
Vergleich der hydrodynamischen
Simulationsmethode MFM zu SPH und

Mesh-basierenden Verfahren

Lucas Kimmig

München 2018

Comparison of the hydrodynamical
simulation method MFM to SPH and

mesh-based methods

Lucas Kimmig

München 2018

Comparison of the hydrodynamical
simulation method MFM to SPH and

mesh-based methods

Lucas Kimmig

Bachelorarbeit

an der USM

der Ludwig–Maximilians–Universität

München

vorgelegt von

Lucas Kimmig

aus Wiesbaden

München, den 19.07.2018

Erstgutachter: Dr. Benjamin Moster

Tag der mündlichen Prüfung: 26.07.2018

Table of Contents

Abstract ix

1 Introduction 1

2 Hydrodynamics 3
2.1 Euler equations . 3

2.1.1 Continuity of mass . 3
2.1.2 Momentum conservation . 4
2.1.3 Entropy conservation . 4
2.1.4 Energy conservation . 6

2.2 Polytropic ideal gas . 7
2.3 Surface discontinuities and shocks . 9

3 Methods: SPH vs Grid vs MFM 13
3.1 Introduction and Terminology . 13
3.2 Riemann problem . 14
3.3 Godunov scheme as a finite volume scheme 17

3.3.1 Principle of the Godunov scheme 18
3.3.2 The timescale . 19

3.4 SPH Scheme . 20
3.4.1 Formulation of SPH . 22
3.4.2 Godunov SPH . 24

3.5 Fixed mesh and moving meshes . 25
3.5.1 Formulation of fixed and moving meshes 27

3.6 Meshless finite mass . 29
3.6.1 Formulation of MFM . 30
3.6.2 Implemented kernels . 31

4 Tests 33
4.1 Tests in equilibrium: the Gresho vortex . 33
4.2 Shocks: Sod shock tube and Sedov-Taylor explosion 34

4.2.1 Sod Shock Tube . 35
4.2.2 Sedov-Taylor explosion . 38

viii Inhaltsverzeichnis

4.3 Fluid mixing: KHI and the ”Blob” test . 39
4.3.1 Kelvin-Helmholtz instability . 39
4.3.2 The blob test . 40

5 Results 43
5.1 Gresho vortex . 43
5.2 Sod shock . 44
5.3 Sedov-Taylor explosion . 47
5.4 Kelvin-Helmholtz instability . 47
5.5 The blob test . 51

6 Summary and Conclusion 53

Appendix 55

Acknowledgments 61

Selbstständigkeitserklärung 63

List of Figures

3.1 Initial conditions for a one-dimensional Riemann problem 15

3.2 Definition of the control volume . 17

3.3 Maximum timestep size . 20

3.4 An example voronoi mesh . 26

3.5 Flux calculation method for mesh-based codes 27

3.6 Comparison of the principles of MFM, SPH and mesh-based codes 30

4.1 Initial conditions of the Sod shock . 35

4.2 Analytic solution of the Sod shock . 36

4.3 Initial conditions of the KHI test . 40

4.4 Initial conditions of the blob test . 41

5.1 Gresho vortex results . 44

5.2 Sod shock tube results . 45

5.3 Sedov shock radial density profile . 46

5.4 Sedov shock internal energy distribution 46

5.5 KHI for early times . 49

5.6 KHI density for later non-linear times . 50

5.7 Comparison of the results of the blob test 51

x Abbildungsverzeichnis

Abstract

This bachelor thesis presents a look at the most common simulation codes implemented in
an astrophysical context. It provides a summary of these main codes, namely fixed/moving
mesh, smoothed particle hydrodynamics and the newer Lagrangian methods of meshless
finite mass and meshless finite volume as pioneered by Philip Hopkins. We will give an
outline of these methods, their strengths and weaknesses and a broad description of their
implementation. Additionally, we explicitly compare applications of SPH and MFM on a
variety of typical hydrodynamic tests to test each codes capabilities in the most common
applications for astrophysics. The goal of this thesis is to analyze the MFM method and
observe its properties in a wide variety of situations.

Abstract

Diese vorliegene Bachelorarbeit präsentiert die gängisten Simulationen von denen in einem
Astrophysikalischen Kontext Gebrauch gemacht werden. Es handelt sich dabei um die
Kategorien von fixed/moving mesh, smoothed particle hydrodynamics sowie die neueren
Methodiken von Philip Hopkins, namentlich meshless finite mass und meshless finite volu-
me. Wir werden eine grobe Skizze dieser Methodiken präsentieren, ihre Vor- und Nachteile
sowie eine Beschreibung der Implementierung. Des Weiteren wird von einer SPH Version
gebrauch gemacht, um explizit an den gängisten hydrodynamischen Tests die Fähigkeiten
von MFM zu analysieren. Das Ziel dieser Arbeit ist dadurch einen genauen Einblick in
MFM und dessen Kapazitäten zu liefern.

Chapter 1

Introduction

As our universe presents us with a plethora of fascinating objects and processes to explore,
it seems natural that we have tried devising methods of explaining what lies before us,
simplifying it into forms we can work with, analyze and understand. One such method
is that of astrophysical simulation, a necessary procedure to analyze most astrophysical
processes in a dynamic context as these by far surpass our life timescales. Additionally, the
universe does not present us with a neat observation location and galaxies or stars in every
stage of their life, so that we may exactly observe their evolution in time. The large-scale
proceedings, such as structure formation or supernovae, often only have a few relevant
contributors, for example to model supernova remnants the gravitational effects can be
largely ignored. These simplifications, such as modeling the interstellar gas with an ideal
gas, while ’only’ being approximations, still can aid our understanding of physical proce-
dures that in many cases cannot be solved analytically. They help us check the predictions
of different models up to high accuracies. The use of fluid dynamics in an astrophysical
context is therefore justifiable as a highly precise approximation of the processes involved
in inter alia galaxy formation or supernovae, just as the use of LCAO is for the orbits of
the atoms in helium.

A wide variety of different tools for such simulations have been devised throughout
the years. For example, smoothed particle hydrodynamics (’SPH’) has been around for 40
years now - it was presented by Monaghan and Gingold already in 1977 [16] - and therefore
has gone through quite a lot of optimization, as is also the case for mesh-based methods.
We, however, will focus on one of the more recent developments with the introduction of
the meshless finite mass and volume methods (’MFM’ and ’MFV’ respectively) by Phil
Hopkins in 2015 [8], and will compare these in their structure and theoretical foundation
to the two aforementioned most prevalent main categories: SPH (such as GADGET-2 [24])
and mesh-based methods, of which the later can be moving (such as AREPO [25]) or fixed
mesh (such as ATHENA [26]). Additionally, we will conduct a row of test simulations and
compare the results from a modern SPH implementation with those of MFM. As the areas
and tests explored with these methods vary widely, the advantages and disadvantages of
each code can be more or less relevant depending on the problem at hand.

This work is structured as follows: First in chapter 2 we will provide a derivation of the

2 1. Introduction

most relevant physical formulas and therefore the origins of the governing equations for
our tests. Then we move on to the numerical methods and their implemented principles,
providing a sketch of their differences in chapter 3 before moving on to the hydrodynamic
test cases in chapter 4. There we discuss the implemented initial conditions as well as
some physical background to the tests and any specific formulas needed. After presenting
the simulation results of our test cases run with SPH and MFM in chapter 5, we finally
conclude our thoughts on the new method MFM in light of its competitors in chapter 6.

Chapter 2

Hydrodynamics

2.1 Euler equations

As argued in the introduction 1, a plethora of astrophysical problems can be approximated
by problems of fluid dynamics. In this context a fluid means a continuous medium, where
even small volume elements (small relative to the total volume) of the fluid contain a
large number of molecules. The most important equations are the Euler equations, which
represent the continuity of mass, momentum conservation and energy conservation, as they
govern the dynamical evolution of the system. We will follow the derivation of Landau and
Lifshitz [13].

2.1.1 Continuity of mass

To derive the equation for the continuity of mass, we start with a reasonable requirement:
that the total mass be conserved, and therefore also the total mass flow. The total mass
is the density integrated over the volume, and the flow is defined to be positive if it leaves
the volume. Then the flow of mass out of the volume through the surface dA must equal
the total mass loss (loss ergo the negative time derivative) in the volume dV itself∮

∂V

ρv · dA = − ∂

∂t

∫
V

ρ dV (2.1)

Using the divergence theorem, the surface integral on the left side is converted into a
volume integral over the divergence of its arguments, and we assume the density to be
smooth enough to swap the time derivative and the volume integral on the right hand side∫

V

∇ · (ρv) dV =

∫
V

(
− ∂

∂t
ρ

)
dV (2.2)

∫
V

(
∇ · (ρv) +

∂

∂t
ρ

)
dV = 0 (2.3)

4 2. Hydrodynamics

As this must hold for any volume, it follows that the integrands must always equal 0, from
which we can then derive the continuity equation as

∂ρ

∂t
+∇ · (ρv) = 0 (2.4)

2.1.2 Momentum conservation

By starting from the total force that a fluid exerts on a volume it surrounds, and equating
this with the force from acceleration (of the fluid within the volume), we derive the Euler
equation of momentum conservation. As the pressure (p) is defined as the force per area,
the total force is equal to the pressure over the total surface area of the fluid or, again using
the divergence equation, equal to the gradient of the pressure over the volume element.

−
∮
∂V

p dA = −
∫
V

∇p dV (2.5)

A minus appears due to the definition of the surface integral (force acting on the surface
is noted with a minus sign, force acting out of the surface is noted with a plus sign). The
gradient of the pressure therefore acts as a force per volume element, and is equal to the
force per volume element given by the acceleration times the density

ρ
dv

dt
= −∇p (2.6)

As the acceleration is the total time derivative of the velocity, but the velocity depends
both on the location and the time, we must expand the velocity as such (using dr

dt
= v):

dv =
∂v

∂t
dt+ (dr ·∇)v =

(
∂v

∂t
+ (v ·∇)v

)
dt (2.7)

Plugging this into 2.6 we arrive at

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇p (2.8)

As there may be other external acceleration fields working on the fluid, there is an addi-
tional term ρg. Adding this to the right hand side of 2.8 and dividing everything by ρ we
get the Euler momentum conservation equation:

∂v

∂t
+ (v ·∇)v = −1

ρ
∇p+ g (2.9)

2.1.3 Entropy conservation

There are multiple choices for the last of the five necessary equations to solve for the five
variables that fully describe our fluid dynamics system (ρ, p, vx, vy, vz). One can choose

2.1 Euler equations 5

energy conservation or pressure conservation or, for special cases (like a Sedov blast), it
can instead be useful to use the absolute time derivation of a different measure of entropy
than the usual thermodynamical version (although we will be later employing an energy
based scheme, it should be noted that there are other equally valid conservations laws
involving entropy).

For the sake of completeness and as we will be using this definition of the entropy
when comparing the plots for the Sod shock, we give a rough sketch of the entropy formula
derivation here. We start with the definition for the heat capacity at constant volume for
an ideal gas (where here E is the total internal energy, not to be confused with the total
energy per volume used later for the energy derivation)

CV ≡ T
∂S

∂T

∣∣∣∣
V

=
∂E

∂T

∣∣∣∣
V

(2.10)

The total differential of the entropy is known from thermodynamics as

dS(T, V) =
∂S

∂T

∣∣∣∣
V

dT +
∂S

∂V

∣∣∣∣
T

dV =
CV
T

dT +
∂p

∂T

∣∣∣∣
V

dV (2.11)

where we have used a Maxwell relation for the second summand. Integrating over the
temperature and volume, and using the ideal gas law to determine the pressure derivative,
then gives us the entropy. Note that we can integrate separately as CV is independent of
the volume for an ideal gas. This derivation therefore relies entirely on our assumption that
interstellar gas can be approximated as an ideal gas.

S(T, V) =

∫
CV
T

dT +

∫
Nkb
V

dV = CV ln(T) +Nkb ln(V) = CV ln
(
TV

Nkb
CV

)
(2.12)

By observing that for an ideal gas we additionally have T = pV/Nkb, γ = CP/CV = 5/3
and CV = 3

2
Nkb then this becomes

S(T, V) = CV ln

(
pV V

2
3

Nkb

)
= CV ln

(
pV γ

mγ

)
+ CV ln

(
mγ

Nkb

)
(2.13)

As the total mass is conserved, kb is the Boltzmann constant and for our tests the number
of particles is conserved (N=const.), the final term is just an additive constant and can be
ignored. The relation between pressure, density and entropy then is

S(T, V) = CV ln

(
p

ργ

)
+ constant (2.14)

We can then use S ′ ≡ p
ργ

as an entropy measure (as entropy is a quantity only relevant in
comparison, an additive term is just a choice we can freely set to 0, and as the logarithm
function is sufficiently smooth the bijectivity necessary between S and S ′ is given). The-
refore, we can deduce the evolution of the entropy (as entropy is a conserved quantity for

6 2. Hydrodynamics

those tests where we would use it instead of energy conservation, so the total derivative is
0 there) via

dS ′

dt
=
∂S ′

∂t
+ (v ·∇)S ′ = 0 (2.15)

The final 3 equations used then would be 2.4, 2.8 and 2.15 giving us 5 equations for 5
variables (3 from velocity, 1 each from density and pressure)

∂ρ

∂t
+∇ · (ρv) = 0 (2.16)

ρ
∂v

∂t
+ (v ·∇)v = −∇p (2.17)

∂

∂t

(p
ργ

)
+ (v ·∇)

p

ργ
= 0 (2.18)

An easy way to quickly understand that this is indeed a valid measure for entropy is by
observing that isentropic processes, i.e. those where the entropy stays constant, are defined
in a p-V-diagram by the curve pV γ = const, which (for constant total mass, the case in all
our tests) is equal to the condition p/ργ = const. Then, S’ is constant exactly when S is
constant (this is obviously not a legitimate proof, but a quick way to rationalize the result
of the more rigid derivation above).

