
Once upon a time
on a

Thinkpad A31p

wolfgang.loeffler@unibas.ch

This is the true story of a valiant hero, who sallied forth to do battle with

GNU/Debian Linux on an IBM Thinkpad A31p. Please note that this is really

nothing but an amusing story for your entertainment. Nothing else. Particular-

ly, it is not to be mistaken for a manual or somesuch giving you instructions

on how to install linux on your laptop. To put it in different words: Don’t even

think about blaming me for your very own actions. Think before you type.

Contents iii

Contents

1. Once upon a time on a Thinkpad A31p 1

1. 1. Hardware Information . 1

1. 2. Unsolved Problems . 2

2. Preparation Work . 3

2. 1. Removing the Stickers . 3

2. 2. Backup of the Thinkpad Service Partion 3

2. 3. Tools for the Creation of the Hibernation File 4

3. Installation of the Debian Base System 7

3. 1. Partitioning the Hard Disk . 7

3. 2. Installation of the Preliminary System 9

3. 3. Configuration of the Keyboard 9

3. 4. Configuration of LILO . 10

3. 5. Configuration of LVM . 10

4. Configuration of the Custom Kernel 13

4. 1. Kernel Configuration Summary 13

4. 2. VESA Framebuffer . 15

4. 3. Radeon Framebuffer . 16

4. 4. DRI (Direct Rendering Infrastructure) 16

4. 5. IEEE1394 Firewire (Disk) . 17

4. 6. Hotplug (Modem, Ethernet, Scanner) 17

4. 7. ALSA (Advanced Linux Sound Architecture) 18

4. 8. Winmodem . 19

4. 9. Ethernet . 19

4. 9. 1. Intel PRO/100 Adapter Base Driver 20

4. 10. 802.11b Wireless Network . 20

4. 11. Bluetooth . 21

4. 12. IDE (Disk) . 21

4. 13. SCSI (DVD/CD-RW, Scanner) 21

4. 14. LVM (Logical Volume Management) 22

4. 15. APM (Suspend & Hibernate) 23

4. 16. Thinkpad Control Tools . 23

4. 17. Thinkpad Buttons . 24

5. Debian and other Software Packages 25

5. 1. Updating Debian . 25

5. 2. Local Debian Tree . 26

5. 3. GCC . 26

5. 4. Debian Source Packages (Gendroolification ;-) 27

5. 5. XFree86 4.0.0 Framebuffer Server 29

5. 6. Xi Graphics Accelerated-X Server 29

5. 7. XFree86 4.2.1 Radeon Server . 31

5. 8. Laptop-Net . 32

iv Contents

5. 9. PCMCIA-CS . 36

5. 10. Sub-Pixel Font-Rendering . 37

5. 11. Xprint — the X11 print system 38

5. 12. Mozilla . 39

5. 13. tpb (ThinkPad Buttons) . 41

5. 14. Intel Fortran Compiler . 42

5. 15. Linux WLAN . 43

5. 15. 1. Special Case: The USR-2410 PC Card 44

5. 16. Cisco VPN Client . 47

5. 17. CD Recording as non-root User 47

5. 18. External Firewire Hard Disk . 48

6. Manual System Configuration . 49

6. 1. Environment . 49

6. 2. Network Profile Management . 53

6. 3. X Fontpath Configuration . 60

6. 4. Installing the Cyberbit Unicode TrueType Fonts 61

6. 5. Configuring the Syslog Daemon 62

6. 6. Three Finger Salute . 63

6. 7. Extending a Logical Volume . 63

1

Once upon a time on a Thinkpad A31p

This is the true story of a valiant hero, who sallied forth to do battle with GNU/Debian Linux on an IBM

Thinkpad A31p. Please note that this is really nothing but an amusing story for your entertainment. Nothing else.

Particularly, it is not to be mistaken for a manual or somesuch giving you instructions on how to install linux on

your laptop. To put it in different words: Don’t even think about blaming me for your very own actions. Think

before you type.

Last Update: 1 January 2004 wolfgang.loeffler@unibas.ch

1. 1. Hardware Information

Model Number:

2653R6G

Part Number:

TV2R6UK

BIOS Version:

1.01a (1NET07WW)

Processor:

Mobile Intel Pentium 4 with 2GHz

RAM:

2 × 256MB PC2100 DDR SDRAM with 400MHz (in 2 SODIMM Sockets)

Display:

15″ UXGA IPS TFT (FlexView) with 1600 × 1200 pixels

1

2 1. Once upon a time on a Thinkpad A31p

Video Chipset:

ATI Mobility FireGL 7800 with 64MB DDR RAM and 4xAGP bus — ATI Radeon Mobility M6

compatible

Audio Chipset:

Intel 82801CAM (ICH3-M) with AC’97 codec — i801 compatible

IDE Controller:

Intel 82801CAM (ICH3-M) — PIIXn compatible

Harddisk:

IBM Travelstar 60GH ATA-5 with 60.01GB capacity

CD-RW/DVD-ROM:

Matsushita UJDA 730 ATAPI DVD/CD-RW

USB Controller:

3 × Intel 82801CAM (ICH3-M) — UHCI compatible

IEEE1394 Firewire Controller:

unknown device 1180:0552 (Ricoh Co Ltd) (rev 0) — OHCI-1394 compatible

CardBus Controller:

Ricoh RL5c476 II (rev 168)

Modem:

Intel 82801CAM with AC’97 codec — Linmodem incompatible

Ethernet Controller:

82801CAM (ICH-3) (rev66) — EtherExpressPro/100 compatible

802.11b Wireless Controller:

Actiontec 802MIP — Intersil (Harris Semiconductor) PRISM2 compatible

Bluetooth Controller:

via Intel 82801CAM (ICH3-M) USB controllers

Modem:

3Com 3CCM156 Modem PC-Card

Ethernet:

3Com 3CCE589EC Ethernet PC-Card

WLAN:

US Robotics 22Mbps Wireless Cable/DSL Router USR-8022 (dead after 54 weeks)

US Robotics Wireless Turbo Access Point & Router USR-8054

US Robotics Wireless Access 11Mbps PC Card USR-2410

SCSI:

Adaptec APA1480A SCSI CardBus-Card; Nikon Filmscanner LS-2000

IEEE 1394 (FireWire):

LaCie d2 120GB Hard Disk

USB:

a pack of mice

1. 2. Unsolved Problems

• When the machine blanks the screen using APM, any sound currently playing on the sound chip suddenly

becomes choppy. All subsequently played sounds seem to play fine, though. Disabling Suspend while on

AC power and fiddling with other BIOS setups may help, but we did not yet solve this one.

• After the screen has been blanked, we have to cycle trough all possible <Fn-F7> settings to switch it on

again.

2

Preparation Work

2. 1. Removing the Stickers

Once upon a time computers were delivered unadorned. Nowadays you will find any number of stupid stickers

glued to the machine in prominent places, informing you about what kind of operating system the machine was

originally designed for and what brand of processor it sports. Until a few years ago, these stickers were only

mildly adhesive and could be removed without too much hassle.

Not so with our new Thinkpad. After peeling off the stickers, we are left with two sticky patches of super-adhe-

sive glue. To remove these, we put a few drops of paraffin oil (a.k.a. petroleum) on the glue, wait a little bit and

then brush away the resulting jelly with a paper tissue. The remaing oil traces can be removed with a mildly alco-

holic window cleaner, which in its turn can be removed with a damp paper tissue.

2. 2. Backup of the Thinkpad Service Partion

We want to install a pure Linux box without any Windows partition. So we would like to hav e some backup ar-

chive, from which we could later on re-recreate the original Windows setup — just in case. IBM in their infinite

wisdom decided, however, not to provide any CD-ROMs with this Thinkpad but install an invisible “service par-

tition”, from which the Windows system can be easily restored — and Linux just as easily destroyed — just by

pressing <F11> at boot time. There are, however, no provisions whatsoever for the unlikely case of a complete

hard-disk failure. To remedy this situation, we would like to make an archive copy of this service partition.

To this end, we boot from the Debian installation CD-ROM, mount this invisible service partition and copy its

contents into two suitably sized directories on the main partition, from where we can burn the contents on CD-R.

3

4 2. Preparation Work

After having booted from the Debian installation CD-ROM and having selected our favourite language as well as

keyboard layout, we launch a text console by pressing <ALT-F2> and then <Return>. First, we use cfdisk to save

the original layout of the partitions. We probably need this information, if we would later like to recreate the ser-

vice partition.

Original partition layout:

−−−Starting−−− −−−−Ending−−−− Start Number of
Flags Head Sect Cyl ID Head Sect Cyl Sector Sectors
−− −−−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−− −−−−−−−−− −−−−−−−−−
1 0x80 1 1 0 0x0C 239 63 1023 63 114473457
2 0x00 239 63 1023 0x1C 239 63 1023 114473520 2736720
3 0x00 0 0 0 0x00 0 0 0 0 0
4 0x00 0 0 0 0x00 0 0 0 0 0

Now we create the two mount points /mnt/windows and /mnt/service and then mount /dev/hda1 (the windows

partition) to /mnt/windows and /dev/hda2 (the service partition) to /mnt/service. After this, we create two archive

directories on /mnt/windows and finally use tar to copy the contents of /mnt/service into these two directories.

Transfering the contents of the service partition:

#> mkdir /mnt/windows /mnt/service
#> mount /dev/hda1 −t msdos /mnt/windows
#> mount /dev/hda2 −t msdos /mnt/service
#> mkdir /mnt/windows/arch−1 /mnt/windows/arch−2
#> cd /mnt/service
#> tar cf − recovery | (cd /mnt/windows/arch−1; tar xvf −)
#> tar cf − pcdr | (cd /mnt/windows/arch−2; tar xvf −)
#> tar cf − ibmwork | (cd /mnt/windows/arch−2; tar xvf −)
#> tar cf − mfg | (cd /mnt/windows/arch−2; tar xvf −)
#> tar cf − *.exe *.bat *.bin *.prv *.txt *.com *.sys *.hlp *.cpi *.arf *.ini \
> *.def *.tag scri | (cd /mnt/windows/arch−2; tar xvf −)
#> cd /
#> umount /mnt/windows
#> umount /mnt/service

After rebooting Windows, we actually have to move about half the files from the arch-1/recovery directory to

arch-2/recovery to make things fit onto two 700MB CD-Rs.

To recover the original Windows installation, we would have to clear the linux boot loader from the MBR, recre-

ate the partitions from the saved partition table, copy the contents of the two CD-Rs into the recreated service

partition, light two incense sticks, clap twice, bow deeply, pray, reboot, press <F11> — and wait.

2. 3. Tools for the Creation of the Hibernation File

For hibernation to work under Linux we have to create a special hibernation partition. The necessary tools are

distributed as an Incredibly Braindead Mess, i.e. a self-extracting archive named stndalhd.exe, which (a) does not

run under Windows2000, (b) does only extract to a diskette and (c) is protected by a license, which does not al-

low the redistribution of its contents in a less idiotic way.

This horrid thing can be downloaded directly from IBM’s FTP-Server — or via the IBM website by going to

[Support & Download | Thinkpad | Family: Thinkpad A31p | Machine Type: 2653 | Model: R6G], then selecting

[Downloadable Files | Downloadable Files by Category: Power Management] and finally choosing [TP General

— Hibernation utility diskette II for standalone boot].

To extract this archive, we actually need access to a DOS or Windows95 machine with at least one 3.5″ floppy

disk drive, e.g. A:, and one additional hard or floppy disk drive, e.g. X:. Running stndalhd.exe from drive X: in-

stalls three files on the floppy disk A:, namely phdisk.exe, phdos.sys and save2dsk.xga. These are the tools we

actually need later. We put them on some machine, from which we can fetch them via scp later, preferably in a

special directory named ibm.

2. 3. Tools for the Creation of the Hibernation File 5

We will have to execute phdisk.exe after we have installed Linux. Therefore we also need some “microsoftish”

operating system, which can boot our Thinkpad from the CR-ROM drive. For this purpose, we download the

bootable Ripcord ISO-image from Fr eeDOS and put it on a CD-R.

6 2. Preparation Work

3

Installation of the Debian Base System

3. 1. Partitioning the Hard Disk

One of the biggest questions while installing Linux is: How should we partion our hard disk? One one hand, the

more separate (read-only) partitions we have, the better we can protect the system. On the other hand, more sepa-

rate partitions mean that we have to estimate our needs beforehand, i.e. now. Making use of Logical Volume

Management simplifies matters greatly, since LVM allows us to resize partitions later.

Based on years of experience, wild guesses, trial and error we decide on the following approximate sizes for the

primary partitions.

Planned partition layout:

Partition: Purpose: Intended: Actual: Type:
/dev/hda1 /boot 8MB 15.49MB 83 Linux
/dev/hda2 swap 512MB 541.91MB 82 Linux Swap
/dev/hda3 hibernation 590MB 619.32MB A0 IBM Thinkpad Hibernation
/dev/hda4 extended rest 05 Extended
/dev/hda5 / 64MB 69.68MB 83 Linux
/dev/hda6 LVM rest 58765.28MB 8e Linux LVM

Planned volume layout:

Volume: Purpose: Size:
/dev/disk/usr /usr 3072MB
/dev/disk/tmp /tmp 128MB
/dev/disk/var /var 1024MB
/dev/disk/cdr /cdr 1400MB
/dev/disk/home /home 10240MB

Note: The hibernation partition must be a primary partition. Furthermore, making the root partition part of LVM

can be dangerous. Also note: Although we ask fdisk for the intended sizes, the actual sizes are slightly larger

7

8 3. Installation of the Debian Base System

due to geometric constraints of the drive. Lastly note: It may be a good idea to reserve a large enough partition

for the preparation of CD-R images.

To create the hibernation partition, we need to run phdisk.exe from a DOS partition. To this end, we boot into

FreeDOS and use fdisk to create the two DOS partitions c: (/dev/hda1) and d: (/dev/hda2) and then format c: and

format d:

First preliminary partition layout:

Partition: Purpose: Intended: Actual: Type:
/dev/hda1 DOS 8MB 15.49MB 06 FAT12
/dev/hda2 DOS 512MB 541.91MB 06 FAT16

Now we boot the Debian installation system with the bf24 kernel by pressing <F3> at the boot prompt and then

follow instuctions to add a preliminary linux partition and install a base system.

Second preliminary partition layout:

Partition: Purpose: Intended: Actual: Type:
/dev/hda1 DOS 8MB 15.49MB 06 FAT12
/dev/hda2 DOS 512MB 541.91MB 06 FAT16
/dev/hda3 preliminary any any 83 Linux

Then we boot into this preliminary system and go through the absolute minimum of configuration and make sure

that the scp package is installed. Unfortunately, this leaves us without network configuration. We hav e to do this

by hand.

First we have to edit the file /etc/network/interfaces to configure the ethernet device eth0. We hav e the static IP

address www.xxx.yyy.zzz and our gateway is www.xxx.yyy.ggg.

/etc/network/interfaces:

auto lo eth0
iface lo inet loopback
iface eth0 inet static
address www.xxx.yyy.zzz
netmask 255.255.255.0
broadcast www.xxx.yyy.255
network www.xxx.yyy.0
gateway www.xxx.yyy.ggg

Now we can start the network by loading the kernel module for the ethernet card and starting the interface.

Manual start of the network:

#> modprobe eepro100
#> ifup eth0

Then we mount the first DOS partition c: (/dev/hda1) and download the archive of the hibernation tools from the

machine, where we have stored them.

Downloading the prepared hibernation tools:

#> mount /dev/hda1 /mnt
#> cd /mnt
#> scp "user@ip−nr−of−machine:ibm/*" .

Note: We actually have to use the IP number as we have not configured the resolver for machine names.

Now we reboot into FreeDOS and use fdisk to remove the preliminary linux partition /dev/hda3. Reboot into

FreeDOS. At last we are ready to launch phdisk.exe and create the hibernation partition.

Having sucessfully created our hibernation partition, we reboot anew into the Debian installation system and

continue partitioning the hard disk. The current partition layout is:

Third preliminary partition layout:

Partition: Purpose: Intended: Actual: Type:
/dev/hda1 DOS 8MB 15.49MB 06 FAT12
/dev/hda2 DOS 512MB 541.91MB 06 FAT16

3. 3. Configuration of the Keyboard 9

/dev/hda4 hibernation 577MB 619.32MB A0 IBM Thinkpad Hibernation

We use fdisk and repartition into:

Fourth preliminary partition layout:

Partition: Purpose: Intended: Actual: Type:
/dev/hda1 /boot 8MB 15.49MB 83 Linux
/dev/hda2 preliminary 512MB 541.91MB 83 Linux
/dev/hda3 hibernation 577MB 619.32MB A0 IBM Thinkpad Hibernation
/dev/hda4 extended rest 05 Extended
/dev/hda5 / 64MB 69.68MB 83 Linux
/dev/hda6 LVM rest 58765.28MB 8e Linux LVM

Note: To move the hibernation partition, we use the “extra functionality (experts only)” mode of fdisk and then

“fix partition order” — preferably before we create any other partition.

We create the filesystems by hand, since we don’t need no reserved blocks for /boot and the root filesystem /.

Manual creation of the filesystems:

#> mke2fs −m 0 /dev/hda1
#> mke2fs /dev/hda2
#> mke2fs −m 0 /dev/hda5

Now we hav e another problem. We should now define the LVM volume group and create the physical/logical

volumes for /usr, /var, /tmp and /home. Unfortunately however, the Debian installation system does not support

LVM. For this reason, we use the intended swap partition /dev/hda2 to install a preliminary Debian system with-

out swap partition. As soon as possible, we will compile our custom kernel, setup LVM and then proceed rear-

ranging things into their final layout.

3. 2. Installation of the Preliminary System

After having partitioned the hard disk and having formatted the partitions, we install a preliminary kernel as well

as the base system and reboot, we make use of the good old tasksel and dselect install the following tasks and

packages,

Debian tasks and packages for the preliminary system:

Task Development C
kernel−source−2.4.18
bzip2
linbz2−1.0
kernel−package
libncurses5−dev
lvm−common
lvm10
ext2resize

3. 3. Configuration of the Keyboard

We want put the <Control> in the Right Place™ where God has intended it to be, namely left to the <A> key.

The old <Control> should take over as <Compose>. We don’t need no <CapsLock>. To achieve this, we copy all

the relevant kernel keymaps into /etc/console and modify them accordingly.

