
GWM Manual

The X11 Generic Window Manager

August 1999, Version 1.8d

Colas Nahaboo
colas@sa.inria.fr

Koala Project — BULL Research

©BULL 1989–1995

2

Copyright restrictions1

Copyright 1989–1995 GROUPE BULL

Permission to use, copy, modify, and distribute this software and its documentation for

any pur pose and without fee is hereby granted, provided that the above copyr ight

notice appear in all copies and that both that copyr ight notice and this permission

notice appear in supporting documentation, and that the name of GROUPE BULL not

be used in adver tising or publicity pertaining to distribution of the software without

specific, written prior permission. GROUPE BULL makes no representations about

the suitability of this software for any pur pose. It is provided ‘‘as is’’ without express

or implied warranty.

GROUPE BULL disclaims all warranties with regard to this software, including all im-

plied warranties of merchantability and fitness. In no event shall GROUPE BULL be

liable for any special, indirect or consequential damages or any damages whatsoever

resulting from loss of use, data or profits, whether in an action of contract, negligence

or other tortious action, arising out of or in connection with the use or perfor mance of

this software.

Acknowledgments

Although I am the only designer and implementor of gwm, the project could not

have been completed without the help of many individuals, namely:

Vania Joloboff, who created the KOALA BULL team at INRIA and started the gwm

project, and KOALA members Vincent Bouthors and Daniel Dardailler who tested

gwm and wrote wool profiles.

Gilles Kahn, Francis Montagnac, and the CROAP team at INRIA who intensively

used gwm and provided me with machines to develop it. A special thanks goes to

Janet Incerpi who corrected the documentation.

All my beta testers: Raphael Bernhard, Didier Poirot, Matthieu Devin, Christophe

Muller, Laurent Hill, Anne Marie Bustos, Simon Kaplan, . . . and last, but certainly

not least, Bob Scheifler himself!

And since July 1989, gwm has been enhanced by the growing community of the

gwm−talk mailing list, whose members are alas too numerous to be all cited here,

but are giving me invaluable feedback.

Colas Nahaboo
INRIA – KOALA Project · BP 93 – 06902 Sophia Antipolis · FRANCE

Support

Although gwm comes without ANY guarantee nor official support, you can

send any questions regarding gwm by electronic mail to gwm@mirsa.inria.fr,2

and you can find the latest gwm version by anonymous ftp on ftp.x.org

(/contrib/window_managers) and on koala.inria.fr (pub/gwm), where the mail-

ing lists are also archived (pub/gwm/gwm−talk−archive). And a WWW page exists

at http://www.inria.fr/koala/gwm.

1 This is the same copyright as the X Window System distribution.
2 Where you can also mail requests to be added to the mailing list gwm−talk@mirsa.

inria.fr for general comments, and reporting (and be warned of reported) bugs.

Contents

1. Usage 6

1. 1. Options 6

1. 2. Environment variables 8

1. 3. Files 8

1. 4. Description 8

2. Overview 10

2. 1. GWM window objects: the wobs 10

2. 2. WOOL objects 11

2. 3. Operation 13

2. 4. Lazy evaluation 13

2. 5. Screen-dependent objects 13

2. 6. Sending commands to GWM 14

2. 7. Communicating with GWM interactively 14

2. 8. Checking that GWM is running 14

3. The standard GWM packages 15

3. 1. The standard profile .profile.gwm 15

3. 1. 1. Mouse buttons 15

3. 1. 2. Customization 16

3. 2. Jay Berkenbilt’s virtual screen vscreen.gwm 21

3. 3. Anders Holst’s virtual screen virtual.gwm 21

3. 4. Adaptation of virtual.gwm std−virtual.gwm 22

3. 5. Duane Voth’s rooms dvrooms.gwm 22

3. 6. Group iconification icon−groups.gwm 23

3. 7. Opaque move move−opaque.gwm 24

3. 8. Delta deltabutton.gwm 24

3. 9. Floating windows float.gwm 24

3. 10. Unconfined-move unconf−move.gwm 25

3. 11. Suntools-keys suntools−keys.gwm 25

3. 12. Mike Newton’s keys mon−keys.gwm 25

3. 13. Standard pop-up menus std−popups.gwm 25

3. 14. FrameMaker support framemaker.gwm 27

3. 15. Gosling Emacs mouse support emacs−mouse.gwm . . . 27

3. 16. The customize function 27

3. 17. Customization via menus custom−menu.gwm 28

3. 18. Pick a window with the mouse pick.gwm 29

3. 19. Sample window decorations *−win.gwm 30

3. 19. 1. Simple window simple−win.gwm 30

3. 19. 2. Simple editable window simple−ed−win.gwm . . 31

3. 19. 3. Frame frame−win.gwm 32

3. 19. 4. timeout-win timeout−win.gwm 32

3

4 Contents

3. 20. Sample icons *−icon.gwm 33

3. 20. 1. Simple icon simple−icon.gwm 33

3. 20. 2. Terminal display icon term−icon.gwm 34

3. 21. Utilities utils.gwm 34

3. 21. 1. Standalone buttons: place−3d−button 34

3. 21. 2. Matching windows by regular expressions:

match−windowspec 35

3. 21. 3. insert-at 35

3. 22. User-contributed utilities 36

3. 22. 1. Near-mouse near−mouse.gwm 36

3. 23. Programming styleguide for the standard distribution . . . 36

3. 23. 1. The simple−win example 36

3. 24. Other profiles 37

3. 24. 1. The MWM emulation package mwm.gwm 37

3. 24. 2. The TWM emulation package twm.gwm 38

3. 24. 3. The VTWM emulation package vtwm.gwm . . . 39

3. 24. 4. The FVWM emulation package fvwm.gwm . . . 39

3. 24. 5. The fast profile fast.gwm 39

3. 25. Troubleshooting 40

4. WOOL Reference manual 41

5. Quick Reference 102

5. 1. WOOL constructs 102

5. 2. Flow control 102

5. 3. I/O 102

5. 4. Atoms 103

5. 5. Namespaces 103

5. 6. Functions 103

5. 7. Lists 103

5. 8. Strings 103

5. 9. Logical functions 104

5. 10. Numbers 104

5. 11. Graphical primitives 104

5. 12. System interface 104

5. 13. Events 105

5. 14. Ke yboard modifiers 106

5. 15. Access to X11 primitives 106

5. 16. Global variables controlling GWM behavior 107

5. 17. Colors 107

5. 18. Wobs 107

5. 19. Plugs 108

5. 20. Bars 108

5. 21. Menus 108

5. 22. Windows 108

5. 23. Window characteristics 109

5. 24. Screen 110

Contents 5

5. 25. Context 110

5. 26. Cursors 110

5. 27. Communication with other X11 clients 110

5. 28. Session manager functions 111

5. 29. Fonts 111

5. 30. Fsms 111

5. 31. Meter 111

5. 32. Hooks 111

5. 33. Debugging tools 111

1. Usage

gwm [−1DstqmFiawWIPr?] [−x screens] [−f profile] [−p path] [−d display]

1. 1. Options

The following command-line options3 are supported:

−f filename

Names an alternate file as a gwm startup file. Default is .gwmrc.gwm (note

that the .gwm extension is optional, as for any wool file).

For instance, to use the motif emulation package, type gwm −f mwm.

−p path

Gives the path to be searched for wool or bitmap files when loaded,

including the startup file. Overrides the setting by the environment

variable GWMPATH. Defaults to .:$HOME:$HOME/gwm:GWMDIR, where

GWMDIR is the local directory where gwm is installed (normally,

/usr/local/lib/X11/gwm).

You can append or prepend a path to the current path by preceding

the path given as argument to the −p option by + (for appending) or −

(for prepending). For instance, if you want to search the directory

/usr/local/gwm before the standard ones (including your homedir), just

say: −p −/usr/local/gwm.

−d display

Specifies the name of the display whose windows should be managed,

such as unix:0. The −d is optional, you can type gwm unix:0.

−x screens

Do not manage the screens given in the comma-separated list of numbers,

as in: −x 2,5,3. Normally, gwm manages all the screens of the given dis-

play.

−1 Manages only the given screen, e.g., gwm −1 foo:0.2 manages only the

third screen of display number 0 on the ‘‘foo’’ machine. Same as defining

the GWM_MONOSCREEN environment variable.

−I Continues reading wool expressions from standard input and prints their

result. Useful for interactively testing code. Recommended use of gwm is

to run it interactively in an xterm, for instance with: xterm −title Gwm

−e fep gwm −IP &.

3 The options follow the getopt(3) conventions: options can be in any order, a space is op-

tional between an option and its argument; they can be combined (as in −Dmt), but all options

must appear before any argument, which for gwm is the display to be managed.

6

1. 1. Options 7

−P When used with −I, makes gwm issue a simple prompt displaying the cur-

rent parenthesis level.

−D Enables debugging mode for wool files. In this version the only effect of

debug mode is to continue reading a file after a wool error occurred. De-

fault behavior is to abort reading a file after an error. Thus, if you modi-

fied your profile and introduced an error, gwm will refuse to complete exe-

cution, use gwm −D to run it anyway.

−s Synchronize X calls, useful for debugging but slower.

−t Turns tracing on, as if you had done the call (trace t) in your profile.

−q (Quiet.) Does not print the startup banner, and sets the wool variable

gwm−quiet to 1.

