Probing Weak Lensing Cosmology with Scattering Transform

Sijin Chen

Universitäts-Sternwarte München With Stella Seitz, Laurence Gong

operation:

$$I' = |I \star \psi^{j,l}|$$

- + modulus
- + mean

Wavelet Convolution:

Scattering Transform

operation:

$$I' = |I \star \psi^{j,l}|$$

Scattering transform= wavelet convolution

- + modulus
- + mean



in real space:

$$G(x) = \frac{1}{\sqrt{|\Sigma|}} e^{-x^T \Sigma^{-1} x/2} e^{i\mathbf{k}_0 \cdot x}$$

- Σ : the covariance matrix describing the size and shape of the Gaussian envelope
- k_0 : the frequency of the modulated oscillation

Wavelet Convolution:

Scattering Transform

operation:

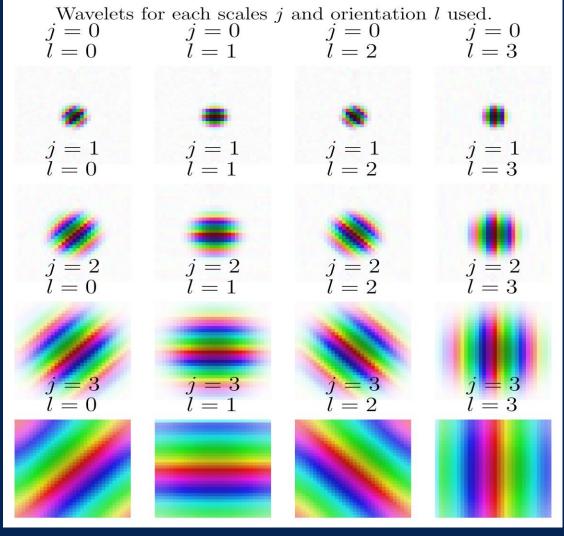
$$I' = |I \star \psi^{j,l}|$$

$$J = 8, j = 0,1...,7$$

$$L = 4, l = 0,1,2,3$$

- + modulus
- + mean

- *j* : size (logarithmic spacing)
- *l* : orientation



Kymatio

Input field I_0 Coefficients: $S_0 \equiv \langle I_0 \rangle$

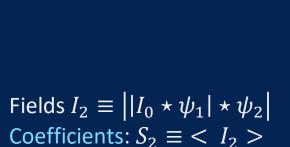
operation:

$$I' = |I \star \psi^{j,l}|$$

Scattering transform= wavelet convolution

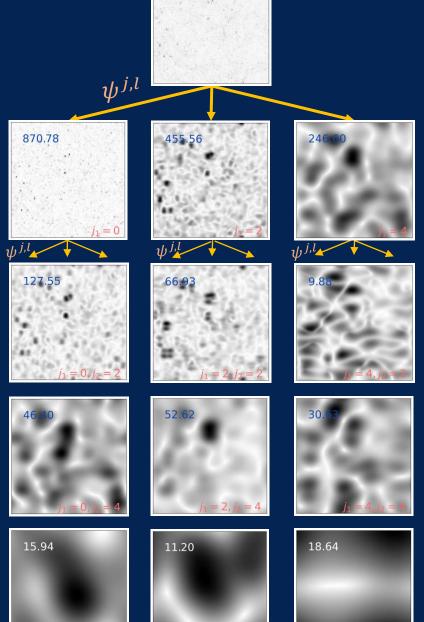
- + modulus
- + mean

Fields: $I_1 \equiv |I_0 \star \psi_1|$ Coefficients: $S_1 \equiv \langle I_1 \rangle$



(all convolved fields shown has orientation index $l_1=1,\, l_2=1$)

(All numbers shown are 10^6 times the real coefficients)



64.08

CosmoGrid Simulation Data

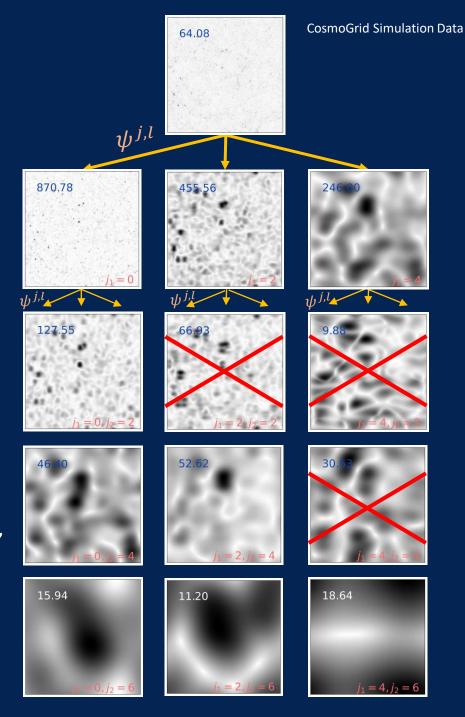
operation:

$$I' = |I \star \psi^{j,l}|$$

Scattering transform= wavelet convolution

- + modulus
- + mean

When doing second order convolution, choose filter ψ^{j_2,l_2} with $j_2>j_1$, since structures of particular size, say j_2 , do not have any meaningful

