (side lobes) 
in back hemisphere (red emission due to 
receding material).

emission caused by line scattering

When calculating the formal solution via an integral method, it is advantageous to remap all quantities onto a micro-grid 
of resolution ≈ vth/3, to ensure a correct treatment of the resonance zone (e.g.,  Santolaya-Rey et al. 1997) 
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Obviously, the calculation of the radiation field in an environment 
with significant (supersonic) velocity-fields is either

time-consuming, if done in the observer’s frame: 
many grid-points, frequencies, and angles, or 
only approximate (but fast), when done using the Sobolev-approximation: 
additional difficulties when considering not only one isolated line in an 
optically thin continuum, but more realistic cases as occurring in NLTE-
atmosphere calculations (many lines, various continua, multi-line effects …)

A simple solution is possible when the velocity field is monotonic, 
after transforming to the comoving frame 

Note: a CMF-solution is also possible for non-monotonic velocity fields, at least 
in principle, but the algorithm becomes very complex.
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We start in the observer's frame, using the p-z geometry (now again for the front hemisphere only)
d ( , , ) v v, (1 ) , (1 ) ( , , ),  

d c c

where in the following all CMF quantitie

I z p r r I z p
z ν ν

ν μ μη ν χ ν ν
±

±⎛ ⎞ ⎛ ⎞± = − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

0 CMF
vs are denoted by a sub-(or super-)script '0'; e.g., (1 )

c
μν ν ν= −�

( ) ( ) ( ) ( ) ( ) ( )

0 0

0 0

0
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d  
d

Aobserver's frame:    CMB      A  C     +    C  F B:

z

z z

z z zν ν ν
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ν
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= ≈ ==

∂∂ ∂
= +

∂ ∂ ∂

→ → →�

0 0

0 0 0

(v / )
0 0 0

0

0

vSince ( , ) (1 ),  the spatial derivative needs to account for the change of  with :
c

d ( v)    with     ( , )     
d

[we approximate   and 

O c

z

z z

Q r
z z z z c z c

r r
ν ν ν ν

μν ν ν ν ν

ν ν νν μ μ
ν

μ μ

= = −

∂ ∂∂ ∂ ∂
= + = − ≈

∂ ∂ ∂ ∂ ∂

≈ ≈
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]v'

;

Q

z Q r
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A velocity field produces Doppler-shifts, aberration and advection terms (see below); formally, all of these are (v / ),
but for lines the Doppler shifts become signficant already if  v (v ),  due to 

O c
O= the rapid change of the profile function.

Thus, in a heuristic approach, let's concentrate on the Doppler-shifts, and neglect the rest [see also Lucy 1971]

sketch for μ>0
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B
C
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obs CMF
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c
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μν ν

⎛ ⎞= −⎜ ⎟
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0 0 0

0 0 0 0 0
0 0 0 0 0 0

0

Thus, the RTE becomes
... in p-z geometry with ,  ,  
    

( , , ) ( , ) ( , , )   ( , ) ( , ) ( , , )

Whilst the first (spatialNOTE ) derivative enters with ' ' f: 

r r z z

I z p Q r I z p r r I z p
z c

μ μ

ν ν μ ν
η ν χ ν ν

ν

± ±
±

≈ ≈ ≈

∂ ∂
± − = −

∂ ∂

±

�

or outward and inward radiation, respectively, the 2nd 
(frequency) derivative has the same sign in both cases. This again is due to the fact that the gradient of v is always 
positive in a spherically

μ
 expanding medium (as long as v( ) is monotonically increasing), irrespective of direction.r

0 0

2
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0

0 0

... in spherical geometry/symmetry with ,  

( , , ) 1 ( , , ) ( , ) ( , , )    ( , ) ( , ) ( , , )

... and in plane-parallel symmetry with ,  

  

r r

I r I r Q r I r r r I r
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∂ ∂

The CMF equation of RT
(stationary case)
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The full transformation of the RTE for non-uniform velocity fields (including time-
dependent terms) can be found, e.g., in Castor (1972)
Mihalas, Kunasz & Hummer (1976) showed that aberration terms (involving 
changes in direction μ) and advection terms (arising ‘from gradients or from a 
“sweeping up” of radiation by the transformation’ to the CMF) can be neglected 
when v<<c (as considered here; but SN-remnants!), whilst the frequency derivatives 
are most important. Thus far, the above equations are sufficient as long as v<<c.   