−m Maps all toplevel windows already on screen. Useful after unmapping

some windows by accident.

−F Does not freeze the server during pop-up menus and move and resize of

windows, which is the default behavior.

−i Disables the setting of input focus by gwm (set−focus has no effects,

except (set−focus ()), which resets the focus to PointerRoot) on a win-

dow, keypresses go to the window under the cursor. Very useful to debug

profiles with only one screen.

−a Asynchronously handle moves and resizes, do not cancel a move or a re-

size operation if the user released the button before the grid appeared,

which is the default behavior.

−k process-id

Kills a process once initialization is done. Takes a process ID as an argu-

ment. When gwm has finished initializing, it sends a signal (SIGALRM

by default, but this can be changed by −K, see below) to the given process.

Thus, with the following lines in your init shell script:

sleep 15 & pid=$!

xterm −title Gwm −e fep gwm −k $pid −IP &

wait $pid

your script will pause until gwm has finished initializing.

−K signal

sets the signal to use (number) instead of SIGALRM for the −k option

above.

−r Normally, when gwm starts and sees that another window manager still

has control of the display, gwm aborts with a warning message. Specify-

ing −r makes it retry until it can get control.

−w window-id

Makes gwm decorate only one window, giv en by its ID, a decimal number.

−W Makes gwm decorate all windows on screen, even if another window man-

ager is already in charge.

−? This, or any inv alid option lists the available options and shows the default

path defined at compile time by your local installer.

8 1. Usage

1. 2. Environment variables

gwm can make use of the following environment variables:

GWMPATH for the path to search for files. If unset, this defaults to

.:$HOME:$HOME/gwm:GWMDIR, where GWMDIR is the local

directory in which all the standard gwm files are installed

(normally /usr/local/lib/X11/gwm). Overridden by the −p

command line option.

GWMPROFILE for the name of the profile file. Defaults to .gwmrc.gwm.

Overridden by the −f command line option.

DISPLAY for the name of the X11 display to use, such as unix:0.0.

Overridden by the −d command line option.

GWM_MONOSCREEN if set will make gwm manage only the given screen.

NO_KOALA_SPY

NO_GWM_LOG By default, gwm silently sends one UDP packet when started

to the author with the hostname of the machine as contents, to

maintain some rough statistics of use. If you don’t want this

to happen, you can set either of these two variables to any-

thing, or recompile with either of these preprocessor symbols

defined.

1. 3. Files

gwm needs at least one file for its startup, .gwmrc.gwm, which must be in gwm’s

path. New users do not need one, since a default profile should already be present in

the default path. The standard profile (see Section 3.1, pg. 15) makes use of the

.profile.gwm file in the home directory.

The value of the default path can be printed by calling gwm with the −? command

line option.

The standard extensions used for gwm file names are:

.gwm for wool files.

.xbm for X11 bitmap files, such as those created with bitmap(1).

.xpm for X11 pixmap files, which is an ASCII portable format for distributing

color images (see the pixmap−load function, pg. 76).

1. 4. Description

gwm is a window manager client application of the X11 window server specified in

the display argument (or the DISPLAY environment variable if no argument is given),

extensible via a built-in Lisp interpreter, wool (Window Object Oriented Lisp) used

to build Wobs (Window Objects) which are used to decorate the windows of the oth-

er X11 applications running on the display. gwm tries to adhere to the inter-client

communication conventions (ICCC) to communicate between X11 clients and thus

should be compatible with any well-behaved X11 application.

On startup, gwm interprets its profile to build wobs describing how to decorate user

windows, which we will call Clients. Then it creates Windows around each client

on the screens attached to the managed display. A Window is made of 4 (optional)

Bars on the 4 sides of the client window. Each of these bars consists of a variable

1. 4. Description 9

number of Plugs, the most primitive wobs. Menus can be made with a list of bars.

To each of these objects is associated a FSM (Finite State Machine) describing their

behavior in terms of wool code triggered by X or wool ev ents.

When gwm wants to decorate a window, it calls the user-defined wool function

describe−window which must return a list of two window descriptions (one for the

window itself, and one for its icon) made by the window−make wool primitive de-

scribing the window. To build these descriptions the user can query the client win-

dow for any X11 properties and use the X11 Resource Manager to decide how to

decorate it.

The screens must also be described by such a description that gwm will find by call-

ing the user-defined wool function describe−screen for each managed screen.

2. Overview

gwm like any other window manager is in charge of all that is exterior to other ap-

plication windows on the display. It performs its task by decorating the existing

windows on the screen with its own windows. The appearance and behavior of these

windows are described by the user through programs written in the Lisp-like wool

language, which are interpreted by the built-in wool interpreter of gwm.

The gwm window manager is composed of 2 modules: the window manager itself,

gwm, and the Lisp interpreter wool. The role of the garbage-collected wool ob-

jects is to build shared descriptors that will be used by gwm to build its (non-shared

and non-garbage-collected) objects.

gwm was designed in 1988 and was developed on 68020 unix workstations with

4 Mbytes of main memory, and thus tradeoffs in its design had been made to make it

as efficient as current C window managers, often at the expense of ease of cus-

tomization. But the power is there under the hood if you need it.

My main research interest was on window management metaphors, but the design

and development of the platform flexible enough to implement my views as wool

profiles has taken me too much time, and I did not find time to implement the

rooms-like metaphors I wanted to try. But I, and some others, still use only gwm as

it provides features yet unseen in any other window manager to date.

2. 1. GWM window objects: the wobs

gwm is built upon the notion of a wob, which, not unlike an X widget, is an object

composed of:

• an X11 window used to display the wob on the screen (output);

• a wool finite state machine used to trigger wool functions in response to

X11 events sent to the wob (input).

Wobs are not directly created with wool constructors, they are described, and gwm

uses this description to physically create the wobs when it needs to, when decorating

a new client window for instance.

Like any X11 window, the user can choose the width, color(s), and tiling pixmap of

the border of the wob (which is considered to be in the wob for input purposes).

There are four kinds of wobs:

Window An X11 application, such as xterm(1) or xclock(1), usually opens one

or more windows directly on the screen (in fact, the root window).

We will call these windows, which are not created by gwm, client

windows. gwm will ‘‘decorate’’ these client windows by reparenting

them, i.e., by creating a window wob and making the client window a

child of this newly created window.

10

2. 2. WOOL objects 11

A window is a wob made by creating a new toplevel X window, re-

parenting the client window as its child, and framing it with four (op-

tional) bars, children of the new toplevel window. Note that the in-

side of a window wob is thus never visible, since it is entirely covered

by the bars and the client window.

Bar The only extensible wob, it has a width and an extensible length. It is

a row (vertical or horizontal) of bars or plugs centered on the axis of

the bar with optional stretchable space between them. Horizontal

bars contains vertical bars and vertical bars contains horizontal bars.

Plug The simplest of all wobs, its contents are just a graphic which is dis-

played in its X window. It thus acts like some kind of button. Cur-

rent graphics are text and pixmaps.

Menu A bar of bars (horizontal menus consist of a horizontal bar of vertical

bars, vertical menus are a vertical bar of horizontal ones).

Menus are the only ‘‘stand-alone’’ wobs, their windows are directly

created by gwm on the screen. They can be used to implement pop-

up, pull-down, or fixed menus, control panels, message windows, and

icon boxes.

Other GWM objects

Other gwm objects are just X objects (fonts, pixel colors, . . .) that are referenced

by their X ID, and are accessed via encapsulating wool types, such as Numbers or

Pixmaps.

2. 2. WOOL objects

wool is a Lisp interpreter of a special kind, since it has some important design dif-

ferences from ‘‘real’’ Lisps:

incremental garbage collection

wool has a reference-count driven memory management scheme. This

means that the load of memory management is evenly distributed on all

phases of computing, thus avoiding the dreadful garbage collection pauses.

But, since reference count memory management doesn’t work with circu-

lar lists, no wool function allows the user to do physical replacements on

lists.4

no real lists, but arrays

wool lists are internally stored as arrays, speeding up list scanning. We

do not really need the generality of the chained cells model, since we do

not want to have circular lists.

monovalued atoms

In classical Lisp dialects, you can give a variable and a function the same

name without conflict. In wool, an atom can only have one value.

internally typed objects

All of the wool interpreter is written in an object oriented way. This is

not visible to the user, since we do not offer a way to define user types, but

it greatly improves the modularity of the code, and allows us to provide

generic functions, such as the + function operating on numbers, lists, or

strings.

4 In fact, some do, but are flagged as ‘‘for experts only’’ in the documentation.

12 2. Overview

wool alas lacks lots of features from real Lisps, for the sake of a small footprint.

But the wool code accounts for about 50k of the total text size of 150k of gwm.

The different wool objects are:

atoms associate any wool object to any other via a hash table.

Only one wool object can be referenced, which implies

that a (setq foo 1) assignment will remove any function

definition made by (defun foo . . .). There is no limit on

the length of atom names. Atom names can be composed

of any printable ASCII character except " ’ (), and can-

not begin with a digit.

active values are predefined atoms that can be used as atoms or functions.

If foo is an active value, then foo and (foo) give the same

result, and the calls (setq foo obj) and (foo obj)

have the same effect.