Copying the necessary files for the new keyboard layout:

#> cd /etc/console
#> cp /usr/share/keymaps/i386/qwerty/uk.kmap.gz .
#> cp /usr/share/keymaps/i386/include/qwerty−layout.inc.gz .
#> cp /usr/share/keymaps/i386/include/linux−keys−bare.inc.gz .
#> cp /usr/share/keymaps/i386/include/linux−with−alt−and−altgr.inc.gz .

10 3. Installation of the Debian Base System

#> cp /usr/share/keymaps/i386/include/euro.inc.gz .
#> mv uk.kmap.gz uk−mod.kmap.gz
#> gunzip uk−mod.kmap.gz

Then we modify uk-mod.kmap and set:

Modification of /etc/console/uk-mod.kmap:

keycode 29 = Compose
keycode 58 = Control

Finally we gzip things together again, update the symlink and load the new keymap:

Installing the new keyboard layout:

#> gzip uk−mod.kmap.gz
#> mv boottime.kmap.gz boottime.kmap.gz.ORI
#> ln −s uk−mod.kmap.gz boottime.kmap.gz
#> loadkeys boottime.kmap.gz

Note: We actually have to copy the included maps from /usr/share/keymaps/i386/include since the /usr partition

is not yet mounted when the keymaps are loaded at boot time.

3. 4. Configuration of LILO

We don’t want those stupid symlinks /vmlinuz (and later /vmlinuz.old) cluttering our root directory. We remove

them and install similar links in /boot. While updating /etc/lilo.conf we activate the compact option to speed up

the loading of the kernel image.

Crating new symbolic links for the kernel images:

#> rm /vmlinuz*
#> cd /boot
#> ln −s vmlinuz−2.4.18−bf2.4 vmlinuz.old

Modifications in /etc/lilo.conf:

compact
image=/boot/vmlinuz

label=linux
read−only
vga=normal

image=/boot/vmlinuz.old
label=backup
read−only
vga=normal
optional

Now we inform Debian about our changes and create a file describing the kernel image configuration in /etc/ker-

nel-img.conf:

/etc/kernel-img.conf:

image_in_boot = yes
do_bootfloppy = no

3. 5. Configuration of LVM

We then proceed to configure and build our own custom kernel using make menuconfig and make-kpkg. Almost

any kernel configuration will do as long LVM is supported.

3. 5. Configuration of LVM 11

Kernel Config for LVM support:

—— Multi−Device Support (RAID and LVM) ——
yes Multiple devices driver support (RAID and LVM)
yes Logical volume manager (LVM) support

Compiling and installing the new kernel:

#> cd /usr/src
#> tar xjf kernel−source−2.4.18.tar.bz2
#> cd kernel−source−2.4.18
#> make menuconfig
#> make−kpkg clean
#> make−kpkg −rev Custom.1 kernel_image
#> cd ..
#> dpkg −i kernel−image_2.4.18

When the new kernel has been installed and lilo been updated sucessfully, we reboot.

Now we are ready to create the physical volume on /dev/hda6, add it to our volume group /dev/disk, create our

logical volumes /dev/disk/usr, /dev/disk/tmp, /dev/disk/var and /dev/disk/home and the filesystems in them.

Creating the physical and logical volumes and filesystems:

#> pvcreate /dev/hda6
#> vgcreate disk /dev/hda6
#>
#> lvcreate −L 3072M −n usr disk
#> lvcreate −L 128M −n tmp disk
#> lvcreate −L 1024M −n var disk
#> lvcreate −L 1536M −n cdr disk
#> lvcreate −L 10G −n home disk
#>
#> mke2fs −j −m 0 /dev/disk/usr
#> mke2fs /dev/disk/tmp
#> mke2fs −j /dev/disk/var
#> mke2fs −j −m 0 /dev/disk/cdr
#> mke2fs −j /dev/disk/home

Now we mount these new partitions consecutively to /mnt and transfer the contents of the respective directories

currently residing on /dev/hda2.

Relocating the directory structure to the new filesystems:

#> mount /dev/disk/var /mnt
#> cd /var; tar cf − . | (cd /mnt; tar xf −)
#> umount /mnt
#>
#> mount /dev/disk/usr /mnt
#> cd /usr; tar cf − . | (cd /mnt; tar xf −)
#> umount /mnt
#>
#> mount /dev/hda5 /mnt
#> mkdir /mnt/dev /mnt/cdrom /mnt/cdr /mnt/usr /mnt/var /mnt/tmp /mnt/home /mnt/proc
#> mkdir −p /mnt/mnt/cdrom
#> chmod 1777 /mnt/tmp /mnt/cdr
#>
#> cd /; tar cf − bin boot dev etc lib opt root sbin | (cd /mnt; tar xf −)

Note: Creating the new device directory /dev manually before any other directory might save the day, when some

idiot goes for rm -rf * in the root directory. As rm descends the directory tree not alphabetically but in order of

creation, /dev will be first to go. But if /dev/hda is gone, rm can’t access the disk any more.

After this step, we update the filesystem layout in /mnt/etc/fstab.

/etc/fstab:

/dev/hda1 /boot ext2 defaults,ro 0 2
/dev/hda5 / ext2 defaults,errors=remount−ro 0 1

12 3. Installation of the Debian Base System

/dev/disk/usr /usr ext3 defaults,ro 0 2
/dev/disk/var /var ext3 defaults,errors=remount−ro 0 2
/dev/disk/tmp /tmp ext2 defaults,errors=remount−ro 0 2
/dev/disk/cdr /cdr ext3 defaults,errors=remount−ro 0 2
/dev/disk/home /home ext3 defaults,errors=remount−ro 0 2
/dev/hdc /mnt/cdrom iso9660 user,ro,nosuid,nodev,exec,noauto 0 0
/dev/hdc /cdrom iso9660 defaults 0 0
proc /proc proc defaults 0 0
none /dev/pts devpts gid=5,mode=620 0 0

Finally we need to update the root device in /mnt/etc/lilo.conf to /dev/hda5, set the new symlinks for the kernel

images and rerun lilo.

Update of the root device in /etc/lilo.conf:

/etc/lilo.conf
root=/dev/hda5

Installing the new LILO boot loader:

#> cd /mnt
#> vi etc/lilo.conf
#> cd boot
#> ln −sf vmlinuz−2.4.18 vmlinuz
#> ln −sf vmlinuz−2.4.18−bf2.4 vmlinuz.old
#> chroot /mnt lilo

After rebooting to switch to the new hard-disk layout we can finally use fdisk to remove our preliminary linux

partition /dev/hda2 and replace it with a swap partition. And again we have to reboot to switch to the new hard-

disk layout. At last we can activate the swap partition and add it to /etc/fstab.

/etc/fstab:

/dev/hda1 /boot ext2 defaults,ro 0 2
/dev/hda2 none swap sw 0 0
/dev/hda5 / ext2 defaults,errors=remount−ro 0 1
/dev/disk/usr /usr ext3 defaults,ro 0 2
/dev/disk/var /var ext3 defaults,errors=remount−ro 0 2
/dev/disk/tmp /tmp ext2 defaults,errors=remount−ro 0 2
/dev/disk/cdr /cdr ext3 defaults,errors=remount−ro 0 2
/dev/disk/home /home ext3 defaults,errors=remount−ro 0 2
/dev/hdc /mnt/cdrom iso9660 user,ro,nosuid,nodev,exec,noauto 0 0
/dev/hdc /cdrom iso9660 defaults 0 0
proc /proc proc defaults 0 0
none /dev/pts devpts gid=5,mode=620 0 0

Creating and activating the swap partition:

#> mkswap /dev/hda2
#> swapon −a

Note: We dont like to hav e our mount points in the root directory, we want them in /mnt. Unfortunately, Debian

insists on /cdrom as the mount point for the installation. We will remove /cdrom and the respective entry in /etc/

fstab when we reconfigure apt for network installs and updates.

4

Configuration of the Custom Kernel

4. 1. Kernel Configuration Summary

Everytime we buy a new laptop, we are amazed about the lack of useful documentation about the actual hard-

ware configuration and its capabilities. IBM’s customer support website features an overwhelming amount of

downloadable information — which turns out to be mostly irrelevant or dumbed down beyond any usefulness.

Our current kernel configuration is based on many guesstimates. It seems to work, though. But remember: This

story is for your entertainment only. If you use this kernel configuration “as is” without reading and understand-

ing the somewhat more detailed sections below, you will almost certainly damage your precious Thinkpad.

Kernel configuration:

—— Code Maturity Level Options ——
yes Promt for development and/or incomplete code/drivers

—— Loadable Module Support ——
yes Enable loadable module support
yes Set version information on all modules
yes Kernel modules loader

—— Processor Type And Features ——
Pentium−4 Processor family

off High Memory support
yes MTRR (Memory Type Range Regsiters) support

—— General Setup ——
yes Networking support
yes PCI support
any PCI access mode
yes PCI device name database
yes Support for hot−pluggable devices

—— PCMCIA/Cardbus support ——
yes PCMCIA/Cardbus support

13

14 4. Configuration of the Custom Kernel

yes CardBus support
yes System V IPC
yes Sysctl support
ELF Kernel core
yes Kernel support for ELF binaries
mod Kernel support for MISC binaries
yes Power Management support
yes Advanced Power Management BIOS support
yes Enable PM at boot time
yes Make CPU idle calls when idle
yes Enable console blanking using APM
yes RTC stores time in GMT
yes Allow interrupts during APM BIOS calls

—— Block Devices ——
mod Loopback device support
mod Network block device support

—— Multi−Device Support (RAID and LVM) ——
yes Multiple devices driver support (RAID and LVM)
yes Logical volume manager (LVM) support

—— Networking Options ——
yes Packet socket
yes Packet socket: mmaped IO
yes Socket Filtering
yes Unix Domain Sockets
yes TCP/IP Networking
yes IP: TCP syncookie support (disabled by default)

—— ATA/IDE/MFM/RLL Support ——
yes ATA/IDE/MFM/RLL support

—— IDE, ATA and ATAPI Block devices ——
yes Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support
yes Include IDE/ATA−2 DISK support
yes Use multi−mode by default
yes SCSI emulation support
yes Generic PCI IDE chipset support
yes Sharing PCI IDE interrupts support
yes Generic PCI bus−master DMA support
yes Use PCI DMA by default when available
yes Intel PIIXn chipsets support
yes PIIXn tuning support

—— SCSI Support ——
yes SCSI support
mod SCSI CD−ROM support
yes Enable vendori−specific extensions (for SCSI CDROM)

2 Maximum number of CDROM devices that can be loaded as modules
mod SCSI generic support
yes Enable extra checks in new queuing code

—— SCSI low−level drivers ——
mod Adaptec AIC7xxx support
253 Maximum number of TCQ commands per device

15000 Initial bus reset in milli−seconds
—— Network Device Support ——

yes Network device support
mod Dummy net driver support

—— Ethernet (10 or 100Mbit) ——
yes Ethernet (10 or 100Mbit)
yes EISA, VLB, PCI and on board controllers
mod EtherExpressPro/100 support

mod PPP (point−to−point protocol) support
mod PPP support for async serial ports
mod PPP Deflate compression

—— PCMCIA network device support ——
yes PCMCIA network device support
mod 3Com 3c589 PCMCIA support

—— Input Core Support ——
yes Input core support
yes Mouse support
1600 Horizontal screen resolution

4. 2. VESA Framebuffer 15

1200 Vertical screen resolution
—— Character Devices ——

yes Virtual terminal
yes Support for console on virtual terminal
mod Standard generic (8250/16550 and compatible UARTs) serial support
yes Unix98 PTY support
256 Maximum number of Unix98 PTYs in use (0−2048)

—— Mice ——
yes Mouse support (not serial and bus mice)
yes PS/2 mouse (aka “auxiliary device” device) support

yes /dev/nvram support
yes Enhanced Realtime Clock support
yes /dev/agpgart (AGP Support)
yes Intel 440LX/BX/GX and i815/i830M/i840/i850 support
yes Direct Rendering Manager (XFree86 DRI support)
mod ATI Radeon

—— PCMCIA character devices ——
mod PCMCIA serial device support

—— File Systems ——
yes Ext3 journalling file system support
mod DOS FAT fs support
mod MSDOS fs support
mod ISO 9660 CDROM file support
yes Microsoft Joliet CDROM extensions
yes Transparent decrompression extensions
yes /proc file system support
yes /dev/pts file system for Unix98 PYTs
yes Second extended fs support
mod UDF file system support (read only)

—— Native Language Support ——
iso8859−1 Default NLS Option

mod Codepage 437 (United States, Canada)
mod Codepage 850 (Europe)
mod Japanese charsets (Shift−JIS, EUC−JP)
mod NLS ISO 8859−1 (Latin 1; Western European Languages)
mod NLS UTF−8

—— Console Drivers ——
yes VGA text console
yes Video mode selection support

—— Frame−buffer support ——
yes Support for frame buffer devices
yes ATI Radeon display support

—— Sound ——
mod Sound card support
mod Intel ICH (i8xx) audio support

—— USB Support ——
yes Support for USB
yes UHCI Alternate Driver (JE) support
yes USB HIDBP Mouse (basic) support

—— Kernel Hacking ——
yes Kernel debugging
yes Magic SysRq key

Note: As far as we understand the Intel 82801 CAM I/O Controller Hub has neither random generator nor watch-

dog functions.

4. 2. VESA Framebuffer

First of all, we want the VESA Framebuffer for our text consoles to make use of our nice screen resolution. In

addition, we get a cuddly penguin boot logo at no extra cost. For this to work, we need to configure the kernel to

support the VESA Framebuffer and then set the VGA mode in /etc/lilo.conf.

16 4. Configuration of the Custom Kernel

Kernel configuration for VESA framebuffer:

—— Console Drivers ——
yes VGA text console
yes Video mode selection support

—— Frame−buffer support ——
yes Support for frame buffer devices
yes VESA VGA graphics console

VESA Video Modes:

Mode: LILO: Graphics: Text:
0x318 vga=792 1024x 768 128x48
0x31b vga=795 1280x1024 160x64
0x374 vga=884 1600x1200 200x74

Video mode confguration in /etc/lilo.conf:

image=/boot/vmlinuz
label=linux
read−only
vga=884

image=/boot/vmlinuz.old
label=backup
read−only
vga=normal
optional

4. 3. Radeon Framebuffer

Our graphic chip is an ATI Mobility FireGL 7800, which seems to be quite similar to the ATI Mobility M6 type

of chips. The card reports itself in /proc/pci as device 1002:4c58 (ATI Technologies Inc) (rev0).

Unfortunately, the ATI FireGL 7800 is not (yet) supported by the Linux Radeon Framebuffer. But with a little bit

of hacking, we can make it so. In /usr/src/kernel-source-2.4.18/drivers/video/radeon.h we redefine the

RADEON_LW type to our ID number and then reconfigure the kernel.

Kernel configuration for Radeon framebuffer support:

—— Console Drivers ——
yes VGA text console
yes Video mode selection support

—— Frame−buffer support ——
yes Support for frame buffer devices
yes ATI Radeon display support

Kernel hack in /usr/src/kernel-source-2.4.18/drivers/video/radeon.h:

#define PCI_DEVICE_ID_RADEON_LW 0x4c57 /* original */
#undef PCI_DEVICE_ID_RADEON_LW
#define PCI_DEVICE_ID_RADEON_LW 0x4c58 /* dirty hack */

4. 4. DRI (Direct Rendering Infrastructure)

Frankly we don’t know whether the fbdev or the patched radeon XFree86 servers really make use of the Direct

Rendering Infrastructure (DRI). Support for it does not hurt us, though.

Kernel Configuration:

—— Character Devices ——
yes /dev/agpgart (AGP Support)
yes Intel 440LX/BX/GX and i815/i830M/i840/i850 support
yes Direct Rendering Manager (XFree86 DRI support)

4. 6. Hotplug (Modem, Ethernet, Scanner) 17

mod ATI Radeon

At boot time, somebody or something tries to access DRI but does not how to do so. This produces the error

message:

DRI module error message:

[date] [machine] modprobe: Can’t locate module−char−major−226

To help out, we create the file /etc/modutils/dri and update /etc/modules.conf.

/etc/modules/dri:

alias char−major−226 radeon # DRI

Updating /etc/modules.conf:

#> update−modules

4. 5. IEEE1394 Firewire (Disk)

According to /proc/pci, the the IEEE1394 Firewire Controller is a 1180:0552 (Ricoh Co Ltd) (rev 0), which is of

the OHCI-1394 type. To make use of our external LaCie Firewire Hard Disk, we have to configure for IEEE

1394, OHCI 1394, SBP-2 as well as SCSI disk support.

Kernel configuration for IEEE1394 FireWire:

—— IEEE1394 (FireWire) Support ——
mod IEEE 1394 (FireWire) support
mod OHCI−1394 support
mod SBP−2 support (Harddisks etc.)
mod Raw IEEE 1394 I/O support

Kernel configuration for IEEE1394 FireWire disks:

—— SCSI Support ——
yes SCSI support
mod SCSI disk support

2 Maximum number of SCSI disks that can be loaded as modules
yes Enable extra checks in new queuing code

The actual configuration necessary to access the external hard disk is described in a different section.

4. 6. Hotplug (Modem, Ethernet, Scanner)

The CardBus (PCMCIA) controllers are Ricoh RL5c476 II (rev 168) devices, which are supported by the stan-

dard kernel. Since the standard kernel supports driver hotplugging, we don’t hav e to install any special PCMCIA

drivers any longer. All we have to do, is to install the packages providing the necessary infrastructure and then

configure the kernel for our cards, i.e. the 3COM 3CCM156 Modem PC-Card , 3COM 3CCE589EC Ethernet

PC-Card , and the Adaptec APA1480A CardBus-Card .

Debian packages for Hotplug (PCMCIA) support:

pcmcia−cs
hotplug
usbutils

Kernel configuration for hotplug support (Modem, Ethernet, Scanner):

—— General Setup ——
yes Networking support
yes Support for hot−pluggable devices

—— PCMCIA/Cardbus support ——
yes PCMCIA/Cardbus support

18 4. Configuration of the Custom Kernel

yes CardBus support
—— Character Devices ——

mod Standard generic (8250/16550 and compatible UARTs) serial support
—— PCMCIA character devices ——

mod PCMCIA serial device support
—— Networking Options ——

yes TCP/IP Networking
—— Network Device Support ——

yes Network device support
—— PCMCIA network device support ——

yes PCMCIA network device support
mod 3Com 3c589 PCMCIA support

—— SCSI Support ——
yes SCSI support
mod SCSI generic support
yes Enable extra checks in new queuing code

—— SCSI low−level drivers ——
mod Adaptec AIC7xxx support
253 Maximum number of TCQ commands per device

15000 Initial bus reset in milli−seconds

4. 7. ALSA (Advanced Linux Sound Architecture)

The sound chip in this Thinkpad is an Intel 82801CAM (ICH3-M) using a AC’97 front end. Although the stan-

dard kernel sound driver seems to work, we prefer to install the ALSA sound drivers (version 0.9). To do so, we

need to install the relevant Debian packages and configure the kernel for general sound support.