in the above equations, particularly I0, η0, and χ0 are in the comoving frame, 
and η0 and χ0 are isotropic
consequently, for each line (if treated as a single one), only a small frequency range 
covering the variation of Φ (≈ ±3 vth) needs to be considered. 
if only one line considered, RT performed exclusively in the resonance zone 

The CMF RTE is a partial differential equation (PDE) of hyperbolic type, and poses 
an initial boundary value problem, i.e., requires boundary conditions in space and 
initial values in frequency  
for larger frequency ranges, it might be useful to differentiate via

0

0 0

( , ) ( , )
ln

Q r Q r
c c

ν μ μ
ν ν
∂ ∂

=
∂ ∂

� �
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0 0 0 0 0 0

0

0
0 0

0

( , , ) ( , ) ( , , )
( , ) ( , ) ( , , )

v
Let's use Doppler-units w.r.t. v ,    and ,   where  is an arbitrary reference frequency close to .
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0 0 0 0 0 0
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ns constant
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hypersurfaces)  if there is no  absorption/emission. 
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and when propagating inward from v'
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0 0 0 0
0 0 0 0 0 0

0

From the CMF-RTE, 
( , , ) ( , , )( , ) ( , ) ( , ) ( , , ),  

one can also derive the Sobolev limit without problems. 

Since we are in the CMF, the above equation needs to be so

I z p x I z p xP r r x r x I z p x
z x

μ η χ
± ±

±∂ ∂
± − = −

∂ ∂

0lved only in those regions of  where 
the profile function is non-negligible. This, however, corresponds to the resonance zone, where the 
SA assumes that all macro-variables (except for v) are spatia

x

lly constant. In this spirit, when 
neglecting the spatial derivative in the above equation, the Sobolev-limit can be easily obtained! 

We will show this here for the case of one purely absorbing line (no cont.) at frequency  (and positive ), 
the generalization is left as an exercise for the reader  (or: see Lucy 1971, Puls 1991) 

ν μ
⇒

�

0

0,

0 0
0 0 0 0

0

inc
0 0 0 0, 0 0

0

( , , )( , ) ( , ) ( , , )   where ( , , ) refer to the resonance zone

( )ln ( , , ) / ( , , ) ( )d         [  since frequency  and not ]
( , )
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B

x
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B
x

I z p xP r r x I z p x z r
x

rI z p x I z p x x x x
P r

I z p x

μ χ μ

χ φ ν ν
ν μ

+
+

+
∞

∞

+

∂
− = −

∂

⎡ ⎤ = Δ⎣ ⎦ Δ ∫

[ ]inc
0 0 0, 0) ( , , ) exp ( , ) ( ) ,    

q.e.d. [compare with             , and note that the above solution is already evaluated in the resonance zone]

B SI z p x r xτ μ= − Φ

slide 28
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… as for (quasi-isotropic) continuum (cf. slide 18):

METHOD 1 (formal solution for I): use ‘only’ the discretized CMF-RTE for Feautrier variables, 
u=1/2(I++I-) and v=1/2(I+-I-). In p-z geometry:

two coupled first order PDEs
(almost) all variables are in the CMF, and depend on z (or r) and x0.
boundary values as before (slide 18), plus ‘blue-wing’ boundary condition at bluest 
frequency, from pure continuum transport. Attention: if integration over large frequency
range, care needs to be taken in the formulation of the outer boundary condition when 
optically thick; otherwise numerical artefacts created and transported through the grid! 
approximate lambda operator (ALO) can be calculated in parallel (see slide 58).
discretization: 

either using fully implicit scheme; 2nd order in space, 1st order in frequency: unconditionally 
stable  (Mihalas et al. 1975)
or semi-implicit (Crank-Nicholson) scheme; higher accuracy, since 2nd order in frequency: 
if used in the formulation by Hamann (1981) [and NOT in the formulation by Mihalas et al. 1975], 
unconditionally stable as well (according to the author) 