2.1.4 Energy conservation

We then turn to energy conservation, where for the derivation we start out from the total
energy per volume (from here on E) and look at how it varies with time

E ≡ 1
2
ρv2 + ρe (2.19)

∂E

∂t
=

∂

∂t

(
1
2
ρv2 + ρe

)
(2.20)

where e ≡ Einternal/mass is the specific internal energy, therefore the potential energy per
volume term, and 1

2
ρv2 is the corresponding kinetic energy per volume term. This then is

the starting point for the energy equation, just asking how it evolves in time.
As the actual derivation is relatively tedious, we will just reference the derivations in the

appendix 6 here and give the final equation, representing the energy conservation equation:

∂

∂t
(1
2
ρv2 + ρe) = −∇ ·

[
ρv(1

2
v2 + w)

]
(2.21)

We now have 5 equations (1 each from mass and energy conservation, 3 from momen-
tum) for our 5 main variables (energy or specific energy, density and velocity in 3 spatial
directions). However, our equations for the energy conservation additionally depend on the
heat functional w while those for mass and momentum additionally depend on pressure.
This means that, while we know the relation between density, energy and the heat func-
tional (as energy and the heat functional are easily linked through thermodynamics), this

2.2 Polytropic ideal gas 7

is not the case for pressure. We need a further dependency between our variables to solve
this differential system, which can be found in the relation between pressure, density and
energy.

2.2 Polytropic ideal gas

An ideal polytropic gas is a gas that, in addition to fulfilling the ideal gas law, also obeys
pV a = constant, with a being the polytropic index, p the pressure and V the volume.
When we are dealing with such a gas, it is sensible to simplify some of the above equations
by deducing the relation between specific internal energy, adiabatic coefficient, pressure
and density. For an ideal gas the internal energy is

Einternal = nCV T (2.22)

where n is the amount of substance of gas (in moles), CV the heat capacity at constant
volume V and T the temperature. We then look at the ideal gas law

pV = nRT (2.23)

where R is the ideal gas constant. Solving this for nT and plugging it into the internal
energy 2.22 we arrive at

Einternal =
CV
R

pV =
CV

CP − CV
pV =

1

γ − 1
pV (2.24)

where we have used γ = CP/CV the constant adiabatic coefficient (which is equal to 5/3
for an ideal gas), CP the heat capacity at constant pressure and the relation R = CP −CV .
Then dividing both sides by the mass, we obtain the polytropic gas equation of state (as
ρ = m/V and e is the specific energy)

e(γ − 1) =
p

ρ
(2.25)

This can for example be used to represent the energy conservation formula in terms of the
total energy per volume E. Using e = w − pV/mass = w − p

ρ
we get

ρ(1
2
v2 + w) = E + ρ(w − e) = E + p (2.26)

Plugging this and E = 1
2
ρv2 + ρe into 2.21 we arrive at

∂E

∂t
+∇ · [(E + p) v] = 0 (2.27)

8 2. Hydrodynamics

This then is the final of our equations for an ideal gas approximated by fluid dynamics
that govern the evolution of our systems:

∂ρ

∂t
+∇ · (ρv) = 0 (2.28)

ρ
∂v

∂t
+ ρ(v ·∇)v = −∇p (2.29)

∂E

∂t
+∇ · [(E + p) v] = 0 (2.30)

The attentive reader will notice that there are 5 equations, but 6 variables (total energy per
volume E, pressure p, density ρ and the 3 parts of velocity v). The sixth implicit equation
is the equation of state 2.25, which links the specific internal energy e to pressure and
density, thereby letting us represent E dependent only on pressure, density and velocity
(which then constitute our final 5 state variables, i.e. the variables that fully describe our
systems state).

At this point it should be briefly mentioned when our equations are actually valid, i.e.
what type of a system they assume. Our governing equations are called the Euler equations,
and they assume our flow to be inviscid and adiabatic, meaning with viscosity and thermal
conductivity approaching 0. They are a simplification of the Navier-Stokes equations, with
the main difference being that Navier-Stokes can assume a dissipative system, while the
Euler equations are conservation equations (as can be seen from our derivation of them:
they represent conservation of mass, momentum and energy/entropy). They are accurate
for a large amount of test problems, although this also means there are cases where they
do not accurately evolve the system.

If we turn back to the condition of the processes being adiabatic, we can constrain
the speed of sound to a simpler equation. As we are then dealing with an isentropic gas,
namely one for which the polytropic index is the adiabatic coefficient gamma, a = γ, we
get a simple relation between the speed of sound c in the medium and density, pressure
and the polytropic coefficient γ. We start with the isentropic condition pV γ = constant
and divide both sides by (mass)γ, which is constant

p
V γ

mγ
=

p

ργ
= const (2.31)

p = const ∗ ργ (2.32)

c =

√
∂p

∂ρ
=
√
const ∗ γ ργ−1 =

√
p

ργ
γ ργ−1 (2.33)

c =

√
γp

ρ
(2.34)

The Mach number of a particle is then defined by the relation between its velocity and the
local speed of sound

M =
v

c
(2.35)

2.3 Surface discontinuities and shocks 9

2.3 Surface discontinuities and shocks

For our considered test cases, we often deal with discontinuities of the fluid variables across
an infinitely small border (for example all calculations of mesh based schemes require the
solving of the equations across an effective face) - namely of Riemann problems further
discussed in section 3.2. Here we will look at the specific implications for the hydrody-
namical equations for a simple problem of a flat face with differing densities, velocities
and pressures on either side. As for shocks, we tend to deal with high Mach numbers, and
therefore we must treat the density as variable and as such the fluid as compressible.

To simplify the equations, we consider a coordinate system at the surface. The x-axis is
chosen as the normal axis, so that the surface is equal to the y-z plane. Then the mass flux
per surface element that is normal to the surface must be conserved (mass that passes over
the boundary must appear on the other side), so that with ρ1,2 ≡ density to the left/right
of the surface, vx1,x2 ≡ velocity normal to the surface on the left/right

ρ1vx1 = ρ2vx2 (2.36)

The same must be true for the momentum flux per surface area. We start out by
observing

ρ
∂

∂t
vi =

∂

∂t
(ρvi)− vi

∂ρ

∂t
(2.37)

and use the equation of continuity 2.4 in the form ∂ρ
∂t

= −∂(ρvj)

∂xj
to arrive at

ρ
∂

∂t
vi =

∂

∂t
(ρvi) + vi

∂(ρvj)

∂xj
(2.38)

If we then start out from 2.8 we get

ρ
∂

∂t
vi = −

(
∂p

∂xi
+ ρvj

∂vi
∂xj

)
(2.39)

∂

∂t
(ρvi) = −

(
∂p

∂xi
+ ρvj

∂vi
∂xj

+ vi
∂(ρvj)

∂xj

)
(2.40)

∂

∂t
(ρvi) = −

(
∂p

∂xi
+
∂(ρvjvi)

∂xj

)
(2.41)

∂

∂t
(ρvi) = − ∂

∂xj
(pδij + ρvjvi) (2.42)

As the normal to the surface is along the x-axis, the terms with index j are only non-zero
for x, so that the condition of momentum flux conservation becomes

p1 + ρ1 v
2
x1 = p2 + ρ2 v

2
x2 (2.43)

And for the y and z directions

ρ1 vx1 vy1,z1 = ρ2 vx2 vy2,z2 (2.44)

10 2. Hydrodynamics

Finally, we can also require the energy flux through the surface to be conserved. The
flux can be read off from 2.27 as

(E1 + p1) vx1 = (E2 + p2) vx2 (2.45)(
1
2
vx1 + e1 +

p1
ρ1

)
ρ1vx1 =

(
1
2
vx2 + e2 +

p2
ρ2

)
ρ2vx2 (2.46)

1
2
vx1 + e1 +

p1
ρ1

= 1
2
vx2 + e2 +

p2
ρ

(2.47)

where in the last step we have used the boundary condition for the mass flux 2.36.

As we now only need the normal velocity for the following, the subscript x is dropped.
We will now derive the relationship between the density values before and after a shock. It
is a bit tedious, but the simple result is well worth it and is a strong measure for the quality
of our employed codes in the Sedov blast wave test. Following some of the basic ideas of
the derivation given by Anderson [1], we then use 2.25 to receive the specific enthalpy
h = 1

m
(E + pV) = e + p

ρ
in terms of either the pressure and density or in terms of the

speed of sound in the medium c

p

ρ
= (γ − 1) e = (γ − 1)

(
h− p

ρ

)
(2.48)

p

ρ
=
γ − 1

γ
h =

c2

γ
(2.49)

where we have used equation 2.34 in the final step. This is a general result that applies for
any system of an ideal gas in an insentropic process.
Then coming back to a surface continutiy and dividing 2.43 by 2.36 we get

v1 +
p1
ρ1v1

= v2 +
p2
ρ2v2

(2.50)

v1 − v2 =
1

γ

(
c22
v2
− c21
v1

)
(2.51)

Now looking at the energy flux equation 2.47 and replacing e by h, we have

h1 + 1
2
v21 = h2 + 1

2
v22 ≡ h0 (2.52)

and using this in 2.49

c21,2 = (γ − 1)h1,2 = (γ − 1)
(
h0 − 1

2
v21,2
)

(2.53)

(γ − 1)h0 = c21,2 +
γ − 1

2
v21,2 (2.54)

2.3 Surface discontinuities and shocks 11

Plugging this definition for the speed of sound in 2.51 we get

v1 − v2 =
1

γ

(
(h0 − 1

2
v22)

v2
−

(h0 − 1
2
v21)

v1

)
(2.55)

v1 − v2 =
γ − 1

γ

(
h0
v2
− h0
v1

+ 1
2
(v1 − v2)

)
(2.56)

1 =
γ − 1

γ

(
h0
v1v2

+ 1
2

)
(2.57)

γ + 1

2

1

h0 (γ − 1)
=

1

v1v2
(2.58)

where in the final step we have used 1
v2
− 1

v1
= v1−v2

v1v2
and then divided everything by v1−v2

We notice
v21 = M2

1 c
2
1 = M2

1 (γ − 1)(h0 − 1
2
v21) (2.59)

and therefore conclude

ρ2
ρ1

=
v1
v2

=
v21
v1v2

= M2
1 (γ − 1)(h0 − 1

2
v21)

γ + 1

2h0 (γ − 1)
(2.60)

ρ2
ρ1

=
M2

1 (γ + 1)h1
2 (h1 + 1

2
v21)

=
M2

1 (γ + 1)

2 +
v21
h1

=
M2

1 (γ + 1)

2 + (γ − 1)M2
1

(2.61)

ρ2
ρ1

=
γ + 1

2M−2
1 + γ − 1

(2.62)

where in line one we have used 2.58 and 2.59, and in line two 2.54. This then is the equation
for the immediate post shock density. For most shocks we are dealing with supersonic
proportions (as will be the case for our Sedov blast), so the Mach number is large enough
that its inverse goes towards zero. Finally, we have then:

ρ2
ρ1

=
γ + 1

γ − 1
(2.63)

From this we can derive the pressure starting from 2.43 using ρ1v
2
1 = γp1

c21
v21 = γp1M

2
1 and

the just derived density relation 2.63

p2 = p1 + ρ1v
2
1 − ρ2v22 = p1 + ρ1v

2
1

(
1− v2

v1

)
= p1

(
1 + γM2

1

(
1− ρ1

ρ2

))
(2.64)

p2
p1

= 1 + γM2
1

(
1− 2M−2

1 + γ − 1

γ + 1

)
(2.65)

p2
p1

=
2γM2

1 − (γ − 1)

γ + 1
(2.66)

12 2. Hydrodynamics

Chapter 3

Methods: SPH vs Grid vs MFM

In the following pages, the general methods of each simulation approach will be introduced
and briefly explained, so that after discussing the test cases in a more general context
in chapter 4 we can finally in chapter 5 compare the results of the test cases with some
background to the implemented codes. We begin with Riemann problems, as these lie at
the heart of the mesh-based and MFM codes, formulate their implementation in a Godunov
scheme and then finally provide a summary of SPH, mesh and MFM codes and their most
basic principles.

3.1 Introduction and Terminology

In anticipation of the following, let us look at the problem we are trying to tackle with
these simulations. We start with a system that has some initial state. This will entail
a distribution of the state variables, so it will have some distribution of density in its
volume, for example. One area may have higher or lower density. How do we simulate this?
By assigning more mass per volume in the area of higher density, would be the obvious
answer. As physically we are dealing with something akin to a continuum (the smallest
physical length scale is negligible) but practically we have a finite amount of resources to
simulate our state, we must discretize our volume. We will then need to put some ’points’
in the volume that are assigned a mass. This could be done with all our mass points having
an equal mass, so that higher density would be simulated by having more of these points in
one area. Or we could give some mass points a higher mass value, so that we have an even
distribution of points throughout our volume but can still account for density fluctuations
across it. Whatever the case may be, we have some finite amount of points in space that
are assigned a mass. These will be referred to as mass points, or simply points. These then
can also be assigned values for the remaining state variables, such as energy or entropy.

This is our system now, a finite amount of points in space that are given values for
our state variables. How do we go about tracking the evolution of the system in time?
The points will interact with each other, governed in their motion by our choice of aptly
named governing equations 2.30. Without going into too much detail, we state in advance

14 3. Methods: SPH vs Grid vs MFM

that SPH tracks these points individually and calculates their motions based on the other
points (and their values for the state variables) in the near vicinity, while mesh-based codes
adopt an entirely different approach: They, in addition to the mass points, will have what
we call mesh-generating particles, or particles, that are locations in space around which a
mesh is generated, effectively splitting up our entire volume into smaller cells around their
respective particle. The fundamental difference lies therein, that our calculation of system
variables, so of our state vectors, for mesh-based codes will originate from the particles,
which need not but can be identical to the mass points, whilst for SPH our state vectors
are calculated at the points themselves. The reason we state this in advance is in the hopes
of clearing up the nomenclature in the transition from discussion of SPH to the mesh-based
codes.

3.2 Riemann problem

Fundamentally in MFM and mesh-based schemes, there will be an implementation of a
Riemann solver. Therefore, we must first briefly look over what a Riemann solver actually
is supposed to solve, while later explaining why it is necessary. This solver will approximate
or exactly derive the solution to a Riemann problem, which is an initial conditions problem
with constant starting values, a discontinuous point and a differential equation governing
the evolution of the system.