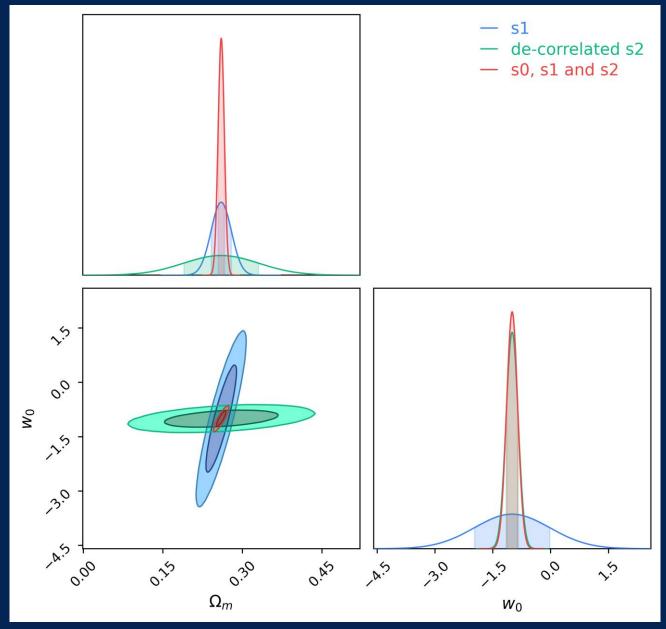


Fisher Forecast

$$s_1 \equiv \langle S_1^{j_1, l_1} \rangle_{l_1}$$

$$s_2 \equiv \langle S_2^{j_1, l_1, j_2, l_2} \rangle_{l_1, l_2}$$

De-correlated 2^{nd} –order coefficients: s_2/s_1



Future Work

Emulation

- Emulate the scattering coefficients using 2500 cosmology from CosmoGridV1 simulation set
- A fast emulator based on Neural Network (CosmoPower, Spurio-Mancini et al 2021)

MCMC

- Covariance estimated from simulations at fiducial cosmology
- Sample the posterior with the fast emulator in multi-dimensional space
- Obtaining cosmological parameter constraints with scattering transform

in real space:

(Morlet) wavelets:

$$G(x) = \frac{1}{\sqrt{|\Sigma|}} e^{-x^T \Sigma^{-1} x/2} e^{i\mathbf{k}_0 \cdot x}$$

One operation:

$$I' = |I \star \psi^{j,l}|$$

• Σ : the covariance matrix describing the size and shape of the Gaussian envelope

• k_0 : the frequency of the modulated oscillation

Scattering transform= wavelet convolution

- + modulus
- + mean

in Fourier space:

$$\tilde{G}(\mathbf{k}) = -\mathbf{e}^{-(\mathbf{k}-\mathbf{k}_0)^T \mathbf{\Sigma}(\mathbf{k}-\mathbf{k}_0)/2}$$

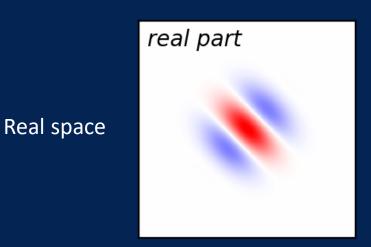
(Morlet) wavelets:

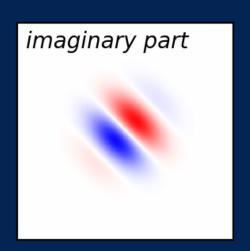
One operation:

$$I' = |I \star \psi^{j,l}|$$

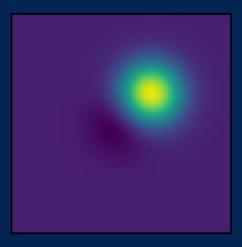
Scattering transform= wavelet convolution

- + modulus
- + mean





Fourier space



(Morlet) wavelets:

One operation:

$$I' = |I \star \psi^{j,l}|$$

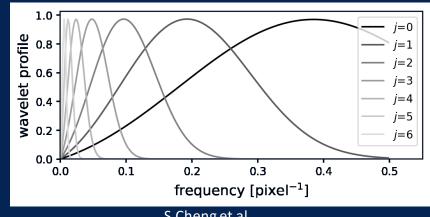
$$J = 8, j = 0,1...,7$$

 $L = 4, l = 0,1,2,3$

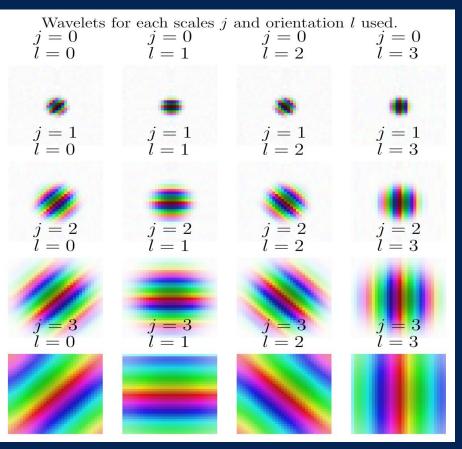
Scattering transform= wavelet convolution

