Why it is worthwhile taking time for spherical harmonics?

1 it is a wave function

but, of what?

rotational energy

E = Bh J(J+1)

angular momentum

J, K, Ka, Kc

symmetry

 $(-1)^{j}$

statistic degeneracy

 $g_J = 2J + 1$

selection rule

expansion $\Delta J = 0, \pm 1, 0 \leftrightarrow 0$

statistic degeneracy

$$g_J = 2J + 1$$

- statistic degeneracy
- selection rule
- notation
- nuclear spin

 $\Delta J = 0, \pm 1, 0 \leftrightarrow 0$

quantum numbers

angular momentum

geometrical view

J, K, Ka, Kc

φ_r wave function

spherical harmonics

vanishing integral

$$<\phi_i | \mu_e | \phi_f > = 0$$

- spherical harmonics
- rotation symmetry group

symmetry of wave function

Born-Oppenheimer approximation

projection operator

nuclear spin degeneracy

why transition probability given in this form?

- remember Thomson scattering
- perturbation theory

symmetry of wave function electric dipole moment

is decomposed to

spherical harmonics orthogonal

Born-Oppenheimer approximation

spherical harmonics is a full rotation group

decomposition of symmetry of product of wavefunctions

calculate coefficients of linear combination of representation

Group theory

 $H_2O: C_{2v}$ example of symmetry group

character table

why transition probability given in this form?

- remember Thomson scattering
- perturbation theory

vanishing integral $\langle \phi_i | \mu_e | \phi_f \rangle = 0$

$$\Delta J = 0, \pm 1, 0 \leftrightarrow 0$$

symmetry of wave function electric dipole moment

Born-Oppenheimer approximation

is decomposed to

- spherical harmoni orthogonal 4
- Spherical harmonics is a full rotation group
- decomposition of symmetry of product of wavefunctions
- calculate coefficients of linear combination of representation

Group theory

3 H₂: simple example of

vanishing integral

5 H₂O: C_{2v} example of symmetry group

character table

Selection rule

- $(1) < \varphi_1 | \mu_e | \varphi_2 >$ we have learned transition probability is
- $< \varphi_1 | \, \mu_e | \, \varphi_2 > \, = 0 \, \, \text{when}$ that transition would no happen
- $\Delta J = \pm 1$ only transition that are allowed

how strong would that transition we would not know

Selection rule

 $\Delta J = 0, \pm 1$ only transitions that are possible

- 1 µ_e is Y₁₀
- $2 \langle Y_{J'm'}|Y_{Jm} \rangle = \Gamma^{J-J'} + ...$
- full rotation group
- $| 3 | \langle \phi_1 | \mu_e | \phi_2 \rangle$ $| \langle Y_{Jm} | Y_{10} | Y_{J'm'} \rangle$
- integral non-zero only when $\Delta J = 0, \pm 1$

add A and B and take mod 4

2	multiply A	and B	and take	last digit
	marcipity / t		arrer tarte	1431 41911

	0	1	2	3	A
0	0	1	2	3	
7	7	2	3	0	
2	2	3	0	1	
3	3	0	1	2	
В					•

	1	3	9	7	A
1	1	3	9	7	
3	3	9	7	7	
9	9	7	1	3	
7	7	1	3	9	
В					•

3 rotate by A and then by B

	0	π/2	π	3π/2
0	0	π/2	π	3π/2
π/2	π/2	π	3 π/ 2	0
π	π	3π/2	0	π/2
3π/2	3π/2	0	π/2	π

add A and B and take mod 4

	0	1	2	3	A
0	0	1	2	3	
1	1	2	3	0	
2	2	3	0	1	
3	3	0	1	2	
R			•		-

3 rotate by **A** and then by **B**

	0	π/2	π	3π/2	A
0	0	π/2	π	3π/2	
π/2	π/2	π	3π/2	0	
π	π	3π/2	0	π/2	
3π/2	3π/2	0	π/2	π	