Debian packages for ALSA (v0.9):

alsa−base (v0.9)
alsa−source (v0.9)
alsa−utils (v0.9)
libassound2 (v0.9)
alsaconf
debhelper
debconf−util
html2text

Kernel configuration for ALSA:

—— Sound
mod Sound card support

During the configuration of the alsa-source package, we select the intel8x0 and mpu401 drivers without ISAPnP

from the menu. To compile the alsa-source package, we used again make-kpkg.

Compiling the ALSA kernel modules:

#> cd /usr/src
#> tar xzf alsa−driver.tar.gz
#> cd kernel−source−2.4.18
#> make−kpkg −rev Custom.1 modules_image
#> cd ..
#> dpkg −i alsa−modules−2.4.18_0.9+0beta12+3+p0+Custom.1_i386.deb

Finally, we must configure the alsa sound modules. To this end, we run alsaconf, select “0x31 Intel_i810/810E,

i820,i840,MX440” as our card, choose some parameters and then update-modules.

Configuring ALSA:

#> alsaconf
#> update−modules

Unfortunately, there seems to be a bug in alsaconf, which makes it necessary to edit the resulting configuration

file by hand, i.e. we have to replace the first occurence of “snd-card-intel8x0” with “snd-intel8x0”.

4. 9. Ethernet 19

/etc/alsa/modutils/0.9:

ALSA
alias char−major−116 snd
alias snd−card−0 snd−intel8x0
OSS/Free
alias char−major−14 soundcore
alias sound−slot−0 snd−card−0
Soundcard
alias sound−service−0−0 snd−mixer−oss
alias sound−service−0−1 snd−seq−oss
alias sound−service−0−3 snd−pcm−oss
alias sound−service−0−8 snd−seq−oss
alias sound−service−0−12 snd−pcm−oss
options snd snd_major=116 snd_cards_limit=1 snd_device_mode=0666 snd_device_gid=29 snd_device_uid=0
options snd−card−intel8x0 snd_index=0 snd_id=CARD_0 snd_pbk_frame_size=128 snd_cap_frame_size=128 snd_mic_frame_size=128

Note: It is currently not advisable to install timidity together with the ALSA 0.9 version. timidity insists on in-

stalling the old version of libasound2. The following error message while trying to launch alsamixer is a strong

hint that the old version of libasound2 got installed on top of the new one:

ALSA libasound2 error message:

#> alsamixer
ALSA lib control.c:601:(snd_ctl_open_noupdate) Invalid CTL default
alsamixer: function snd_ctl_open failed for default: No such file or directory

4. 8. Winmodem

The internal modem is again based on the Intel 82801CAM chip in combination with the AC’97 . This is one of

these (literally) braindead “winmodems”. According to the Linmodem-HOWTO, this specific spawn of engineer-

ing is not (yet) supported.

4. 9. Ethernet

The ethernet adapter is an Intel 82801CAM (ICH-3) (rev66) controller, which is supported by the EtherEx-

pressPro/100 driver.

Kernel configuration for ethernet:

—— General Setup ——
yes Networking support

—— Networking Options ——
yes TCP/IP Networking

—— Network Device Support ——
yes Network device support

—— Ethernet (10 or 100Mbit) ——
yes Ethernet (10 or 100Mbit)
yes EISA, VLB, PCI and on board controllers
mod EtherExpressPro/100 support

For the semi-automagic configuration of the ethernet-device, we must have an active network connection when

we boot the Debian installation system. If this is not the case during the installation of the etherconf package, dp-

kg-reconfigure etherconf is our friend.

Debian packages for ethernet configuration:

etherconf
libconfhelper−perl
liblogfile−rotate−perl

20 4. Configuration of the Custom Kernel

If we want that the modular ethernet driver is loaded automagically, we hav e to create the file /etc/modutils/eth0

and then update /etc/modules.conf:

/etc/modutils/eth0:

alias eth0 eepro100 # kernel ethernet driver for EtherExpressPro/100

Updating /etc/modules.conf:

#> update−modules

4. 9. 1. Intel PRO/100 Adapter Base Driver

Intel offers an alternate driver for the PRO/100 ethernet controllers. It was only a little bit hard to find in that

corporate bloat of slowly, not completely or not at all loading graphics and scripts, since we did not know the

filename of the tar-ball we were looking for. The subsequent compilation and installation of this driver is, howev-

er, completely painless. We only have to remember to register the new module afterwards.

Compiling and installing the Intel EtherExpress100/Pro driver:

#> cd /usr/src
#> tar −xzf e100−2.1.15.tar.gz
#> cd e100−2.1.15/src
#> make clean
#> make install

/etc/modutils/eth0:

alias eth0 eepro100 # kernel ethernet driver for EtherExpressPro/100
alias eth0 e100 # intel ethernet driver for EtherExpressPro/100

Note: In newer kernel versions (2.4.20), this driver is now part of the kernel-source package and needs no longer

be installed separately.

4. 10. 802.11b Wireless Network

The 802.11b wireless network card shows up as an 1260:3873 (Harris Semiconductor) (rev1), but is in reality an

Actiontec 802MIP, which is supported by the linux-wlan Project. The corresponding Debian packages are avail-

able in the “unstable” (a.k.a. “sid”) distribution:

Debian packages for wlan-ng:

wireless−tools−25
linux−wlan−ng
linux−wlan−ng−modules−2.4.18

Due to a plethora of unmet dependencies it is not possible to just install these three binary packages on our

“woody” based system. We hav e to compile the kernel modules as well as the support packages from source —

as task which we defer to the next chapter.

However, since our wireless router wants us to connect via DHCP, we hav e to configure the kernel for Packet

Socket and Socket Filtering:

Kernel configuration for DHCP:

—— Networking Options ——
yes Packet socket
yes Packet socket: mmaped IO
yes Socket Filtering

4. 13. SCSI (DVD/CD-RW, Scanner) 21

4. 11. Bluetooth

Bluetooth is attached via the Intel 82801CAM (ICH3-M) USB controllers. This setup is supported by BlueZ , the

Official Linux Bluetooth Protocol Stack.

As we don’t hav e any bluetooth devices, we don’t configure Bluetooth.

4. 12. IDE (Disk)

The IDE controller is an Intel 82801CAM (ICH3-M). The hard disk is an IBM Travelstar 60GH AT A-5 with

60.01GB capacity. The controller seems to be similar to the Intel PIIX4 chipset. Everything is nicely supported

by the kernel:

Kernel configuration for IDE disks:

—— ATA/IDE/MFM/RLL Support ——
yes ATA/IDE/MFM/RLL support

—— IDE, ATA and ATAPI Block devices ——
yes Enhanced IDE/MFM/RLL disk/cdrom/tape/floppy support
yes Include IDE/ATA−2 DISK support
yes Use multi−mode by default
yes Generic PCI IDE chipset support
yes Sharing PCI IDE interrupts support
yes Generic PCI bus−master DMA support
yes Use PCI DMA by default when available
yes Intel PIIXn chipsets support
yes PIIXn tuning support

4. 13. SCSI (DVD/CD-RW, Scanner)

The DVD/CD-RW combi drive is a Matsushita UJDA 730 AT API DVD/CD-RW, which we want to use as an

“SCSI-over-IDE” device. Additionally we have an Adaptec APA-1480A CardBus SCSI controller to connect our

scanner.

Kernel configuration for SCSI (DVD/CD-RW, Scanner):

—— ATA/IDE/MFM/RLL Support ——
yes ATA/IDE/MFM/RLL support

—— IDE, ATA and ATAPI Block devices ——
yes Include IDE/ATA−2 DISK support

—— SCSI Support ——
yes SCSI support
mod SCSI CD−ROM support
yes Enable vendori−specific extensions (for SCSI CDROM)

2 Maximum number of CDROM devices that can be loaded as modules
mod SCSI generic support
yes Enable extra checks in new queuing code

—— SCSI low−level drivers ——
mod Adaptec AIC7xxx support
253 Maximum number of TCQ commands per device

15000 Initial bus reset in milli−seconds

Note: If we configure for multiple LUN probing, we will end up with 7 CD-ROM devices as the DVD/CD-RW

drive responds to all probed LUNs.

We hav e to inform lilo about our setup by editing /etc/lilo.conf:

22 4. Configuration of the Custom Kernel

Update of /etc/lilo.conf:

image=/boot/vmlinuz
label=linux
read−only
vga=792
append="hdc=ide−scsi"

The DVD/CD-RW drive shows up as Host: scsi0 Channel: 00 Id: 00 Lun: 00 and as the first SCSI CD-ROM, i.e.

/dev/scd0. For convenience, we install symlinks for /dev/cdrom, /dev/dvd and /dev/cdrw.

Creating symlinks for the DVD/CD-ROM/CD-RW/:

#> rm /dev/cdrom /dev/dvd /dev/cdrw
#> ln −s /dev/scd0 /dev/cdrom
#> ln −s /dev/scd0 /dev/dvd
#> ln −s /dev/scd0 /dev/cdrw

Finally we also have to update /etc/fstab.

/etc/fstab:

/dev/hda1 /boot ext2 defaults,ro 0 2
/dev/hda2 none swap sw 0 0
/dev/hda5 / ext2 defaults,errors=remount−ro 0 1
/dev/disk/usr /usr ext3 defaults,ro 0 2
/dev/disk/var /var ext3 defaults,errors=remount−ro 0 2
/dev/disk/tmp /tmp ext2 defaults,errors=remount−ro 0 2
/dev/disk/cdr /cdr ext3 defaults,errors=remount−ro 0 2
/dev/disk/home /home ext3 defaults,errors=remount−ro 0 2
/dev/scd0 /mnt/cdrom iso9660 user,ro,nosuid,nodev,exec,noauto 0 0
/dev/scd0 /cdrom iso9660 defaults,noauto 0 0
proc /proc proc defaults 0 0
none /dev/pts devpts gid=5,mode=620 0 0

After inserting the APA 1480A card, the scanner shows up as Host: scsi1 Channel: 00 Id: 00 Lun: 00 and as the

second generic SCSI device, i.e. /dev/sg1. Unfortunately, the AIC7xxx driver is apparently not hot-un-pluggable.

In other words, we must shutdown the machine to remove the SCSI card. Otherwise the kernel will panic sooner

or later — with unpredictable consequences for the rest of the SCSI subsystem.

4. 14. LVM (Logical Volume Management)

There is nothing new in our kernel configuration for Logical Volume Management (LVM). We can add, however,

a few cosmetic configurations.

Kernel configuration for LVM:

—— Multi−Device Support (RAID and LVM) ——
yes Multiple devices driver support (RAID and LVM)
yes Logical volume manager (LVM) support

The LVM library scans for a bunch of devices while heading to find disks. If these are not supported by the ker-

nel, the module loader tries to find and load the corresponding kernel modules. This produce somes error mes-

sages, which we can easily avoid.

LVM startup error messages:

[date] [machine] modprobe: Can’t locate module block−major−8
[date] [machine] modprobe: Can’t locate module block−major−33
[date] [machine] modprobe: Can’t locate module block−major−34

block-major-8 are SCSI disk devices, block-major-33 and block-major-33 the third and forth IDE hard disk/CD-

ROM interfaces. As we don’t hav e any SCSI disks and don’t access the CD-ROM as an IDE device, we can cre-

ate /etc/modutils/lvm-exclude and then update /etc/modules.conf to make LVM shut up.

4. 16. Thinkpad Control Tools 23

/etc/modutils/lvm:

alias block−major−8 off # SCSI disks
alias block−major−33 off # 3rd IDE controller
alias block−major−34 off # 4th IDE controller

Updating /etc/modules.conf:

#> update−modules

Note: We hav e to be careful about the block-major-8 entry and should probably remove it, if we want to access

IEEE1394 FireWire hard disks.

4. 15. APM (Suspend & Hibernate)

Thanks to our acrobatics while partitioning the hard disk, everything works now out of the box. However, with

such a large amount of RAM to write to or read from disk, shutting down the machine and rebooting is likely to

be quite a bit faster than hibernating.

Kernel configuration for APM:

—— General Setup ——
yes Power Management support
yes Advanced Power Management BIOS support
yes Enable PM at boot time
yes Make CPU idle calls when idle
yes Enable console blanking using APM
yes RTC stores time in GMT
yes Allow interrupts during APM BIOS calls

Note: The last option “Allow interrupts during APM BIOS calls” is required for APM to work on out Thinkpad.

4. 16. Thinkpad Control Tools

There exists tpctl, a nifty package with a suite of small programs, which let us talk directly to some of the hard-

ware in our Thinkpad.

Debian packages for Thinkpad control tools:

thinkpad−base
thinkpad−source
tpctl

No special configuration is necessary for the Thinpad kernel-modules. We only need to unpack the tar-ball, re-

compile the kernel, install it and then try to find out what all those nice options in (n)tpctl really are for.

Compiling and installing the Thinkpad kernel modules:

#> cd /usr/src
#> tar xzf thinkpad.tar.gz
#> cd kernel−source−2.4
#> make−kpkg −rev Custom.1 kernel_image
#> make−kpkp −rev Custom.1 modules_image
#> cd ..
#> rm −rf /lib/modules/2.4.18
#> dpkg −i kernel−image2.4.18_Custom.1_i386.deb
#> dpkg −i alsa−modules−2.4.18_0.9+beta12+3+p0+Custom.1_i386.deb
#> dpkg −i thinkpad−modules−2.4.18_3.5−1+Custom.1_i386.deb

24 4. Configuration of the Custom Kernel

4. 17. Thinkpad Buttons

Another nice program is tpb (ThinkPad Buttons), which monitors volume, brightness and other settings by

analysing the NVRAM. If we want to make use of this tool, we have to configure the kernel for NVRAM sup-

port.

Kernel Configuration for NVRAM support:

—— Character Devices ——
yes /dev/nvram support

5

Debian and other Software Packages

5. 1. Updating Debian

Keeping our Debian system up to date is very simple. We only need to configure apt for network updates. To this

end, we install the apt-spy package and run apt-spy to find the fastest Debian mirrors. Then we edit /etc/apt/

sources.list. Downloading and installing the latest Debian updates is then as simple as issuing the two commands

apt-get update and apt-get upgrade.

Debian Packages for Finding Fast Debian Mirrors:

apt−spy

/etc/apt.sources:

WOODY main contrib non−free
The following site was benchmarked at 14.49 kB/s
deb ftp://ftp.skynet.be/debian/ woody main contrib non−free
The following site was benchmarked at 14.29 kB/s
deb ftp://ftp.stw−bonn.de/pub/mirror/debian/ woody main contrib non−free
The following site was benchmarked at 14.29 kB/s
deb ftp://toxo.com.uvigo.es/debian/ woody main contrib non−free
Official Debian Mirror DE
deb ftp://ftp.de.debian.org/debian woody main contrib non−free
NON−US main contrib non−free
deb http://non−us.debian.org/debian−non−US woody non−US/main non−US/contrib non−US/non−free
SECURITY
deb http://security.debian.org/ stable/updates main contrib non−free

Updating all Debian packages:

#> apt−get update
#> apt−get upgrade

25

26 5. Debian and other Software Packages

5. 2. Local Debian Tree

The Debian distribution is currently organised along three releses: “stable” (a.k.a. “woody”), “testing” (a.k.a.

“sarge”) and “unstable” (a.k.a. “sid”). Under normal circumstances and for most purposes we want to install

packages from “woody” only, which corresponds to the default setup.

As its label implies, “woody” is stable and does therewith not represent the bleeding edge of new dev elopment.

In most cases, this does not matter. In a few cases, however, we need or want a more recent package with new

features, which may be available in “sarge” or “sid” but not in “woody”. We put these few packages in our local

Debian tree, from which we can install them without upgrading the whole distribution.

Another reason for a local tree is that we might not always agree with the compile-time configuration of a De-

bian package and want to recompile it from source. The resulting binary package will then be stowed in the local

Debian tree and overrides the default package.

/etc/apt/sources.list:

LOCAL
deb file:/usr/local/debian woody main
deb file:/usr/local/debian sarge main
WOODY main contrib non−free
The following site was benchmarked at 14.49 kB/s
deb ftp://ftp.skynet.be/debian/ woody main contrib non−free
The following site was benchmarked at 14.29 kB/s
deb ftp://ftp.stw−bonn.de/pub/mirror/debian/ woody main contrib non−free
The following site was benchmarked at 14.29 kB/s
deb ftp://toxo.com.uvigo.es/debian/ woody main contrib non−free
Official Debian Mirror DE
deb ftp://ftp.de.debian.org/debian woody main contrib non−free
NON−US main contrib non−free
deb http://non−us.debian.org/debian−non−US woody non−US/main non−US/contrib non−US/non−free
SECURITY
deb http://security.debian.org/ stable/updates main contrib non−free

Creating a local Debian tree:

#> cd /usr/local
#> mkdir −p debian/dists/woody/main/binary−i386/local
#> mkdir −p debian/dists/sarge/main/binary−i386/local
#> mkdir debian/dists/woody/source
#> mkdir debian/dists/woody/rpm
#> mkdir debian/dists/sarge/source
#> mkdir debian/dists/sarge/rpm
#> touch debian/override.local.woody
#> touch debian/override.local.sarge
#> touch debian/dists/woody/main/binary−i386/Packages
#> touch debian/dists/sarge/main/binary−i386/Packages
#> apt−get update

The binary-i386/local directories are, where we stow the binary packages. In the source directories we install,

unpack and compile the source packages, in the rpm directories we install and convert RedHat RPM packages.

Note: We should not resdistribute binary packages we have compiled within this framework since they may have

non-standard dependencies, which are hard or impossible to satisfy in other (more standard) setups.