0 0
0

0 0
0

0 0
0 2 2

0 0
0

v v                                        CMF-frequency in Doppler-units w.r.t. v

d( v/v ) dv/v v/vv ( )                               ( , ) (1 ) ;
d d

u P x
z x

uP S u P r
z x z r r

χ

μχ μ μ μ

∞

∞ ∞ ∞

∂ ∂
− = −

∂ ∂

∂ ∂ ⎛ ⎞− = − = = + −⎜ ⎟∂ ∂ ⎝ ⎠
                                                                    don't confuse Fea                 utrier v with vel        ocit y v!
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METHOD2 (variable Eddington factors): use CMF moments equations to obtain moments
of radiation field (in the CMF). Contrasted to observer’s frame equations (slide 16/19), 
3rd moment (of specific intensity), Nν

0, present. 

In case, use Rybicki scheme if source function can be separated into scattering and
true absorption/emission components.

( )2 0 0 0 0
00

0 0 0 02
0 0

0 0 0 0 0 0
00
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0 0
0 0

0 0By means of the sphericality factor  from              and the Eddington factors  =   and  = 

(calculated from the formal solution)
we obtain again a coupled system of 1st order PDEs
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ν ν

ν ν ν ν
ν ν

ν ν ν ν ν ν

ν

ν ν
χ ν

ν ν

ν ν
χ ν

ν ν

∂ ∂ ∂⎡ ⎤− + − + = −⎢ ⎥∂ ∂ ∂⎣ ⎦

∂ ∂ ∂⎡ ⎤− + − + =⎢ ⎥∂ ∂ ∂⎣ ⎦
0  Hν
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Theoretical UV spectra (900 – 2000 Å) for a hot supergiant (Teff = 45,000 K, log g = 3.8) with 
a dense wind (left), and for a “cool” dwarf (Teff = 28,000 K, log g = 3.9) (right), as 
synthesized by FASTWIND v11 (black) and  CMFGEN (green). The model spectra for the 
supergiant were convolved with v sini = 80 km/s, whilst for the dwarf model v sini = 200 km/s 
was used, to allow for an easy comparison. Line identifiers for “light” ions provided.

hot supergiant (Teff = 45,000 K), dense wind “cool” dwarf (Teff = 28,000 K), moderate wind
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Theoretical spectra for a hot supergiant 
(Teff = 45,000 K, log g = 3.8) with a dense 
wind, in the range 4000 ‒ 7000 Å, as 
synthesized by FASTWIND v11 (black) 
and  CMFGEN (green). The spectra have 
been convolved with v sini = 80 km/s. 
Line identifiers provided for H, He, and 
CIV, NIV, OIV and SiIV (see legend).



USM Radiative acceleration

54XXIX Canary Island 
Winter School

Radiative transfer in the envelopes of early type stars, and related problems

( ) ( )( )rad

To calculate the radiative acceleration, in the observer's frame we would need to evaluate (see             )
1 d  (1 v/ ) ( ) (1 v/ ) d ,

since the (line-) opacities and emissivities 

c I c
c ν ν νρ ν χ ν μ μ η ν μ= − − − Ω∫ ∫g nv

are angle-dependent when a velocity field is present.

slide 16

0 0 0 0 0 0
rad 0 0

Because of the isotropy of  and  in the comoving frame, however, this expression becomes considerably 
simplified when evaluated in the CMF,

4 d  ,    since ( , ) d = 4   H I H
c

ν ν

ν ν ν ν ν

χ η

π ν χ χ μ ν χ π
ρ

= Ω∫ ∫g nv 0

S

 and   d 0

[Remember as well that also in the "standard" SA, the contribution due to emission cancels, because of the 
fore-aft symmetry of . Source-function gradients do change this picture th

νη

τ

Ω =∫ nv

ough, e.g. Puls  & Hummer 1988]

Interestingly (and fortunately) one can show (e.g., Mihalas, "Stellar atmospheres", 2nd edition, Chap. 15.3) 
that this expression is not only valid when used within the fluid frame (=CMF) equations of motion, but also, 
to order (v / ), in the corresponding inertial frame formulation. Namely, when the moments of the radiation field 
contained in the coupled matter-radiation equation of motion are exp

c

rad

ressed in terms of their CMF-counterparts, 
and if the CMF moments equations (see below) are used, a delicate cancellation of terms ensures that also in the 

inertial frame the above expression for g
(v / )

0
rad  can be used for the radiative acceleration.