Active values are just like other atoms, but setting and eval-

uating them trigger specific functions to allow for greater

expressive power. For instance, just setting a wob’s

borderwidth will actually resize the corresponding X

window’s border, and declaring a local value for it by a

(with (wob−borderwidth 3) . . .) will actually change the

borderwidth of the current wob on the screen during the

execution of the with body, and then revert to the previous

value.

numeric variables are atoms that can only store integer values. Like active

values, they can be used as variables or functions. Setting

them to () or t is equivalent to setting them to 0 or 1.

namespaces are sets of variable names that have a different value for

each state of the namespace. For instance, the most useful

namespace is screen., having one state for each screen. So

each name in this namespace, such as white, can hold a

screen-dependent value that will always evaluate to the cor-

rect value relative to the screen.

integers are 32-bit signed integer values.

strings are 8-bit strings of characters, with no size limit.

functions may or may not evaluate their arguments and may have a

fixed or variable arity.

fsms the finite state machines. They are wool objects shared by

wobs and respond to both X events and wool-made events,

the so-called ‘‘user’’ events.

wob descriptors: plugs, bars, menus, clients

are used by gwm to build its wobs.

X objects: pixmaps, cursors, events, labels

allow X resources to be shared via the wool memory man-

agement.

internal objects used to improve efficiency. (These include collections and

quoted expressions.)

2. 5. Screen-dependent objects 13

2. 3. Operation

When you start gwm, it:

• connects to the display to be managed, to initialize its X11 structures.

• reads and interprets the user’s wool profile (searched for in a user-defined path,

see Usage). This profile must define at least two wool functions:

describe−window which will be called by gwm to know how to decorate

any client window and must return a list of two win-

dow descriptors, one for the window itself, and one for

the associated icon;

describe−screen which will be called by gwm for each managed screen

and must return a window descriptor.

• checks if it is the only window manager running; if not, it aborts.

• decorates the managed screens by calling the user-defined describe−screen

function for each one, with the screen active value being set to the current

screen.

• decorates all already mapped client windows by calling describe−window, with

the current client window being set to each window.

• executes the (user-defined) opening function for each screen.

• enters the gwm main loop, which consists of:

− waiting for an X event;

− examining the received event, and if it is for an existing wob, sends it to

the fsm of this wob, else if it is a new window which is being mapped for

the first time, decorates it (by calling describe−window).

When an event is sent to a fsm, it is matched against the transitions in the cur-

rent state of the fsm, and as soon as one matches, the corresponding wool ex-

pression is evaluated, and the fsm changes state if necessary. If no transition is

waiting for the event, it is discarded.

2. 4. Lazy evaluation

For sub-wobs of wobs, i.e., bars of a window, plugs of a bar, bars of a menu, and

menu of any wob, lazy evaluation is performed. That is, on the realization of the

wob the field is re-evaluated if the result is not of the expected type. This allows for

constructs such as:

(plug−make ’(label−make window−name))

which creates a plug whose text is fetched as the name of the window on each real-

ization; you do not have to explicitly eval a quoted expression.

2. 5. Screen-dependent objects

An invocation of gwm can manage all screens attached to a display (there is one

keyboard and mouse per display), but in X, screens are very distinct worlds. If you

create a pixmap or a color on a screen, you cannot use it on another one. The list of

objects created on one screen that cannot be used on another is:

14 2. Overview

Objects made by

colors color−make

pixmaps pixmap−make, label−make, active−label−make

cursors cursor−make

menus menu−make

And of course, all the wobs and windows are screen-specific.

2. 6. Sending commands to GWM

Any program can make gwm execute any wool code by putting the wool code to

execute as an ASCII string in the GWM_EXECUTE property on any root window or

client window of the screens managed by gwm, which will parse and evaluate the

given string with the current window being the one on which the property was set.

This feature is built in, so that it will work regardless of the profile used.

You can also use the program gwmsend in the contrib/gwmsend directory in the dis-

tribution to send commands to gwm. It takes its first argument and puts it in the

GWM_EXECUTE property on the root window. It can thus be used like:

gwmsend ’(? "Hello there\n")’

2. 7. Communicating with GWM interactively

If you want to communicate with gwm interactively, via wool, you can use the −I

option to make gwm read its standard input for commands. A recommended use is

running gwm not directly but instead a command like:

xterm −title gwm −e fep gwm −IP

fep is a pseudo-tty driver that gives its argument line editing and history capabilities,

like ile or rlwrap, the GNU readline library wrapper.

A deprecated alternative, which uses the GWM_EXECUTE property, is the gwmchat

program (in the contrib/gwmchat directory). Start gwmchat in any terminal window

with the same flags as you would have giv en gwm. It forks off gwm and then waits

for commands to send to it. Output from gwm goes to the same terminal window.

In your .xinitrc or .xsession or correspondingly, where you normally would start

gwm, you may instead have something like:

xterm −e gwmchat

or:

xterm −geometry =80x16−1−1 −e gwmchat −f vtwm

gwmchat can be compiled to use the readline package. This is strongly recom-

mended if it is available and if gwmchat is to be used in other ways than from inside

Emacs, since otherwise it will have no command line editing mechanisms whatsoev-

er (other than erasing backwards).

2. 8. Checking that GWM is running

On each screen it manages, gwm will maintain a hidden window whose X ID will be

given as a 32-bit ID in the GWM_RUNNING property on the root window and on

the hidden window itself. Thus, if this window exists, and has the GWM_RUN-

NING property set, you can be sure that the screen is managed by gwm.

3. The standard GWM packages

This chapter describes the wool packages available on the standard gwm distribu-

tion. The names of the involved files are listed in the title of each section.

gwm does not try to enforce any policy in writing profiles, but for the sake of sim-

plicity and maintainability, all the wool packages delivered with gwm will try to be

compliant with a set of rules described in section 3.23, page 36, which should assure

the compatibility between them.

Note: Distributed code is normally indented under Emacs by Alan M. Caroll’s amc−

lisp.el emacs-lisp package, which is now included in the gwm distribution in the

contrib/lisp−modes subdirectory.

You can have a look at my personal profile in the file data/profile−colas.gwm if

you are looking for actual examples.

3. 1. The standard profile .profile.gwm

The standard profile can be customized to your taste by creating a .profile.gwm file

in your home directory, or by copying the one in the gwm distribution directory into

your home directory and editing it.5

3. 1. 1. Mouse buttons

The default behavior for clicking of the mouse buttons in a window decoration or in

an icon is:

left button moves the window. Releasing the button actually moves the win-

dow, pressing another button while still holding down the left but-

ton cancels the move operation.

middle button in a window

resizes the window. The size of the window will be displayed in

the upper-left corner of the screen. Releasing the button actually

resizes the window, pressing another button while still holding

down the middle button cancels the resize operation.

middle button in an icon

de-iconifies the icon.

right button brings up a pop-up menu for additional functions, such as iconifi-

cation and destruction.

These functions are enabled only in the gwm-added decoration around the window,

or anywhere in the window if the Alternate modifier key (or Meta or Left key on

some keyboards) is pressed when clicking, in the uwm style of interaction.

5 The standard profile is the default one, which you get if you do not have a .gwmrc.gwm

file in your home directory. It is a real-estate overlapping environment. It is defined in the

.gwmrc.gwm file in the gwm distribution directory.

15

16 3. The standard GWM packages

Moreover, if you click in the icon in the upper left of the frame around xterm win-

dows with the left or right button, the window will be iconified, and with the middle

button, it will be iconified and the icon moved just underneath the pointer. You can

still move the icon elsewhere by dragging it while the middle button is down.

Whether you want the window to be raised on top of others when performing a

move, resize, or (de-)iconify operation can be toggled by setting to t or () the global

values raise−on−move, raise−on−resize, and raise−on−iconify.

3. 1. 2. Customization

Customization is achieved by creating a .profile.gwm file in your home directory

(or anywhere in your GWMPATH). In this file you can set the variables to modify the

standard profile to suit your taste. Note that you must set variables used in decora-

tions before loading this decoration by a set−window or set−icon−window call.

Your .profile.gwm will be loaded once for each screen managed, and since

pixmaps, colors, cursors and menus are screen-dependent objects, try to define them

as names in the screen. namespace (see namespace−make, pg. 74).

Mouse and key bindings

The standard mouse button bindings can be changed by re-defining the default states

(see state−make, pg. 87) for a click in a window decoration, an icon, and the root

window, which are, respectively, the global variables window−behavior, icon−

behavior, and root−behavior. These states will be used to build the fsms of the

windows, icons, and root window. The state standard−behavior is included in both

window and icon behaviors, so that you can add transitions to it if you want to have

them in both contexts. You may then need to redefine the events grabbed by gwm,

in the grabs variables; all events in these lists are ‘‘stolen’’ from the application and

redirected to gwm. There are three grabs variables: root−grabs, window−grabs, and

icon−grabs, pointing to the lists of events to be ‘‘grabbed’’ from all applications,

only from windows, and only from icons. That is why you can move a window by

clicking anywhere in it with the left button while pressing the Alt key: the standard

grabs consists of the list:

(list (button any with−alt)

(button select−button (together with−shift with−alt)))

If you only want to change button bindings, change the value of select−button,

action−button, and menu−button, which are initially bound to 1, 2, and 3, respec-

tively.