5. 3. GCC

Selecting a good version of the GNU C Compiler gcc is not unlike selecting a good wine. Most people don’t

know and don’t care. But for those who know and care, there are big differences. The default version of gcc

shipped with Debian, i.e. gcc 2.95.4, was a “vintage” version, whereas most later versions up and through

gcc 3.0.x are more or less “fusel” versions. For this reason we want to replace gcc 3.0.4 from “woody” with

gcc 3.2.1 from “sarge”.

5. 4. Debian Source Packages (Gendroolification ;-) 27

The Debian Packages web-page is a good starting point to find all the packages we need (and their dependen-

cies).

Debian Packages for gcc 3.2.1:

gcc−3.2 (1:3.2.1−0pre3)
gcc−3.2−base (1:3.2.1−0pre3)
libgcc1 (1:3.2.1−0pre3)
cpp−3.2 (1:3.2.1−0pre3)
libc6 (2.2.5−14.3)
libc6−dev (2.2.5−14.3)
locales (2.2.5−14.3)
libdb1−compat (2.1.3−7)
binutils (2.13.90.0.10−1)
modutils (2.4.19−3)

Downloading and Installing gcc 3.2.1 from “sarge”:

#> cd /usr/local/debian/dists/sarge/main/binary−i386/local
#>
#> wget http://ftp.de.debian.org/debian/pool/main/g/gcc−3.2/gcc−3.2_3.2.1−0pre3_i386.deb
#> wget http://ftp.de.debian.org/debian/pool/main/g/gcc−3.2/gcc−3.2−base_3.2.1−0pre3_i386.deb
#> wget http://ftp.de.debian.org/debian/pool/main/g/gcc−3.2/libgcc1_3.2.1−0pre3_i386.deb
#> wget http://ftp.de.debian.org/debian/pool/main/g/gcc−3.2/cpp−3.2_3.2.1−0pre3_i386.deb
#> wget http://ftp.de.debian.org/debian/pool/main/g/glibc/libc6_2.2.5−14.3_i386.deb
#> wget http://ftp.de.debian.org/debian/pool/main/g/glibc/libc6−dev_2.2.5−14.3_i386.deb
#> wget http://ftp.de.debian.org/debian/pool/main/g/glibc/locales_2.2.5−14.3_all.deb
#> wget http://ftp.de.debian.org/debian/pool/main/d/db1−compat/libdb1−compat_2.1.3−7_i386.deb
#> wget http://ftp.de.debian.org/debian/pool/main/b/binutils/binutils_2.13.90.0.10−1_i386.deb
#> wget http://ftp.de.debian.org/debian/pool/main/m/modutils/modutils_2.4.19−3_i386.deb
#>
#> cd /usr/local/debian
#> cat >> override.local.sarge
gcc−3.2 optional local
gcc−3.2−base optional local
libgcc1 optional local
cpp−3.2 optional local
libc6 optional local
libc6−dev optional local
locales optional local
libdb1−compat optional local
binutils optional local
modutils optional local
#> dpkg−scanpackages dists/sarge/main/binary−i386/local override.local.sarge > \
> dists/sarge/main/binary−i386/Packages
#>
#> apt−get update
#> apt−get upgrade
#> apt−get install gcc−3.2

5. 4. Debian Source Packages (Gendroolification ;-)

As most devoted zealots of the Gentoo Linux Metadistribution will fervently tell us, compiling our own linux

distribution is not only etremely geeky but also speeds up things due to appropriate compiler optimisations.

Hmmmm . . . well . . . err . . . we hav e some doubts that we will ever notice the speed difference between the

i386- and the i686-compiled flavours of ls. In our opinion, processor optimisation makes sense for extremely

computation and graphics intensive tasks only. Furthermore, we will probably never be able to cash-in the time

we spend for the compilation for extremely large software packages like KDE before the next version comes out

and we have to start compiling again. Until Debian sees the light and provides a binary distribution precompiled

for the i686-type processors, the installation of source packages is not really worth the hassle — it is possible,

though.

28 5. Debian and other Software Packages

First we have to configure the system for this kind of “gendroolification”. To do so, we install some additional

apt packages and pentium-builder:

Debian Packages for Gendroolification:

apt−show−source
apt−show−versions
pentium−builder

We hav e written a small shell script to simplify the configuration of the gcc-wrapper builder-cc. We can evaluate

this script from either tcsh- or bash-compatible shells:

Pentium builder activation script:

#!/bin/sh
bin/build−i686
if ["$SHELL = "/usr/bin/tcsh"]; then
echo "setenv DEBIAN_BUILDGCCVER 3.2;"
echo "setenv DEBIAN_BUILDARCH i686;"

else
echo "export DEBIAN_BUILDGCCVER=3.2"
echo "export DEBIAN_BUILDARCH=i686"

fi
exit

Now we simply add for (almost) all deb entries in /etc/apt/sources.list a corresponding deb-src entry, so that we

can download the source packages with apt.

/etc/apt/sources.list:

LOCAL
deb file:/usr/local/debian woody main
deb file:/usr/local/debian sarge main
WOODY main contrib non−free
The following site was benchmarked at 14.49 kB/s
deb ftp://ftp.skynet.be/debian/ woody main contrib non−free
deb−src ftp://ftp.skynet.be/debian/ woody main contrib non−free
The following site was benchmarked at 14.29 kB/s
deb ftp://ftp.stw−bonn.de/pub/mirror/debian/ woody main contrib non−free
deb−src ftp://ftp.stw−bonn.de/pub/mirror/debian/ woody main contrib non−free
The following site was benchmarked at 14.29 kB/s
deb ftp://toxo.com.uvigo.es/debian/ woody main contrib non−free
deb−src ftp://toxo.com.uvigo.es/debian/ woody main contrib non−free
Official Debian Mirror DE
deb ftp://ftp.de.debian.org/debian woody main contrib non−free
deb−src ftp://ftp.de.debian.org/debian woody main contrib non−free
NON−US main contrib non−free
deb http://non−us.debian.org/debian−non−US woody non−US/main non−US/contrib non−US/non−free
deb−src http://non−us.debian.org/debian−non−US woody non−US/main non−US/contrib non−US/non−free
SECURITY
deb http://security.debian.org/ stable/updates main contrib non−free

To download, compile and install a source package, e.g. gnupg (and the packages it depends on), we use apt-get,

dpkg-buildpackage and dpkg.

Getting, compiling and installing Debian source packages:

#> cd /usr/local/debian/dists/woody/main/source
#>
#> eval ‘build−i686‘
#>
#> apt−get source gnupg
#> apt−get build−dep gnupg
#>
#> apt−get source zlib1g
#> apt−get build−dep zlib1g
#> cd zlib−1.1.4
#> dpkg−buildpackage
#> cd ..

5. 6. Xi Graphics Accelerated-X Server 29

#> mv zlib1g*.deb ../binary−i386/local
#> echo "zlib1g optional local" >> /usr/local/debian/override.local
#> echo "zlib1g−dev optional local" >> /usr/local/debian/override.local
#> rm −rf zlib*
#>
#> apt−get source libgdbmg1
#> apt−get build−dep libgdbmg1
#> cd gdbm−1.7.3
#> dpkg−buildpackage
#> cd ..
#> mv libgdbmg1*.deb ../binary−i386/local
#> echo "libgdbmg1 optional local" >> /usr/local/debian/override.local
#> echo "libgdbmg1−dev optional local" >> /usr/local/debian/override.local
#> rm −rf gdbm*
#>
#> cd gnupg−1.0.6
#> dpkg−buildpackage
#> cd ..
#> mv gnupg*.deb ../binary−i386/local
#> echo "gnupg optional local" >> /usr/local/debian/override.local
#> rm −rf gnupg*
#>
#> cd /usr/local/debian
#> dpkg−scanpackages dists/woody/main/binary−i386/local override.local > \
> dists/woody/main/binary−i386/Packages
#>
#> apt−get update

Lather, wash, rinse, repeat.

5. 5. XFree86 4.0.0 Framebuffer Server

Thanks to our little framebuffer-hack, it is possible to run XFree86 via the framebuffer device — albeit without

graphics acceleration. Debian manages to puzzle together a surprisingly well done configuration with every

schnickschnack we need. The only thing we need to do is to enter the path for our truetype fonts (and apply some

minor cosmetic corrections).

The small test program glxgears runs at roughly 290 fps (7 fps in fullscreen mode). The framebuffer does, how-

ev er, not really draw every frame to the screen, so the wheels don’t run smoothly but hang and jump.

Debian packages for the XFree86 4.0.0 framebuffer server:

xfree86−common
xserver−xfree86

5. 6. Xi Graphics Accelerated-X Server

Xi Graphics offers an Accelerated-X Server for the IBM Thinkpad A31p. The license for the LX version with

3D OpenGL X acceleration costs USD 149.–– (other versions also available).

The XiG tar-ball contains two RedHat RPM archives, i.e. a kernel module package xsvc_3.0-39.i386.rpm and the

driver package Summit_LX-Gold-2.2-6.i386.rpm. First we convert, extract, compile and install the kernel mod-

ule.

Compilation and installation of the XiG kernel module:

#> alien xsvc_3.0−39.i386.rpm
#> dpkg −i xsvc_3.0−39_i386.deb
#> cd /usr/src/xig/xsvc/
#> make clean
#> make

30 5. Debian and other Software Packages

#> make install
#> modprobe xsvc

modprobe barfs an informal message that loading this module will taint the kernel. This can be safely ignored. It

just means that we should not bother the linux kernel developers, if and when things go wrong with the kernel af-

ter loading this module.

Modprobe warning about XiG kernel module:

Warning: loading /lib/modules/2.4.18/misc/xsvc.o will taint the kernel: no license

More important is the output of the module itself. If everything is okay, the following message should be written

to the system log-files (default Debian location: /var/log/messages):

XiG kernel module initialisation messages:

[date] [some kernel]: xsvc: v3.0 (devrel@xig.com) [$XiGDate: 2002/10/24 20:31:44 $]
[date] [some kernel]: xsvc: Intel 845, 64MB at 0xe0000000 (1f000217/01)

Unfortunately, neither alien nor the Debian version of rpm can handle the driver package Summit_LX-

Gold-2.2-6.i386.rpm. So we have to unpack and install it manually. Using the Debian package stow, we can even

be semi-clever about it.

Debian package for stowing foreign software packages:

stow

Installing the XiG Accelerated-X server:

#> mkdir /tmp/TMP
#> mkdir −p /usr/local/packages/XiG/share/doc/XiG
#> rpm2cpio Summit_LX−Gold−2.2−6.i386.rpm | (cd /tmp/TMP; cpio −−extract \
> −−make−directories −−no−absolute−filename −−preserve−modification−time)
#> tar cf − /tmp/TMP/usr/. | (cd /usr/local/packages/XiG; tar xf −)
#> mv README.* *.pdf *.txt /usr/local/packages/XiG/share/doc/XiG
#> cd /usr/local/packages/XiG/X11R6/lib/X11/AcceleratedX/etc
#> ln −s Xlicense.demo Xlicense
#> cd ../../..
#> cp X11/AcceleratedX/OpenGL/usr/lib/libGL* .
#> cd /etc/X11
#> ln −sf /usr/X11R6/bin/Xaccel X
#>
#> dpkg−divert −−rename −−divert /usr/X11R6/lib/@@@libGL.so.1.2.distrib \
> /usr/X11R6/lib/libGL.so.1.2
#> dpkg−divert −−rename −−divert /usr/X11R6/lib/@@@libGLU.so.1.3.distrib \
> /usr/X11R6/lib/libGLU.so.1.3
#>
#> cd /usr/local/stow
#> ln −s ../packages/XiG .
#> stow −v −−target=/usr XiG
#> ldconfig; ldconfig
#> rm −rf /tmp/TMP

Note: We actually have to run ldconfig twice. In the first run, only the links libGL.so.1.3 and libGLU.so.1.3 are

created. In the second run libGL.so.1 and libGLU.so.1 are set.

Although the hardware specs claim a 4xAGP bus, the server locks hard if 4xAGP is configured in XSetup. Any-

way, with this server, glxgears runs at impressive 1393 fps (66 fps in fullscreen mode). Contrary to what is writ-

ten in the XiG documentation, we see no speed difference between Debian’s and XiG’s versions of the OpenGL

libraries.

If we want to switch back to the XFree86 server, we just update the symlink in /etc/X11:

Switching back to the XFree86 server:

#> cd /etc/X11
#> ln −sf /usr/X11R6/bin/XFree86 X

5. 7. XFree86 4.2.1 Radeon Server 31

Removing the XiG server is also simple and easy:

Removing the XiG Accelerated-X server:

#> cd /usr/local/stow
#> stow −D −−target=/usr XiG
#> cd ../packages
#> rm −rf XiG
#> rm /etc/Xaccel.ini
#> dpkg−divert −−remove /usr/X11R6/lib/libGL.so.1.2
#> dpkg−divert −−remove /usr/X11R6/lib/libGLU.so.1.3
#> ldconfig

5. 7. XFree86 4.2.1 Radeon Server

Lo and behold! The XFree86 4.2.1 server in the Debian “sarge” distribution incorporates a patch, which adds

support for the ATI Mobility FireGL 7800 chip — albeit without AGP support. Under this server, glxgears runs

here at 256 fps (13 fps in fullscreen mode) only. At least the wheels turn more or less smoothly. This server is, by

the way, fast enough to watch DVDs.

Debian packages for the XFree86 4.2.1 Radeon server from “sarge”:

xserver−xfree86 (4.2.1−3)

Downloading and installing XFree86 4.2.1:

#> cd /usr/local/debian/dists/sarge/main/binary−i386
#>
#> wget http://ftp.de.debian.org/debian/pool/main/x/xfree86/xserver−xfree86_4.2.1−3_i386.deb
#>
#> cd /usr/local/debian
#> echo "xserver−xfree optional local" >> override.local.sarge
#>
#> dpkg−scanpackages dists/sarge/main/binary−i386/local override.local.sarge > \
> dists/sarge/main/binary−i386/Packages
#> apt−get update
#> apt−get upgrade

Note: xserver-xfree86_4.2.1-3 depends on libc6_2.2.5-14.3, which we did already install while upgrading gcc.

/etc/X11/xdm/Xservers:

:0 local /usr/X11R6/bin/X :0 vt12 −layout Radeon −deferglyphs 16 −terminate

To configure the Radeon server, we just add one more server layout definition to /etc/X11/XF86Config-4:

Addition of a second server layout to /etc/X11/XF86Config-4:

Section "Monitor"
Identifier "TFT UXGA Monitor"
DisplaySize 305 228
Gamma 1.7
Option "DPMS"

EndSection
Section "Device"

Identifier "ATI Framebuffer"
Driver "fbdev"
Option "UseFBDev" "true"

EndSection
Section "Device"

Identifier "ATI Radeon"
Driver "ati"

EndSection
Section "Screen"

Identifier "Framebuffer Screen"
Device "ATI Framebuffer"

32 5. Debian and other Software Packages

Monitor "TFT UXGA Monitor"
DefaultDepth 24
SubSection "Display"

Depth 24
Modes "1600x1200"

EndSubSection
EndSection
Section "Screen"

Identifier "Radeon Screen"
Device "ATI Radeon"
Monitor "TFT UXGA Monitor"
DefaultDepth 24
SubSection "Display"

Depth 24
Modes "1600x1200"

EndSubSection
EndSection
Section "ServerLayout"

Identifier "Framebuffer"
Screen "Framebuffer Screen"
InputDevice "Internal Keyboard"
InputDevice "Trackpoint"
InputDevice "Mouse"

EndSection
Section "ServerLayout"

Identifier "Radeon"
Screen "Radeon Screen"
InputDevice "Internal Keyboard"
InputDevice "Trackpoint"
InputDevice "Mouse"

EndSection

Note: The Xsetup configuration tool from the XiG Accelerated Server suggests a gamma value of 2.432 (and a

few other colour corrections) for our TFT monitor. Using some visual gamma correction tables and this nifty ja-

va-applet, we get on a somewhat lower gamma value of 2.2. Nevertheless, we settle for a value of 1.7 (or even

less). Note also: The physical display size of 305 × 228 mm² results in a resolution of 133 dpi.

5. 8. Laptop-Net

There exists a nifty Debian package called laptop-net, which allows the automagic detection of the IP address

and subsequent reconfiguration of the system as a function of this IP address. Unfortunately, this package does

not work as advertised. At least not here and now.

Update: Even the more recent versions of the laptop-net packagec continue to suck. Unfortunately, the package

maintainer does not bother to answer emails, so we decided to roll our own variant and flush this crap here down

the virtual toilet.

First of all, the package installation process overwrites important configuration files. Furthermore, Intel’s ether-

net driver e100 is not supported by one of the scripts in the package. So we better divert them, before we add our

own modifications.

Diverting important laptop-net configuration files:

#> dpkg−divert −−rename /etc/default/laptop−net
#> dpkg−divert −−rename /etc/laptop−net/schemes
#> dpkg−divert −−rename /usr/share/laptop−net/shared.sh
#> cp /etc/default/laptop−net.distrib /etc/default/laptop−net
#> cp /etc/laptop−net/schemes.distrib /etc/laptop−net/schemes
#> cp /usr/share/laptop−net/shared.sh.distrib /usr/share/laptop−net/shared.sh

Then we add support for the Intel e100 driver by editing /etc/default/laptop-net and /usr/share/laptop-net/

shared.sh.

5. 8. Laptop-Net 33

Addition of Intel e100 driver to /etc/default/laptop-net:

MODULE_NAME="eepro100"
MODULE_NAME="e100"

Addition of Intel e100 driver to /usr/share/laptop-net/shared.sh:

case "${MODULE_NAME}" in
3c59x | 8139too | au1000_eth | eepro100 | epic100 | fealnx | hamachi \

3c59x | 8139too | au1000_eth | e100 | eepro100 | epic100 | fealnx | hamachi \
case "${MODULE_NAME}" in

3c59x | eepro100 | epic100 | old_tulip | pcnet32 | rtl8139 | sis900 \
3c59x | e100 | eepro100 | epic100 | old_tulip | pcnet32 | rtl8139 | sis900 \

Next, the automatic ARP detection of our IP address does not work in all cases. For this reason we have to puz-

zle together our own method of automagically determining our network.

We hav e hacked together a little script, which can do the automatic network detection by pinging the gateway for

static interfaces and by analysing the responses of the DHCP client. Being based on a shell script, this method is

rather slow. Having to wait for ping-timeouts, it is even slower. But it seems to work. It would still be a good idea

to write a small C program for this job. To integrate it into the laptop-net package, we have to modify /usr/share/

laptop-net/shared.sh.