O c
→ g
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Comparison of flux-mean 
mass absorption coefficient, 
a quantity directly propor-
tional to the total radiative 
acceleration, for dwarf (left) 
and supergiant models (right) 
from FASTWIND v11 (black) 
and CMFGEN (green). 
The red lines indicate the 
corresponding “acceleration” 
by pure Thomson scattering. 
For convenience, all curves 
(but the lowest ones) have 
been shifted  by multiples of  
1 dex.
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Not directly related to radiative transfer, but important if NLTE treatment required 
as in the case of hot stars, where radiative rates dominate over collisional ones 
in the line-forming region, due to strong radiation field (and low densities in stellar wind).
NLTE: coupling between radiation field and occupation numbers via rate equations
two methods to obtain consistent solution

complete linearization (Auer & Mihalas 1969), used, e.g., in CMFGEN (Appendix A)
(Accelerated) Lambda iteration (Werner & Husfeld 1985), used, e.g., 
in PoWR, WM-basic, FASTWIND (Appendix A) 

ALI: easier to program and faster per iteration step, but often more iterations

BASIC IDEA:  Lambda-iteration
• start with guess values (e.g., LTE or simplified NLTE) for occupation numbers
• calculate opacities and source-functions
• perform RT, calculate mean intensities and scattering integrals
• solve rate equations involving Jν and J ̅, i.e., calculate new occupation numbers

PROBLEM(s): 
• very slow convergence for optically thick, scattering dominated processes, if at all 
• difficulty to define appropriate convergence criterion
• can be shown: during each iteration, information is propagated only over Δτν≈1

iteration
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0 0

alternatively, we use the Lambda iteration 
We start with a guess value for the source-function, ,  and calculate the scattering integral, ,  using ii)
Then we determine a new iterate for the sourc

S J
B : 

1

1 0
c core

1
c core 1 1

1 2
c core

1

e function, ,  using i)
(1 ) .        Generally,

  (1 )
   :  (1 )

(1 )
1and for optically thick lines ( ),   1,  ,  no rea

n n
n n n n

n n

n n

S

S
S S I

S S I
S S S S

S S I

S S

β β

β β
β

β β

β β
τ

−
− −

− −

−

⇒ = − +

⎫= − + ⎪ − = Δ = − Δ⎬
= − + ⎪⎭

→ Δ ≈ Δ�

Whe

son

n d

able c

o we c

onvergence c

onsider the 

riterium can be defined 

solution as converged

...

???  

( )
c core

i)    most simple "rate equation" e.g., from two-level atom without collisions

ii) (1 )    "formal solu

Simple example: purely scattering line (e.g., UV-resonance line) in Sobolev approach
S J

J S Iβ β

=

= − + tion" (see             , Sobolev solution for line-transfer in optically thin continuum)

Let's assume that the opacities are known and remain constant over the iteration (not too wrong for resonance li

c core
c core

nes)
In this case, it's possible to obtain a consistent analytic solution, using (i) and (ii) in parallel

(1 )           (balance between irradiation and escape)IS S I S β
β β

β
= − + ⇒ =

A : 
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1 2
c core c core c core

Let's investigate the limiting value for 
... and how does the direct solution (A) and the iterated solution (B) comp

(1 ) (1 ) (1 )

a

 

   

re?