You need to call the reparse−standard−behaviors function after modifying any of

these states to take your changes into account. For instance, to add iconification on

the F1 function key only on windows, you would write in your .profile.gwm file:

(setq window−behavior

(state−make

(on (keyrelease "F1" alone) (iconify−window))

standard−behavior)) ; include previous actions

(reparse−standard−behaviors) ; commit changes

(setq window−grabs ; grab F1 from clients

(+ window−grabs (list (keyrelease "F1" alone))))

3. 1. 2. Customization 17

Global switches

The following global variables (which are names in the screen. namespace for all

pixmaps, colors, cursors, and menus) controlling the way the standard profile oper-

ates can be set in your .profile.gwm file:

cursor to the cursor displayed in any decoration or icon.

root−cursor to the cursor displayed on the root window. The available cursors

in the distribution are:

arrow a big arrow.

arrowhole same with a hole inside.

arrow3d a 3d-looking triangular shape.

Especially nice on a clear background.

For instance, to use the arrow3d cursor, just say:

(setq root−cursor (cursor−make "arrow3d"))

screen−tile to the pixmap used to tile the root window with. Provided bit-

maps are back.xbm (default) and grainy.xbm.

autoraise if set to t, (defaults to ()), gwm will raise on top of others the

window which has the input focus.

xterm−list the list of machines the user wants to launch a remote xterm on

(via the rxterm6 command).

xload−list the list of machines the user wants to launch a remote xload on

(via the rxload command).

icon−pixmap the pixmap to be displayed in the upper left corner of a window’s

decoration to iconify it.

to−be−done−after−setup

the list (progn-prefixed) of things to be executed after all win-

dows already present have been decorated.

look−3d to t to specify that window decoration packages that support it

should adopt a tridimensional look. The default for this variable

is () on monochrome displays and t on color and grayscale ones.

Window and icon decoration

Moreover, you can decide to change the decoration (look and feel) of a client or an

associated icon by using the following functions.

For most following functions, when a window−description is expected, it means a

X resource specification of the form:

client−class.client−name.window−name.machine−name

where *-notation, or any to mean any value for a field, is accepted. Note that all

fields are optional, except for client-class. Thus, you can say that you want all xterm

icons to be xterm−icons, except for the one named Console, on machine avahi, for

which you want to use a simple icon, by:

6 rxterm, rxload, and rx are Bourne shell scripts used to start remote xterms, xloads,

or any other X command. The rxterm script is included in the distribution, in the

contrib/rxterm subdirectory; install it and make rx and rxload as links to it.

18 3. The standard GWM packages

(set−icon−window XTerm xterm−icon)

(set−icon−window XTerm*Console.avahi simple−icon)

Note: for all functions, to set defaults for a screen type or a client class, use the any

keyword.

Note: Since version 1.7, the arguments passed to the set−window et al. functions are

evaluated at decoration time, not while reading the profile as it was the case before.

(set−window [screen-type] window-description decoration)

will tell gwm to use the decoration described in decoration for all clients

of client description window-description in the current screen of type

screen-type. decoration can be either:

• a real decoration made with a window−make call.

• a function returning a decoration when called without parameters.

• the file name (as a string or atom) of one of the standard decorations

as listed in section 3.19. The file will be loaded and should set the

decoration atom to either a real decoration or a function returning a

decoration.

For instance, the following declarations say that xterms on this screen, if it

is a monochrome one will be decorated by the simple−ed−win style, but if

the screen is a color or grayscale one, will use the simple−win decoration,

and will use the no−decoration style for windows not otherwise de-

scribed. (The no−decoration window description adds no visible decora-

tion to a window.)

(set−window mono XTerm simple−ed−win)

(set−window any XTerm simple−win)

(set−window any no−decoration)

To choose decorations on other criteria than just class, define a function

that will return a wool expression which will give the desired decoration

when evaluated. For instance, to put a simple−ed−win decoration on

all xterms, except those less than 200 pixels wide, use this in your

.profile.gwm:

(defun decide−which−xterm−deco ()

’(if (< window−width 200) (no−frame)

(simple−ed−win)))

(set−window any XTerm decide−which−xterm−deco)

For an example of an alternative choosing function, see match−

windowspec, pg. 35.

(set−icon [screen-type] window-description bitmap-file)

will associate to a client a simple icon made of the the X11 bitmap stored

in bitmap−file (with the current value of foreground and background at

the time of the call to set−icon) and the name of the icon underneath it.

If a list is given as the last argument, it is evaluated and the pixmap is tak-

en as the result of the evaluation.

Suppose that you designed a picture of a mailbox in a file named mail−

icon.xbm, sav ed it somewhere in your GWMPATH, and want to use it for

the icon of the client xmh. You would add to your .profile.gwm one of

the two forms:

(set−icon XMh mail−icon.xbm)

(set−icon XMh (pixmap−make black "mail−icon.xbm" white))

3. 1. 2. Customization 19

The icon can also be a color pixmap in the XPM format, then loaded with

the pixmap−load function. In this case, gwm supports the non-rectangular

shape that may be specified in the icon file (the transparent colors of

XPM), allowing for a great flexibility in icon design.

Note: the icon bitmap can only be set for icon decorations supporting it,

such as the (default) simple−icon decoration style.

(set−icon−window [screen-type] window-description icon-file)

This call will associate more complex icons to a given client, such as those

listed in section 3.20 (pg. 33). For instance, to have xterm icons look like

a mini computer display, add to your .profile.gwm:

(set−icon−window XTerm term−icon)

The icon-file argument can be either a client window decoration, a func-

tion returning a decoration, or a file name, as for the set−window function.

On startup, gwm does a:

(set−icon−window any any simple−icon)

Desktop space management placements.gwm

The standard profile supports functions to automatically place your windows or

icons on the screen. These functions manage only some type of clients (or all of

them if applied to the any client), and they are called with one argument set to t on

opening the window, and to () on closing (destroying) it. They are associated to

clients by the calls:

(set−placement [screen-type] window-description function-name)

for the main windows of a client.

(set−icon−placement [screen-type] window-description function-name)

for its associated icons.

The currently pre-defined placement functions are:

() does nothing, the window just maps where it was created by the client

(this is the default value).

user−positioning

asks the user to place it interactively.

rows.XXX.placement

automatically aligns the windows or icons on the sides of the screen. Re-

place XXX by one of the eight names in the following figure:

down-left

left-down

top-left

left-top

down-right

right-down

top-right

right-top

screen

20 3. The standard GWM packages

You can set the space where the XXX row liv es by issuing calls to the con-

trol function rows.limits with the syntax:

(rows.limits rows.XXX [key value] . . .)

where key is an atom setting a value (in pixels). key can be either start,

end, offset, or separator, as shown in the following figure for XXX =

top−left:

offset

separator

start

end

separator

key can also be sort, in which case the icons in this row will always be

kept sorted by the function given in the argument. This function will take

two windows as argument, and must return −1, 1, or 0 if the first window

must be before, after, or if they hav e the same precedence. As an example,

a sort−icons function is provided; if you set it as a row sorting function,

it will sort windows according to their weight as set in the property list

icon−order indexed on the class of the application.7 Windows having the

same weight are sorted by window name. If an application is not found in

this list, the value of the variable icon−order−default is used (default

100). Of course, you are free to design other sort functions.

For instance, you can manage your xterm windows by:

(set−placement XTerm user−positioning)

(set−icon−placement any XTerm rows.right−top.placement)

(rows.limits rows.right−top ’start 100 ’separator 2)

(rows.limits rows.top−left ’sort sort−icons)

You can define your own window placement functions and use them with the set−

placement call. They will be called with one argument, t when the window (or

icon) is first created, and () when the window is destroyed. This is why we needed

an interpretive extension language! An example of another placement routine is giv-

en in the user-contributed package near−mouse.gwm (see section 3.22.1, pg. 36).

(defun do−what−I−mean (flag) . . . great code . . .)

(set−icon−placement any any do−what−I−mean)

Menus

The displayed menus can be redefined by setting the following global variables to

menus made with the chosen menu package. The default package is the std−popups

(see section 3.13, pg. 25) package.

window−pop for the menu triggered in windows.

7 For instance, the default order is set by (setq icon−order ’(Xmh 10 XPostit 5 XRn 20

XClock 2 XBiff 1 XLoad 20)).

3. 3. Anders Holst’s virtual screen virtual.gwm 21

icon−pop for the menu triggered in icons.

root−pop for the menu triggered in the root window.

You can look at their standard implementation in the def−menus.gwm distribution

file.

3. 2. Jay Berkenbilt’s virtual screen vscreen.gwm

This little ‘‘virtual screen’’ package, made by Emanuel Jay Berkenbilt, MIT

(qjb@ATHENA.MIT.EDU), provides a way to use the physical screen of your work-

station as a viewport on a larger root window. You move the screen by keys (default

is Control-Alt arrows), can ask for a map of the screen to be displayed (item VS Show

in the root menu), and move back to the origin (item VS Restore in the root menu).

This quick-and-dirty package doesn’t pretend to compete with vtwm, but it is a

good start.

The current upper left of the screen is shown a cross in the map. Clicking in the map

will make it disappear, and the map is a snapshot of the current situation which is

not automatically updated.

You can customize it by setting the following variables:

vscreen.menupos the position of the VS Show/Restore entry in the root

menu, to draw a map of the screen and to move the

screen back to the origin.

vscreen.windowmenupos the position of the VS UnNail/Nail entry in the win-

dow menu to make the window move along with the

virtual screen.

vscreen.modifiers the modifiers to press together with arrow keys to

move the screen around.

vscreen.no−bindings set to t if you do not want to bind arrow keys to

vscreen.move−windows functions.

vscreen.right−left the amount that the virtual screen is moved by on a

horizontal key stroke. Defaults to half a screen.

vscreen.down−up the amount that the virtual screen is moved by on a

vertical key stroke. Defaults to half a screen.

vscreen.nailed−windows a list of windows to be carried along with the

screen. This list is a list of windowspecs (property

lists) (see match−windowspec, pg. 35).