The differential equation for a simple 1 dimensional example of such a problem would
be (with ρ0(x) constant and u a function of ρ(x))

∂ρ

∂t
+ ρ0

∂u

∂x
= 0 (3.1)

with initial conditions as such

ρ(x, 0) ≡ g(x) =

{
ρL if x < 0

ρR if x ≥ 0
(3.2)

For a very simple case the relationship between the velocity field u and the density field
ρ could be linear

u(ρ(x, t)) = aρ(x, t) (3.3)

with a being a constant. Then putting this into equation 3.1, we would have a linear
differential equation

∂ρ(x, t)

∂t
+ aρ0

∂ρ(x, t)

∂x
= 0 (3.4)

to which the solution would be:

ρ(x, t) = g(x− aρ0t) =

{
ρL if x < aρ0t

ρR if x ≥ aρ0t
(3.5)

3.2 Riemann problem 15

Figure 3.1: The initial conditions of our simple one-dimensional Riemann problem. We
have a state variable u changing discontinuously over a border, with constant values on
both sides. The calculation of the flow between two particles at the effective faces will in
essence be computed similarly to this simple setup.

Our solution aρ0 is the so-called characteristic (or eigenvalue) of our Riemann problem
as explained well by Toro [28], which can be presented as a curve in an x-t plane. For our
simple problem this would be a single line towards the top left or right, where on the left
of the line we have density ρL and on the right accordingly ρR. This solution describes a
discontinuity moving to the right or left (depending on the sign of a) with a velocity of aρ0.

The presented differential equation is exactly the continuity equation presented in chap-
ter 2. It arises as a governing equation for the hydrodynamics of the gas particles as it stems
from mass conservation, which must be fulfilled for our tests. Before we go more in-depth
into the functionality of mesh-based codes later in this chapter, let us pre-emptively state
here that they create a mesh over our volume, i.e. form separate ’cells’ around the afore-
mentioned mesh-generating particles. As our system dynamically evolves over time, there
are mass points and energy passing between the borders of these cells, so there are fluxes.
To correctly simulate our system, we must then calculate these fluxes between the borders
at each time step, functionally forming a row of Riemann problem.

The general solution to such a Riemann problem, with for example higher and lower
density across a cell border, will be an interpolation of the higher and lower densities
for some middle area between the particles before converging on either side to ρL or ρR
respectively (for a neat visualization of this middle area of a differing value of for example
density please refer to figure 3.3). We can make sense of this if we imagine, for example, a
fluid container separated in the middle by a wall, filled higher on the left than the right.
If we instantly remove the barrier and look at the evolution in slow motion, we would see
the fluid directly at the border on the left slowly start falling as more fluid is pushed to
the right-hand side through pressure equalization (the left side has higher pressure through
gravity than the right side). A middle area would form with a fluid level lower than the

16 3. Methods: SPH vs Grid vs MFM

left but higher than the right, while the far left/right sides of the container would not yet
be affected, so would still have their initial fluid levels. Given sufficient time, eventually
the entire system would equilibrate at a level between the original left or right one.

Turning back to our hydrodynamic systems, we observe that we are normally dealing
with more than one conserved property. This entails having more than one conservation
law, more than one differential equation like 2.4 and therefore more than one characteristic
of the system. If we briefly look how the above formalism can be expanded upon for multiple
dimensions, we could consider a two-dimensional system described by an equation of motion
of the form

∂t

(
q1
q2

)
+

(
0 1
1 0

)
∂x

(
q1
q2

)
= 0 (3.6)

with initial conditions of

q1,2(x, t = 0) =

{
q1l,2l if x < 0

q1r,2r if x ≥ 0
(3.7)

to which the characteristics then would be λ± = ±1 (so the eigenvalues of our matrix)

with corresponding eigenvectors e± =

(
1
∓1

)
. We then decompose the left and right states

of our inital conditions into the eigenvectors with some factors

(
q1l
q2l

)
= a+e+ + a−e− and(

q1r
q2r

)
= b+e+ + b−e−. If we then solve this for a± and b±, we get the final solution of the

states of our three regions (left and right initial states and the newly arising interpolation
state a+e+ + b−e− in the middle)

q1(x, t) =


q1l if x ≤ λ−t = −t
q1m = 1

2
[+(q1l + q2l) + (q2l + q2r)] if − t < x < t

q1r if x ≥ λ+t = t

(3.8)

q2(x, t) =


q2l if x ≤ λ−t = −t
q2m = 1

2
[−(q1l + q2l) + (q2l + q2r)] if − t < x < t

q2r if x ≥ λ+t = t

(3.9)

Here we then have two characteristics for each state variable that are moving linearly
outwards from x=0 in time (one being x1 = t, the other x2 = −t), resulting in 3 total
states.

This method can be and is expanded upon to account for discontinuities in any values
across particle boundaries, which is then implemented in the form of the Riemann solvers.
These solvers then calculate the evolution of the fluxes based upon the governing equations
we derived in chapter 2 either exactly or, for sufficiently complicated fluxes, approximately.
The adopted Riemann solver for MFM is chosen as the common approximate HLLC solver
given by Toro [28].

3.3 Godunov scheme as a finite volume scheme 17

3.3 Godunov scheme as a finite volume scheme

Figure 3.2: The different definitions of the control volumes. Here a vertex centered FVM
will be employed

In principle the finite volume scheme is a specific way to partition the volume into a
finite amount of points qi, which are then tracked over some amount of time. The word
’points’ here means a point in space that is assigned a value for a specific state variable. As
there are many options for how one could calculate the dynamic evolution of the system of
state vectors, this presents only one such method in the family of finite volume schemes.
For such schemes the conservation laws are applied in integral form, as this allows a wider
range of systems, including discontinuities (Toro [28]). To receive the laws in integral form,
the differential equations 2.30 are integrated over a control volume. Here a vertex-centered
control volume is chosen (as described in figure 3.2), as this will have useful properties for
the employed numerical methods later in this chapter, specifically for the mesh-based and
MFM schemes.

To remember why such a scheme is useful, remember that we are facing the problem in
our simulations of needing to track our finite amount of either mesh-generating particles
or our mass points over time, as for mesh-based codes the particles and for SPH the mass
points will contain our state variables. We update each of these points or particles after
a timestep (which we will discuss more later, for now this just means a finite amount of
time), so calculating with our governing equations the state a specific amount of volume
around the point/particle will be in after a time dt. The application then of the above

18 3. Methods: SPH vs Grid vs MFM

concept in our codes should be obvious.

3.3.1 Principle of the Godunov scheme

We follow the implementation of the principle of the Godunov scheme by looking at its
application on the fundamental form of the continuity equation 2.4 for one spatial dimen-
sion. The method works analogous for three dimensions and the other governing equations
(albeit being more complicated there). For this example q is our state variable in one spa-
tial dimension dependent on space x and time t, while f is our field of fluxes dependent
on q.

∂q

∂t
+
∂f

∂x
= 0 (3.10)

By subtracting the second summand to the right-hand side and integrating over a control
volume element dx we arrive at

∂

∂t

∫ xi+1/2

xi−1/2

q dx = −(f(q(t, xi+1/2))− f(q(t, xi−1/2))) (3.11)

We then define the spacing between the half-way borders of two points as ∆x ≡ xi+1/2 −
xi−1/2 so that we arrive at a definition for the averaged value of our state vector of
point/particle i at timestep n defined by the state variable integrated over the volume
between the borders xi±1/2 divided by ∆x

qni ≡
1

∆x

∫ xi+1/2

xi−1/2

q(tn, x) dx (3.12)

By then integrating equation 3.11 over time we finally arrive at an exact update formula
for each timestep:

qn+1
i = qni −

1

∆x

∫ xi+1/2

xi−1/2

(
f(q(t, xi+1/2))− f(q(t, xi−1/2))

)
dt (3.13)

If we can solve this integral, then by knowing the starting conditions at timestep n = 0, we
can apply this formula iteratively to get the full evolution of our system in time. This is also
evident by remembering that equation 3.10 represents our mass conservation equation 2.4
where q = ρ and f(ρ) = ρv, so that 3.13 represents a different form of the Euler equations
governing the evolution of our system.

The key step in Godunov’s scheme lies therein, that to avoid the complexities arising
from trying to solve the exact time integral in each step∫ tn+1

tn
f(q(t, xi±1/2)) dt (3.14)

said integral is approximated (originally Godunov used an Euler upwind scheme, which
ensures accuracy up to the first order). This allows an analysis of the eigenstructure of the

3.3 Godunov scheme as a finite volume scheme 19

system via the characteristics of our Riemann problem. How does this relate back to the
Riemann problem? If we look at what we are integrating in equation 3.14 more closely, we
notice that these are the fluxes at the borders xi±1/2 between the points, and this is exactly
what a Riemann solver can provide the solution to: the evolution, and therefore the fluxes,
of a system with a discontinuous point between two states governed by a set of differential
equations. This analysis then also lets us identify the upwind direction of the fluxes, which
is later important for the numerical stability of the code (see [25] for more details). The
important element to note here is that we have applied the Euler equations and evolved
our system of state variables in time, arriving finally at a time integral we need to solve to
get the next value for our state variable, which we will now approximate.

To achieve a second order accurate integration, we follow Springel [25] and arrive at

dqi
dt

= −
∑
j

Aij · Fij (3.15)

qn+1
i = qni −∆ti

∑
j

Aij · F̃ n+1/2
ij (3.16)

with F̃ij being an appropriate approximation for the fluxes and qn+1
i is the volume averaged

state variable over the cell i at timestep n+1, while Aij describes the oriented area of
the face between cells i and j (for derivation and more specifics see Colella 1990 [3],
Hopkins 15 [8] or Stone et al. 2008 [26]). For now, this is merely a possible Godunov
scheme to approximate the evolution of our system of state variables qi according to the
initial differential equation 3.10 via discretization into multiple volume elements; however,
it turns out to also be the form of the meshless equations of motion derived for MFM 3.6
and mesh-based codes 3.5 later in this chapter.

For sake of completeness we mention that MFM, like AREPO and other well-known
codes, uses Godunov’s method via the MUSCL-Hancock scheme. For more info on this
specific implementation we would suggest the paper by van Leer [29] or the book by Toro
[27].

3.3.2 The timescale

Now that we have the basic method and the specific approximation and scheme used, we
then must choose a timescale for our particles to be updated. As we get a time by dividing
a length through a velocity, it seems natural to choose the kernel length (which we will
define in the next section) and signal velocity (the velocity that information is traveling at
in our system, so how fast a particle will be feeling the effects of another particles motion)
for our measure of time, arriving at

∆ti =
hi
|vsig,i|

(3.17)

vsig,i = MAXj

(
cs,i + cs,j −MIN

(
0,

(vi − vj)(xi − xj)

|xi − xj|

))
(3.18)

20 3. Methods: SPH vs Grid vs MFM

where we make sure to choose the maximum signal speed over all neighbors (the sum over
j). Furthermore, MFM incorporates a limiter to prevent overly stark contrasts between
two neighbors in terms of their timesteps (it would be disadvantageous if one particle is
significantly slower in updating than its direct neighbor with which it shares fluxes). This
then is the timestep chosen for MFM, which in addition to the limiter also incorporates a
method from Springel [25] to ensure synchronized update of fluxes of conserved quantities
across particle borders.

Figure 3.3: The limitations of the timesteps provided by the solutions of the Riemann
problems in a Godunov finite volume scheme

The underlying principle of the choice of timestep and Godunov’s method can be un-
derstood from figure 3.3: We solve Riemann problems at the effective faces of the particles
(so at the borders of the cells present in mesh-based codes; for how this is implemented
in SPH refer to the subsection 3.4.2), which lead to characteristics of the respective cells
that change the respective cell’s state variables and propagate inside the cell volume with
a specific speed. This is accurate so long as these changing variables don’t overlap with
the characteristics of other cell pairs. If they overlapped we are solving two systems that
are influencing each other as independent, which would obviously be faulty. Therefore, we
must limit the timestep size, such that the solutions/information of the updates of the cell
state do not reach the solutions of other cell pairs. Finally then, the solution for the upda-
ted cell’s state variables is the average over the value of the characteristics from the side
interfaces i ± 1/2 and the untouched middle region (so the states initial state variables).
For a more in-depth explanation, we refer to the courses by Dullemond [5].

3.4 SPH Scheme

SPH fundamentally represents an approximation of complex fluid dynamics by using a set
of mass points, functionally discretizing the continuum. These mass points are assigned
qualities such as energy and velocity and can interact with other points. Those it can
interact with are called neighboring points, or their ’neighbors’. How these neighbors are
chosen and how they interact with each other will then form the key factor in determi-
ning the functionality of our SPH code. Most implementations follow the general rule of

3.4 SPH Scheme 21

constructing a circle (for two dimensions) or a sphere (for three dimensions) around the
points, and any other point falling into this range is then a neighbor and can interact with
it. The exact weighting function for constructing this volume around the point will have
an associated characteristic length, or smoothing length often denoted as h.

A key difference is that the points’ associated volumes can overlap a multitude of times,
meaning that (in theory) there is no limiting factor on how many nearby points influence
each other (although nearly all common schemes do cap this number due to processing
costs) and they can even have other particles between them and still interact, whereas for
mesh-based methods the particles that influence each other share a stark border between
them upon which the fluxes are calculated. If one were to visualize this, we can imagine
three points that are sitting in a line. Now for SPH if they are sufficiently close they will all
influence each other, meaning even the first and third share an interaction. For mesh-based
methods however, the mesh borders of the first and third probably will not touch, which
means they will not share a particle border and therefore don’t share fluxes.

Depending on how the radius around the points then is constructed, we have different
methods (as this radius determines which particles interact or not, it plays a fundamental
role in our systems evolution). For a constant radius for example, we would need to count
all the other mass points that are within this rigid volume (so all neighbors), whose number
can change. This would be the method implemented by for example Springel and Hernquist
[23]. Here however, we will be keeping the number of neighbors constant, leading to a
varying characteristic length scale h for each point (as implemented in the most common
SPH codes such as Springels Gadget [24]). We also try to avoid constraining the number of
neighbors to an actual discrete value, as this increases computation costs significantly and
can lead to high fluctuations in h. If we imagine for example a strong clustering with all
remaining particles being really far away, we might require a point in the clustered group
to include one of the far out points to reach its required neighbor number, leading to a
much larger h than is actually necessary to determine the evolution of the system (the far
out particles’ impact is negligible, so we just neglect them entirely to avoid wasting large
amounts of resources). Based on this we choose the constraint with an allowed error of plus
or minus up to one point, depending on the test at hand.