  ...  (1 )

n n n

n o

n

S S I S I I

S

β β β β β β

β

− −

→ ∞

⎡ ⎤= − + = − − + +⎣ ⎦

= = − + 1 2
core

n-1

i=0

0 c core
c core

(1 ) (1 ) ... 1

1With   we thus find  
1

1 (1 )(1 )      ,     

i.e., indeed the Lambda-iterated solution (from B) converges (very slowly) to 

n n
c

n
i

n n
n n

I

qq
q

IS S I

β β β

βββ β
β β

− −

→∞

⎡ ⎤− + − + +⎣ ⎦
−

=
−

− −
= − +

∑

→
the correct one (from A),

(and becomes independent from the start value)

For 1, we can approximate (1 ) (1 ),   and to ensure convergence, we must have (1 ) 0,
1i.e.,   

How many iteration ste

Thus, we would need the same number o

ps would b

f iteratio

e required

n

?

s

n

S

n n

n

β β β β

τ
β

− ≈ − − →

≈ →

�

5 6

 as the size of ,  which 

(i) can be very large for resonance lines,  up to (10 ...10 ),  and
(ii) shows that indeed, per iteration step, information corresponding to only =1 is propagated

S

Sn O

τ

τ
τ

≈

Δ
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P formal solutionvia rate equations

Gen  For a  solution, we need

( ) ,

which is a non-linear and (except for the Sobolev-case) non local problem.
In contra

eral probl consistentem

t

:

s , 

n n nS f J f S
⎛ ⎞
⎜ ⎟⎡ ⎤= = Λ ⎣ ⎦⎜ ⎟
⎝ ⎠


��

1 1

the lambda iteration provides us with 

( ) ( ),

which displays the well-known convergence problems.

n n nS f J f S− −⎡ ⎤= = Λ ⎣ ⎦

For values on a 1-D spatial grid (with  grid-points), we may write
Λ

Thus,  is an affine operator (linear transformation + displacement), due to boundary conditions,
,  ,  and  are vector

N
⋅

Λ

J = [S] = Λ S +Φ, 

J S  Φ

( )
i

s of length ,  and  is a matrix with  elements. 
 corresponds to the boundary conditions ( ) .

If required, the elements  and  could be derived (in 1-D) from 1 formal solutions with , ij

N N N

N

×

Λ Φ +

Λ
Φ J S = 0

S = 0 S , ..., 1 N= e S = e

In the following, we consider continuum ( ) and line-problems ( ) in parallel. 
Generalization of results for continuum quantities to line conditions is straightforward, 
by solving for all line-frequen

J J

cies and integrating over the profile-function.
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( )
ALI bases on the idea of operator-splitting (e.g., Cannon 1973), namely to split

the lambda-operator into an approximate operator (which should be easily invertible), and a rest part
similar to

A AΛ = Λ + Λ - Λ

[ ]

( )

n-1 n

 the Jacobi iteration in boundary value problems . Then we can approximate

where identity is obtained for ,  when S S .n

⎡ ⎤ ⎡ ⎤≈ ⎣ ⎦ ⎣ ⎦

→ ∞ →

An nA n -1J Λ S + Λ - Λ S

Accelerated Lambda Iteration (ALI)

1 1This is the "trick", since now we have a relation between and , and not on   ly between and − −n n n nJ S J S

[ ] * *

* * *1 1 1 1 1* * 1*

Also the approximate lambda operator (ALO), ,  needs to be of affine type, i.e., ,  but even then

,   i.e.,     with  ,

o

   n n− − − − − −

⋅

⎡ ⎤ ⎡ ⎤= ⋅ − ⋅ = ⋅ = − ⋅⎣ ⎦ ⎣ ⎦
n n n n n n n n

A AΛ Λ S = Λ S +Φ

J Λ S +Φ + J Λ S +Φ J Λ S + ΔJ ΔJ J Λ S

* *

1 1 1

nly the linear part of the ALO, , is required, assuming that  remains constant over the iteration. 
Note that depends only on , and can be calculated from the formal solution for (and n− − −n n

Λ Φ
ΔJ S J * specified ).Λ
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One can show that under typical conditions  has a complete set of real and orthogonal eigenvectors 
and real eigenvalues  (e.g., Puls & Herrero 1988). Expanding  in terms of these eigenvectors, 
for

λ
A

ΔS
0

max

ma

max

x

 large  we obtain     ,    
where  is the maximum eigenvalue (when ordered 
Thus, the ALI scheme con

according to abso
verges if 1,  and else di

lute values)
verges.