B

add A and B and take mod 6

	0	1	2	3	4	5	A
0	0	1	2	3	4	5	
1	1	2	3	4	5	0	
2	2	3	4	5	0	1	
3	3	4	5	0	1	2	
4	4	5	0	1	2	3	
5	5	0	1	2	3	4	
B							1

3 rotate by **A** and then by **B**

	0	π/3	2π/3	π	4π/3	5π/3
0	0	π/3	2π/3	π	4π/3	5π/3
π/3	π/3	2π/3	π	4π/3	5π/3	0
2π/3	2π/3	π	4π/3	5π/3	0	π/3
π	π	4π/3	5π/3	0	π/3	2π/3
4π/3	4π/3	5π/3	0	π/3	2π/3	π
5π/3	5π/3	0	π/3	2π/3	π	4π/3

A

add A and B and take mod 6

	0	1	2	3	4	5	A
0	0	1	2	3	4	5	
1	1	2	3	4	5	0	
2	2	3	4	5	0	1	
2 3	3	4	5	0	1	2	
4	4	5	0	1	2	3	
5	5	0	1	2	3	4	
R				_	_		•

3 rotate by **A** and then by **B**

	0	π/3	2π/3	π	4π/3	5π/3
0	0	π/3	2π/3	π	4π/3	5π/3
π/3	π/3	2π/3	π	4π/3	5π/3	0
2π/3	2π/3	π	4π/3	5π/3	0	π/3
π	π	4π/3	5π/3	0	π/3	2π/3
4π/3	4π/3	5π/3	0	π/3	2π/3	π
5π/3	5π/3	0	π/3	2π/3	π	4π/3

A

Spherical harmonics consists of a Rotation group

Spherical harmonics consists of a Rotation group

Character table

E identity operator (do nothing)
"Einheit"

 C_2 rotation of $\pi/2$ about z axis

 $\sigma_{v}(xz)$ reflection about xz plane

Character table Rotation group

Coupling angular momenta

$$\Gamma^{(A)} \otimes \Gamma^{(B)} = \Gamma^{(|A-B|)} \oplus \Gamma^{(|A-B|+1)} \oplus \ldots \oplus \Gamma^{(A+B-1)} \oplus \Gamma^{(A+B)}$$

in rotation group

Coupling angular momenta

0,0 1,0 2,0

$\Delta J = 0, \pm 1$

wavefunction

$$Y_{Jm}(z, \varphi) = \Theta_{Jm}(z)\Phi_m(\varphi)$$

$$\Theta_{Jm}(z) = \frac{1}{2^{J}J!} (1 - z^{2})^{\frac{m}{2}} \frac{d^{m+J}}{dz^{m+J}} [(z^{2} - 1)^{J}]$$

$$\Phi(\varphi) = e^{im\varphi}$$

does not happen even if incoming energy is enough

- pure rotational transition
- 2 linear / asymmetric top
- or vibrational state totally symmetric

$$Y_{10}(z, \varphi) = z$$

$$\Theta_{10}(z) = \frac{1}{2} \frac{d}{dz} (z^2 - 1)$$
 $\Phi_0(\phi) = 1$

$$=\frac{1}{2}\cdot 2z$$

= z

$$Y_{Jm}(z, \varphi) = \Theta_{Jm}(z)\Phi_m(\varphi)$$

$$\Theta_{Jm}(z) = \frac{1}{2^{J}J!} (1 - z^{2})^{\frac{m}{2}} \frac{d^{m+J}}{dz^{m+J}} [(z^{2} - 1)^{J}]$$

$$\Phi(\Phi) = e^{im\Phi}$$

$$\mu_e = qr$$

$$= qz$$

$$= qY_{10}$$

$$< \varphi_1 | \mu_{ez} | \varphi_2 > = < Y_{Jm} | Y_{10} | Y_{J^{'}m^{'}} >$$

$$\begin{split} \Theta_{11}(z) &= \frac{1}{2} (1 - z^2)^{\frac{1}{2}} \frac{d^2}{dz^2} (z^2 - 1) \\ &= \frac{1}{2} (1 - z^2)^{\frac{1}{2}} \cdot 2 \\ &= \sin \theta \qquad \qquad \Phi_1(\varphi) = e^{i\varphi} \end{split}$$