Finally then, we must evolve the system according to our discretized Euler equations.
As mentioned in the chapter introduction, we will solve the equations at the location of
the points themselves and they will depend on the neighbors’ properties. These are then
locally integrated. However, as we are dealing with points, in addition to using the integral
form instead of the differential form so that we can capture the points adequately, we must
also employ a distance-based weighting function that estimates the values of the neighbors
at a specific point. This function is referred to as a kernel function, which is discussed in
more depth in the following subsection.

The advantages of this meshless method are evident: The energy, linear and angular
momentum, mass and entropy are all conserved (as the particles are discrete and their total
number conserved), and due to a lack of a presupposed coordinate system (as is the case
for mesh/grid-based methods) SPH is fully Galilean invariant (while this has also been
achieved by for example Springel for moving-mesh codes [25], its implementation there

22 3. Methods: SPH vs Grid vs MFM

was significantly more difficult and therefore took longer). In addition, as the resolution is
dependent on the number of surrounding points, an amalgam of such points will naturally
have a higher resolution, thereby automatically following the flow of mass (more mass points
in one area leads to a higher resolution of that area). Finally, as the scheme incorporates
a finite amount N of points being followed individually that, unlike with most mesh-based
codes, represent the mass points themselves, an integration of self-gravity follows naturally
through a cosmological N-body code.

However, the full Lagrangian nature of the method has some drawbacks as well, namely
issues with shock resolution, discontinuities and fluid mixing instabilities. The fact that
SPH fares worse with contact discontinuities in comparison to mesh-based codes, which
use a Riemann solver specifically designed to capture these well, is to be expected. The
reason they struggle with shocks is that as the mass points in the shock are moving at high
velocities, they are experiencing much shorter timesteps, while the points right outside are
slow-moving and in a region of low density, so they therefore experience a lower resolution
and longer timesteps. This effectively smooths out the sharp discontinuities experienced
in a typical shock. The emergence of the fluid mixing instability, on the other hand, is
discussed further in the fluid mixing tests 4.3.

To combat these problems, SPH in most cases is implemented with artificial viscosity
and diffusion terms that facilitate mixing and shock resolution. These terms have been
improved over the years and are now quite sophisticated, managing to apply finite viscosity
and diffusivity only in the area of shocks, but not for for example in the presence of a
shear velocity (if they still applied in the latter cases they would instantly rip appart
structures such as the Gresho vortex or the Keplerian disk). The artificial viscosity terms,
for example, provide zero viscosity unless the points are approaching each other in space.
In this case it acts as a resistive pressure by converting the kinetic energy of the fast-moving
points into thermal energy, mimicking the shock in advance (this can also be achieved by
wake-up switches, which ’wake up’ the slower points when the shock is arriving in the
vicinity). However, as is their name, these switches are artificial and often must be chosen
specifically to fit individual tests. They also represent a typical source for errors (as we
are adding possible errors with the numerical implementation itself). Furthermore, SPH
is only accurate to an order of 0, i.e. has errors even in the linear domain, namely the
so-called E0 error.

It should be noted here that this and the following paragraphs represent just a broad
summary of the most basic principles; we would direct the reader to Monaghan and Gin-
gold’s original SPH paper [16] for an excellent explanation of the fundamentals, to the more
modern review also by Monaghan [19] for a more in-depth look at SPH and its evolution
up to 2005, to the book by Violeau [30] for a full theoretical backdrop on fluid mechanics
and SPH in its entirety or for a simplified overview to the github wiki pages [7].,

3.4.1 Formulation of SPH

As most of the relevant system properties can be derived given the density of the gas, the
core of SPH relies on estimating the density through a so-called kernel-summation. The

3.4 SPH Scheme 23

kernels W (r, h) are required to be symmetrical and sufficiently smooth (see Monaghan [18]
for all necessary kernel properties), and have the aforementioned characteristic length h.
The choice of kernel can vary and will lead to different results. Then, any field F (r) is
smoothed through a convolution with said kernel.

Fs(r) =

∫
F (r)W (r− r′, h)dr′ (3.19)

This helps us determine an estimated density for a finite set of points (for a sufficiently
dense sample the integration can be replaced with a sum):

ρs(r) '
∑
i

ρiW (r− ri, h)
mi

ρi
(3.20)

where mi
ρi

is the volume element of each point. The kernels characteristic length should
naturally be further apart than the spacing d of the mass points h ≥ d which leads to a
minimum of 33 neighbors in 3D (see Springels derivation for this in [25]), which imposes
a stark bottom border on the number of neighbors. As in general the spacing of the points
varies over the space (for example, if we choose equal mass for all points then the spacing
often varies already for the initial conditions), it is elegant to adopt a space-dependent
kernel length h = h(r, t).

As the kernel drops to zero at a certain distance for all commonly used kernels, for
example with the cubic spline at r = 2h (see the kernel subsection), one can restrict the
sum over i to the particles within this radius, namely the neighbors NNGB. The number of
neighbors is kept nearly constant throughout, and the computational cost therefore (as we
are calculating the updated state variables for N points each based on NNGB other points)
is of order O(NNGBN). This is the reason for the speed and computational efficiency of
SPH codes, as we prevent being of order N2 while still retaining high accuracy. One could
in theory also consider a kernel that does not go to zero and would therefore account for all
particles in the volume, like for example a Guassian kernel. This does lead to an even higher
accuracy, however is of order N2 and therefore not worth the increase in computational
costs.

This general approximation of the density as in equation 3.20 is then used in the Euler
equations 2.30 and the equation of state 2.25 to determine the other state variables. This
is done by following different schemes. A ’density-energy’ scheme will evolve density and
internal energy explicitly and then determine for example the pressure from the equation of
state (and velocity then from momentum etc). These then are the approximated equations
of motion, which avoid the difficulties with an exact time integral, as the fields are all
smoothed (and therefore easier to integrate) and for dense enough regions even entirely
replaced by a sum over discrete values.

Our particular implementation of SPH is of form of a ’pressure-energy’ scheme following
the PSPH implementation as presented in Gizmo in appendix F2 [8]. As we are only using
what Hopkins calls PSPH and not TSPH we will henceforth be refering to PSPH only as
SPH. Depending on the test we use either a cubic or quintic spline with an according num-
ber of neighbors (see section 3.6.2 for more details). An alternative to the pressure-energy

24 3. Methods: SPH vs Grid vs MFM

formulation would be the pressure-entropy implementation (where we follow the entropy
instead of the energy as discussed in section 2.1.3), which also appears in more general
forms with the pressure being defined over our monotonic function of the thermodynamic
entropy S ′ (one can then construct a condition for which such entropy formulations are
identical to the energy formulations, which won’t be presented here).

pi = S ′i(S)ργi (3.21)

As the E0 error has been referenced as an inherent disadvantage for SPH, we briefly
show where it comes from, following the derivation presented by Read, Hayfield and Agertz
[21]. For this we look at our velocity and assume it is smooth and can be Taylor expanded
up to the second order of our kernel length to get

vj ∼= vi + h
(rij
h
· ∇i

)
vi +O(h2) (3.22)

Plugging this and the respective Taylor expansion for the pressure into the momentum
equations 2.8, we arrive at

dvi
dt
∼= −

pi
hρi

E0,i −
(Vi∇i)pi

ρi
+O(h) (3.23)

with Vi the volume of particle i and E0,i being our dimensionless error vector. This is said
unavoidable E0 error in the momentum equations for all SPH implementations.

3.4.2 Godunov SPH

As mentioned previously in chapter 3.4, the artificial viscosity terms in SPH represent a
typical source for errors, as do shocks. There have been different ideas to resolve these,
one of the more prominent ones being the implementation of the Godunov finite volume
method as presented in section 3.3 in SPH by Inutsuka [11]. It has been shown (see for
example Molteni 2003 [15]) that the aforementioned common error sources are avoidable
by implementing a Riemann solver between the points (so if they overlap, instead of only
using the weighting function in the integral, solving a full Riemann problem to determine
the acting forces), quite like the Riemann solvers used in mesh-based methods. This is due
to the fact that the necessity for artificial diffusion terms arises specifically due to mixing
errors, which (like shocks) can be resolved well via approximation to Riemann problems.
This is commonly referred to as Godunov SPH. However, as with ’regular’ SPH the E0
errors remain, and whilst the Riemann solver helps alleviate the named common errors, it
also leads to new ones appearing, as we then also need to implement a slope limiter, which
itself is a common source of errors for mesh-based codes.

In anticipation of what is to come, we note that this idea (of using the Godunov finite
volume method)) has been broadened and tested in a multitude of ways, as it brings great
potential for a code that can resolve both gravity and mixing well, creating something of
a mixture between mesh and meshless codes. For example, a possibility to implement the

3.5 Fixed mesh and moving meshes 25

general idea of a Godunov scheme in a meshless finite-volume method was constructed by
Lanson and Vila (2008 I [14]), which ends up forming the closest comparative method to
MFM and presents a method much closer to moving-mesh methods in nature than to SPH
(as the fluxes are determined over ’effective’ particle faces, see chapter 3.6).

3.5 Fixed mesh and moving meshes

We will now turn to mesh-based methods, which can be broadly summarized into the two
main categories of fixed- and moving-mesh. For these methods, as opposed to SPH, the
particles now form the basis for creating a grid, or mesh over the volume. The mesh-creating
particles can therefore differ from the mass points (which is always the case for fixed-mesh
methods and can be the case for moving meshes), although it can be of use to keep them
moving identically as in SPH. Once we have constructed our grid, which normally takes
up a large part of the overall computational costs, it can either be moving or it could
be fixed in our volume, depending on whether or not the mesh-generating particles move.
Furthermore, the mesh itself may deform and be refined dynamically around the particles,
meaning even with fixed particle positions we could have the borders of the single cells
change over time. This would be an example of an adaptive mesh refinement, or ’AMR’
code. These in principle construct a rough basic mesh and then add finer meshes in areas
of interest, therefore adaptively refining the resolution. On the other hand, the mesh could
be static in form around the particles. These codes with a fixed mesh around the particle
must only create the mesh once while AMR codes require constant ’maintenance’, but in
return will need to equally resolve the entire volume, even the areas that end up having
barely any mass to none, as we do not know in advance where these areas will be.

The different types all offer advantages and disadvantages. Fixed meshes without border
deforming and refining often provide lower computational costs and can provide very high
resolutions (for example if the problems evolution is known ahead of time one can construct
a mesh with higher resolution in the areas of higher density) but can struggle if the systems
solution is not known, and especially with highly dynamic systems. Moving mesh codes
with adaptive refinement on the other hand do not require the solution to be known in
advance and can deal with a wide array of problems, although it can run into trouble when
particle borders deform too much and create bad cells.

There are different ways of constructing a mesh around the particles, for example one
could implement a Voronoi mesh as in figure 3.4 which is the method utilized in AREPO
[25], or one could use coordinate transformations as implemented by Pen [20] or a Delaunay
tessellation as used by for example Xu [32]. If we turn to the specific case of a voronoi mesh
as a representative for the possible meshes, we can tell from the image that each particle
has a clearly defined domain, so there are no shared masses between particles and therefore
no weighting functions. These cells touch other cells along a line in 2, or a surface in 3
dimensions. This border is referred to as the ’face’ of the cell. The fluxes between two
particles then are evaluated on these faces between their volumes. Herein lies the crucial
core of mesh-based codes, and their necessity for a Riemann solver, as in each step there

26 3. Methods: SPH vs Grid vs MFM

Figure 3.4: A voronoi mesh constructed between the particle points

is a defined border between the two particles, and thus for any two particles with differing
densities, for example, there will be a discontinuous jump all along the face. These fixed
types of connections with other cells created by mesh particles enable a definition of the
mathematical operators on our predefined faces of the cells, increasing the accuracy of
the approximations of the derivatives and presenting a valid advantage for this particular
method.

The implemented solvers actually have another benefit, as they facilitate implicit mixing
across the surface boundaries due to their averaging. If we recall how a Riemann solver
functioned for our simple one-dimensional test case, we remember that the area around the
discontinuity experienced an averaging of the two density values, which traveled outward
into each cell. This in turn leads to an implicit production of entropy through the mixing
of different fluxes in a single cell (as the characteristics from each cell it shares a face with
will travel into them, see Springel’s AREPO paper [25] for more details on this aspect of
mesh-based codes). Mesh codes are therefore excellent at capturing discontinuities, ergo
shocks, and additionally fluid mixing due to the implementation of Riemann solvers (this
also explains the interest in creating a meshless method which also uses said solvers, in the
hopes of achieving all SPH advantages and still having good shock and mixing capabilities).

To avoid the aforementioned stark deformations of the faces and the errors arising from
the complex motions of fluid dynamics, one can implement a renormalization scheme. This
could be achieved by for example requiring the individual cells of the mesh to have mass in
a specified range, thereby preventing them from growing too large and distorted while also
keeping the mass resolution reasonably constant, or by explicitly preventing sharp angles
in their faces [25].

However, the implicit entropy production that facilitates the good mixing can lead to

3.5 Fixed mesh and moving meshes 27

overmixing as well. For fixed mesh codes such as ATHENA [26], the additional lack of
Galilean invariance leads to a large downside in that it is unable to cope with bulk flows.
This inability arises due to the Riemann solvers, as the conditions (and therefore the ac-
tual solution) of the Riemann problems are drastically altered. We assume for our normal
problems that the reference frame of the boundary is fixed, so that we know how much
material reached the border and can interact (recall our limitation of the timestep size
in section 3.3, where we explicitly made sure this is given), but the application of super-
sonic bulk flow changes exactly this amount of material that can reach the border. Such
supersonic bulk flows also happen to be necessary for the simulation of galaxy formations,
a large downside for mesh-based codes. This can, however, be avoided for moving mesh
codes such as AREPO so long as these are moving along with the flow [25], as then we have
fit our reference frame onto the supersonic flow itself, such that the calculated amount of
interacting material is correct again.