.

nn

λ

λ
λ

<

≈nΔS ΔS

ii

Now let's adopt a continuum with scattering, or -- again -- a two-level atom,

where  is a diagonal matrix (containing the scattering fractions 0 1) 
and  a vector (containing the Planck-fun

ξ≤ ≤
S = ξJ + ψ

ξ
ψ

( )

( ) ( ) ( ) ( )

ctions). Then,

,

and we obtain an  expression fo

 ALI scheme for "simple" source-functi

r ,  

       

With   (deviation from t

ons

he 

explicit

∞

=

*

-1 -1*

n n n-1

*

n

n n-1 n-1*

n n

S = ξ Λ S + ΔJ + ψ

S

S = 1 - ξΛ ξΔJ + ψ 1 - ξΛ ξ(Λ - Λ )S + ψ

ΔS := S - S

( ) ( )1

"true" source function , contrasted to the def. on             ), we thus find
(after few algebraic manipulations)

     with "amplification matrix"  .

∞

− =
-1n n * *

S

ΔS = AΔS A 1 - ξΛ ξ(Λ - Λ )
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max

For static problems, Olson, Auer & Buchler (1986) showed that indeed 

1   if    diag ( ). 

A very fast calculation of the corresponding  has been provided by Rybicki & Hummer (1991, Appendix).

λ < =*

*

Λ Λ

Λ  
For the case of CMF line transfer, Puls (1991) developed an appropriate, purely local ALO.

since the CMF line transfer has an essentially local character in rapidly expanding atmosphereNOTE 1: s 
(taking place only in the narrow resonance zone), a local ALO is sufficient when solving for the rate equations 
under such conditions

for local ALOs, an overestimation of the exact diagonal lNOTE ead2: s to divergence in most cases

For  non-local ALOs and more sophisticated iteration schemes (e.g., required in multi-D calculations), 
see Trujillo Bueno & Fabiani Bendicho (1995) and references therein. See also Hennicker et al. (2017 and poster).

N
-1 * -1

* -1

-

Assuming a local ALO, for each depth point we have the correspondance

ALI:      

Comparison between ALI-scheme and Sobol

            

Sobolev: (1

ev approach (line case) 

)    

n n

n n n

J S

n n

J S J

J Sβ
Λ

= Λ + Δ

= −

* -1
core

core

(1 ),   and 
     

n
c

c

J I
I

β β
β

⎫
⎪Λ − Δ⎬
⎪+ ⎭

� �



USM

63XXIX Canary Island 
Winter School

Radiative transfer in the envelopes of early type stars, and related problems

ALI in practice

sonic point

photosphere wind

solid: deviation between exact diagonal and Λ*
dotted: deviation between exact diag. and (1-β)
Note: 1-β overestimates the excact diagonal
in most regions, thus cannot be used as ALO

relative corrections for subsequent iterations

ALO, Λ*, and ALI-cycle for a line source function calculated in the CMF, using the ALO from
Puls (1991). The displayed example refers to a strong, purely scattering line.  
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Net line rate (in rate equations) , for a transition with upper and lower levels , ,  
and corresponding occupation numbers ,

1    with Einstein-coefficient (for spontaneous emis

ul

u l

ul u ul

Z u l
n n

JZ n A
S

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
sion) 

    with Einstein coefficients for absorption and induced emission,  and 

ul

u ul
lu ul

l lu u ul

A

n A
S B B

n B n B
=

−

( )

* 1

1
*

1
*

* 1 1

upward lidownward line rate

Rate equations for calculated u
2. With ALI and local ALO

sing 

1

         (1 )

 n

n

n

ul u ul n

n n
u ul ul l lu

n n n

n

n n

S J S J
J J
S S

JZ n A
S

n A B J n B J

−

−

−

− −

= Λ + Δ

Δ
= Λ +

⎛ ⎞Δ
⇒ = − Λ − =⎜ ⎟

⎝ ⎠

= − Λ + Δ − Δ
�����	����


ne rate
��	�


( )