Modification of /usr/share/laptop-net/shared.sh for ping-discovery:

ARP_DISCOVERY=/usr/lib/laptop−net/arp−discovery
ARP_DISCOVERY=/usr/local/packages/laptop−net/ping−discovery

Shell script for ping-discovery:

#!/bin/sh
/usr/local/packages/laptop−net/ping−discovery:
if [−z "$1"]; then
echo "Usage: ping_discovery <interface > <ip−map>"
exit 1

fi
INTERFACE="$1"
IPMAPFILE="$2"
SCHEME_DIR=/var/lib/laptop−net/schemes
export PATH=/bin:/usr/bin:/sbin:/usr/sbin
Load available schemes from /etc/laptop−net/ip−map.
SCHEME=‘grep −v −E "(ˆ$|#)" ${IPMAPFILE} | awk ’{print $1}’‘
if [−z "$SCHEME"]; then

echo "@NO−CHOICES@"
exit 1

fi
Allow for extremely long negotation times with stoopid switches
sleep 30
Test interface configuration: if already configured, return scheme; if
unknown configuration, bring the interface down; if not configured, continue
IFTEST=‘ifconfig | grep −A 1 "${INTERFACE}" | tail −1 | sed −e "s/:/ /" | awk ’{print $3}’‘
if [−n "${IFTEST}"]; then
for s in ${SCHEME}; do
IFACE=${SCHEME_DIR}/$s
ADDRESS=‘grep "address" ${IFACE} | awk ’{print $2}’‘
if ["${IFTEST}" = "${ADDRESS}"]; then

echo $s
exit 0

fi
done
ifconfig ${INTERFACE} down

fi
#−−
Loop over all non−DHCP schemes, try to bring up the interface and ping the
gateway
for s in ${SCHEME}; do

IFACE=${SCHEME_DIR}/$s
DHCP=‘grep "dhcp" $IFACE‘

34 5. Debian and other Software Packages

if [−z "$DHCP"]; then
ADDRESS=‘grep "address" ${IFACE} | awk ’{print $2}’‘
NETMASK=‘grep "netmask" ${IFACE} | awk ’{print $2}’‘
BROADCAST=‘grep "broadcast" ${IFACE} | awk ’{print $2}’‘
GATEWAY=‘grep "gateway" ${IFACE} | awk ’{print $2}’‘
ifconfig ${INTERFACE} ${ADDRESS} netmask ${NETMASK} broadcast ${BROADCAST} up
ping −r −c 1 ${GATEWAY} &> /dev/null
SUCCESS=$?
ifconfig "${INTERFACE}" down
if ["${SUCCESS}" = 0]; then

echo $s
exit

fi
fi

done
#−−
Try to bring up the interface using DHCP (somewhat ugly since the DHCLIENT
does not exit on failures but brings up the interface anyway, blech . . .)
for s in ${SCHEME}; do

IFACE=${SCHEME_DIR}/$s
DHCP=‘grep "dhcp" $IFACE‘
if [−n "$DHCP"]; then

/sbin/dhclient−2.2.x −e ${INTERFACE} > /tmp/DHCLIENT.log
SUCCESS=‘grep "DHCPACK" /tmp/DHCLIENT.log‘
kill ‘pidof dhclient−2.2.x‘
ifconfig "${INTERFACE}" down
rm −f /tmp/DHCLIENT.log
if [−n "${SUCCESS}"]; then

echo $s
exit

fi
fi

done
echo "@NO−RESPONSES@"
exit 0

Note: We redefine the layout of the IP-to-SCHEME map file /etc/laptop-net/ip-map. Each line in this file con-

tains now two entries: first the name of the scheme, and second the expected IP number under this scheme. If the

network interface is configured via DHCP, only the name of the scheme is collected. In this case, the second en-

try with the IP number is not necessary.

Note also: We only need one single scheme for DHCP even if we use this for more than one network. That’s

what the different profiles are for.

/etc/laptop-net/ip-map:

schemes for different static IP addresses
scheme1 www.xxx.yyy.zzz = our expected IP address under scheme1
scheme2 WWW.XXX.YYY.ZZZ = our expected IP address under scheme2
one single scheme for DHCP
scheme3 no IP number necessary

We also want to transfer the “control” of all network related boot scripts from the boot process rcS to the Laptop-

Net daemon ifd — without confusing the Debian package management system, of course. To do so, we have to

remove the symlinks from the /etc/rcN.d directories and install them in the /etc/laptop-net/profiles/XXXX/rc.d,

where XXXX is one of home, work or local. Since the Debian boot-script manager update-rc.d will reinstall

these links as long as it find the corresponding script in /etc/init.d, we have to div ert these to a different location.

Diverting the boot script from init to ifd:

#!/bin/sh
mkdir /etc/laptop−net/init.d
PACKAGES="dns−clean fetchmail ippl lprng ntp ntpdate ppp scandetd ssh xinetd"
for p in $PACKAGES; do
dpkg−divert −−rename −−divert /etc/laptop−net/init.d/$p /etc/init.d/$p
update−rc.d $p remove

done

5. 8. Laptop-Net 35

Now we go to the rc.d directories and create the new symlinks by hand.

Creating the new startup/shutdown symlinks (example):

#> cd /etc/laptop−net/profiles
#> mkdir −p work/rc.d home/rc.d xxx−default/rc.d
#> cd work/rc.d
#> ln −s ../../../init.d/ssh S20ssh
#> ln −s ../../../init.d/ssh K20ssh

Now we hav e a problem with ifd, the daemon which watches the status of our ethernet adapter. There seems to

exist a race between the daemon itself and the termination of the link-change shell script, which is forked by this

daemon. The offending lines are in the source file ifd.c, more precisely in the subroutine execute:

src/ifd.c:

static int
execute (const char * msg, const char * cmd)
{
int ret;
FILE * f;
char line [256];
const char * suffix = " 2>&1";
unsigned int limit = ((sizeof (line)) − ((strlen (suffix)) + 1));

syslog (LOG_INFO, "executing: ’%s’", cmd);
strncpy (line, cmd, limit);
(line[limit]) = ’\0’;
strcat (line, suffix);
f = (popen (line, "r"));
while (fgets (line, 255, f))
{
(line [(strlen (line)) − 1]) = ’\0’;
syslog (LOG_INFO, "+ %s", line);

}
ret = (pclose (f));
if (WIFEXITED (ret))
{
if (WEXITSTATUS (ret))

syslog (LOG_INFO, "%s exited with status %d",
msg, (WEXITSTATUS (ret)));

return (WEXITSTATUS (ret));
}

else
{
syslog (LOG_INFO, "%s exited on signal %d",

msg, (WTERMSIG (ret)));
return (−1);

}
}

The while loop ends as soon as fgets encounters an EOF condition. But since we are connected to stdout of the

forked shell process, this means that the shell process is terminating at this point. By the time pclose is called it

has terminated, so that pclose essentially waits on a no longer existing process, i.e. forever. The dead shell be-

comes a zombie process and ifd remains stalled until killed.

In order to fix this problem, we have hack the source code of ifd and replace the subroutine execute by:

src/ifd.c:

static int
execute (const char * msg, const char * cmd)
{
syslog (LOG_INFO, "executing: ’%s’", cmd);
return system(cmd);

}

36 5. Debian and other Software Packages

All in all, our installation of laptop-net is hideous and slow. But it works.

5. 9. PCMCIA-CS

Although we don’t need to compile any kernel modules from the pcmcia-cs packge, we want to compile the cor-

responding tools. The reason herefore is simple: The pcmcia tools distributed in the binary package are not

“trusting”, i.e. we can not change the pcmcia schemes as a normal user. To change this, we have to install the

pcmcia-source package, unpack the tar-ball, reconfigure the kernel, configure the pcmcia package and finally

compile and install the new package.

Debian package for PCMCIA sources:

pcmcia−sources

Building and installing the pcmcia-cs package:

#> cd /usr/src
#> tar xzf pcmcia−cs.tar.gz
#> cd kernel−source−2.4.19
#> make oldconfig; make dep
#> cd ../modules/pcmcia−cs
#> make config
#> cp config.* debian
#> debian/rules binary−cs
#> cd ..
#> mv pcmcia−cs_3.1.33−6_i386.deb /usr/local/debian/dists/woody/main/binary−i386/local
#> cd /usr/local/debian
#> echo "pcmcia−cs_3.1.33−6_i386.deb" >> override.local
#> dpkg−scanpackages dists/woody/main/binary−i386/local override.local > \
> dists/woody/main/binary−i386/Packages
#> apt−get update
#> apt−get install −−reinstall pcmcia−cs

We also want to integrate our PCMCIA setup with the laptop-net infrastructure. We base our configuration on the

presupposition that laptop-net is always up, running and watching the status of eth0. Furthermore, we assume

that eth0 will always be associated with the internal ethernet adaptor, so that our ethernet PC-card will always

show up as eth1. Lastly, we want that eth1 gets managed by laptop-net only in the case, when no network is at-

tached to eth0.

To do so, we use a script /usr/local/packages/laptop-net/pcmcia, which we call from the PCMCIA network script

/etc/pcmcia/network.opts.

/usr/local/packages/laptop-net/pcmcia:

#!/bin/sh
INTERFACE="eth0"
PROF_CHANGE=/usr/share/laptop−net/profile−change
IFTEST=‘ifconfig | grep −A 1 "${INTERFACE}" | tail −1 | sed −e "s/:/ /" | awk ’{print $3}’‘
if [−z "${IFTEST}"]; then
${PROF_CHANGE} $*

fi
exit 0

Update of /etc/pcmcia/network.opts:

Extra stuff to do after setting up the interface
start_fn() { /usr/local/packages/laptop−net/pcmcia $DEVICE; return; }
Extra stuff to do before shutting down the interface
stop_fn() { /usr/local/packages/laptop−net/pcmcia $DEVICE down; return; }

5. 10. Sub-Pixel Font-Rendering 37

5. 10. Sub-Pixel Font-Rendering

Sub-Pixel Font-Rendering is a Good Thing™. It’s actually an old idea, whose time has finally come or will come

really soon now on a LCD display near you. To triple the horizontal screen resolution for font rendering right

now, we hav e to install XFree86 4.2.1 and then compile and install the new font configuration scheme fontconfig

and update the X Render Extension together with libXft.

Debian Packages needed for compiling fontconfig:

libexpat1−dev
libfreetype6−dev

Compiling and installing fontconfig and Xft:

#> eval ‘build−i686‘
#>
#> cd /usr/local/packages
#> mkdir −p fontconfig−2.0/local/src
#> cd fontconfig−2.0/local/src
#> wget http://fontconfig.org/release/fcpackage.2_0.tar.gz
#> tar xzf fcpackage.2_0.tar.gz
#>
#> cd fcpackage.2_0/fontconfig
#> ./configure −−prefix=/usr/local/packages/fontconfig−2.0/X11R6
#> make
#> make install
#> cd /usr/local/stow
#> ln −s ../packages/fontconfig−2.0 .
#> stow −v −−target=/usr fontconfig−2.0
#>
#> cd /usr/local/packages/fontconfig−2.0/local/src/fcpackage.2_0/Xrender
#> xmkmf −a
#> make
#> dpkg−divert −−rename /usr/X11R6/lib/libXrender.a
#> dpkg−divert −−rename /usr/include/X11/extensions/Xrender.h
#> dpkg−divert −−rename /usr/include/X11/extensions/render.h
#> dpkg−divert −−rename /usr/include/X11/extensions/renderproto.h
#> make install
#>
#> cd ../Xft1
#> xmkmf −a
#> make
#> make install
#>
#> cd ../Xft
#> ./configure −−prefix=/usr/local/packages/fontconfig−2.0/X11R6
#> make
#> dpkg−divert −−rename /usr/include/X11/Xft/Xft.h
#> make install
#> cd /usr/local/stow
#> stow −v −D −−target=/usr fontconfig−2.0
#> cd /usr/local/packages/fontconfig−2.0
#> mkdir −p lib/pkgconfig
#> ln −s X11R6/lib/pkgconfig/* lib/pkgconfig
#> rm −rf local/src/fcpackage.2_0
#> cd /usr/local/stow
#> stow −v −−target=/usr fontconfig−2.0

Xrender and Xft1 can not be stowed and must be installed directly into the X11R6 tree. This makes removing

these files a bit cumbersome.

Removing fontconfig-2.0:

#> cd /usr/local/stow
#> stow −v −D −−target=/usr fontconfig−2.0
#> rm fontconfig−2.0
#> rm −rf /usr/local/packages/fontconfig−2.0

38 5. Debian and other Software Packages

#> dpkg−divert −−remove /usr/include/X11/Xft/Xft.h
#>
#> rm /usr/X11R6/lib/libXrender.so
#> rm /usr/X11R6/lib/libXrender.so.1.1
#> rm /usr/X11R6/lib/libXrender.a
#> rm /usr/include/X11/extensions/Xrender.h
#> rm /usr/include/X11/extensions/extutil.h
#> rm /usr/include/X11/extensions/region.h
#> rm /usr/include/X11/extensions/render.h
#> rm /usr/include/X11/extensions/renderproto.h
#> dpkg−divert −−remove /usr/X11R6/lib/libXrender.a
#> dpkg−divert −−remove /usr/include/X11/extensions/Xrender.h
#> dpkg−divert −−remove /usr/include/X11/extensions/render.h
#> dpkg−divert −−remove /usr/include/X11/extensions/renderproto.h
#> ldconfig
#>
#> rm /usr/X11R6/lib/libXft.so
#> rm /usr/X11R6/lib/libXft.so.1.2
#> ldconfig

Finally, we hav e to marry the new XFree86 font configuration fontconfig with the Debian font manager defoma.

To this end we modify /etc/fonts/fonts.conf.

Modification of /etc/fonts/font.conf:

<!−− Font directory list configured on Sat Nov 16 01:41:41 CET 2002 −−>
<dir>/var/lib/defoma/x−ttcidfont−conf.d/dirs/TrueType</dir>
<dir>/var/lib/defoma/x−ttcidfont−conf.d/dirs/CID</dir>
<dir>/usr/X11R6/lib/X11/fonts</dir>
<dir>˜/.fonts</dir>

5. 11. Xprint — the X11 print system

Setting up and configuring a printer under Linux can be adventuresome. Hooking up a postscript printer can be-

come a nightmarish, especially if we want to print japanese postscript files on said printer. A few programs are

clever enough to download japanese postscript fonts into the printer before they attempt to print. Most programs,

however, assume that the printer has installed japanese postscript fonts — which is usually not the case outside

of Japan.

A project which attempts to remedy this situation is XPrint. This is essantially a X11 server, which does send its

output to the printer instead of the screen. We want to use the development trunk release 008, since it supports

TrueType fonts.

First we download the source tar-ball, which we extract into a separate directory for compilation. Compiling and

installing is well described by the installation manual and is quite simple.

Downloading and Compiling Xprint:

#> cd /usr/local/packages
#> wget http://puck.informatik.med.uni−giessen.de/download/xprint_mozdev_org_source−2002−12−02−trunk.tar.gz
#> tar xzf xprint_mozdev_org_source−2002−12−02−trunk.tar.gz
#> cd xprint/src/xprint_main/xc/
#> make World 2>&1 | tee −a buildlog.log
#> cd packager/
#> make make_xprint_tarball
#> cd /usr/local/packages
#> rm −rf xprint
#> mkdir −p xprint/usr/local/src/xprint
#> mv /tmp/xprint_server_030118184734.tar.gz xprint/usr/local/src/xprint
#> mv xprint_mozdev_org_source−2002−12−02−trunk.tar.gz xprint/usr/local/src/xprint
#> cd xprint
#> tar xzf usr/local/packages/xxprint/xprint_server_030118184734.tar.gz
#> cd etc
#> mkdir −p laptop−net/init.d

5. 12. Mozilla 39

#> mv init.d/xprint laptop−net/init.d
#> rmdir init.d
#> cd /usr/local/stow
#> ln −s ../packages/xprint .
#> stow −v −−target=/ xprint

The number in the name of the tar-ball will depend of the exact building date. To use the Xprint server, we hav e

to add two variables to the environment:

/etc/environment:

xprint server
export XPSERVERLIST="‘/etc/laptop−net/init.d/xprint get_xpserverlist‘"
export XPRINTER="lp"

Finally, we set the necessary links in the laptop-net directories:

Creating the new startup/shutdown symlinks (example):

#> cd /etc/laptop−net/profiles
#> mkdir −p work/rc.d home/rc.d xxx−default/rc.d
#> cd work/rc.d
#> ln −s ../../../init.d/xprint S34xprint
#> ln −s ../../../init.d/xprint K04xprint

Integrating Xprint into laptop-net leaves us with the problem that we must ensure that the two environment vari-

ables are always and under all profiles well defined. To do so, we set up /dev/null as printing device for profiles

without a real printer and start lprng and Xprint with this empty device. Furthermore, we wrap all Xprint aware

programs (in our case Mozilla) in shell scripts, which set these two variables explicitly before starting the pro-

gram.

Xprint constructs its font path not by consulting the XFree86 configuration file but by searching for fonts.dir files

below the XPROJECTROOT directory. This is not quite what we want for two reasons: First, Xprint misses all

fonts managed by defoma, second, it finds all fonts — even those, which we have explicitly exluded in our

XFree86 configuration file. This behaviour can easily be corrected by editing the Xprint boot script.

Adapting /etc/laptop-net/init.d/xprint:

get_system_fontlist()
{
case "$(uname −s)" in
SunOS)
;;

Linux)
XF86CONFIG="/etc/X11/XF86Config−4"
xfontpath=‘grep "FontPath" $XF86CONFIG | egrep −v "ˆ#" | sed ’s/FontPath//’ | tr "\"," " "‘
(for xpath in $xfontpath; do
echo $xpath | sed ’s/:unscaled//’
done) | sort | uniq

;;
*)
;;

esac
}

5. 12. Mozilla

One of the most important programs supporting sub-pixel font-rendering right now is The Beast, a.k.a. Mozilla.

Unfortunately the precompiled binaries available at the Mozilla Homepage lack this feature, so we have to use

the source and compile the thing ourselves. Fortunately, this has become quite easy.

First we use the Unix Build Configurator to configure The Beast. To compile for sub-pixel font-rendering, we

have to enable Xft support. Depending on the actual configuration of Mozilla, we then have to install a few De-

bian packages.