3.5.1 Formulation of fixed and moving meshes

Our derivation will closely follow the derivation of the equations of motion used for mesh-
based codes as presented by Springel [25]. We begin with the Euler equations as a system
of hyperbolic partial differential equations in a compact form we have

∂U

∂t
+∇ · F = 0 (3.24)

where U is a state vector for the main system variables density, velocity and total energy
per volume (note that u here is the specific internal energy and e the specific total energy)

U =

 ρ
ρv
ρe

 =

 ρ
ρv

ρu+ 1
2
ρv2

 (3.25)

and the tensor F is the flux function based on U and the equation of state 2.25

Figure 3.5: Sketch of the flux calculation along the face bordering cell i and j, whose position
is entirely determined by the motion of the mesh-generating particles it is between. The
flux may be estimated based upon a Riemann problem along said face

28 3. Methods: SPH vs Grid vs MFM

F(U) =

 ρv
ρvvT + p
(ρe+ p) v

 (3.26)

The total conserved variables are then the volume integral of particle i over the state
vector U

Qi =

mi

pi
Ei

 =

∫
U dVi (3.27)

However, we must consider that since we are creating a mesh upon which we would
like to calculate our variables, we must transform to a coordinate system moving with the
mesh-generating particles. Let w be the velocity at which each particle moves and we get
the compact Euler equations in the form relevant for both mesh-based schemes and MFM
(as we will see in section 3.6)

∂U

∂t
+∇ ·

(
F−U ·wT

)
= 0 (3.28)

We now take these equations and integrate them over the volume of each cell Vi (we have
therefore split up our volume into smaller parts and integrated over each separately, hence
this is finite volume method). Mesh-based codes then transform the volume integral over
the flux divergence in our Euler equations into a surface integral between the discretized
cells by using the Gauss’ theorem. Let n be the normal vector on the effective particle
surfaces ∂Vi and we get

∂Qi

∂t
= −

∫
∂Vi

[
F(U)−U ·wT

]
dn (3.29)

where we have also assumed the state vector to be sufficiently smooth so that we may
invert the order of the integral and the partial time derivative for each particle separately.
If Aij is the area of the face between cells i and j and the velocity of each of the points
along this boundary is v (compare figure 3.5), then the flux across this face from i to j is

Fij =
1

Aij

∫
Aij

(
F−U ·wT

)
dAij (3.30)

This finally leads us to our Euler equations in a form immediately recognizable as being
akin to the equations derived in Godunovs finite volume scheme 3.16

dQi

dt
= −

∑
j

Aij · Fij (3.31)

Q
n+1

i = Q
n

i −∆ti
∑
j

Aij · F̃n+1/2
ij (3.32)

3.6 Meshless finite mass 29

With F̃
n+1/2
ij being the approximated fluxes from cell i to cell j averaged over a timestep.

This equation is the fundamental form of the governing equations of motion for our simu-
lations. As is remarked by Springel, a critical step is finding a good numerical estimate
for these fluxes, as their accuracy directly determines the accuracy of our time evolution,
and therefore a lot of numerical fluid dynamics literature has been dedicated towards this
topic.

3.6 Meshless finite mass

As stated by Hopkins himself, the intent of the meshless finite mass scheme (and also of the
meshless finite volume scheme) is to capture advantages of both the Eulerian mesh-based
and the Lagrangian SPH methods. In MFM we find a method that is closest to the method
presented in [14]. This means that we lack discrete borders, but rather construct a moving
voronoi mesh with ’effective faces’ between the particles on which the fluxes are calculated
(like for moving mesh codes), but then calculate the state variables over smeared volume
partitions partially overlapping with other particles (which is a property akin to those of
SPH codes). As with a finite volume scheme and therefore also with the meshless finite
volume method MFV (not discussed here as it closely follows the principles of MFM), the
volume is partitioned into a finite number of cells. These, however, need not be completely
disjoint as with mesh codes but rather will overlap and must be weighted. This means that
on one hand we need Riemann solvers for the fluxes on the effective faces, but on the other
hand we project those fluxes (that are localized on the faces) to the particles according
to a distance-based weighting function. Referring to figure 3.6 we can see exactly how the
methods vary.

The defining characteristic of MFM as opposed to MFV is the way the volume is
partitioned. For MFV the total volume on either side of the border between two cells is
kept constant, independent of the exact mass distribution between them, whilst MFM
keeps the amount of mass constant. This means MFV partitions the volume, whilst MFM
partitions the mass (as their names imply). For MFM this conservation of the mass on both
sides leads to a volume that is then continuous by definition, as the initial particle masses
are constant. Then, as here we keep the volume continuous, we must be discretizing the
density instead, which means that we (just as with SPH) are then smoothing the density
over one kernel length for MFM. This is not present in MFV (as for MFV the mass not
the volume is continuous), which then means we do not observe the smoothing here. One
can observe this with the fluid mixing tests, for example, such as the KHI test, where the
small scale dynamics are smoothed out for MFM once we reach length scales comparable
with the kernel length.

Finally, as all conservative methods implementing a Riemann solver have errors when
the kinetic energy dominates over the thermal energy which is the case for cold supersonic
cosmological structures with very high Mach numbers (these arise as then the numerical
errors in the thermal energy start becoming large relative to the total thermal energy),
MFM incorporates the ’dual energy’ formalism and energy-entropy switches where the

30 3. Methods: SPH vs Grid vs MFM

specifics can be taken from [8].

Figure 3.6: The different approaches characterized by how they calculate the motion of
the mass particles, i.e. by how they partition the volume. Left are the MFM and MFV
methods: the domain associated with each particle for flux calculation is not spherical,
despite it being so for the weighting function defined by the kernel for state variable
calculation through the equations of motion. The border is smoothed over a typical kernel
width. The center shows traditional mesh partitions with sharp boundaries, presenting the
limit of MFM with an infinitely sharply peaked kernel function. The equations of motion
are solved along the surface of the faces as opposed to at the location of each particle. On
the right we find the SPH method, where the state variables of the neighboring points are
used in the calculation of the equations of motion of each point according to a weighted
average based upon the kernel function.

3.6.1 Formulation of MFM

Here then the meshless equations of motion as utilized by for example Gaburov & Nitadori,
Hopkins and Lanson & Vila ([6],[8] and [14]) are implemented. We provide only a rough
derivation outline, for the specifics see the above papers, or for a full derivation we suggest
specifically refering to Lanson & Vila [14].

Just as with the moving-mesh derivation, the equations we start from are the compact
form of the Euler equations, or rather with their form in a frame moving with velocity w as
in equation 3.28. We then multiply these with a test function φ, integrating over the space
and using a partial integration (assuming the fluxes or the test function vanish at infinity)
so that we arrive at a new integral. To solve this arising set of differential equations we
discretize the integral volume of space (as stated above) into a finite number of cells with
associated specific characteristic lengths h as with SPH, finally arriving at

0 =
∑
i

(
φi

d

dt
(ViUi)− ViFi · (∆φ)

)
(3.33)

where the inner product is to be taken at the spatial position xi of particle i. We determine
that an approximation for the gradient of the test function is needed, which should be

3.6 Meshless finite mass 31

accurate to the second order so that we may preserve our efforts in keeping all preceding
approximations accurate to this same level. Utilizing the gradient estimator as presented in
gizmo [8] and additionally defining F̃α

ij as the approximate solution for the fluxes between
cells i and j given by the solution of the Riemann problem (which therefore incorporates
both sides of the flux and satisfies F̃α

ij = −F̃α
ji by definition) we arrive finally at

d

dt
(ViUi) +

∑
j

F̃α
ij(Viψ̃

α
i (r)− Viψ̃αi (r)) = 0 (3.34)

where ψ̃αi (r) is a function based on the fraction ψi(r) of the total volume associated with the
particle i according to a distance based weighting function (quite like the methods used in
SPH). As stated earlier, this follows the form of our Godunov-type finite-volume equation
3.16 (if we define Ai ≡ Viψ̃

α
i (r) − Viψ̃αi (r)), but fundamentally differs in that the volume

integral 3.27 for the conserved variables used in the derivation is not transformed into a
surface integral (as it would be in for example AREPOs equations of motion, see 3.30)
but rather is partitioned up via a weighting function (as is the case for SPH). It however
also differs from SPH in that whilst the conserved state variables aren’t, the fluxes between
particles are calculated on the particle faces, i.e. over a surface integral as with mesh codes.

To summarize, MFM represents a meshless adaptable code that has characteristics for
the calculation of the time evolution that are akin to both SPH and mesh-based codes: the
fluxes are calculated on the faces, and the state variables in the volumes.

3.6.2 Implemented kernels

As the choice of kernel has a large impact on the results, we present the implemented kernel
here. For all our tests, either the traditional cubic spline by Monaghan and Lattanzio [17]
or the quintic spline as implemented by Hopkins [8] are used, where the cubic is run with
32 neighbors whilst the cubic uses a higher number of up to 128. The cubic spline in three
dimensions is given by (for r = |r− r′| and q = r/h the distance to the neighbor in terms
of h)

W (q, h) =
8

πh3


1− 6q2 + 6q3 0 ≤ q < 1

2

2(1− q)3 1
2
≤ q < 1

0 q ≥ 1

(3.35)

where the coefficient changes for the cubic spline in two dimensions.
The quintic spline is given by Hopkins quintic spline as

W (q, h) =
37

40πh3


(1− q)5 − 6(2

3
− q)5 + 15(1

3
− q)5 0 ≤ q < 1

3

(1− q)5 − 6(2
3
− q)5 1

3
≤ q < 2

3

(1− q)5 2
3
≤ q < 1

0 q ≥ 1

(3.36)

32 3. Methods: SPH vs Grid vs MFM

so for the cubic and quintic spline we note that no points further than one kernel length h
away are counted. Note that in practice h will depend on the particle i. We will additionally
use the Wendland C4 kernel for select cases, for which the theoretical background was first
devised by Wendland in [31].

Chapter 4

Tests

This chapter provides a brief summary of the physics of the test cases. The governing
equations for most of the problems are given in chapter 2, with some specifics elaborated
upon here where necessary. Additionally, we describe the initial conditions of the problems,
that are those provided by Hopkins with his gizmo distribution, and which kernels were
used for which test, before then in chapter 5 presenting our simulation results. All initial
conditions values are given in the Gadget internal units, and all tests will be plotted with
eqaul mass particles (one could, as discussed in chapter 3, instead use more particles for
denser areas).

4.1 Tests in equilibrium: the Gresho vortex

A simple test to begin with is the Gresho vortex, which is a vortex of constant density and
an initial azimuthal velocity distribution in form of a triangle and was first conceptualized
by Gresho and Chan in 1990 [9]. The advantage of this test is that the analytical answer is
known, namely as the test is initialized in equilibrium it should stay in equilibrium. This
means that the conservation properties of the code can be tested, so their preservation
of symmetry and angular momentum - especially the latter - as the vortex is constantly
rotating. By looking at the preservation of symmetry on the other hand one can specifically
test the properties of the different mesh-construction methods (i.e.: voronoi mesh versus
uniform divisions in specific spatial regions for example, or uniformly-spaced static grids)
for mesh-based codes. These codes are also known to do very well with this test, while
SPH is known to struggle greatly here. This is due to the fact that SPH generates large
amounts of noise from the E0 error and also suffer from what Hopkins [8] describes as
’volume partition noise’, which can quickly degrade the vortex.

The vortex itself is an area of constant density, where the velocity varies depending
on the radius. This is constructed in such a way that the vortex is in hydrodynamical
equilibrium, namely in pressure equilibrium with the surrounding medium. The resulting
azimuthal velocity profile rises linearly until a specified radius, and then decreases linearly
until finally reaching the static outer areas.

34 4. Tests

Our test is initialized in a box of sizes 1x1 in two dimensions. Throughout the box we
will find a constant density ρ = 1. It should, however, be mentioned that the regions of the
vortex itself (for 0 ≤ r ≤ 0.4), with r defined as the distance from the point to the center
of the box (x=0.5, y=0.5), are simulated by equidistant points of nearly perfect constant
density ρ = 1, whilst the outer regions r > 0.4 have their constant density initialized
through a random distribution around ρ = 1 with fluctuations of up to ±0.2. We then
calculate the azimuthal angle (as polar coordinates are the natural choice for a vortex) to
be

φ(x, y) =


atanh

(
y
x

)
if x > 0

1
2
π y
|y| if x == 0

atanh
(
y
x

)
+ π if x < 0 and y ≥ 0

atanh
(
y
x

)
− π else

(4.1)

where x and y are the particle positions. The azimuthal velocity is then the velocity com-
ponent along the above angle We then have an azimuthal velocity profile following Hopkins
implementation as such

vφ(r) =


5r if 0 ≤ r < 0.2

2− 5r if 0.2 ≤ r < 0.4

0 else

(4.2)

This describes a rotating vortex with a radial velocity of zero everywhere. As the state is
in equilibirum, the analytical solution of the distribution of the azimuthal velocity is the
form described above, namely a linearly rising line until r = 0.2, followed by an equally
steep linear decline until r = 0.4 until finally staying constantly zero after (with regards
to the radius). It should also be noted that this is one of the two tests for which we will
be using an adiabatic coefficientγ = 1.4. This has historical reasons and is the adiabatic
coefficient for diatomic gas, which can be the coefficient used for interstellar gas clouds (see
Spaan and Silk’s analysis on such clouds for more info on when this coefficient is accurate
[22]). Additionally, we can imagine that this test can be seen as a rough approximation for
rotating structures in equilibrium, so might be used more sophisticated versions to simulate
for example rotating galaxies.

4.2 Shocks: Sod shock tube and Sedov-Taylor explo-

sion

Shocks are a prominent way to test a code’s reliability with handling contact discontinuities
and large Mach numbers, and provide a good measure of their accuracy when dealing with
large differences in density overall. Mesh-based codes tend to have an inherent advantage
with these tests, as they consist in essence of Riemann problems and the Riemann solvers
of the mesh codes are therefore specifically designed to capture such flows. This leads to

4.2 Shocks: Sod shock tube and Sedov-Taylor explosion 35

less diffusion than is experienced with SPH, although fixed-mesh solutions are known to
substantially suppress the jumps as well. These tests are important, as contact disconti-
nuities in density and especially large Mach numbers are commonplace for astrophysics, if
we think of for example clouds of different materials coming in contact with each other, or
a supernova explosion which moves outwards rapidly.