3. 3. Anders Holst’s virtual screen virtual.gwm

This virtual screen package consists of the files virtual.gwm, virtual−door.gwm,

virtual−pan.gwm, and load−virtual.gwm. It is essentially built upon Jay Berken-

bilt’s virtual screen package, vscreen.gwm, described above. The main differences

are:

• The map looks neater, and you can specify different colors for different kinds of

windows.

• It is updated automatically when the window configuration changes.

• The map obeys some mouse events: You can move the real screen by clicking

the left button on the map, or move specific windows by dragging them on the

22 3. The standard GWM packages

map with the middle button. Just in case the map might not get updated auto-

matically in some obscure situation, you can update it by clicking the right but-

ton.

• The file virtual−door.gwm provides doors to places on the virtual screen.

• The file virtual−pan.gwm provides either autopanning or ‘‘pan on click’’, de-

pendent of the value of the variable pan−on−click.

• This package does pretend to compete with vtwm.

To use this package, load load−virtual.gwm somewhere at the end of your

.gwmrc.gwm or .profile.gwm. It will load the other three files mentioned above and

set up necessary environment. Check the files virtual.gwm, virtual−door.gwm,

and virtual−pan.gwm individually for customization variables.

3. 4. Adaptation of virtual.gwm std−virtual.gwm

To use virtual.gwm in a standard profile, load std−virtual.gwm which implements

a simple rooms style on top of virtual.gwm. Before this, you can set up a list of

room names (strings) that can be lists of room name, color of the background, and

optional context variables to customize the door buttons (see virtual−door.gwm).

For instance:

(setq std−virtual.doors

’(("Home" screen−background)

("Comp" "LightBlue3")

("Mail" (pixmap−make (color−make "seagreen3")

"grainy" (color−make "seagreen2"))

background (color−make "seagreen3"))

("WWW" lightgrey door−icon (pixmap−load "netscape−small.xpm"))

("Text" "LightYellow3")

("Games" grey)))

(load "std−virtual.gwm")

Icons then are visible in every room, and de-iconifying it via the middle button

moves you to the de-iconified window room, or you can by menu de-iconify in the

current room. Among the customizable properties are the standard attributes such as

background, foreground, font, tile, and some specific ones such as door−icon for

an icon pixmap to be displayed, and door−action for wool code to be executed

when entering a room.

3. 5. Duane Voth’s rooms dvrooms.gwm

Duane Voth (duanev@mcc.com) made a mini rooms package to manage groups of

windows. To use it, put in your .profile.gwm the line

(load "dvrooms")

before any calls to any set− . . . call. Then, with the standard profile, you can add

new rooms by the root pop-up menu, or by explicitly calling the new−dvroom−

manager function in your profile, with the name of the room as arguments.

(new−dvroom−manager "mail")

(new−dvroom−manager "dbx")

The name of the room itself is the same editable plug as the one used for the

simple−ed−win window decoration, so that you can edit it by double-clicking or

Control-Alt clicking with the left button.

3. 6. Group iconification icon−groups.gwm 23

Only one room is ‘‘open’’ (non-iconified) at a time (unless dvroom.icon−box is non-

nil), and calling the functions add−to−dvroom or remove−from−dvroom (from the

window menu or from wool) on a window will add or remove it from the group of

windows that will be iconified or de-iconified along with the room manager. Open-

ing a room will close the previously open one, iconifying all its managed windows.

New rooms start as icons.

This package will recognize as a room manager any window with the name rmgr.

You can then create new rooms by other unix processes. An X property

GWM_ROOM is maintained on windows added to rooms containing the name of

the room manager, so that rooms are not lost on restarting gwm.

Context used:

dvroom.font the font used to display the name of the room.

dvroom.background the background color.

dvroom.foreground the color of the text of the name.

dvroom.borderwidth the borderwidth of the room.

dvroom.x, dvroom.y the initial position of the room.

dvroom.name a string used to build the name of the room. Defaults

to "Room #" (a number will be concatenated to it).

edit−keys.return, edit−keys.backspace, edit−keys.delete

the keys used for editing, see simple−ed−win, pg. 31.

dvroom.auto−add if set to t (default ()), new windows are automatically

added to the current active dvroom, if there is one.

dvroom.icon−box if set to t, dvrooms are no more exclusive (i.e., open-

ing one does not close the others).

Dwight Shih (dwight@s1.gov) added the functions:

roll−rooms−up, roll−rooms−down

to sequentially open the next room. This is very handy

to bind to a function key for instance.

magic−dvroom−attach which looks for all windows with names in the form

<Room>::<Name> and incorporates them into the

dvroom <Room>, if any exists.

dvroom−remapping to unmap all windows belonging to a dvroom.

3. 6. Group iconification icon−groups.gwm

Loading the icon−groups package redefines the iconify−window function to use

only one icon for all windows of the same group. Iconifying the group leader will

iconify all the windows in the group, whereas iconifying a non-leader member of the

group will only unmap it and map the common icon if it is not already present.

You can specify which groups you do not want iconified this way by setting their

class in the list icon−groups.exclude. For instance, if you want to iconify your

XPostit windows this way, but not your Emacs or Xmh windows, add this in your

.profile.gwm:

(load "icon−groups")

(setq icon−groups.exclude ’(Xmh Emacs))

24 3. The standard GWM packages

It will also add two more items in the menu:

Iconify Group to iconify all the windows belonging to the group of the

current window.

Iconify Others to iconify all the windows belonging to the group of the

current window, but not the current window.

3. 7. Opaque move move−opaque.gwm

Loading the move−opaque package redefines the move−window function to move the

whole window, not just an outline of it. You can control which windows will be

moved this way by setting two context variables:

move−opaque.condition

will be evaluated, and if the result is non-nil, the window will be moved in

an ‘‘opaque’’ way, otherwise the standard outline dragging will be used.

Default is to move only the windows whose pixel area is less than the

move−opaque.cutoff−area value, which could be specified by:

(setq move−opaque.condition

’(< (* window−width window−height)

move−opaque.cutoff−area)

move−opaque.cutoff−area

which defaults to 250000, used when discriminating windows by size.

3. 8. Delta deltabutton.gwm

The deltabutton function is used to perform two different action on the press of a

button, depending on whether the user releases the button without moving the mouse

more than deltabutton.delta pixels (defaults to 4) in any direction. To use

deltabutton, you must have loaded the deltabutton.gwm file, and in a transition of

an fsm triggered by a buttonpress event, this function will wait for the button to be

released, and return t if the pointer has moved more than deltabutton.delta pix-

els, or () if not.

For instance, to raise a window if you click on it, and to move it only if you move

the mouse more than 4 pixels, declare in your .profile.gwm:

(load ’deltabutton)

(setq standard−behavior

(state−make

(on (buttonpress select−button alone)

(if (deltabutton)

(progn (raise−window) (move−window))

(raise−window)))

standard−behavior))

(reparse−standard−behaviors)

3. 9. Floating windows float.gwm

Rod Whitby (rwhitby@adl.austek.oz.au) made this package to interactively make

some windows always ‘‘float’’ on top of others, or always ‘‘sink’’ to the back of the

screen. Loading this package will add a multiple menu item to the window menu to

make the current window float Up, Down, or to make it a normal window back again

(item ‘‘No’’).

3. 13. Standard pop-up menus std−popups.gwm 25

3. 10. Unconfined-move unconf−move.gwm

Rod Whitby (rwhitby@adl.austek.oz.au) made this package to be able to still

move and resize windows out of screen boundaries even when you confined them by

confine−windows (see pg. 51). With this package loaded, unconfined move is ob-

tained by moving/resizing with Control-Alt mouse buttons, while Alt mouse buttons

keep moving/resizing in confined mode.

3. 11. Suntools-keys suntools−keys.gwm

Rod Whitby (rwhitby@adl.austek.oz.au) made this package to provide some sun-

tools-like keyboard shortcuts to window management functions:

L5 or F5 raise window to top, or lower it if it is already on top.

L7 or F7 iconify / de-iconify window.

3. 12. Mike Newton’s keys mon−keys.gwm

Mike Newton (newton@gumby.cs.caltech.edu) has contributed another package to

add keyboard shortcuts to window management functions.

Button 1 (alone or w/ Alt) raise or move.

Button 3 (w/ Alt-Control) iconify or raise.

F1 (alone) choose next window.

F2 (alone) choose previous.

F1 (w/ Alt) circulate down (no focus change).

F2 (w/ Alt) circulate up (no focus change).

F3 (alone) open / close.

F4 (various) change window sizes (not Emacs!).

F5 (alone) raise.

F11 or F9 (alone, in root) emergency – map everything.

F12 or F10 (alone) exec cut buffer, printing results.

3. 13. Standard pop-up menus std−popups.gwm

This package implements a very simple pop-up menu package. The variables

window−pop−items, icon−pop−items, and root−pop−items each contain a list of

menu items that will be used after reading the user’s .profile.gwm to build the

actual menus,8 which will be named window−pop, icon−pop, and root−pop.9

You can then insert or delete items in this list at will. Nil entries in this list will just

be skipped by the actual menu creation routine. You may want to use the function

insert−at (see section 3.21.3, pg. 35). dvrooms and vscreen are examples of pack-

ages adding menu items in the standard menus.