40 5. Debian and other Software Packages

Mozilla Configuration File ˜/mozconfig:

sh
Build configuration script
#
See http://www.mozilla.org/build/unix.html for build instructions.
#
Options for ’configure’ (same as command−line options).
ac_add_options −−prefix=/usr/local/packages/mozilla−1.2b
ac_add_options −−with−pthreads
ac_add_options −−with−system−jpeg=/usr/lib
ac_add_options −−with−system−zlib=/usr/lib
ac_add_options −−with−system−png=/usr/lib
ac_add_options −−with−system−mng=/usr/lib
ac_add_options −−enable−default−toolkit=gtk
ac_add_options −−enable−toolkit−gtk
ac_add_options −−disable−mailnews
ac_add_options −−enable−xft
ac_add_options −−enable−xprint
ac_add_options −−enable−crypto
ac_add_options −−disable−accessibility
ac_add_options −−disable−installer
ac_add_options −−disable−debug
ac_add_options −−disable−logging
ac_add_options −−enable−strip
ac_add_options −−enable−elf−dynstr−gc

Debian packages needed to compile Mozilla:

libjpeg62−dev
zlib1g−dev
libpng2−dev
libmng−dev
libgtk1.2−dev
libfreetype6−dev
pkg−config
libidl−dev

Furthermore, Mozilla wants a symlink (or alias) from libIDL-config-2 to libIDL-config. If all necessary packages

are installed, compiling and installing Mozilla is quite simple.

Compiling Mozilla:

#> cd /usr/local/packages
#> wget ftp://sunsite.cnlab−switch.ch/mirror/mozilla/mozilla/releases/mozilla1.2b/src/mozilla−source−1.2b.tar.gz
#> tar xzf mozilla−source−1.2b.tar.gz
#> cd mozilla
#> cp ˜/mozconfig .mozconfig
#> make −f client.mk build
#> make install
#> cd ..
#> rm −rf mozilla
#> ln −s mozilla−1.2b mozilla

We use a small shell script to set the MOZILLA_HOME environment variable and launch the actual Mozilla

startup script.

Mozilla Startup-Script /usr/local/bin/mozilla:

#!/bin/sh
export XPSERVERLIST="‘/etc/laptop−net/init.d/xprint get_xpserverlist‘"
export XPRINTER="lp"
MOZILLA_HOME="/usr/local/software/mozilla"
set −e
Check for DISPLAY
if [−z $DISPLAY]
then

echo "No DISPLAY is set."
exit 1

5. 13. tpb (ThinkPad Buttons) 41

fi
if [−x $MOZILLA_HOME/bin/mozilla]; then
exec $MOZILLA_HOME/bin/mozilla "$@"

else
echo "$MOZILLA_HOME/bin/mozilla not found."
exit 1

fi
exit 1

5. 13. tpb (ThinkPad Buttons)

tpb is a clever program, which analyses the content of the NVRAM to monitor the volume and brightness set-

tings, thinklight and many things more. It also lets us attach a shell command to the <ThinkPad> key. To write

the information to blend the status informations into the screen tpb uses xosd.

An antiquated version of xosd exists as a Debian package. The latest version has, however, a few interesting fea-

tures, which make it worthwhile to compile and install it manually. tpb does not exist as an official Debian pack-

age (yet), but we could easily build one from the tar-ball. Since we want to modify the source code, we prefer to

stow this package manually.

The reason for our modification is that tpb segfaults, if we try to use a non-existent font for displaying. tpb sets

-*-lucidatypewriter-medium-r-normal-*-*-250-*-*-*-*-*-* as the default fall-back font. Neither is this font guar-

anteed to exist nor does tpb check its availability. We should therefore change the default font in cfg.h to 10x20.

If we stow tpb, we must either set an alias or write a shell script to teach tpb the location of its default configura-

tion file, which in our case is /usr/local/etc/tpbrc.

Compiling and Installing xosd:

#> cd /usr/local/packages
#> mkdir −p xosd−2.0.1/src
#> cd xosd−2.0.1/src
#> wget http://www.ignavus.net/xosd−2.0.1.tar.gz
#> tar xzf xosd−2.0.1.tar.gz
#> cd xosd−2.0.1
#> configure −−prefix=/usr/local/packages/xosd−2.0.1
#> make
#> make install
#> cd ..
#> rm −rf xosd−2.0.1
#> cd /usr/local/stow
#> ln −s ../packages/xosd−2.0.1 .
#> stow −v xosd−2.0.1

Moficiation of cfg.h:

/** #define DEFAULT_OSDFONT "−*−lucidatypewriter−medium−r−normal−*−*−250−*−*−*−*−*−*" **/
#define DEFAULT_OSDFONT "10x20"

Compiling and Installing tpb:

#> mknod /dev/nvram c 10 144
#> cd /usr/local/packages/
#> mkdir −p tpb−0.4.1/src
#> cd tpb−0.4.1/src
#> wget http://www.savannah.nongnu.org/download/tpb/tpb−0.4.1.tar.gz
#> tar xzf tpb−0.4.1.tar.gz
#> cd tpb−0.4.1
#> ./configure −−prefix=/usr/local/packages/tpb−0.4.1
#> make
#> make install
#> cd ..
#> rm −rf tpb−0.4.1
#> cd ../bin

42 5. Debian and other Software Packages

#> mv tpb tpb.bin
#> vi tpb
#> cd /usr/local/stow
#> ln −s ../packages/tpb−0.4.1 .
#> stow −v tpb−0.4.1

/usr/local/packages/tpb-0.4.1/bin/tpb:

#!/bin/sh
/usr/local/bin/tpb.bin −−config=/usr/local/etc/tpbrc $@ &

5. 14. Intel Fortran Compiler

Since we use our machine for scientific number crunching, we need a decent Fortran compiler. The combo f2c

plus fort77 is way too slow and g77 had a few numerical problems last time we checked.

For this reason we want to install the Intel Fortan Compiler ifc. And once more we are amazed how commercial

products just fail to install without a pain in the ass. alien as well as rpm refuse to install the package, so we have

to do it manually.

Compiling and Installing ifc:

#> cd /usr/local/packages
#>
#> mkdir −p ifc7−7.0/lib/ifc7/license
#> cp ˜/l_for_38668925.lic ifc7−7.0/lib/ifc7/license
#> chmod +r ifc7−7.0/lib/ifc7/license
#> mkdir −p ifc7−7.0/doc/ifc7
#>
#> mkdir intel−install
#> cd intel−install
#> tar xzf ˜/INTEL.TAR.GZ
#> alien −g intel−ifc7−7.0−64.i386.rpm
#> cd intel−ifc7−7.0.orig/opt/intel/compiler70/ia32
#> tar cf − . | (cd /usr/local/packages/ifc7−7.0; tar xf −)
#> cd ..
#> mv training docs
#> cd docs
#> tar cf − . | (cd /usr/local/packages/ifc7−7.0/doc/ifc7; tar xf −)

#> cd ..
#> tar cf − man | (cd /usr/local/packages/ifc7−7.0; tar xf −)
#> chown −R 0.0 *
#> cd doc/ifc
#> chmod −R −x *
#> find . −type d −exec chmod +x {} \;
#>
#> cd /usr/local/stow
#> ln −s ../ifc7−7.0 .
#> stow ifc7−7.0
#>
#> ldconfig
#>
#> rm −rf /usr/local/packages/intel−install

Now we hav e to edit the wrapper script, which is supposed to launch the compiler:

/usr/local/packages/ifc7-7.0/bin/ifc:

#!/bin/sh
INTEL_LICENSE_FILE=/usr/local/lib/ifc7/license;
export INTEL_LICENSE_FILE;
if [−z LD_LIBRARY_PATH]
then
LD_LIBRARY_PATH=/usr/local/lib

else

5. 15. Linux WLAN 43

LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
fi
export LD_LIBRARY_PATH
export −n IA32ROOT; unset IA32ROOT;
if [$# != 0]
then
exec −a "/usr/local/bin/ifc" /usr/local/bin/ifcbin "$@";

else
exec −a "/usr/local/bin/ifc" /usr/local/bin/ifcbin;

fi
exit

5. 15. Linux WLAN

Our router wants us to connect via DHCP. So we hav e to install the corresponding Debian package first:

Debian packages for DHCP:

dhcp−client

The linux-wlan Project is developing a complete, standards based, wireless LAN system for Linux. The corre-

sponding Debian package is available in the “unstable” (a.k.a. “sid”) distribution, which means that we have to

compile it from source.

Unfortunately, the kernel modules refuse to compile and install automagically under “woody”, so we have to

lend a helpin’ hand and here and there. We hav e to edit the Debian rules file and then copy the resulting kernel

modules.

Debian source packages for linux-wlan-ng:

wireless−tools_25−3
linux−wlan−ng_0.1.15−6

Installation of linux-wlan-ng:

#> dpkg−source −x wireless−tools_25−3.dsc
#> cd wireless−tools−25
#> dpkg−buildpackage
#> cd ..
#> mv wireless−tools_25−3_i386.deb /usr/local/debian/dists/woody/main/binary−i386
#> echo "wireless−tools optional local" >> /usr/local/debian/override.local.woody
#>
#> cd /usr/src/modules
#> dpkg−source −x linux−wlan−ng_0.1.15−6.dsc
#> cd linux−wlan−ng_0.1.15/
#> vi debian/rules # SEE BELOW
#> dpkg−buildpackage −d
#> cd ..
#> mv linux−wlan−ng_0.1.15−6_i386.deb /usr/local/debian/dists/woody/main/binary−i386
#> echo "linux−wlan−ng optional local" >> /usr/local/debian/override.local.woody
#>
#> cd ../linux
#> make−kpkg −rev Custom.1 modules_image
#> cd ..
#> mv linux−wlan−ng−modules−2.4.18_Custom.1+0.1.15−6_i386.deb /usr/local/debian/dists/woody/main/binary−i386/local/
#> echo "linux−wlan−ng−modules−2.4.18 optional local" >> /usr/local/debian/override.local.woody
#>
#> cd /usr/local/debian
#> dpkg−scanpackages dists/woody/main/binary−i386/local/ override.local.woody > dists/woody/main/binary−i386/Packages
#>
#> apt−get update
#> apt−get upgrade
#>
#> cd /usr/src/modules/linux−wlan−ng−0.1.15/debian/tmp
#> tar cf − lib | (cd /; tar xf −)

44 5. Debian and other Software Packages

#> depmod −a

Edit of /usr/src/modules/linux-wlan-ng-0.1.15/debian/rules:

line 29:
export DH_OPTIONS=−p$(PACKAGE) −−mainpackage=$(PACKAGE)

export DH_OPTIONS=−p$(PACKAGE)
line 105:
kdist_config:
kdist_configure:

Note: In later versions of the linux-wlan-ng package (e.g. version 0.2.0-9) the automagic installation of the ker-

nel modules is completely f. . .ed up. We hav e to do it manually:

Manual installation of the linux-wlan-ng modules:

#> cd /lib/modules/2.4.18/
#> mkdir net pcmcia usb
#> cp /usr/src/modules/linux−wlan−ng−0.2.0/src/p80211/p80211.o net
#> cp /usr/src/modules/linux−wlan−ng−0.2.0/src/prism2/driver/prism2_pci.o net
#> cp /usr/src/modules/linux−wlan−ng−0.2.0/src/prism2/driver/prism2_plx.o net
#> cp /usr/src/modules/linux−wlan−ng−0.2.0/src/prism2/driver/prism2_cs.o pcmcia
#> cp /usr/src/modules/linux−wlan−ng−0.2.0/src/prism2/driver/prism2_usb.o usb
#>
#> depmod −a

In the next step, we need to tell the system about our new network interface and the kernel modules. To do so, we

edit /etc/network/interfaces and /etc/modutils/linux-wlan-ng and then update the modules list.

/etc/network/interfaces:

auto lo
iface lo inet loopback
iface wlan0 inet dhcp

wireless_essid <SSID here>
wireless_mode managed
wireless_nick <insert name here>

/etc/modutils/linux-wlan-ng:

alias wlan0 prism2_pci

Updating the modules list:

#> update−modules

If everything is okay, the wlan0 interface should now be brought up if we type ifup wlan0 and receive some IP

address from the router in the 192.168.123.0 subnet of our WLAN.

This simple WLAN setup is then expanded and integrated into our nifty network-profile handling mechanism.

5. 15. 1. Special Case: The USR-2410 PC Card

To support this card by the linux-wlan-ng drivers, we have to edit some configuration files and roll our own

scripts. First, we have to uncomment the appropriate device definitions in /etc/pcmcia/wlan-ng.conf, otherwise

the standard kernel drivers will get loaded.

/etc/pcmcia/wlan-ng.conf:

card "Intersil PRISM2 Reference Design 11Mb/s 802.11b WLAN Card"
version "INTERSIL", "HFA384x/IEEE"
bind "prism2_cs"

card "Intersil PRISM2 Reference Design 11Mb/s WLAN Card"
manfid 0x0156, 0x0002
bind "prism2_cs"

In the next step, we disable the mass of half-integrated half-messed-up scripts to handle the PC Card automagi-

cally. This is done by diverting the original wlan-ng script and the recplacing it by an empty script:

5. 15. 1. Special Case: The USR-2410 PC Card 45

Diverting /etc/pcmcia/wlan-ng:

#> dpkg−divert −−rename /etc/pcmcia/wlan−ng

New /etc/pcmcia/wlan-ng:

#!/bin/sh
exit

The next problem is that the standard WLAN tools called by ifup don’t handle the WEP encryption for the linux-

wlang-ng drivers correctly. We hav e to circumvent this by resticting the interface definition in /etc/network/inter-

faces to the bare minimum and then use our won script to setup the card:

New entry in /etc/pcmcia/wlan-ng:

iface wlan0−pccard inet dhcp

/usr/local/bin/wlan0:

#!/bin/sh
prog=‘basename $0‘
test "X$SUPERCMD" = "X$prog" || exec /usr/bin/super $prog ${1+"$@"}
PATH="/bin:/usr/bin/:usr/local/bin:/sbin:/usr/sbin"
ADDRESS=""
SCHEMEFILE=/var/state/network/scheme.wlan0
DEVICE=wlan0
touch $SCHEMEFILE
. /etc/wlan/shared
case "$1" in

load)
modprobe wlan0
;;

unload)
modprobe −r wlan0
;;

up|start)
echo "wlan0: start"
if is_true $WLAN_DOWNLOAD; then

wlan_download $DEVICE
fi
wlan_enable $DEVICE
wlan_source_config $DEVICE
wlan_user_mibs $DEVICE
wlan_wep $DEVICE
if is_true $IS_ADHOC ; then

wlan_adhoc $DEVICE
else

wlan_infra $DEVICE
fi
ifup wlan0 2> /dev/null
;;

down|stop)
echo "wlan0: down"
wlan_disable $DEVICE
ifdown wlan0 2> /dev/null
rmmod −a; rmmod −a
;;

restart)
echo "wlan0: restart"
ifdown wlan0 2> /dev/null
sleep 1
ifup wlan0 2> /dev/null
;;

scheme)
if [−z "$2"]; then

cat $SCHEMEFILE | sed "s/−/ /" | awk ’{print $2}’
else

echo "eth0−$" > $SCHEMEFILE

46 5. Debian and other Software Packages

fi
;;

*)
SCHEME=‘cat $SCHEMEFILE | sed "s/−/ /" | awk ’{print $2}’‘
SCHEMES=‘grep iface /etc/network/interfaces | grep wlan0 | sed "s/−/ /" | awk ’{

printf "%s ", $3}’‘
echo "Usage: wlan0 [up|start|down|stop|restart|scheme [xyz]]"
echo "where xyz is one of: $SCHEMES"
echo "Current scheme is: $SCHEME"
;;

esac

This script includes the standard linux-wlan-ng configuration files in /etc/wlan. We set the SSID of our access

point in /etc/wlan/wlan.conf:

/etc/wlan/wlan.conf:

SSID_wlan0="myssid"

Then we copy the default configuration file /etc/wlan/wlancfg-DEFAULT to /etc/wlancfg-myssid and edit it to

represent our detailed setup:

New /etc/wlan/wlancfg-myssid:

#=======USER MIB SETTINGS=============================
You can add the assignments for various MIB items
of your choosing to this variable, separated by
whitespace. The wlan−ng script will then set each one.
Just uncomment the variable and set the assignments
the way you want them.
#USER_MIBS="p2CnfRoamingMode=1 p2CnfShortPreamble=mixed"
#=======WEP===
[Dis/En]able WEP. Settings only matter if PrivacyInvoked is true
lnxreq_hostWEPEncrypt=true # true|false
lnxreq_hostWEPDecrypt=true # true|false
dot11PrivacyInvoked=true # true|false
dot11WEPDefaultKeyID=0 # 0|1|2|3
dot11ExcludeUnencrypted=true # true|false, in AP this means WEP is required.
If PRIV_GENSTR is not empty, use PRIV_GENTSTR to generate
keys (just a convenience)
PRIV_GENERATOR=/sbin/nwepgen # nwepgen, Neesus compatible
PRIV_KEY128=false # keylength to generate
PRIV_GENSTR=""
or set them explicitly. Set genstr or keys, not both.
dot11WEPDefaultKey0=01:02:03:04:05:06:07:08:09:0A:0B:0C:0D
dot11WEPDefaultKey1=11:12:13:14:15:16:17:18:19:1A:1B:1C:1D
dot11WEPDefaultKey2=21:22:23:24:25:26:27:28:29:2A:2B:2C:2D
dot11WEPDefaultKey3=01:32:33:34:35:36:37:38:39:3A:3B:3C:3D
#=======SELECT STATION MODE===================
IS_ADHOC=n # y|n, y − adhoc, n − infrastructure
#======= INFRASTRUCTURE STATION ===================
What kind of authentication?
AuthType="opensystem" # opensystem | sharedkey (requires WEP)
#======= ADHOC STATION ============================
BCNINT=100 # Beacon interval (in Kus)
CHANNEL=6 # DS channel for BSS (1−14, depends

on regulatory domain)
BASICRATES="2 4" # Rates for mgmt&ctl frames (in 500Kb/s)
OPRATES="2 4 11 22" # Supported rates in BSS (in 500Kb/s)

After inserting the card nothing happens. We hav e to start and stop the interface manually by issuing the com-

mands wlan0 up and wlan0 down, respectively.