4.2.1 Sod Shock Tube

The Sod shock tube is one of the most common tests for code accuracy with shocks and
consists of two regions of differing densities and pressures initially at rest. This is therefore
an example for a one-dimensional Riemann problem. Mathematically then, the initial state
is described by

ρ(x, t = 0) =

{
ρ1 if x < x0

ρ5 if x ≥ x0
(4.3)

p(x, t = 0) =

{
p1 if x < x0

p5 if x ≥ x0
(4.4)

where for our case the initial densities are ρ1 = 1 and ρ5 = 0.25. The initial pressures are

Figure 4.1: The initial conditions of the 1D Sod shock problem for t=0. We see that the
velocities (described as u here, not to be confused with the internal energy) are equal to
zero on both sides, so the particles are initially all at rest, while pressure and density are
larger on the left than on the right

p1 = 4 and p5 = 0.7. With γ = 1.4, this is our second test with the adiabatic coefficient of
diatomic gas.

As the test evolves the areas begin to mix, forming three distinct regions inbetween
the two starting regions on the left and right, each with varying densities, pressures and
velocities. The exact form can be taken from figure 4.2. Between the regions 3 and 4 we

36 4. Tests

see the emergence of a contact discontinuity in the density profile, and between regions 4
and 5 a forward (to the right) moving shock wave.

Figure 4.2: The analytic evolution of the Sod shock tube for a time t>0. We can see that
five distinct regions form around the initial contact discontinuity at x0, where the left- and
rightmost regions describe our two initial regions. It should be noted that while this is
the solution presented by Gary Sod in his original paper, the density in region 4 does not
actually increase as shown here but rather decreases to a value between those of region 3
and 5.

Let us now look at the derivation of only the most basic relations following the one
presented by Dullemond [5], as a full derivation is quite tedious and as such will not be
performed here. We start by looking at the (numerically derived) qualitative form of the
five regions. Regions 1 and 5 describe the initial states, 3 and 4 have constant pressure,
density and velocity, whilst for region 2 all values vary depending on x.

If we then turn our attention first to the contact discontinuity between 3 and 4, we
note that as both regions move with the same velocity v3 = v4 ≡ vc we can conclude the
speed of the contact discontinuity to be identical and its position at a given time to be at
x3 = vct.

Now considering the regions 4 and 5, we see that as the shock wave propagates to the
right, the velocity behind it from view of the laboratory is v4 , and ahead of it is v5 = 0. Let
us consider then a coordinate system moving along with the shock, ergo with the shock at
rest. The speed of the gas particles infront of the shock in region 5 is then v5 − vs with vs
being the speed of the shock in the laboratory. The speed behind the shock is equivalently
v4 − vs. Mass conservation for the shock system 2.36 then dictates

(v5 − vs)ρ5 = (v4 − vs)ρ4 (4.5)

vsρ5 = (vs − v4)ρ4 (4.6)

vs = v4
ρ4

ρ4 − ρ5
= v4

(
1− ρ4

ρ5

)
(4.7)

4.2 Shocks: Sod shock tube and Sedov-Taylor explosion 37

From this and the density ratios of pre- and post-shock 2.63, we can derive

v4 = (p4 − p5)
√

2

ρ5(γ + 1)(p4 + γ−1
γ+1

p5)

= vc

(4.8)

Turning our attention now to the region 2, which describes an expansion wave, we know
that the left border of the region is propagating toward the left with the local speed of
sound 2.34 given by the pressure p1 and density ρ1 immediately at the border

x1 = −
√
γ p1
ρ1

(4.9)

The gas velocity can be derived (see for example Hawley’s derivation [10], however note
that he uses different variable definitions with inter alia our m being his µ) as

v2border =

√√√√(1−m4)p
1
γ

1

m4ρ1

(
p
γ−1
2γ

1 − p
γ−1
2γ

2

)
(4.10)

where m2 ≡ 1+γ
1−γ .

We can then solve the location of the border between region 2 and 3 via equalizing
the velocities, so by setting v2border = v3 (= v4 for which we derived a value in equation
4.8) and then solving this numerically to get a value for p3 = p4. We then know the gas
velocities v1, v3, v4 and v5 (as the velocity v2border is only valid on the border to region 3, we
don’t actually know it fully yet), the pressures p1, p3, p4, p5 and the densities in our starting
regions 1 and 5. We need all values in region 2 then, plus the densities for region 3 and 4.
We first deduce the density in region 4 from 4.8, and then the density in region 3 by
realizing that as the shock front is moving to the right, gas to the left of the contact
discontinuity has never gone through a shock front (only the gas that was in region 5 has).
Therefore the entropy must be equal to that of region 1, and using the polytropic gas law
2.2 pV a = const for an isentropic process, ergo where a = γ the adiabatic coefficient, we
can conclude pρ−γ = const, or

ρ3 = ρ1

(
p3
p1

) 1
γ

(4.11)

With regions 1,3,4 and 5 now fully known, we just need the velocity, density and pressure
for region 2, which we give without derivation:

v2(x, t) = (1−m2)
(x
t

+ csound,1

)
(4.12)

ρ2(x, t) =

(
ργ1
γp1

(
v2(x, t)−

x

t

)2) 1
γ−1

(4.13)

p2(x, t) = p1

(
ρ2(x, t)

ρ1

)γ
(4.14)

38 4. Tests

All relevant values for our system, for example the sound speeds or internal energies, can
be derived from the density, pressure and gas velocity of the five regions, which in turn one
can deduce via the above equations entirely from the values for the density and pressure
of our initial two states.

4.2.2 Sedov-Taylor explosion

The Sedov-Taylor explosion, or Sedov blast, is another one of the test cases where the
analytic solution is fully known. The simulation starts with a constant density throughout
the box ρ1, with a small point in the center being given high starting energy at the initial
time. For this specific test we use a Wendland C4 kernel, with a correction presented by
Dehnen and Aly [4] instead of a cubic or quintic kernel, in addition to a wake-up function
as opposed to a slope limiter. This in turn requires a greater number of neighbors (around
200) but produced slightly better results for us than the quinitc or cubic kernel did.

As the system evolves with time, the high energy in the center creates a spherically
symmetric shock wave of higher pressure, temperature and density that travels radially
outward. The difference to a normal wave is the very sharp change in gas properties, nearly
comparable with a discontinuous jump. This disturbance moves outward faster than the
local speed of sound within the gas, thereby preventing the matter from parting before it
and quickly building up a region of high pressure (as described by Anderson [1]).

Because, as we have stated, this area is comparable with a discontinuous jump, we
have a situation as presented in the section 2.3. Our governing equations are then those
we derived there

continuity : ρ1vx1 = ρ2vx2 (4.15)

momentum : p1 + ρ1 v
2
1 = p2 + ρ2 v

2
2 (4.16)

energy : 1
2
v1 + e1 +

p1
ρ1

= 1
2
v2 + e2 +

p2
ρ

(4.17)

resulting in the evolution of the two phases as in 2.63 and 2.66

ρ2
ρ1

=
γ + 1

γ − 1
(4.18)

p2
p1

=
2γM2

1 − (γ − 1)

γ + 1
(4.19)

For this test case we have γ = 5/3, meaning that in an ideal scenario we would see the
immediate post-shock density being exactly four times as high as the pre-shock density. If
we then plot the density over the radius we should expect to see a constant density for large
radii (equal to our initial constant density), which then (ideally) discontinuously jumps up
to our aftershock maximum value and then starts decreasing again with smaller radii, as
the particles are relaxing after the shock and spreading out (unlike the shock front where
they are bundled together). Additionally, the density should be the same for equal radii,

4.3 Fluid mixing: KHI and the ”Blob” test 39

as the blast propagates radially outward. We will see this when plotting the density over
slice of the z axis, so over a select x-y plane.

Our initial conditions describe a box of size 6x6x6 with a constant density of ρ =
1.23 ∗ 107 throughout. The central point starts with energy of around 0.00503 in Gadget’s
internal units, which corresponds to the average energy in a supernova 1∗1051 erg. We can
therefore use this test to simulate the remnants of supernovas and see their distribution,
depending on which we can stipulate their initial energy. But it also helps assess how a
code would deal with large-scale interactions, where high Mach numbers are commonplace.

4.3 Fluid mixing: KHI and the ”Blob” test

Another set of commonly used tests encompasses the code’s ability to accurately represent
the mixing process of fluids (this is particularly relevant in larger scale structure forma-
tion). The issues SPH may have with such a situation are evident, as the mixing at fluid
boundaries is difficult to resolve due to the leading error in the momentum equation (E0
error) and the local mixing instability. The former suppresses low amplitude modes, and
the latter occurs due to attempted mixing on the kernel scale being prevented by entropy
conservation. This arises as mixing would be an increase in entropy, so when each particle
tries conserving entropy they ’fight’ against mixing with other particles, and this leads
to an increase in pressure and a high surface tension (see Agertz [2] excellent in-depth
explanation for more). The result is, that the expected increase in entropy through the
mixing, which is supposed to lead to energy being freed (which facilitates said mixing in
the first place), is only present for mesh-based codes. For SPH one must artificially increase
the mixing capabilities by adding artificial viscosity/conductivity terms, but the former E0
error persists in all variants of SPH and can only be lessened by increasing the number of
neighbors (for an overview over most plausible solutions for resolving the mixing errors of
SPH see Read [21]).

However, there are also issues for mesh-based codes when simulating fluid mixing, as
assigning the entire fluid an additional velocity comparable to the shear velocities between
the individual parts of the fluid leads to large errors. Put simply, this means that the mesh-
based codes struggle with bulk velocities. This again is unfortunate, as bulk velocities are
omnipresent in astrophysical situations, especially those involving structure formation. It
should additionally be obvious, that the codes capabilities to mix gas of differing densities
and velocities should be relevant in a lot of situations for astrophysics.

4.3.1 Kelvin-Helmholtz instability

The Kelvin-Helmholtz instability occurs when there is a velocity difference across the boun-
dary of two fluids. This causes them to rub against each other, leading to a mixing between
them and then transitions into turbulent flow. This specific scenario will be initialized wi-
thout gravity (there is also the variation with the denser fluid at the bottom and gravity
acting on the system to facilitate mixing) and with a central area of a lower density fluid

40 4. Tests

(a) The distribution of the
density with the smoothing layers.

(b) Distribution x-component of the
velocity.

Figure 4.3: The initial conditions of our KHI test

moving to the left, where the top and bottom high density areas are moving to the right,
thereby resulting in a velocity difference at two boundaries. Then a sinusodial disturbance
is introduced along the boundary (which has non-zero thickness), resulting in the instability
and finally turbulent flow.

The governing physics - as long as the system is stable - are dictated by the Navier-
Stokes equation, or for inviscid flow by the Euler equations. If gravity were present, one
could additionally simplify the equations by linearizing them and arriving at the Taylor-
Goldstein equation. As shown by Kundu in [12], a setup with differing velocities across an
interface always has wave modes (for large enough wave numbers k) that lead to instability.
For our specific case, as described by Hopkins, we initially have an inviscid system. This
however leads to the non-linear structe (i.e. in the swirls) lacking a converged solution, so
to avoid this and obtain a define-ably converged solution we must ensure that we add finite
viscosity to the system. As it is however, there is no analytical solution to our problem once
the system transitions to turbulent flow. Characteristic swirls are formed in the non-linear
growth phase, where the stability finally collapses, through the continuously increasing
overlap of the phases into each other before they are rolled up (due to the motion of the
surrounding fluid). Later into the non-linear phase the rolls grow large enough to finally
overlap with each other forming larger, more complex structures.

The test case is initialized in a periodic two-dimensional box of size 1x1. As described
above and as can be taken from figure 4.3, we then have a central area with lower density
ρlow = 1, moving with velocity vx = 0.5 to the right in direction of x (in Gadget’s internal
units). The central area is located from around y = 0.25 to y = 0.75. We see the smoothing
layer at these values, which take on an exponential interpolation between the inner and
outer layers leading to a smoothed transition. The outer areas have double the density, so
ρlow = 1, and move exactly opposite in x-direction with velocity vx = −0.5, leading to a
total shear velocity of 1. As mentioned we then seed a small (of up to 0.001) disturbance
velocity in y-direction, whose amplitude follows a sinusodial pattern in x-direction.

4.3 Fluid mixing: KHI and the ”Blob” test 41

The internal energy is distributed ’inversely’ to the density (and therefore balances out
the pressure between the layers), as the central area has a higher energy of ehigh = 4 whilst
the outer areas have elow = 2, with a non-zero thickness between the layers which gradually
transitions between their energies.

4.3.2 The blob test

To see the impact of the fluid mixing instabilities (KHI and the Rayleigh-Taylor instability
which is not discussed here) in a more ’realistic’ situation we turn to the blob test. Here we
observe the evolution of a central cloud, or ’blob’, of uniform high density which is placed
into a moving medium of constant, lower density. The phases are in pressure equilibrium.
As the outer fluid phase moves past the blob, the fluid mixing instabilities tear away at the
surface of the blob, much like what happens when a galaxy passing another strips it through
tidal interactions. A bow shock is formed (as the blob forms a sufficiently blunt surface to
avoid oblique shocks) along whose boundary the instabilities form, with additional shocks
resulting from the periodicity (i.e. from multiple passes of the outer medium past the
blob). Such bow shocks can for example be observed in astrophysics when a magnetized
interstellar gas cloud passes a planet or star with a magnetic field, upon which along the
boundary the bulk velocity of the gas drops from ’supersonic’ to ’subsonic’.

We initialize a box size of 2000x2000x6000 with a constant density throughout, where
the blob density is ten times higher than the ambient density ρblob = 3∗10−7 = 10∗ρambient.
The blob is placed slightly to the left of the center on the large z-axis, so as to ensure that
the tail, which will form through stripping of the blob, stays mostly in the box without
coming back in over the periodic border. This places the blobs center therefore at (x=1000,
y=1000, z=2000). The exact set up can be taken from figure 4.4, where we can additionally
see that the radius of the blob is 197. These initial conditions are then roughly equal to
those of the Wengen test suite as described by Agert et al. [2].