8 The actual menu will be built by loading the package whose name is defined by the value

of the variable menu.builder, thus alternative menu packages are free to redefine this value.
9 If the user defines any of these variables in his profile, it overrides the building of the cor-

responding menu from the lists.

26 3. The standard GWM packages

Menu items can be created with the help of the following functions:

(pop−label−make label)

to create an inactive label on top of the menu, where label is the string to

be displayed as the title of the menu.

(item−make label expr)

to create a label triggering a wool function call where label is the string

to be displayed as the item of the menu, and expr is wool code which will

be evaluated when releasing the button in the item.

(multi−item−make item-desc)

where item-desc can be of the form:

label creates an insensitive label with this label as text.

(label expr) creates a button with text label triggering the evalua-

tion of the wool expression expr.

() leaves an extensible space.

Note: in fact, in the preceding functions, any label can be in fact either a string, an

already built pixmap which will be used as-is, or wool code that will be evaluated

and must return a pixmap which will be used to build the menu item.

For instance, the default window menu is the list:

’((item−make "iconify" (iconify−window))

(item−make "Exec cut" (execute−string (+ "(? " cut−buffer ")")))

(item−make "client info" (print−window−info))

(item−make "redecorate" (re−decorate−window))

(item−make "kill" (if (not (delete−window)) (kill−window)))))

Moreover, you can control the appearance of the label and the items of the menu by

the following variables:

pop−item.font the font of the items.

pop−item.foreground the color of their text.

pop−item.background the color of their background. Due to the simple menu

item highlighting code in this package, all items must

have the same colors.

pop−label.font the font of the labels on top of menus.

pop−label.foreground the color of their text.

pop−label.background the color of their background.

Default action

Menus can have a default action, i.e., wool code which is triggered if the user lets

go the mouse button before the menu appears. Default actions should be as harmless

as possible, of course. They can be set by

(menu−default−action menu expr)

where menu is the menu (window−pop, icon−pop, or root−pop), and expr is the code

to be executed. Moreover,

(menu−default−item menu number)

sets the item in which the mouse cursor will be when popping up the menu (defaults

to the first item).

3. 16. The customize function 27

3. 14. FrameMaker support framemaker.gwm

This file, which you can copy into your private gwm directory and modify, attempts

to provide some support for framemaker (v3.0) windows, i.e.,

• allows clean de-iconification of dialog boxes by framemaker (such as paragraph

format) (see map−on−raise, pg. 69).

• fixes framemaker window placement to make windows appear near the mouse.

• provides relevant icon names for framemaker dialogs (they had none).

• redefines window title colors.

3. 15. Gosling Emacs mouse support emacs−mouse.gwm

This package implements a way to use the mouse with the Gosling Emacs, sold by

UniPress. You will need to load the Emacs macros contained in the gwm.ml file in-

cluded in the distribution in your Emacs. Then, in a window decorated with the

simple−ed−win package, pressing Control and:

left mouse button will set the emacs text cursor under the mouse pointer.

middle mouse button will set the mark under the mouse pointer.

right mouse button will pop a menu of commonly-used emacs functions

(execute macro, cut, copy, paste, go to a C function

definition, re-do last search).

Clicking in the mode lines will do a full screen recursive edit on the buffer if not in a

target, and in the targets

[EXIT] will delete the window if it is not the only one on the screen, or do an

exit−emacs.

[DOWN] will scroll one page down in the file.

[UP] will scroll one page up in the file.

This package is included as an example of things that can be done to work with old

non-windowed applications rather than as a recommended way of developing code.

3. 16. The customize function

(customize deco screen window-description

variable1 value1 variable2 value2 . . .)

Most following sample window and icon decorations can be tailored in a global way

by setting global variables in your .profile.gwm before using the decoration, but

these variable can be set individually to decorations by use of the customize func-

tion. For instance, since the simple-icon documentation tells you that the title is

added to icons according to the value of the simple−icon.legend global variable,

you can say that you do not want legends under your icons, except for xclocks, by:

(set−icon−window XClock simple−icon)

(setq simple−icon.legend ())

(customize simple−icon any XClock legend t)

Customize works by defining the customization items in the environment of the dec-

oration. Thus,

(customize simple−win any XClock tile t)

28 3. The standard GWM packages

will set the background tile of decoration items to t (transparent), which in the case

of simple-window will only leave the label apparent.

Note: In the current version, only the simple−win, simple−icon, and term−icon

decorations support the customize function.

The customization arguments can be given as a single list argument. In other words,

both following calls are equivalent:

(customize simple−icon any XClock

legend t background (color−make "green"))

(customize simple−icon any XClock

(legend t background (color−make "green")))

Note: Moreover, customization values can also be given as arguments to decorations

which support the customize protocol (do not forget to quote the variable names, the

decoration functions evaluate their arguments). Thus we can define a new decora-

tion clock−deco, and use it afterwards as just another decoration with the same re-

sults as the preceding examples:

(require ’simple−icon) ; simple−icon must be defined

(setq clock−deco

(simple−icon legend t background (color−make "green")))

(set−icon−window XClock clock−deco)

Warning: consecutive calls to customize on the same window description do not

append to existing values, but instead override them. In the following case,

(customize simple−win any XClock background (color−make "green"))

(customize simple−win any XClock legend "bottom")

the second line will make the system forget the first line.

3. 17. Customization via menus custom−menu.gwm

This package, written by Anders Holst, is an attempt to make it possible to change

most customizable variables in gwm via menus instead of by editing a text file. The

root menu alternative Customize will lead into a menu (or ‘‘dialogue’’) hierarchy, in

which each loaded package will be represented by a submenu, containing editable

slots for all customizable variables in the package. Changing a variable should in

most cases show an effect immediately in the environment. The changes will also be

saved in a file .customize.gwm between gwm sessions.

To use this in the standard profile, load the file custom−install.gwm at the very be-

ginning of your .profile.gwm. In the FVWM profile customization menus are al-

ready included, and in the VTWM profile they can be included by editing vtwm.gwm

so that custom−install is loaded just before the heading ‘‘User Profile’’ (the rele-

vant line is already there, just uncomment it).

Certainly, customization menus work best with packages that are adapted to them.

With a call to custom−install−symbols a gwm package can declare which vari-

ables are customizable, and with a call to custom−install−hook a piece of wool

code can be given that is run whenever any variable in the package is changed (to

give immediate feedback of the change in the environment). However, since most

gwm packages are currently not adapted to customization menus in this way, some

tricks are done by custom−install.gwm. It is assumed that all variables declared

with defaults−to are supposed to be customizable. It also knows about some pack-

ages, for which it adds hooks to call when variables change. The packages that are

most adapted to customization menus are the FVWM windows, icons, and menus.

The virtual screen package, the icon manager, and the VTWM windows, icons, and

3. 18. Pick a window with the mouse pick.gwm 29

menus, also work fairly well. On the other hand, windows that are instead custom-

ized by the customize function described above are not affected at all by these cus-

tomization menus, and changes to window decorations that cache their descriptions

(like simple−win) may not take effect until gwm is restarted.

There are some further details that must be considered to use customization menus.

Many packages store fonts and colors as their raw X IDs in the variables, rather than

the names of those fonts or colors. But a raw ID is of course not convenient for the

user to provide, and meaningless between sessions. Therefore a special construct

must be used when specifying fonts, colors, and similar objects, in the customization

menus. If the first character in the value field of a variable is a comma (,) the rest of

the value is interpreted as wool code to run to get the real value. Thus all colors

should be input in the menus as ,(color−make "yellow"), and fonts as ,(font−

make "fixed").

3. 18. Pick a window with the mouse pick.gwm

This file provides a quite handy way for the user to select a window with the mouse.

The main function is (with−picked expr) which first lets the user select a window,

and then runs expr on the selected window. This can be used from, e.g., a root

menu, to implement the style of first selecting in the menu what to do, and then what

window to do it to.

You can also use the more basic function (pick−window) which returns the wob

number of the picked window. This function considers the variable cursor, as the

cursor to show during picking.

30 3. The standard GWM packages

3. 19. Sample window decorations *−win.gwm

These are standard window decorations which can be used via the set−window func-

tion of the standard profile. They can be found in files whose names end in

−win.gwm in the distribution directory of gwm.

3. 19. 1. Simple window simple−win.gwm

This is a really simple window decoration with only a title bar on top of the window.

The name of the window is centered in the bar. The title bar and the name of the

window can change appearance when they become ‘‘active’’ (i.e., have the keyboard

focus).

This style is customizable by setting the following variables at the top of your

.profile.gwm, before any call to set−window:

simple−win.font, simple−win.active.font

the fonts used for printing the title.

simple−win.label.borderwidth, simple−win.active.label.borderwidth

the borderwidth of the title plug in the bar.

simple−win.background, simple−win.active.background

the background color of the title bar.

simple−win.label.background, simple−win.active.label.background

the background color of the title plug.

simple−win.label.foreground, simple−win.active.label.foreground

the pen color to draw the window name in the title plug.

simple−win.label.border, simple−win.active.label.border

the color of the border of the title plug in the bar.

simple−win.label

a lambda of one argument, the title of the window, that should return the

title to use in the label.

simple−win.legend

a string to know where to put the window title. Can be top, left, right,

or bottom, top being the default.

simple−win.lpad, simple−win.rpad

lpad (left padding) and rpad (right padding) are two numbers specifying

the number of elastic spaces to put before and after the label. The defaults

are 1 and 1, centering the label.