5. 17. CD Recording as non-root User 47

5. 16. Cisco VPN Client

There exists a piece of software called vpnclient, which lets us establish a secure, end-to-end encrypted tunnel to

any Cisco central site remote access VPN product. This piece of software does even exist for Linux. Of course it

does not work out of the box (at least not our version 3.7.2).

After unpacking the tar-ball, we have a look at the file interceptor.c, more precisely at the function supported_de-

vice. For some unknown reason, only the devices eth0 to eth9 and ppp0 to ppp9 are assumed to be valid network-

ing devices. wlan0 is not mentioned at all.

To remedy the situation, we replace the provided function with our own:

supported_device in interceptor.c:

static int inline supported_device(struct device* dev)
{

if(!dev−>name) return 0;
if(!strncmp(dev−>name,"eth",3) && (dev−>name[3]>=’0’ && dev−>name[3]<=’9’))

return 1;
if(!strncmp(dev−>name,"ppp",3) && (dev−>name[3]>=’0’ && dev−>name[3]<=’9’))

return 1;
if(ippp_dev(dev)) {

isdn_net_local *lp = (isdn_net_local *) dev−>priv;
if(lp−>p_encap == ISDN_NET_ENCAP_SYNCPPP) return 1;

}
if(!strncmp(dev−>name,"wlan",4) && (dev−>name[4]>=’0’ && dev−>name[4]<=’9’))

return 1;
return 0;

}

In contrast to what the documentation claims, we don’t need to load the provided kernel module at boot time.

Our kernel is compiled to load its modules automagically at need. We just have to let it know, which module

should be loaded:

/etc/modutils/vpn:

Cisco VPN
alias cipsec0 cisco_ipsec

Now we update the modules with update-modules and are all set. We don’t need the provided boot script /etc/

init.d/vpnclient_init at all.

Later we integrate the VPN tunnel into our own network profile management.

5. 17. CD Recording as non-root User

Trying to burn CD-Rs as non-root user can be a tiring adventure, since the documentation of cdrecord does not

really reflect the actual setup under Debian and is no longer entirely up to date. Furthermore, most of the tips and

tricks divulged in the various mailing lists did not really impress by their insights.

To make a long story short, the probably best way to set things up is by using the super command. This makes

sure that cdrecord is run with the real UID 0 and avoids all kind of hassles, among them the following error mes-

sage:

cdrecord error message:

cdrecord.mmap: Operation not permitted. WARNING: Cannot set RR−scheduler
cdrecord.mmap: Permission denied. WARNING: Cannot set priority using setpriority().
cdrecord.mmap: WARNING: This causes a high risk for buffer underruns.

To do so, we write a small shell script named cdrecord, put it in /usr/local/bin and set execute permissions for all

and everybody. Since the original cdrecord in /usr/bin does not have execute permissions for everybody, our ver-

48 5. Debian and other Software Packages

sion in /usr/local/bin will automagically executed, if a non-root user not in the group cdrom types cdrecord at the

command prompt.

/usr/local/bin/cdrecord:

#!/bin/sh
prog=‘basename $0‘
test "X$SUPERCMD" = "X$prog" || exec /usr/bin/super $prog ${1+"$@"}
/usr/bin/cdrecord $@

The corresponding entry in /etc/super.tab reads:

/etc/super.tab:

cdrecord /usr/local/bin/cdrecord uid=root info="burn CD−R" \
<registered user here>

5. 18. External Firewire Hard Disk

Although the 2.4 kernel series does not yet support hotplugging of SCSI and IEEE 1394 devices, we can easily

configure for a simple manual setup. We make use of two scripts, namely rescan-scsi-bus.sh available from the

IEEE 1394 For Linux project web pages and a homegrown helper script, to load the kernel necessary modules

and scan for new SCSI devices:

/usr/local/bin/firewire:

#!/bin/sh
prog=‘basename $0‘
test "X$SUPERCMD" = "X$prog" || exec /usr/bin/super $prog ${1+"$@"}
PATH="/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin"
ADDRESS=""
case "$1" in

up|start)
modprobe ohci1394 && modprobe sbp2 && modprobe sd_mod
sleep 1
rescan−scsi−bus
;;

down|stop)
modprobe −r ohci1394 && modprobe −r sbp2 && modprobe −r sd_mod
sleep 1
rescan−scsi−bus −r
;;

restart)
rescan−scsi−bus −r
sleep 1
rescan−scsi−bus
;;

*)
echo "Usage: firewire [up|start|down|stop|restart]"
;;

esac

Note: We hav e renamed rescan-scsi-bus.sh into rescan-scsi-bus.

As before, we register our helper script with the super framework by adding the following lines to /etc/super.tab:

/etc/super.tab:

firewire /usr/local/bin/firewire uid=root info="start/stop IEEE 1394" \
<registered user here>

After physically plugging in the hard disk and launching the Firewire HD support by issuing the command

firewire start, the disk shows up as /dev/sda and can be accessed as any other SCSI disk.

6

Manual System Configuration

6. 1. Environment

We find it amazing how broken the default setup is. Depending on how we login, we end up with a completely

different environment. The PATH variable, for example, is unnecessarily set (or modified) by init, login and al-

most every shell profile. It’s not too complicated to harmonise things a little bit.

/etc/environment:

/etc/environment: default environment sourced by
− login sh/bash using ’. /etc/environmnt’
− login csh/tcsh using ’eval ‘/usr/local/bin/readenv /etc/environment‘’
− /etc/X11/Xsession.d/10−source−environment using ’. /etc/environment’
set default locale
export LANG=C
set path
export PATH="/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin"
xprint
export XPSERVERLIST="‘/etc/init.d/xprint get_xpserverlist‘"
export XPRINTER=lp0

$HOME/.environment:

$HOME/.environment: local environment sourced by
− login sh/bash using ’. $HOME/.environmnt’
− login csh/tcsh using ’eval /usr/local/bin/readenv $HOME/.environment’
− $HOME/.Xsession using ’. $HOME/.environment’
add $HOME/bin to the path
export PATH="$HOME/bin:$PATH"

49

50 6. Manual System Configuration

/etc/profile:

/etc/profile: system−wide shell profile for
− interactive login bash
− all sh
source the default environment
if [−f /etc/environment]; then
. /etc/environment

fi
find out, whether we are a BASH or interactive SH
BASH: source /etc/bash.bashrc
interactive SH: set prompt
case $BASH in
bash)
if [−f /etc/bash.bashrc]; then

. /etc/bash.bashrc
fi
;;

*)
case "$−" in

i)
if ["‘id −u‘" −eq 0]; then

PS1=’# ’
else

PS1=’$ ’
fi
export PS1
;;

*)
;;

esac
;;

esac
set default file permissions
umask 022

/etc/bash.bashrc:

/etc/bash.bashrc: system wide shell profile for
− interactive non−login bash
set default prompt depending on UID and TERM
if ["‘id −u‘" −eq 0]; then
DELIM="# "

else
DELIM="$ "

fi
if ["$TERM" == "linux"]; then
PS1="\[\033[4m\]\h:\[\033[0m\] \w"$DELIM

else
PS1="\[\033[4m\]\h:\[\033[0m\] "$DELIM

fi
export PS1
set shell option "check−window−size"
shopt −s checkwinsize

$HOME/.profile:

$HOME/.profile: local shell profile for
− interactive login bash
− all sh
source the local environment
if [−f $HOME/.environment]; then
. $HOME/.environment

fi
find out, whether we are called as BASH
BASH: source $HOME/.bashrc
case $BASH in
bash)

6. 1. Environment 51

if [−f $HOME/.bashrc]; then
. $HOME/.bashrc

fi
;;

*)
;;

esac

$HOME/.bashrc:

$HOME/.bashrc: local shell profile for
− interactive non−login bash
set xterm titlebar
case "$TERM" in
xterm)
PROMPT_COMMAND=’echo −e −n "\033]2;xterm@$HOSTNAME $PWD\007"’
export PROMPT_COMMAND
;;

*)
;;

esac
set prompt depending on UID and TERM
if ["‘id −u‘" −eq 0]; then
DELIM="# "

else
DELIM="$ "

fi
case "$TERM" in
linux)
export PS1="\[\033[1m\]\u\[\033[0m\]:\w "$DELIM
;;

*term)
export PS1="\[\033[1m\]\u\[\033[0m\] "$DELIM
;;

esac
set colours and options for ’ls’
eval ‘dircolors −b /etc/default/dircolors‘
alias ls=’ls −AF −−color=auto’
aliases for safety
alias rm=’rm −i’
alias cp=’cp −i’
alias mv=’mv −i’

/etc/csh.login:

/etc/csh.login: system−wide shell profile for
− login csh/tcsh
eval default environtment
if (−f /etc/environment && −x /usr/local/bin/readenv) then
eval ‘/usr/local/bin/readenv /etc/environment‘

endif
set default file permissions
umask 022

/etc/csh.cshrc:

/etc/csh.cshrc: system−wide shell profile for
− all csh/tcsh
find out whether we are an interactive tcsh
interactive tcsh: set prompt according to UID and TERM
if (‘id −u‘) then
set delim = ">"

else
set delim = "#"

endif
if ! ($?0 && $?tcsh) then
bindkey "\e[1˜" beginning−of−line # Home
bindkey "\e[7˜" beginning−of−line # Home rxvt

52 6. Manual System Configuration

bindkey "\e[2˜" overwrite−mode # Ins
bindkey "\e[3˜" delete−char # Delete
bindkey "\e[4˜" end−of−line # End
bindkey "\e[8˜" end−of−line # End rxvt
if ("$?TERM" == "linux") then
set prompt = "%U%m%u:%B%/%b"$delim" "

else
set prompt = "%U%m%u:"$delim" "

endif
endif

$HOME/.login:

$HOME/.login: local shell profile for
− login csh/tcsh
eval the local environment
if (−f $HOME/.environment && −x /usr/local/bin/readenv) then
eval ‘/usr/local/bin/readenv $HOME/.environment‘

endif

$HOME/.cshrc:

$HOME/.cshrc: local shell profile for
− all csh/tcsh
find out whether we are an interactive tcsh
if ! ($?0 && $?tcsh) then
set xterm titlebar
switch ($TERM)
case *xterm*:
alias precmd ’echo −n "\033]2;xterm@${HOST} $cwd\007"’
breaksw

default:
breaksw

endsw
prompt
if ($TERM == "linux") then
set prompt = "%B%n%b %/ > "

else
set prompt = "%B%n%b > "

endif
set colours and options for ’ls’
eval ‘dircolors /etc/default/dircolors‘
alias ls ’ls −F −−color=auto’
aliases for safety
alias rm ’rm −i’
alias cp ’cp −i’
alias mv ’mv −i’
#−−− endif
endif

/etc/X11/Xession.d/10-source-environment:

/etc/X11/Xdession.d/10−source−environment: global X session startup script
source the default environment
if [−f /etc/environment]; then
. /etc/environment

fi

$HOME/.Xsession:

#!/bin/sh
$HOME/.Xsession: local X session startup script
setup environment
if [−f $HOME/.environment]; then
. $HOME/.environment

fi
setup some fancy desktop background
xsetbg /usr/share/backgrounds/propaganda/vol13.5/A−Little−Exercise−1.JPG

6. 2. Network Profile Management 53

start fvwm as window/session manager
fvwm

Note: Contrary to popular belief, the existence of the environment variable PS1 does not indicate an interactive

shell. If the current shell is the non-interactive child of an interactive shell, it inherits PS1 from the parent shell.

We hav e to test the shell flags for interactivity.

Source of /usr/local/bin/readenv:

/* readenv.c
* a little hack to read a file containing statements like
* export VAR=VALUE
* and then print them as
* setenv VAR VALUE
* to stdout.
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int main (int argc, char **argv)
{

char string[2048], *var, *val;
FILE *file;

if (argc != 2) return EXIT_FAILURE;
if ((file = fopen(argv[1], "r")) == NULL) return EXIT_FAILURE;

do
{

fgets(string, sizeof(string), file);
if (!feof(file))
{

val = strstr(string, "export");
strsep(&val, " ");
var = strsep(&val, "=");
if (var && val) printf("setenv %s %s;", var, val);

}
}
while (!feof(file));

fclose(file);

return EXIT_SUCCESS;
}

Note: If we replace export and setenv with alias, this program can also be used to read a shell independent alias

definition file.

6. 2. Network Profile Management

Originally, we had installed a nifty package called laptop-net, which was supposed to autodetect to which net-

work our machine was connected to and then automagically reconfigure the system correspondingly. Unfortu-

nately, this package never worked as advertised and the package maintainer did not bother to answer emails. We

therefore decided to scrap laptop-net and roll our own replacement.

Similarly as the laptop-net package, we make the distinction between a network scheme and a network profile. A

scheme describes the network interface and the network connection, whereas a profile describes the system con-

figuration, which is selected for a given scheme. The advantage of this setup is that we can this way easily map

the same profile to different schemes or different profiles to the same scheme.

The different schemes are defined in the network interface description file /etc/network/interfaces:

54 6. Manual System Configuration

/etc/network/interfaces:

List of automatically initialised interfaces:
auto lo
Definition of the loop−back interface:
iface lo inet loopback
Definition of the WLAN0 interface and scheme mappings:
mapping wlan0
script /usr/local/bin/netscheme

Definition of the WLAN0 scheme "wlan0−home":
iface wlan0−home inet dhcp
wireless_mode managed
wireless_nick <nick>
wireless_essid <essid>
wireless_channel <channel>
wireless_enc on
wlan_ng_authtype opensystem
wlan_ng_priv_key128 true
wlan_ng_key0 01:02:03:04:05:06:07:08:09:0A:0B:0C:0D
wlan_ng_key1 11:12:13:14:15:16:17:18:19:1A:1B:1C:1D
wlan_ng_key2 21:22:23:24:25:26:27:28:29:2A:2B:2C:2D
wlan_ng_key3 31:32:33:34:35:36:37:38:39:3A:3B:3C:3D
up /usr/local/bin/profile−select
down /usr/local/bin/profile−deselect

Definition of the ETH0 interface and scheme mappings:
mapping eth0
script /usr/local/bin/netscheme

Definition of the ETH0 scheme "eth0−work":
iface eth0−work inet static
address xxx.yyy.zzz.149
netmask 255.255.255.0
broadcast xxx.yyy.zzz.255
network xxx.yyy.zzz.0
gateway xxx.yyy.zzz.254
dns_domain <fqdn>
dns_nameservers xxx.yyy.1.1 xxx.yyy.1.5
up /usr/local/bin/profile−select
down /usr/local/bin/profile−deselect

Definition of the ETH0 scheme "eth0−local":
iface eth0−local inet static
address 10.0.0.1
netmask 255.255.255.0
broadcast 10.0.0.255
network 10.0.0.0
gateway 10.0.0.2
up /usr/local/bin/profile−select
down /usr/local/bin/profile−deselect

Definition of the ETH0 scheme "eth0−dhcp":
iface eth0−dhcp inet dhcp
up /usr/local/bin/profile−select
down /usr/local/bin/profile−deselect

The script /usr/local/bin/netscheme reads the current network scheme for the given interface, which is saved in

the file /var/stete/network/scheme.$INTERFACE.

/usr/local/bin/netscheme:

#!/bin/sh
INTERFACE=$1
SCHEMEFILE=/var/state/network/scheme.$INTERFACE
touch $SCHEMEFILE
cat $SCHEMEFILE

The two interfaces eth0 and wlan0 and their associated schemes are managed by the two scripts /usr/local/bin/

eth0 and /usr/local/bin/wlan0, respectively, which differ only in the definition of the assigned interface.

6. 2. Network Profile Management 55

/usr/local/bin/eth0:

#!/bin/sh
prog=‘basename $0‘
test "X$SUPERCMD" = "X$prog" || exec /usr/bin/super $prog ${1+"$@"}
PATH="/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin"
ADDRESS=""
INTERFACE=eth0
#INTERFACE=wlan0
SCHEMEFILE=/var/state/network/scheme.$INTERFACE
touch $SCHEMEFILE
case "$1" in

load)
modprobe $INTERFACE
;;

unload)
modprobe −r $INTERFACE
;;

up|start)
echo "$INTERFACE: start"
ifup $INTERFACE 2> /dev/null
;;

down|stop)
echo "$INTERFACE: stop"
ifdown $INTERFACE 2> /dev/null
rmmod −a; rmmod −a
;;

restart)
echo "$INTERFACE: restart"
ifdown $INTERFACE 2> /dev/null
sleep 1
ifup $INTERFACE 2> /dev/null
;;

scheme)
if [−z "$2"]; then

cat $SCHEMEFILE | sed "s/−/ /" | awk ’{print $2}’
else
echo "$INTERFACE−$2" > $SCHEMEFILE

fi
;;

*)
SCHEME=‘cat $SCHEMEFILE | sed "s/−/ /" | awk ’{print $2}’‘
SCHEMES=‘grep iface /etc/network/interfaces | grep $INTERFACE | sed "s/−/ /" | awk ’{printf "%s ", $3 }’‘
echo "Usage: $INTERFACE [up|start|down|stop|restart|scheme [xyz]]"
echo "where xyz is one of: $SCHEMES"
echo "Current scheme is: $SCHEME"
;;

esac

After the interface was brought up with the command wlan0 up, the script profile-select tries to match the as-

signed IP number against a list of possible IP numbers to select the appropriate network profile. This profile is

the installed by copying configuration files and by starting or stopping system services. After the interface was

brought down, the script profile-deselect reverts to a special default profile called offline, which does not map to

a network scheme.