1

1 1

upward line ratedownward line rat

1

1

e

Rate equations for  calculated us
1. Without ALI, applying conventional lambda iteratio

i
n

ng 

n l lu u ul

u ul

n n
ul u ul ul l lu

n n

n

n

S J

n B n BJ J
n AS

Z n A B J n B J

−

−
−

− −

⎛ ⎞−
⇒ = ⎜ ⎟

⎝ ⎠

⇒ = + −
���	��
 �	


*

1 1

1 1

(1 )

all rates become smaller:

inefficient part (optically thick line core, where upward and 

Compari

downwar

son:

analy
d rates are equal) 

 cancelled, otical nly

ul ul

n n
ul ul

n n
lu lu

A A

B J B J

B J B J

− −

− −

⎫→ − Λ
⎪

→ Δ ⎬
⎪→ Δ ⎭

ly efficient part (optically thin wings) survives;
denoted as "preconditioning" by Rybicki & Hummer 1991; sometimes also called "effective" or "reduced" rates 
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( ) [ ]( ) [ ]
( )

inserting the scattering integral derived by means of the Sobolev approximation,

(1 ) (1 ) ...

     .

Also here the 

ul u ul ul l lu u ul ul c core l lu c core

u ul ul c core l lu c core

Z n A B J n B J n A B S I n B S I

n A B I n B I

β β β β

β β β

= + − = + − + − − + =

= + −

* -1

contribution from the optically thick core cancels analytically. 

By comparing with the analogous result using ALI, we again find the correspondance (see             )
(1 ),   and 

If one

n
c coreJ Iβ βΛ − Δ� �

___________
* -1

c inc

 would use the Sobolev approximation with continuum (            ), this correspondance would read

(1 ),   and ( )n
cU J r I USβ βΛ − − Δ +� �
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Multitude of additional issues, not treated here due to time constraints;
marked in red if directly related to specific RT problems.

temperature structure: radiative equilibrium vs. thermal electron balance

energy equation, adiabatic expansion and cooling in the outermost wind

the line-driven instability (LDI), and impact of diffuse radiation field

inhomogeneous winds, shocks, and X-ray emission

examples/applications
UV P-Cygni line formation
supersonic “micro-turbulence” vs. non-monotonic v-fields
supersonic macro-turbulence
(quasi-) recombination lines 
optical-depth invariants → scaling relations
Hα in O-stars and AB-supergiants
impact of wind on weaker lines/NIII 4640
IR/radio excess
IR-lines: inverted levels (or close to inversion)
X-rays: impact on resonance lines/”superionization”
emission lines in WRs

Radiative transfer in the envelopes of early type stars, and related problemsXXIX Canary Island 
Winter School
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wind inhomogeneities/clumping
micro- and macro-clumping, porosity
clumping in RTE
Hα vs. HeII4686
velocity-porosity
clumping ‒ coupling with rate equations

outlook: 
2/3-D problems/formulation
time-dependence, relativistic treatment
non-radial line-forces (e.g., in rotating winds)
polarization (linear, circular -> B-fields)

Radiative transfer in the envelopes of early type stars, and related problemsXXIX Canary Island 
Winter School
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Detail/Surf.
(1)

TLUSTY

(2)

CMFGEN

(3)

FASTWIND

(4)

Phoenix

(5)

PoWR

(6)

WM-basic

(7)

geometry codes described in 
(1) Giddings (1981), Butler & Giddings (1985); (2) Hubeny (1998); (3) Hillier & Miller (1998);  
(4) Puls et al. (2005); ); (5) Hauschildt (1992); (6) Gräfener et al. (2002); (7) Pauldrach et al. (2001)

color coding of following Table 

blanketing

radiative line 
transfer

temperature
structure optimum treatment

(at present state of the art)photosphere

diagnostic
range

major application less than optimum 
(but usually faster)comments

execution
time

Appendix A
NLTE model atmosphere codes 

for hot  stars
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Detail/Surf.
(Butler)

TLUSTY

(Hubeny)

CMFGEN

(Hillier)

Fastwind

(Puls)

Phoenix

(Hauschildt)

PoWR

(Hamann)