As you can see, some of the variables come in pairs, one for the ‘‘inactive’’ state, the

other for the ‘‘active’’ state. For each of them, the ‘‘active’’ one can bet set to (),

which means to just use the same value as the ‘‘inactive’’ one.

3. 19. 2. Simple editable window simple−ed−win.gwm 31

Since this decoration supports the customize function, all the above values can also

be set via the customize function, or as arguments to the function simple−win itself.

Note that in these cases you must use the name of the variables without the simple−

win.-prefix, e.g., you could have all simple-win windows with title font written in

black, except for xclock, by the calls:

(setq simple−win.active.label.foreground black)

(customize simple−win any XClock

active.label.foreground (color−make "green"))

Or we can remove the Netscape: prefix on Netscape titles by:

(customize simple−win any Netscape

label (lambdaq (s) (match "Netscape: \\(.*\\)$" s 1)))

3. 19. 2. Simple editable window simple−ed−win.gwm

This decoration has a titlebar on top of it, including an iconification plug and an

editable name plug. Moreover the whole border changes color to track input focus

changes. The look of this frame can be altered by setting the following variables:

icon−pixmap

to the pixmap to be used as iconification button.

simple−ed−win.borderwidth

to the width in pixels of the sensitive border of the window.

simple−ed−win.font

to the font used for printing the title.

simple−ed−win.active

to the color of the top bar and border, for the window having the keyboard

focus (defaults to darkgrey).

simple−ed−win.inactive

to the color of the top bar and border when the window does not have the

keyboard focus (defaults to grey).

simple−ed−win.label.background

to the background color of the name.

simple−ed−win.label.foreground

to the color of the text of the name.

When you click in the icon button at the left of the titlebar (whose pixmap can be re-

defined by setting the global variable icon−pixmap to a pixmap) with the left button,

the window is iconified. If you click with the middle button, you will be able to drag

the outline of the icon and release it where you want it to be placed.

32 3. The standard GWM packages

If you double-click a mouse button, or click with the Control and Alternate keys

pressed, in the editable name plug at the right of the titlebar, you will be able to edit

the name of the window (and the associated icon name) by a simple keyboard-driven

text editor whose keys are are given as strings in the following variables:

edit−keys.return to end editing (defaults to "Return").

edit−keys.delete to wipe off all the text (defaults to "Delete").

edit−keys.backspace to erase last character (defaults to "Backspace").

any other key to be appended to the text.

The plug will invert itself during the time when it is editable. You quit editing by

pressing Return, double-clicking in the plug, or exiting the window.

This decoration style also supports the emacs−mouse package.

3. 19. 3. Frame frame−win.gwm

look-3d t look-3d ()

This decoration consists of a frame around the window. The look of this frame can

be altered by setting the following variables:

look−3d to t to have a ‘‘3D-looking’’ frame (left figure) instead

of the ‘‘2D-looking’’ one (right figure).

frame.top−text to an object which will be evaluated to yield the text to

be put on top of the frame.

frame.bottom−text to an object which will be evaluated to yield the text to

be put on the bottom of the frame, for instance:

(setq frame.bottom−text ’(machine−name))

frame.pixmap−file to the prefix of the 8 bitmap (or pixmap) files used to

build the frame. The suffixes will be tl, t, tr, r, br, b,

bl, l, clockwise from upper left corner.

frame.pixmap−format to the format of the files: ’bitmap (default) or ’pixmap.

frame.bar−width to the width of the four bars (should match the pixmap

files).

frame.inner−border−width

to the inner border width.

3. 19. 4. timeout-win timeout−win.gwm

timeout−win allows you to specify a command to be applied to a window N sec-

onds after its creation. Very useful to get rid of unwanted pop-ups such as Xmh

mime requesters each time I go into a mail error message . . .

3. 20. 1. Simple icon simple−icon.gwm 33

It is implemented as a decoration modifier. It will add the timeout functionality to

any existing window decoration.

Important: the unix command gwmsend must be installed in your PATH. Its source

can be found in the directory contrib/gwmsend in the gwm distribution. The time-

out is implemented by forking a shell command consisting of a sleep N followed

by a call to gwmsend sending back to gwm the wool command to destroy the win-

dow (or whatever other command was specified).

Usage: (timeout−win decoration options . . .)

where options are:

delay specifies the delay in seconds before the action takes place. Defaults

to 3 seconds. 0 means that the command is run immediately, so

gwmsend is not needed.

command a wool function name that will be executed without arguments in the

context of the window if it is still there. Defaults to delete−window.

Note: you must quote the delay and command keywords, e.g.:

(require ’timeout−win) ; load it if wasn’t there

(set−window Xmh.confirm ; mime popups from xmh

(timeout−win simple−win

’delay (if (= window−size ’(370 70)) 0 10)))

In the above I discriminate the Xmh popups to put away immediately by their size.

Popups whose size is 370 × 70 will be removed immediately, the others have a 10 s

timeout. Another example is to iconify Xrn Information windows after 2 seconds:

(set−window XRn.Information

(timeout−win simple−win ’delay 2 ’command "iconify−window"))

This pseudo-decoration obeys the customize protocol under the class name

TimeoutWin and name timeout−win, so that you can say

(customize simple−win any Xmh.confirm ’font fixed)

(customize timeout−win any Xmh.confirm ’command "lower−window")

If you want to be able to set a command to save a window from its coming death,

you can make a button or menu item executing (timeout−win.remove−exec) in the

context of the window.

3. 20. Sample icons *−icon.gwm

These are standard icon window descriptions which can be used via the set−icon−

window function of the standard profile. They can be found in files whose names end

in −icon.gwm in the distribution directory of gwm.

3. 20. 1. Simple icon simple−icon.gwm

This icon consists of an (optional) image and the icon-name of the window below it.

The image is by priority order:

the user pixmap set by the set−icon call (see section 3.1.2, pg. 18).

the window the client has set in its hints to the window manager to use as

an icon.

the pixmap the client has set in its hints to the window manager to use for

its icon.

34 3. The standard GWM packages

Used context variables:

simple−icon.font for the font used to display the icon name.

simple−icon.legend a boolean flag telling to add the icon name under

the icon for the application. Defaults to (). Can

be top, bottom, left, right, according to which

side you want it. t is a shortcut for bottom.

simple−icon.foreground the pen color of the icon name.

simple−icon.background the background color of the icon.

simple−icon.borderwidth the borderwidths used.

simple−icon.borderpixel the color of the borders.

stretch allows the legend to expand past the icon graphic

itself without being clipped by it. stretch can

have the value t for centered, or top, bottom,

left, or right, for the direction to extend to.

simple−icon.label a lambda of one argument, the name of the icon,

that should return the title to use in the label. See

simple−win for examples.

This decoration supports the customize function (section 3.16, pg. 27).

3. 20. 2. Terminal display icon term−icon.gwm

This icon looks like a small computer display with the window name inside it. Note

that the icon resizes itself to adjust to the dimensions of the displayed name.

Used context variables:

term−icon.font for the font used to display the icon-name.

term−icon.foreground for the color of text and decorations (defaults

to black).

term−icon.background for the background color (defaults to white).

term−icon.borderwidth defaults to 0.

term−icon.borderpixel defaults to black.

This decoration supports the customize function (section 3.16, pg. 27).

3. 21. Utilities utils.gwm

This package implements some useful functions for the wool programmer. It is au-

tomatically loaded by the standard profile. List this file to see the current ones.

3. 21. 1. Standalone buttons: place−3d−button

(place−3d−button text pencolor maincolor wool-expression)

(place−button text pencolor highlight normal pressed shadow wool-expression)

Will create and place as an independent window (of client class Gwm, client name

button, and window name text) a 3D-looking graphic with visual feedback when

pressed, which will execute the wool-expression when pressing any button in it.

3. 21. 3. insert-at 35

pencolor is the color of the text, and maincolor must be one of the shaded colors in

the /usr/lib/X11/rgb.txt file.10 If you want to tailor the colors yourself, use the

place−button form, where you must choose the highlight (upper-left) and shadow

(lower-right) border colors as well as the background colors of the button when

normal and pressed. place−3d−button in fact calls (place−button text pencolor

maincolor1 maincolor2 maincolor3 maincolor4 wool-expression).

To hav e a demo of this feature, you can execute the (demo−button) function, which

will make a button cycling through all the colors in the shaded−colors list.

You can implement different behaviors depending on button pressed and modifier by

looking at the value of (current−event−modifier) and (current−event−code) in

the wool-expression body. Look at the end of the file profile−colas.gwm for exam-

ples.

The following code will create a button that will toggle iconification of all the big

postits on my screen, the button being in the ‘‘thistle’’ range of colors.

(place−3d−button "Post Big" black ’thistle

’(for window (list−of−windows)

(if (= window−name ’PostItNoteBig)

(if window−is−mapped (iconify−window)

(progn (map−window) (raise−window))))))

thistle2 thistle3

thistle4thistle1 thistle1

normal pressed

3. 21. 2. Matching windows by regular expressions: match−windowspec

(match−windowspec windowspec)

where windowspec is a property list with ’client−class, ’client−name, and

’window−name as possible tags. windowspec can itself contain regular expressions.