/usr/local/packages/network/bin/profile-select:

#!/bin/sh
PROFILE_DIR="/etc/network/profiles"
PROFILE_STATE_FILE="/var/run/network/profile"
Load current profile
PROFILE_CUR=‘cat $PROFILE_STATE_FILE | awk ’{print $3}’‘
PROFILE_NEW="offline"
Select new profile
ADDRESS=‘ifconfig $IFACE | grep inet | sed "s/:/ /" | awk ’{print $3}’‘
for PROFILE in $(cd $PROFILE_DIR; ls −d [a−z0−9]* 2> /dev/null); do
PATTERNS="$PROFILE_DIR/$PROFILE/patterns"

56 6. Manual System Configuration

if [−r "$PATTERNS"]; then
for PATTERN in $(cat $PATTERNS); do
case $ADDRESS in

($PATTERN)
PROFILE_NEW=$PROFILE
break 2
;;

esac
done

fi
done
echo −n "Switching to profile "$PROFILE_NEW": "
If the new and current profiles are the same, exit here
["$PROFILE_NEW" != "$PROFILE_CUR"] || exit 0
Run the Stop−Scripts for the current profile
cd $PROFILE_DIR/$PROFILE_CUR/rc.d
for SCRIPT in $(echo "K[0−9][0−9]*"); do
if [−n "$SCRIPT"]; then
echo −n "."
case "$SCRIPT" in

(*.sh)
/bin/sh ./$SCRIPT stop &> /dev/null
;;

(*)
./$SCRIPT stop &> /dev/null
;;

esac
fi

done
Copy all profile specific files for the new profile
cd $PROFILE_DIR/$PROFILE_NEW/files.d
tar cf − . | (cd /; tar xf −)
Run Start−Scripts for the new profile
cd $PROFILE_DIR/$PROFILE_NEW/rc.d
for SCRIPT in $(echo "S[0−9][0−9]*"); do
if [−n "$SCRIPT"]; then
echo −n "."
case "$SCRIPT" in

(*.sh)
/bin/sh ./$SCRIPT start &> /dev/null
;;

(*)
./$SCRIPT start &> /dev/null
;;

esac
fi

done
Save new profile
echo $PROFILE_CUR" −−> "$PROFILE_NEW > $PROFILE_STATE_FILE
echo " done."

/usr/local/packages/network/bin/profile-deselect:

#!/bin/sh
PROFILE_DIR="/etc/network/profiles"
PROFILE_STATE_FILE="/var/run/network/profile"
Load the current and new profile
PROFILE_CUR=‘cat $PROFILE_STATE_FILE | awk ’{print $3}’‘
PROFILE_NEW="offline"
echo −n "Switching to profile "$PROFILE_NEW": "
If the new and current profiles are the same, exit here
["$PROFILE_NEW" != "$PROFILE_CUR"] || exit 0
Run Stop−Scripts for the current profile
cd $PROFILE_DIR/$PROFILE_CUR/rc.d
for SCRIPT in $(echo K[0−9][0−9]*); do
if [−n "$SCRIPT"]; then
echo −n "."

6. 2. Network Profile Management 57

case "$SCRIPT" in
(*.sh)

/bin/sh ./$SCRIPT stop &> /dev/null
;;

(*)
./$SCRIPT stop &> /dev/null
;;

esac
fi

done
Copy all profile specific files for the new profile
cd $PROFILE_DIR/$PROFILE_NEW/files.d
tar cf − . | (cd /; tar xf −)
Run the Start−Scripts for the new profile
cd $PROFILE_DIR/$PROFILE_NEW/rc.d
for SCRIPT in $(echo S[0−9][0−9]*); do
if [−n "$SCRIPT"]; then
echo −n "."
case "$SCRIPT" in

(*.sh)
/bin/sh ./$SCRIPT start &> /dev/null
;;

(*)
./$SCRIPT start &> /dev/null
;;

esac
fi

done
Save new profile
echo $PROFILE_CUR" −−> "$PROFILE_NEW > $PROFILE_STATE_FILE
echo " done."

In contrast to the laptop-net package, where a special daemon is supposed to watch the ethernet interface for net-

work connects and disconnects, we have to bring up our interfaces manually using the two scripts eth0 and

wlan0. This is no great inconvenience, since this ifd daemon is one part of the laptop-net package, which does

not work as advertised.

The actual network profiles are defined in the directory /etc/network/profiles. Each profile corresponds to a sub-

directory, whose name is the name of the profile. Within this subdirectory, there are two more subdirectories

named files.d and rc.d, repectively, as well as one text file name patters.

The patterns file is a simple list of IP numbers (possibly containing the wildcard *, one IP number per line), to

which the corresponding profile should apply:

/etc/network/profiles/at-work/patterns:

xxx.yyy.zzz.*
XXX.YYY.ZZZ.34

The files.d subdirectory contains a tree of more subdirectories and files. This tree is copied as a whole into the

root directory / using the tar command just after the network interface has been brought up. Subsequently, all

system services named Snn_service in the rc.d directory are started. After the interface has been brought down,

all system services named Knn_service are stopped.

The offline profile is special and gets selected if no network scheme is active. This profile may contain the files.d

and rc.d directories. The patterns file is not necessary.

Now we want to transfer control of all network related system startup scripts to our network profile management

— without confusing the Debian package management of course. To do so, we have to remove the symlinks

from the /etc/rcN.d directories and install them in the /etc/network/profiles/XXXX/rc.d, where XXXX is the

name of our profiles. Since the Debian boot-script manager update-rc.d will reinstall these links as long as it find

the corresponding script in /etc/init.d, we have to div ert these to a different location.

58 6. Manual System Configuration

Diverting the boot scripts from init:

#!/bin/sh
mkdir /etc/network/init.d
PACKAGES="dns−clean fetchmail ippl lprng ntp ntpdate ppp scandetd ssh xinetd"
for p in $PACKAGES; do
dpkg−divert −−rename −−divert /etc/network/init.d/$p /etc/init.d/$p
update−rc.d $p remove

done

Now we go to the rc.d directories and create the new symlinks by hand.

Creating the new startup/shutdown symlinks (example):

#> cd /etc/network/profiles
#> mkdir −p XXXX/rc.d YYYY/rc.d ZZZZ/rc.d
#> cd XXXX/rc.d
#> ln −s ../../../init.d/ssh S20ssh
#> ln −s ../../../init.d/ssh K20ssh

To integrate the VPN tunnel into this network profile management, we define a special network profile vpn,

which is not mapped to a scheme but can simply replace the current profile on a given scheme.

To initialise the VPN tunnel and to switch to the corresponding profile, we use a simple script:

/usr/local/bin/vpn:

#!/bin/sh
prog=‘basename $0‘
test "X$SUPERCMD" = "X$prog" || exec /usr/bin/super $prog ${1+"$@"}
PATH="/bin:/usr/bin:/usr/local/bin:/sbin:/usr/sbin"
ADDRESS=""
export DISPLAY=":0.0"
case "$1" in

up|start)
/usr/local/bin/xterm −geometry 156x26−0−0 −e vpnclient connect XXXX &
while ["$ADDRESS" == ""]; do

ADDRESS=‘vpnclient stat tunnel | grep "Client address" | awk ’{print $3}’‘
sleep 1

done
/usr/local/packages/network/bin/vpn−select
;;

down|stop)
kill ‘pidof vpnclient‘ &> /dev/null
kill ‘pidof vpn‘ &> /dev/null
/usr/local/packages/network/bin/vpn−deselect
;;

*)
echo "Usage: vpn [up|start|down|stop]"
;;

esac

Note: This script sets DISPLAY=:0.0" and assumes that root has access to this display. Note also: XXXX is the

name of the configured VPN profile,

We hav e to register this script with the super package by adding the following stanza to the configuration file:

/usr/local/bin/vpn:

vpn /usr/local/bin/vpn uid=root info="start/stop VPN" \
<user>

The two scripts vpn-select and vpn-deselect have a similar functionality to profile-select and profile-deselect

whith the only exception that we don’t hav e to map a profile but select the special profile vpn after the VPN tun-

nel has been established and revert to the previously active profile after the VPN tunnel has been closed.

6. 2. Network Profile Management 59

/usr/local/packages/bin/vpn-select:

#!/bin/sh
PROFILE_DIR="/etc/network/profiles"
PROFILE_STATE_FILE="/var/run/network/profile"
VPN_STATE_FILE="/var/run/network/vpn"
Load current profile
PROFILE_CUR=‘cat $PROFILE_STATE_FILE | awk ’{print $3}’‘
PROFILE_NEW="offline"
Select new profile
ADDRESS=‘vpnclient stat tunnel | grep "Client address" | awk ’{print $3}’‘
for PROFILE in $(cd $PROFILE_DIR; ls −d [a−z0−9]* 2> /dev/null); do
PATTERNS="$PROFILE_DIR/$PROFILE/patterns"
if [−r "$PATTERNS"]; then
for PATTERN in $(cat $PATTERNS); do

case $ADDRESS in
($PATTERN)

PROFILE_NEW=$PROFILE
break 2
;;

esac
done

fi
done
echo "PROFILE: " $PROFILE_NEW
If the new and current profiles are the same, exit here
["$PROFILE_NEW" != "$PROFILE_CUR"] || exit 0
Run the Stop−Scripts for the current profile
cd $PROFILE_DIR/$PROFILE_CUR/rc.d
for SCRIPT in $(echo "K[0−9][0−9]*"); do
if [−n "$SCRIPT"]; then
case "$SCRIPT" in

(*.sh)
/bin/sh ./$SCRIPT stop
;;

(*)
./$SCRIPT stop
;;

esac
fi

done
Copy all profile specific files for the new profile
cd $PROFILE_DIR/$PROFILE_NEW/files.d
tar cf − . | (cd /; tar xf −)
Run Start−Scripts for the new profile
cd $PROFILE_DIR/$PROFILE_NEW/rc.d
for SCRIPT in $(echo "S[0−9][0−9]*"); do
if [−n "$SCRIPT"]; then
case "$SCRIPT" in

(*.sh)
/bin/sh ./$SCRIPT start
;;

(*)
./$SCRIPT start
;;

esac
fi

done
Save new profile
echo $PROFILE_CUR" −−> "$PROFILE_NEW > $VPN_STATE_FILE

/usr/local/packages/bin/vpn-deselect:

#!/bin/sh
PROFILE_DIR="/etc/network/profiles"
PROFILE_STATE_FILE="/var/run/network/profile"
VPN_STATE_FILE="/var/run/network/vpn"

60 6. Manual System Configuration

Load the current and new profile
PROFILE_CUR=‘cat $VPN_STATE_FILE | awk ’{print $3}’‘
PROFILE_NEW=‘cat $PROFILE_STATE_FILE | awk ’{print $3}’‘
echo "PROFILE: " $PROFILE_NEW
If the new and current profiles are the same, exit here
["$PROFILE_NEW" != "$PROFILE_CUR"] || exit 0
Run Stop−Scripts for the current profile
cd $PROFILE_DIR/$PROFILE_CUR/rc.d
for SCRIPT in $(echo K[0−9][0−9]*); do
if [−n "$SCRIPT"]; then
case "$SCRIPT" in

(*.sh)
/bin/sh ./$SCRIPT stop
;;

(*)
./$SCRIPT stop
;;

esac
fi

done
Copy all profile specific files for the new profile
cd $PROFILE_DIR/$PROFILE_NEW/files.d
tar cf − . | (cd /; tar xf −)
Run the Start−Scripts for the new profile
cd $PROFILE_DIR/$PROFILE_NEW/rc.d
for SCRIPT in $(echo S[0−9][0−9]*); do
if [−n "$SCRIPT"]; then
case "$SCRIPT" in

(*.sh)
/bin/sh ./$SCRIPT start
;;

(*)
./$SCRIPT start
;;

esac
fi

done
Save new profile
echo $PROFILE_CUR" −−> "$PROFILE_NEW > $VPN_STATE_FILE

Last but not least we need a small init script, which brings our network profile management into a well defined

state upon booting the machine:

/etc/init.d/network_profile:

#!/bin/sh
if [! −d /var/run/network]; then
mkdir /var/run/network

fi
echo "offline −−> offline" > /var/run/network/profile
echo "offline −−> offline" > /var/run/network/vpn

We link this new script into the runlevel directories /etc/rcN.d either by hand or using the update-rc.d command.

6. 3. X Fontpath Configuration

First of all, there is no real need to install a font server on our laptop. Font servers are typically needed, where

we have a bunch of diskless graphics terminals (X terminals), which need to download the fonts from some-

where. But our laptop will certainly not play the font server for somesuch terminals. If available on the local net-

work, we may want to configure for such an external font server, though.

Our display resolution is 133 dpi. The pixmap fonts of XFree86 come, however, in two flavours only: 75 dpi and

100 dpi. We can immediately forget about installing the 75 dpi fonts and settle on the 100 dpi fonts. But even

6. 4. Installing the Cyberbit Unicode TrueType Fonts 61

these fonts turn out to be somewhat small when displayed at 133 dpi. Scaling bitmapped fonts is a big no-no,

though. It’s therefore a good idea to install some natively scalable fonts, e.g. Type 1, Speedo and TrueType fonts.

Since that company, whose name reminds us at a brand of toilet paper, has removed its hitherto freely download-

able TrueType fonts, we have to install the msttcorefonts package from the testing distribution, if we want those

fonts. Using the Debian font manager package defoma, the installation of the Type 1, Speedo and TrueType fonts

is painless. To make use of all these fonts, we only have to adapt the X server configuration file /etc/X11/

XF86Config-4:

/etc/X11/XF86Config-4:

Section "Files"
External Fontserver:
FontPath "tcp/fontserver:7100"
Local Fontserver:
FontPath "unix/:7100"
Unscaled Bitmap Fonts:

FontPath "/usr/X11R6/lib/X11/fonts/100dpi:unscaled"
FontPath "/usr/X11R6/lib/X11/fonts/misc:unscaled"

Scalable TrueType and CID Fonts (via DeFoMa):
FontPath "/var/lib/defoma/x−ttcidfont−conf.d/dirs/TrueType"
FontPath "/var/lib/defoma/x−ttcidfont−conf.d/dirs/CID"

Scalable Speedo and Type1 Fonts:
FontPath "/usr/X11R6/lib/X11/fonts/Speedo"
FontPath "/usr/X11R6/lib/X11/fonts/Type1"

Scaled Bitmap Fonts:
FontPath "/usr/X11R6/lib/X11/fonts/75dpi"
FontPath "/usr/X11R6/lib/X11/fonts/misc"
EndSection

Note: We should replace fontserver with the name of our external fontserver (if any). Removing the entry for the

local fontserver, if there is none installed, speeds up things considerably. Scaling bitmapped fonts is ugly.

6. 4. Installing the Cyberbit Unicode TrueType Fonts

As far as we know, the Cyberbit fonts are among the most complete Unicode TrueType fonts (containg nearly

30000 glyphs). It’s therefore a good idea to install them.

Installing CyberBit TrueType Fonts:

#> mkdir −p /usr/local/share/fonts/truetype
#> cd /usr/local/share/fonts/truetype
#> wget ftp://ftp.netscape.com/pub/communicator/extras/fonts/windows/Cyberbit.ZIP
#> unzip Cyberbit.ZIP
#> mv Cyberbit.ttf CyberBit.ttf
#> rm Cyberbit.ZIP
#> defoma−hints truetype CyberBit.ttf >> localfont.hints

Now we hav e to edit the hint-file manually. Unfortunately, the defoma documentation is somewhat lacking what

concerns the installation of large Unicode fonts spanning many codesets. Our hint file is therefore largely based

on guesswork.

/usr/local/share/fonts/truetype/localfont.hints:

category truetype
begin /usr/local/share/fonts/truetype/CyberBit.ttf
Family = BitstreamCyberbit
FontName = BitstreamCyberbit−Roman
Encoding = Unicode
Location = English
Charset = ISO10646−1
UniCharset = ISO8859−1 ISO8859−2 ISO8859−3 ISO8859−4 ISO8859−5 ISO8859−6 ISO8859−7 ISO8859−8 ISO8859−9 ISO8859−10 ISO8859−11 ISO8859−12 ISO8859−13 ISO8859−14 ISO8859−15 KOI8−R KOI8−U JISX0208 JISX0212 JISX0201 KSX1001 KSX1003 GB3212 GBK GB18030 BIG5 BIG5−H
GeneralFamily = Roman Mincho Symbol

62 6. Manual System Configuration

Weight = Medium
Width = Variable
Shape = Serif Upright
Foundry = bitstream
Priority = 20
X−Foundry = bitstream
X−Family = cyberbit
X−Weight = medium
X−Slant = r

end

Finally, we register the fonts with defoma.

Registering the Cyberbit Fonts with defoma:

#> defoma−font −v register−all /usr/local/share/fonts/truetype/localfont.hints

6. 5. Configuring the Syslog Daemon

Debian’s default configuration of the syslog daemon is a mess. Fortunately, the rest of Debian (including the con-

figuration of cron) is very well done, so that it is extremely painless to switch to a different configuration.

/etc/syslog.conf:

#
SYSLOG by facility
#
auth,authpriv,security.* −/var/log/service.auth
cron.* −/var/log/service.cron
daemon.* −/var/log/service.daemon
kernel.* −/var/log/service.kernel
lpr.* −/var/log/service.lpr
mail.* −/var/log/service.mail
news.* −/var/log/service.news
syslog.* −/var/log/service.syslog
uucp.* −/var/log/service.uucp

local0.* −/var/log/service.local0
local1.* −/var/log/service.local1
local2.* −/var/log/service.ppp
local3.* −/var/log/service.local3
local4.* −/var/log/service.local4
local5.* −/var/log/service.local5
local6.* −/var/log/service.local6
local7.* −/var/log/service.local7
#
SYSLOG by level
#
*.debug −/var/log/level.debug
*.warning −/var/log/level.warning
*.error /var/log/level.error
*.crit /var/log/level.critical
*.alert /var/log/level.alert
*.emerg *

Reconfiguring the Syslog Daemon:

#> /etc/init.d/sysklogd stop
#> rm ‘syslogd−listfiles −a‘
#> dpkg−divert −−rename /etc/service.conf
#> vi /etc/syslog.conf
#> /etc/init.d/sysklogd start

6. 7. Extending a Logical Volume 63

6. 6. Three Finger Salute

We want to be able to shutdown or reboot our machine from the text console by pressing <CTRL-ALT-DEL>

and <CTRL-ALT-INS>, respectively. Both can be configured in /etc/inittab, the former one directly, the latter one

by using the kbdrequest feature and defining the key KeyboardSignal as <CTRL-ALT-INS> in the kernel

keymaps.

/etc/console/linux-kbdrequest.inc:

control alt keycode 110 = KeyboardSignal

Modification of /etc/console/uk.kmap:

include "linux−kbdrequest"

Modification of /etc/inittab:

What to do when CTRL−ALT−DEL is pressed.
ca:12345:ctrlaltdel:/sbin/shutdown −t1 −a −h now
Action on special keypress (CTRL−ALT−INS)
kb::kbrequest:/sbin/shutdown −t1 −a −r now

6. 7. Extending a Logical Volume

Sonner or later we will run out of space on our /home partition. No problem: We just extend the corresponding

Logical Volume. Doing so is extremely simple and easy.

Extending the Logical Volume /dev/disk/home:

#> umount /home
#> tune2fs −O ˆhas_journal
#> e2fsadm −L +10G /dev/disk/home
#> tune2fs −O has_journal
#> mount /home