Figure 4.4: The initial conditions of the blob test. We see the density distribution in a slice
for 0 ≤ y ≤ 2000, 0 ≤ z ≤ 6000 and x = 0.

To ensure pressure equilibrium the temperature and therefore the internal energy of the
blob is ten times lower than that of the ambient medium, which we can see in the initial

42 4. Tests

conditions in figure 4.4 and can confirm via the equation of state 2.25

pblob
!

= pambient (4.20)

eblob(γ − 1)ρblob = eambient(γ − 1)ρambient (4.21)

eblob
eambient

=
ρambient
ρblob

=
1

10
(4.22)

As this test requires good fluid mixing capabilities and tests for not only KHI but also
Rayleigh-Taylor instabilities, we can expect in the results to see SPH struggle a bit. The
resulting surface tension due to entropy conservation prevents the mixing from happening
on the scales of the other codes: We expect a result which mostly flattens the blob, leaving
larger parts intact than with MFM (although as we are using the more modern PSPH the
effects should not be as severe as they would be for traditional SPH). For MFM we expect
equally good mixing capabilities as with the KHI test itself, so that the cloud is completely
mixed, i.e. destroyed, through the disruptions at the surface within a few cloud-crossing
timescales.

Chapter 5

Results

Here we present the results of our simulations, all run with both MFM and the SPH
implementation as utilized by Hopkins [8]. We find good agreement with the results in
the original MFM paper, namely overall good perfomance with fluid mixing in addition to
good shock resolution. It should be stated in advance, however, that we do not manage to
reach the same level of optimisation as the original paper.

5.1 Gresho vortex

As stated before in section 4.1, the analytical solution to the Gresho vortex has the vortex
staying constant in time, perfectly equilibriating the inward and outward pressure. Howe-
ver, both methods do not perfectly conserve the system due to numerical inaccuracies and
other instabilities/inaccuracies.

As expected, the SPH code struggles significantly with preserving the form of the vortex
as it generates a large amount of noise. This can be seen clearly in figure 5.1: after around
one orbit of the vortex, the original velocity distribution has been degraded significantly
and the peak moved slightly outward, only reaching an average peak velocity of around
40% of the original value. The noise stems from both the E0 error being significant here,
as well as the ’volume partition noise’ described by Hopkins. The latter arises from the
constant recalculation of the effective particle volumes in this test (as they are constantly
experiencing a shear motion), leading to a noise for all fields depending on the volume (such
as pressure). Furthermore, we see the artificial viscosity switches causing the particles to
diffuse strongly outward, leading to a large amount of particles gathering at radii larger
than 0.4. Additionally, we see a strong deviation from the original state already in the
central area, with nearly no particles having their inital azimuthal velocity here.

In contrast, the MFM code manages to conserve an average peak velocity of around
80% of the original value. Especially well conserved are the areas toward the center of the
vortex, where we can see barely any particles falling significantly out of the line described
by the analytical solution. We do, however, observe as Hopkins does the same significant
noise around the peak and especially for the transition into the static outer areas, which

44 5. Results

(a) SPH gresho vortex (b) MFM gresho vortex

Figure 5.1: Comparison of the preservation capabilities of MFM and SPH via the Gresho
vortex. We plot the azimuthal velocities versus the radius at t=2.5, with a resolution of all
the 642 simulated particles. The analytical solution is seen plotted with the red line.

he attributed to both a milder form of the ’volume partition noise’ and the usual grid noise
stemming from the motion/deformation of the effective faces used to calculate the fluxes.

5.2 Sod shock

The results of our shock tube test can be taken from figure 5.2. We observe that both
codes behave similarly close around the converged solution. We see slight bulges before the
transition at the front from constant density, pressure and velocity into the linear phases
(x=-6). The bumps are present for MFM even with usage of equal mass particles. They
start a little sooner for MFM than SPH but exhibit a smaller amplitude. These bulges are
also seen around the contact discontinuities in the entropy at x=3 and x=7.5.

We also see a similar ’blip’ in the pressure that is noted by Hopkins around where the
first contact discontinuity is located (x=3), although it seems to be less defined for us for
MFM and is instead best noticeable in SPH. The discontinuous jumps around x=3 and
x=7.5 are smoothed visibly for both implemented codes, so as expected we do not capture
the shocks as well as mesh-based codes can. Interesting to note here is the jump in the
entropy at x=7.5, as for SPH we see just a smooth interpolation whilst for MFM the peaks
before and after are still present as with the jump at x=3. Looking at this first discontinuity
on the other hand, we see that MFM has bulges before and after of around equal amplitude,
whilst for SPH the bulge before the jump is barely present, in contrast to the bulge after
which is much more prominent than the one in MFM. Another interesting area to note is
the transition from the linear to the constant phase around x=-2: We see SPH fluctuate
visibly around the converged solution, while MFM on the other hand captures this area
really well.

5.2 Sod shock 45

(a) SPH Sod shock tube (b) MFM Sod shock tube

Figure 5.2: Comparison of the shock resolving capabilities of MFM and SPH. Plotted here
are the density, the pressure, the velocity in x-direction and finally the entropy measure as
presented in section 2.1.3. The black dots represent singular particles, whilst the converged
solution of a high-resolution test is plotted in red. Both tests are plotted for the time t=5 at
a resolution of 320 particles. We note that as we are working with equal mass particles here
the particle density and therefore by nature the resolution of the solutions is dependent on
the density itself, i.e. higher density leading to higher resolution for both MFM and SPH.
This is therefore an excellent example of the Lagrangian nature of SPH and MFM.

46 5. Results

(a) SPH Sedov blast (b) MFM Sedov blast

Figure 5.3: A comparison between the MFM and SPH sedov shocks. Whilst both reach
similar peak hights, our SPH results on the left show a much higher diffusion than the
equivalent MFM solution on the right. Plotted here is the density over the radius at time
t=0.03 at a resolution of around 2.1 million particles.

(a) SPH Sedov blast (b) MFM Sedov blast

Figure 5.4: Plotted is the distribution of the logarithim of the internal energy over a slice at
z=0 for t=0.03. We see good agreement between SPH and MFM, and both show excellent
radial symmetry.

5.3 Sedov-Taylor explosion 47

5.3 Sedov-Taylor explosion

We then turn to our second shock test, the Sedov-Taylor explosion. As can be taken from
the radial density profile in figure 5.3, we find slightly different behavior in both our MFM
and SPH implementations compared to the original MFM paper. It should be mentioned
that this is the only test for which we employed a pressure-energy scheme for SPH, as
opposed to the usual pressure-entropy scheme. This is due to the fact that for the usual
scheme we found the shock to be moving ahead slightly faster toward the outside, i.e. with
a higher initial energy. We speculate that this is due to the smoothing of pressure creating
some additional pdV terms in the entropy, which would then increase the starting internal
energy (as for a pressure-entropy scheme we calculate the other state variables from the
pressure and the entropy). These effects were not present for the pressure-energy scheme,
hence our choice here.

If we then turn back to the figure at hand, we find the jump coefficient, i.e. the factor
between pre- and post-shock density, to be ρ2/ρ1 ≈ 2.72 for MFM, whilst we calculate
the one for SPH to be ρ2/ρ1 ≈ 2.77. We observe additionally that we can further increase
the jump factor for SPH by lowering the artificial viscosity. By doing this we could reach
factors of around 3.3, which is then much closer to the analytical solution of 4 at the
expense of a large increase in noise.

This means that while we observe the same suppression of the peaks for MFM and SPH,
we actually found the suppression for MFM to be more severe than the one experienced by
SPH, where even when we significantly increase the viscosity to reduce the noise (as is the
case for figure 5.3) we still found a larger jump factor than with MFM. This is behavior
opposite to that found by Hopkins, as there the MFM peak suppression was significantly
smaller and therefore found MFM yielding jump factors much larger than those even for
our most noisy SPH results (up to 3.5).

The noticeable peak dampening notwithstanding, we find MFM to produce a very good
curve which closely follows the analytical solution with minimal noise, if any. Considering
the figure shows a resolution of 1283, the lack of noise is quite impressive. On the other
hand, even if we utilize high viscosity to reduce noise, we still find SPH to be noticeably
more noisy than MFM.

If we then look at the logarithmic inner energy distribution in the x-y plane in figure
5.4, we find both the MFM and SPH codes to produce very compact and symmetrical
rings. Both exhibit minimal noise here, with the only discernible difference being that the
energy in the center dissipates very slightly more for SPH than for MFM. Aside from this
both agree remarkably well with each other, and show excellent overall radial symmetry.

5.4 Kelvin-Helmholtz instability

The KHI test famously presents a large challenge for SPH codes, albeit not as severly as
for example the Gresho vortex does. Mesh-based codes are known to work well here, so we
expect similar results from MFM (as for this test the fluxes are most relevant). We will

48 5. Results

compare here first the results of when the rolls should be transitioning into the non-linear
phase. For this specific case we also plot one test run with MFV to see the differences in
the early stages.

Turning then to the results, we can take from figure 5.5 that MFM and MFV both
behave as expected, neatly forming the rolls with very little diffusion at a level comparable
to that of mesh-based codes. If we look toward the center of the curls we can see that MFV
fares slightly better, as for it we observe sharper edges with a little less diffusion than for
MFM. The SPH implementations do surprisingly well with just 40 neighbors already, as
unlike Hopkins we find that even with this number the KH rolls are apparent. In fact,
we observe little improvement when utilizing a higher order kernel even when run at a
significantly higher number of neighbors as this seemed to just very slightly decrease the
amount of diffusion toward the center of the swirls.

Turning then to figure 5.6, we note immediately for t=4.2 that the issues SPH can have
with this test become more relevant in the later stages, as both the quintic kernel at 40
and the Wendland kernel at 200 neighbors are showing large diffuse areas at the center of
the rolls. We observe that the MFM sub-structure is smoothed out a little but is conserved
well overall for t=4.2. This is also the case for the very late stages when the rolls overlap
at t=8.4, where we can still observe that the characteristic swirls are present. This is not
the case for the SPH codes, as we loose much of the swirls substructure already for t=4.2
where the resulting structure is more reminiscent of braids than of seperate swirls. This is
the case both for the quintic and the Wendland kernel.

As we do not have an analytical solutions for this test, it is hard to ascertain which
of the codes performs the best here for the very late stages at t=8.4. Nonetheless, as for
the earlier ones we can clearly see MFM preserving the sub-structure better than the more
diffuse SPH codes, we can therefore assume that this is the case for the later stages aswell,
especially as we can still observe distinct swirls for MFM whereas for both SPH codes it
would require some imagination.

5.4 Kelvin-Helmholtz instability 49

Figure 5.5: Plotted are the results for the two-dimensional KHI test run at 2562 resolution
and plotted for t=2.1. Our MFM implementation is plotted in the top left, which just as
MFV in the top right shows overall good resolution of the rolls and low amounts of noise.
This becomes evident when compared to the SPH implementation run with a quintic kernel
with 40 neighbors on the bottom left. Here we see visibly more noise present overall, which
we could not improve up to the standards of MFM/MFV even when run with a Wendland
kernel with 200 neighbors, here seen plotted on the bottom right.

50 5. Results

Figure 5.6: Here we see the later stages of the above test plotted. The left column shows
the time t=4.2, whilst the right column shows t=8.4, again at resolution 2562. We can
observe the transition to box-wide non-linearity as the rolls overlap with each other and
where the codes start to show stark differences amongst themselves.

5.5 The blob test 51

5.5 The blob test

As mentioned previously, the blob test relies on Kelvin-Helmholtz- and Rayleigh-Taylor-
instabilities to tear away at the blob and finally distort it, so we expect to observe SPH
having the same difficulties in capturing the evolution of the system as accurately as is
possible with MFM, finding slightly more diffusion preventing the cloud from mixing as
well and as quickly.

If we look at figure 5.7, we see the statement of Hopkins, namely that while SPH
can have its early-time behavior agree well with MFM and mesh-based methods as our
implemented version, PSPH, allows mixing in density, this is not the case for later times
[8], mirrored here well. When we look at the evolution of the central blob for SPH, we
can tell that that it manages to persist for much longer times than it does for MFM, with
noticeable regions of upward of 4 times the ambiens density remaining intact at t=6.0
still. We also find MFM forming a similar stingray form for the blob at the time t=2.0
comparable to that found by Hopkins, with large parts already completely mixing at t=4.0.
The form of the tails closely resemble each for SPH and MFM.

Figure 5.7: Plotted is the density in the box for a slice (0 ≤ y ≤ 2000, 0 ≤ z ≤ 6000, x = 0)
through the center. The ambient medium is moving to the right. The left column shows
our results for SPH, while the right column shows those for MFM.

52 5. Results

Chapter 6

Summary and Conclusion

Finally then we can look back at our tests and conclude our findings. Overall we observe
good agreement with the results presented by Phil Hopkins, accounting for general smaller
errors. For most tests we do not manage to reach the same level of optimization, as for
example especially with the Sedov blast we find a significant dampening of the peak, whilst
on the opposite spectrum for the KHI test we find a good forming of rolls with the SPH
code for much lower numbers of neighbors than Hopkins states are necessary.

We must conclude overall though that, accounting for errors and less optimisation
for our runs, MFM does indeed seem to produce consistently promising results for all
considered test cases. Starting with the Gresho vortex we see excellent conservation of
the peak which, while we do not manage to reproduce the exact results of Hopkins with
around 90% of the original azimuthal velocity still present in the peak, offers a significant
improvement over the SPH results by improving mixing and especially avoiding the E0
error. We do observe stronger diffusivity for MFM than mesh-based codes would have,
however. Looking at the Sod shock tube even at our low resolution of only 320 particles,
both MFM and SPH capture the converged solution well. SPH did however produce slightly
larger bumps and a more prominent ’wiggle’ than MFM. If we then consider the Sedov
blast, we see a noteable divergence to the results of Hopkins, as we did not manage to
reach the same density jump factor for MFM of 3.5, but rather find something more akin
to his results for the grid codes with a jump factor of 2.72. Instead it is SPH for which we
find the higher jump factor of 2.77. In return, SPH generated noticeably more noise.