WM-basic

(Pauldrach)

geometry plane-
parallel

plane-
parallel

spherical spherical spherical/

plane-parallel

spherical spherical

blanketing LTE yes yes approx. yes yes yes

radiative line 
transfer

observer’s 
frame

observer’s 
frame

CMF CMF/
Sobolev

CMF/
obs.frame

CMF Sobolev

temperature
structure

radiative
equilibrium

radiative
equilibrium

radiative 
equilibrium

e- therm. 
balance

radiative
equilibrium

radiative
equilibrium

e- therm. 
balance

photosphere yes yes yes yes yes yes approx.

diagnostic
range

no 
limitation

no
limitation

no
limitation

optical/IR no
limitation

no
limitation

UV

major application hot stars with 
negl. winds

hot stars with 
negl. winds

OB(A)-stars,
WRs, SNe

OB-stars,

early A-sgs

stars below 
10kK, SNe

WRs, 
O-stars

hot stars with 
dense winds, 
ion. fluxes, SNe

comments no wind no wind start model 
required

expl./backgr.
elements

molecules incl. no clumping

no clumping

execution
time

few minutes hour(s) hours 0.25 - 0.5 h (v10)

1.5-2 h (v11)

hours hours 1 to 2 h
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*
th

*
D

To avoid a depth-dependence of the frequency grid when measuring frequencies in 
(depth-dependent) Doppler-units, one uses a FIDUCIAL thermal

1. DEPTH-DEPENDE

 speed, 
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v ,

   w

EDS

x ν ν
ν
−
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� *

* th
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* * *

DD th th

2
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D

v
ith   .   

v ( )( ) v( ) / v'( ) v( )Let ( ) ,  then  = ,   again with   v'( )
( ) ( )v v

In this notation,

1 v'( )( , ) ( v', ) exp
( )( )

c
rr r c x r rr r

r r

x rx r x r
rrν ν

ν
ν

ν ν ν μ ν μδ
ν δν

μφ φ μ
δν δ π

Δ =

Δ − − −
= = =

ΔΔ

⎡ ⎛ ⎞−
= − = −⎜ ⎟Δ ⎝ ⎠⎣

�

� �

[ ]
L

CMF CMF*
D

2
L L

CMF * *
D th

,   

with units "per frequency"  s , or alternatively
( )( , )  ( , ),   with  dimensionless 

( ) ( )1 v'( )( , ) exp  ,  and   .
( ) v( )

rx r x r

r rx rx r
rr

ν
χ

χ φ
ν

χ χ λμφ
δ νδ π

⎤
⎢ ⎥
⎢ ⎥⎦

=
Δ

⎡ ⎤⎛ ⎞−
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L
CMF CMF

D

( )  (i) spatial integrals of type ( , ) ( ) d       ( , ) ( ) d      

       [e.g., optical depth if ( )

2. INTEGRALS INVOLVING THE PROFILE FUNCTION: Whi

1]
 

ch normalization to use?
rr f r r x r f r r

f r

ν ν

ν

χ
χ ν φ

ν
→

Δ
=

∫ ∫

CMF CMF

CMF

 (ii) frequency integrals of type ( ) ( , ) d      ( ( ), ) ( , ) d          

       [e.g., scattering integrals, if  ( ) ( )]

(iii) frequency integrals of type ( , ) ( ) d     

f r r f x r x r x

f r J r

r f r

ν

ν ν

ν

φ ν ν ν φ

χ ν ν

→

=

→

∫ ∫

∫ L CMF

rad

CMF
CMF CMF CMF

D

CMF CMF

( ) ( ( ), ) ( , ) d   

       [e.g., in the context of ( ),  see             ]

( , )
with ( , ) ,   i.e., ( , ) d ( , ) d ,   and

( , ) ( , ) normalized w.r.t. frequ

r f x r x r x

g r

x r
r r x r x

r x rν

χ ν φ

φ
φ ν φ ν ν φ

ν
φ ν φ

= =
Δ

=

∫

CMFency,  ( , ) normalized w.r.t. .x r xφ
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Thanks a lot 
for your attention!

… questions?