$$\Phi_{-1}(\Phi) = e^{-i\Phi}$$

 $\mu_{ex} = qx$

$$\Theta_{1-1}(z) = \frac{1}{2}(1 - z^2)^{-\frac{1}{2}}(z^2 - 1)$$
$$= -\frac{1}{2}(1 - z^2)^{\frac{1}{2}}$$
$$= -\frac{1}{2}\sin\theta$$

with appropriate normalization factor

$$= -\sin\theta$$

$$\frac{(J-m)!}{(J+m)!}$$

$$Y_{Jm}(z, \varphi) = \Theta_{Jm}(z)\Phi_{m}(\varphi)$$

$$\Theta_{Jm}(z) = \frac{1}{2^{J}J!} (1 - z^{2})^{\frac{m}{2}} \frac{d^{m+J}}{dz^{m+J}} [(z^{2} - 1)^{J}]$$

$$\Phi(\Phi) = e^{im\Phi}$$

Z

$$Y_{11} + Y_{1-1} = \sin \theta \cos \phi$$

$$Y_{11} - Y_{1-1} = \sin \theta \sin \phi$$
$$= \mathbf{y}$$

in order for ≠ 0 after integration
need totally symmetric term like A₁

in order for
$$\langle Y_{Jm} | Y_{1m_1} | Y_{J'm'} \rangle \neq 0$$

$$\Gamma^{(J)} \otimes \Gamma^{(1)} \otimes \Gamma^{(J')} = \Gamma^{(0)} \oplus \dots$$

J₁**≧**1

$$\Gamma^{(J)} \otimes \Gamma^{(1)} = \Gamma^{(|J-1|)} \oplus \Gamma^{(J)} \oplus \Gamma^{(J+1)}$$

$$J_1+1$$

totally symmetric term like A₁

$$J_2 - (J_1 + 1) = 0$$

$$\Delta J = +1$$

2
$$J_2-J_1=0$$

 $\Delta J=0$ (no radiation)

$$J_2$$
-(J_1 -1) = 0
 $Δ$ J=-1

$$\Delta J=0,\pm 1$$

in order for
$$\langle Y_{Jm} | Y_{10} | Y_{J'm'} \rangle \neq 0$$

$$\Gamma^{(J)} \otimes \Gamma^{(1)} \otimes \Gamma^{(J')} = \Gamma^{(0)} \oplus \dots$$

J₁=0

$$\Gamma^{(0)}\otimes\Gamma^{(1)}=\Gamma^{(1)}$$

$$\Gamma^{(J)} \otimes \Gamma^{(1)} = \Gamma^{(|J-1|)} \oplus \Gamma^{(J)} \oplus \Gamma^{(J+1)}$$

$$|J_1 + 1| = |0 + 1| = 1$$

$$|J_1 - 1| = |0 - 1| = 1$$

 J_2

1 (

totally symmetric term like A₁

if J₂≠0

$$J_2-1=0$$

$$\Delta J=+1$$

2 if $J_2 = 0$

$$\Gamma^{(0)} \otimes \Gamma^{(1)} = \Gamma^{(1)}$$

no Γ⁽⁰⁾

$$\Delta J=0,\pm 1$$

but $0 \leftrightarrow 0$

Selection rule how about m?

Why it is worthwhile taking time for spherical harmonics?

1 it is a wave function

but, of what?

rotational energy

E = Bh J(J+1)

angular momentum

J, K, Ka, Kc

symmetry

 $(-1)^{j}$

statistic degeneracy

 $g_J = 2J + 1$

selection rule

expansion $\Delta J = 0, \pm 1, 0 \leftrightarrow 0$