Turning then to the KHI test we find excellent results for MFM and MFV, both pro-
ducing very good symmetric rolls without much diffusivity (although they do not quite
reach the level of a mesh-based code for this test). This is the case even for low resolution,
although we then do observe noticeable smearing for the later times. The SPH codes fared
remarkably well even for lower-order kernels and less neighbors, but still produced more
diffuse rolls already during the early times. This is only increased for later times, where
we find large differences compared to the MFM results. And finally we find quick mixing
capabilities for MFM in the blob test, which are significantly faster than our used SPH
version.

Summarizing then, we can state that for our tests MFM functioned as expected. It

54 6. Summary and Conclusion

captures shocks well as it is using a Riemann solver, and can handle mixing in the Kelvin-
Helmholtz tests without the carbuncle instabilities inherent in fixed mesh codes, whilst
also avoiding the fluid mixing instabilities and E0 error present in SPH. This helps it
produce consistently good results. It does not seem to struggle significantly with any of
our considered tests (unlike SPH with the Gresho vortex).

We conclude that MFM presents a viable alternative to the prominent codes at the time.
The implementation was found to be surprisingly simple to use and gave good results even
without much optimization of the parameters. We believe that it is worth exploring and
further analyzing and improving its capabilities. As we could not test its behavior with
tests involving self-gravity or gravity in general this could present an interesting future
topic to be probed more in-depth, as this could possibly be the area where MFM has a
significant advantage over mesh-based codes due to the simplicity of implementing N-body
gravitation codes.

Appendix

Here we will give the full deriavation of the energy conservation equation that forms the
final of our governing equations. We will follow the derivation presented by Landau and
Lifshitz in Fluid Mechanics [13].

The derivation begins as already alluded to in chapter 2 by looking at the expanded
form of the total energy per volume element and asking how it evolves with time

E ≡ 1
2
ρv2 + ρe (I.1)

∂E

∂t
=

∂

∂t

(
1
2
ρv2 + ρe

)
=

∂

∂t
(1
2
ρv2) +

∂

∂t
(ρe) (I.2)

We will start with the first summand, which we first expand into

∂

∂t
(1
2
ρv2) = 1

2
v2
∂ρ

∂t
+ 1

2
2v
∂v

∂t
(I.3)

We then use the equation of continuity 2.4 for the first term and the equation of motion
2.8 for the latter and get

∂

∂t
(1
2
ρv2) = −1

2
v2∇ · (ρv)− ρv · (v ·∇)v − v ·∇p (I.4)

Turning then to the thermodynamic relation for the heat functional per mass we find
dw = Tds + V

m
dp = Tds + 1

ρ
dp, which then leads us to ∇p = ρ∇w − ρT∇s. We also

replace v · (v ·∇)v = v ·∇
(
1
2
v2
)

to arrive at the formula for our first summand

∂

∂t
(1
2
ρv2) = −1

2
v2∇ · (ρv)− ρv ·∇

(
1
2
v2 + w

)
+ ρTv ·∇s (I.5)

Utilizing a thermodynamic relation again, this time for the total differential of the specific
internal energy, and observing that V = m

ρ
implies dV = ∂V

∂ρ
dρ = −m 1

ρ2
dρ, we get

de = Tds− p

m
dV = Tds+

p

ρ2
dρ (I.6)

Looking again at the heat functional per mass as defined above we observe

dw = Tds+
1

ρ
dp = Tds+

p

m
dV − p

m
dV +

V

m
dp = de− 1

m
d(pV) (I.7)

56 I. Appendix

From this we can deduce w = e+ pV/m = e+ p/ρ, which we then use along with equation
I.6 to solve the total differential of ρe as

d(ρe) = edρ+ ρde = edρ+ ρ

(
Tds+

p

ρ2
dρ

)
=

(
e+

p

ρ

)
dρ+ ρTds = wdρ+ ρTds (I.8)

Using this in the second summand from equation I.2, plugging in the continuity equation
again and by remembering that the specific entropy is conserved d

dt
s = ∂

∂t
s + v ·∇s = 0,

we arrive at
∂

∂t
(ρe) = w

∂ρ

∂t
+ ρT

∂s

∂t
= −w∇ · (ρv)− ρTv ·∇s (I.9)

This leads us finally to our total change in specific energy per volume, which we calculate
to be

∂E

∂t
= −1

2
v2∇ · (ρv)− ρv ·∇

(
1
2
v2 + w

)
+ ρTv ·∇s− w∇ · (ρv)− ρTv ·∇s (I.10)

∂E

∂t
= −

(
1
2
v2 + w

)
∇ · (ρv)− ρv ·∇

(
1
2
v2 + w

)
(I.11)

∂E

∂t
= −∇ ·

[
ρv
(
1
2
v2 + w

)]
(I.12)

This is then the final equation we presented in equation 2.21.

Bibliography

[1] John D. Anderson, Jr.; Fundamentals of Aerodynamics, 3rd Edition, Mc-Graw Hill,
2001

[2] Oscar Agertz, Ben Moore et al.; Fundamental differences between SPH and grid me-
thods, MNRAS, Volume 380, Issue 3, pp. 963-978; arXiv:astro-ph/0610051

[3] Phillip Colella; Multidimensional Upwind Methods for Hyperbolic Conservation Laws,
Journal of computational physics Volume 87, pages 171-200, 1990

[4] Walter Dehnen, Hossam Aly; Improving convergence in smoothed particle hydrody-
namics simulations without pairing instability, MNRAS, Volume 425, Issue 2, pp.
1068-1082.

[5] C. P. Dullemond; Numerical Fluid Dynamics, Online lecture on modern numerical
algorithms chapter 6, 2008, http://www2.mpia-hd.mpg.de/~dullemon/lectures/

fluiddynamics08/chap_6_numhyd_riemann_1.pdf, accessed on 17.05.2018

[6] Evghenii Gaburov, Keigo Nitadori; Astrophysical weighted particle magnetohydrody-
namics, MNRAS, Volume 414, Issue 1, 11 June 2011, pp. 129-154

[7] RB Canelas; SPH formulation, online at the github wiki at https://github.com/

dualsphysics/DualSPHysics/wiki/3.-SPH-formulation, accessed on 07.07.2018

[8] Philip F. Hopkins; A new class of accurate, mesh-free hydrodynamic simulation me-
thods, MNRAS, Volume 450, Issue 1, pp.53-110, 2015; arXiv:1409.7395v2

[9] P. M. Gresho, Stevens Chan; On the theory of semi-implicit projection methods for
viscous incompressible flow and its implementation via a finite element method that
also introduces a nearly consistent mass matrix. II - Implementation, Journal for Nu-
merical Methods in Fluids, Volume 11, pp. 621-659, 1990

[10] J. F. Hawley, L. L. Smarr, J. R. Wilson; A numerical study of nonspherical black hole
accretion. I Equations and test problems, AJ, Vol 277, pp. 296-311, 1984

[11] Shu-Ichiro Inutsuka; Reformulation of Smoothed Particle Hydrodynamics with Rie-
mann Solver, Journal of Computational Physics, Volume 179, Issue 1, pp. 238-267,
2002

http://www2.mpia-hd.mpg.de/~dullemon/lectures/fluiddynamics08/chap_6_numhyd_riemann_1.pdf
http://www2.mpia-hd.mpg.de/~dullemon/lectures/fluiddynamics08/chap_6_numhyd_riemann_1.pdf
https://github.com/dualsphysics/DualSPHysics/wiki/3.-SPH-formulation
https://github.com/dualsphysics/DualSPHysics/wiki/3.-SPH-formulation

58 BIBLIOGRAPHY

[12] Pijush Kundu, Ira Cohen, David Dowling; Fluid Mechanics, 6th Edition, Academic
Press, 2015

[13] L. D. Landau, E. M. Lifshitz; Fluid Mechanics, 2nd Edition, Pergamon Press, 1987

[14] Nathalie Lanson, Jean-Paul Vila; Renormalized Meshfree Schemes I: Consistency, Sta-
bility, and Hybrid Methods for Conservation Laws, SIAM J. Numer. Anal., Volume
46(4), pp. 19121934, 2008

[15] D. Molteni, C. Bilello; Riemann solver in SPH, MmSAI, v.1., p. 36, 2003

[16] JJ Monaghan, RA Gingold; Smoothed particle hydrodynamics theory and application
to non-spherical stars., MNRAS, Volume 181, pp. 375389, 1977

[17] JJ Monaghan, JC Lattanzio; A refined particle method for astrophysical problems,
A&AS, Volume 149, Issue 1, pp. 135-143, 1985

[18] JJ Monaghan; Smoothed particle hydrodynamics, Annual Reviews in Astronomy and
Astrophysics, Volume 30, pp. 543-574, 1992

[19] JJ Monaghan; Smoothed particle hydrodynamics, Reports on Progress in Physics, Vo-
lume 68, Issue 8, pp.1703-1759, 2005

[20] Ue-Li Pen; A High-Resolution Adaptive Moving Mesh Hydrodynamic Algorithm, ApJS,
Volume 115, pp. 19-34, 1998

[21] J. I. Read, T. Hayfield, O. Agertz; Resolving mixing in smoothed particle hydrodyna-
mics, MNRAS, Volume 405, Issue 3, pp. 1513-1530, 2010

[22] Marco Spaans, Joseph Silk; The Polytropic Equation of State of Interstellar Gas
Clouds, ApJS, Volume 538, Issue 1, pp. 115-120

[23] Volker Springel, Lars Hernquist; Cosmological smoothed particle hydrodynamics simu-
lations: The entropy equation, MNRAS, Volume 333, pp. 649-664, 2002; arXiv:astro-
ph/0111016

[24] Volker Springel; The cosmological simulation code GADGET-2, MNRAS, Volume 364,
Issue 4, pp. 1105-1134, 2005

[25] Volker Springel; Galileaninvariant cosmological hydrodynamical simulations on a mo-
ving mesh, MNRAS, Volume 401, pp. 791-851, 2010

[26] J. M. Stone, T.A. Gardiner, P. Teuben, J. F. Hawley, J. B. Simon; Athena: A New
Code for Astrophysical MHD, ApJS, Volume 178, pp. 137-177, 2008; arXiv:0804.0402

[27] Eleuterio F. Toro; Riemann Solvers and Numerical Methods for Fluid Dynamics, 1st
Edition, Springer, 1997

BIBLIOGRAPHY 59

[28] Eleuterio F. Toro; Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd
Edition, Springer, 2009

[29] Bram van Leer; On the Relation Between the Upwind-Differencing Schemes of Godu-
nov, EngquistOsher and Roe, SIAM Journal on Scientific and Statistical Computing,
Volume 5, No. 1 : pp. 1-20, 1984

[30] Damien Violeau; Fluid Mechanics and the SPH Method: Theory and Applications, 1st
Edition, Oxford University Press, 2012

[31] Holger Wendland; Piecewise polynomial, positive definite amd compactly supported
radial functions of minimal degree, Adv. Comp. Math., Volume 4, Issue 1, pp. 389-
396, 1995

[32] Gouhong Xu; Hydrodynamic and N-body schemes on an unstructured, adaptive mesh
with applications to cosmological simulations, MNRAS Volume 288, pp. 903-919, 1997

[33] Ya. B. Zel’dovich; Gravitational instability: An approximate theory for large density
perturbations., A&AS, Volume 5, pp. 84-89, 1970

60

Acknowledgments

The usage of first person plural throughout this thesis is not by convention only, as without
the following people this work would not have been possible. I would therefore like to take
this moment to thank all these wonderful people who directly or indirectly guided me
through this specific work and the entire three years of the bachelor itself.

First and foremost I would like to thank my supervisors, Dr. Benjamin Moster and
Ulrich Steinwandel, for the possibility of diving into this fascinating topic and their con-
sistently excellent support of my endeavours, for all the late-night email answers and the
great explanations that often went beyond the scope of what I could present here. Thank
you for helping me break down and understand many of the underlying concepts in gre-
at depth and with a lot of patience. I would also like to thank Joseph O’Leary for his
outstanding assistance in all things related to the plotting of the tests.

Second, I would like to thank the wonderful people surrounding me, most prominently
my family and good friends, both inside and outside of germany. My family for their support
(and of course funding) of my studies, constant love and compassion and a lot of nerves
when dealing with my panicked calls before important due dates. My friends for listening
to my speaking of ’interesting physical topics’ that really just amounted to good excuses to
hold a monologue about how splendid physics and maths are, for their constant build-ups
and great conversations to take my mind off of (physics-related) things. I hold all of you
very dearly.

Then I would like to explicitly thank Robin Evitts and Stacey Kimmig for thoroughly
proofreading all the above pages, so any grammar or spelling complaints may be directed
at them. In all honesty however, their feedback significantly improved the readability of
this thesis, and for that thank you.

Then finally I would like to thank all my fellow physics students for all the great times
and memories, especially those with whom I spent large amounts of time playing board
games and studying for exams with, all the people at the USM for their kindness and
willingness to help whenever necessary and finally once more all the mentioned people
above. Thank you.

62 III. Acknowledgments

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Arbeit selbstständig verfasst zu haben und keine an-
deren als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt zu haben:

München, den
(Lucas Kimmig)

	Abstract
	Introduction
	Hydrodynamics
	Euler equations
	Continuity of mass
	Momentum conservation
	Entropy conservation
	Energy conservation

	Polytropic ideal gas
	Surface discontinuities and shocks

	Methods: SPH vs Grid vs MFM
	Introduction and Terminology
	Riemann problem
	Godunov scheme as a finite volume scheme
	Principle of the Godunov scheme
	The timescale

	SPH Scheme
	Formulation of SPH
	Godunov SPH

	Fixed mesh and moving meshes
	Formulation of fixed and moving meshes

	Meshless finite mass
	Formulation of MFM
	Implemented kernels

	Tests
	Tests in equilibrium: the Gresho vortex
	Shocks: Sod shock tube and Sedov-Taylor explosion
	Sod Shock Tube
	Sedov-Taylor explosion

	Fluid mixing: KHI and the ''Blob'' test
	Kelvin-Helmholtz instability
	The blob test

	Results
	Gresho vortex
	Sod shock
	Sedov-Taylor explosion
	Kelvin-Helmholtz instability
	The blob test

	Summary and Conclusion
	Appendix
	Acknowledgments
	Selbstständigkeitserklärung