- + modulus
- + mean

- *j* : scales (logarithmic spacing)
- l: directions



S.Cheng et al



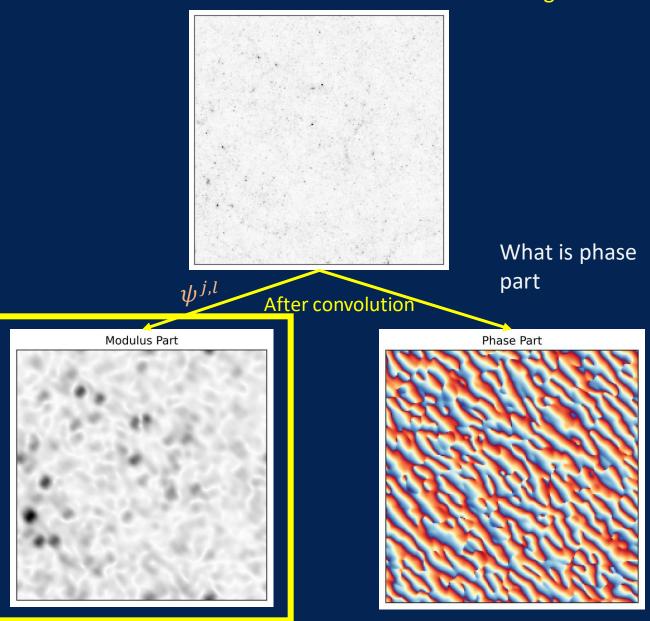
11 Kymatio

Modulus: convert selected fluctuations into their local strength

One operation:

$$I' = |I \star \psi^{j,l}|$$

- + modulus
- + mean

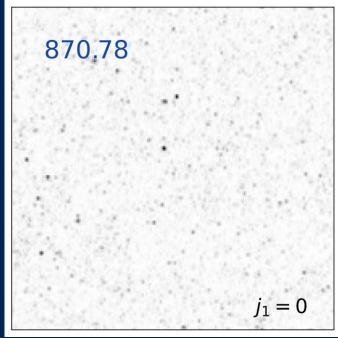


Mean: spatial average of the field

One operation:

$$I' = |I \star \psi^{j,l}|$$

- + modulus
- + mean



$$S_0 \equiv \langle I_0 \rangle$$

$$S_1^{j_1,l_1} \equiv \langle I_1^{j_1,l_1} \rangle = \langle |I_0 \star \psi^{j_1,l_1}| \rangle$$

$$S_2^{j_1,l_1,j_2,l_2} \equiv \langle I_2^{j_1,l_1,j_2,l_2} \rangle = \langle |I_0 \star \psi^{j_1,l_1}| \star \psi^{j_2,l_2}| \rangle$$

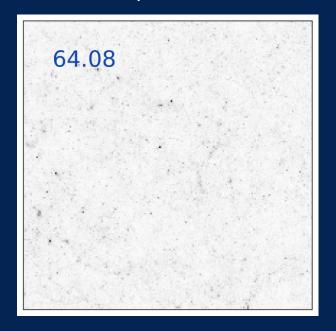
• When using isotropic fields, the scattering coefficients S_n could be further reduced by taking the average over all the orientation indices.

$$s_0 \equiv S_0$$

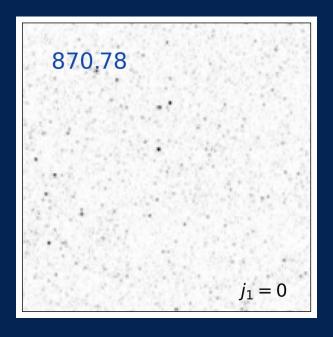
$$s_1(j_1) \equiv \langle S_1^{j_1,l_1} \rangle_{l_1}$$

$$s_2(j_1,j_2) \equiv \langle S_2^{j_1,l_1,j_2,l_2} \rangle_{l_1,l_2}$$

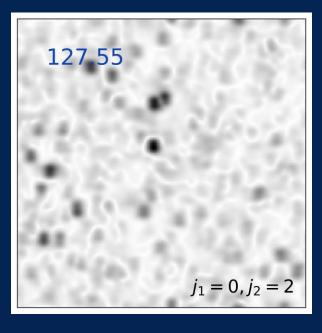
input field



1st -order



2nd -order



(All the numbers here are $10^6\,\mathrm{times}$ the real coefficients)

1st order coefficients: the clustering of the particles 2nd order coefficients: the clustering of the structures

fluctuation level

Gnomonic Projection