(match−windowspec (list ’client−class "XTerm"

’window−name ".*build"))

will match (return t) all xterms whose window name ends in ‘‘build’’.

This code was provided by Jay Berkenbilt (qjb@ATHENA.MIT.EDU).

3. 21. 3. insert-at

(insert−at element list position)

Utility function to insert an element element in a list list at position position. The

list is physically modified in place. Useful to insert items in menu lists.

10 For instance, pink is such a color, since the color table contains the entries pink1, pink2,

pink3, and pink4 in light-to-dark order. The full list of such colors is in the shaded−colors

list.

36 3. The standard GWM packages

3. 22. User-contributed utilities

Some user-provided useful little hacks or programming helps have been included,

too.

3. 22. 1. Near-mouse near−mouse.gwm

This placement function was provided by Eyvind Ness (eyvind@hrp.no). Saying:

(require ’near−mouse)

(set−placement XPostit near−mouse)

will make all newly created XPostit windows pop up near the mouse.

3. 23. Programming styleguide for the standard distribution

The styleguide to write decorations is to be written. Until then, look at existing files

such as .gwmrc.gwm, .profile.gwm, simple−ed−win.gwm to see what is the current

style. We will appreciate all feedback to these conventions, which are not settled

yet.

The main idea is that a decoration package foo should, when loaded, define a foo

function which, once executed, will return the appropriate decoration, using the pre-

defined behaviors.

All persistent variables of the packages should be prefixed by the package name, as

in foo.bar.

Do not forget to define in fact one decoration per screen or be cautious not to mix

colors, pop-ups, pixmaps and cursors from screen to screen. Use defname screen.

to declare screen-specific variables.

Users should be allowed to customize the decoration by setting global variables in

their .profile.gwm files, which will be interpreted during the loading of your pack-

age.

The fsm you make for your package should be constructed from the behaviors

defined in .gwmrc.gwm, such as standard−behavior, standard−title−behavior,

window−behavior, icon−behavior, root−behavior, or already built fsms such as

fsm, window−fsm, icon−fsm, root−fsm.

All values you want to attach to windows or wobs should be put as properties in the

property-list of the wobs, by calls to (## ’key wob value).

The main idea is, if you must modify .gwmrc.gwm to code your window decoration,

mail us your desiderata and/or enhancements, so that we should be able to keep the

same .gwmrc for all decorations. I maintain mailing lists for people to exchange

ideas about gwm. Mail me a request if you are interested at gwm@mirsa.inria.fr.

3. 23. 1. The simple−win example

In the distribution, you can look at the simple−win.gwm file to see how to define a

proper decoration. In this file you will see how to define a decoration that supports

multiple screens, and some user customization via the customize function. The

trick is not to forget to put at build time all necessary information (in the property

field of the window) for using later during normal operation, where all code is trig-

gered by the decoration fsms.

3. 24. 1. The MWM emulation package mwm.gwm 37

3. 24. Other profiles

Other nice profiles have also been developed in parallel to the standard profile, but

they hav e not been integrated yet, i.e., they need their own .gwmrc.gwm.

3. 24. 1. The MWM emulation package mwm.gwm

Glen Whitney made this profile emulating the Motif Window Manager, improving

on an earlier version by Frederic Charton. To use it, give the command line option

−f mwm to gwm.

You can customize it by copying into your gwm directory (in your GWMPATH) the

following files and editing them:

mwmrc.gwm for all the resources normally settable in .mwmrc for

mwm, except for the menus.

mwm−menusrc.gwm for the description of the menus.

mwmprofile.gwm for miscellaneous wool customizations (needs wool

knowledge).

You may want to get the mwm manual for the description of all the available func-

tions. For instance, to set the input focus management from ‘‘click to type’’ (default)

to ‘‘real estate’’ (input focus is always to the window underneath the pointer), edit

the file mwmrc.gwm and change the line (: keyboardFocusPolicy ’explicit) to

(: keyboardFocusPolicy ’pointer).

Note: This profile is still mono-screen, i.e., to manage 2 screens on your machine,

you must run 2 gwms, for instance by:

gwm −1 −f mwm unix:0.0 &

gwm −1 −f mwm unix:0.1 &

38 3. The standard GWM packages

3. 24. 2. The TWM emulation package twm.gwm

Arup Mukherjee (arup@grasp.cis.upenn.edu) made a twm emulator. To use it,

give the command line option −f twm to gwm.

Note: This package is superseded by Anders Holst’s vtwm package, see below.

You can customize it by copying into your gwm directory (in your GWMPATH) the

following files and editing them:

twmrc.gwm Contains numerous options (mainly colors) that can be set from

here. The file is well commented, and most of the color vari-

ables have self-explanatory names. You can also specify from

here whether or not the icon manager code is to be loaded. It

also contains definitions for the three variables emacs−list,

xterm−list, and xload−list. The specified hostnames are

used to build menus from which you can have gwm execute the

respective command on a host via the ‘‘rsh’’ mechanism (note

that your .rhosts files must be set up correctly for this to

work). Note that unlike with the standard profile, the rxterm

and rxload scripts are NOT used.

twm−menus.gwm The contents of all the menus are specified here. To change

more than the xterm, xload, or emacs lists, you should modify

this file.

twm.gwm The only things that one might wish to customize here are the

behaviors (which specify the action of a given button on a giv-

en portion of the screen).

3. 24. 5. The fast profile fast.gwm 39

3. 24. 3. The VTWM emulation package vtwm.gwm

This profile, written by Anders Holst (aho@nada.kth.se), is a thorough extension

and revision of the TWM profile. It tries to provide most of the look and options

you have in the the real vtwm and tvtwm window managers. To use it, give the

command line option −f vtwm to gwm.

All user customization is done in the file vtwmrc.gwm. This includes colors and gen-

eral appearance, menus, and behaviors. Copy vtwmrc.gwm to your home directory

and make the appropriate changes. The file is thoroughly commented, and should be

self-explaining.

This profile uses the virtual screen package virtual.gwm (see section 3.3). You can

move around on the virtual screen by clicking in the map, in the ‘‘doors’’, on the pan

bars at the edges of the screen, or using the arrow keys together with some suitable

modifiers (Alt is default).

The profile also provides one or multiple icon managers, optionally together with

normal icons. See the examples in vtwmrc.gwm to see how multiple icon managers

are set up. (These icon managers can be used in other profiles as well, by loading

the file load−icon−mgr.gwm. Look in this file for details.)

The VTWM profile honors the use of the standard functions set−window, set−icon,

set−icon−window, set−placement, and set−icon−placement. Also, the VTWM

windows and icons are compatible with, and can thus be used in, the standard pro-

file.

3. 24. 4. The FVWM emulation package fvwm.gwm

The FVWM profile by Anders Holst is mainly just the VTWM profile with win-

dows, icons, and menus looking as in the fvwm window manager. The virtual

screen package (virtual.gwm, section 3.3) is used, and can be made to pan in a way

similar to that in the real fvwm. Howev er, the characteristic ‘‘Good Stuff’’ panel of

fvwm is currently not included. To use the FVWM profile, give the command line

option −f fvwm to gwm.

This profile uses the custom−menu package (section 3.17) for its customization. Se-

lect Customize in the root menu to enter the customization menu hierarchy.

The FVWM profile honors the use of the standard functions set−window, set−icon,

set−icon−window, set−placement, and set−icon−placement. Also, the FVWM

windows and icons can be used separately from this profile in, for example, the stan-

dard profile.

3. 24. 5. The fast profile fast.gwm

This is a minimal profile, without any window titles, comparable to the obsolete

window manager uwm. Useful for quickly restarting a simple window manager

while debugging, or for just browsing the code as an example.

40 3. The standard GWM packages

3. 25. Tr oubleshooting

To debug a wool program, you can:

• use the trace function to trace code execution or evaluate an expression at each

expression evaluation.

• read, execute, and print wool code by selecting it and using the Exec cut (for

‘‘execute cut buffer’’) menu function.

• use the −s command line option to synchronize X calls, if you want to know

where you issue a non-legal X call.

• compile gwm with the −DDEBUG compile option, which will turn on many

checks (stack overflow, malloc checks, etc.) in case you manage to make gwm

crash.

• If gwm appears to freeze, it might be because of a bus error. Run gwm under a

debugger such as gdb(1) or dbx(1) to see where it crashes.

4. WOOL Reference manual

; — wool comment

; any text up to the end of line

Comments in wool begin with a semicolon and end at the end of the line.

! — executes a shell command

(! command arguments . . .)

Executes (forks) the command given in string with its given arguments, and does not

wait for termination (so you don’t need to add a final ‘‘&’’). For instance, to open a

new ‘‘xterm’’ window on the machine where gwm is running, execute (! "xterm").

This is an interface to the execvp call: the command is searched for in the PATH vari-

able, and executed via /bin/sh if it is a command file, directly executed otherwise.

Examples:

(! "xterm") ; machine−executable code

(! "rxterm" "foobar") ; or shell script

(! "xterm" "−display" "bar:0.1") ; with arguments

(! "/bin/sh" "−c" "for i in a b c; do xclock −display $i:0& done")

; needs a shell for commands

#

nth — accesses an element of a list

(# n list [object])

(# atom list [object])

Gets (or sets to object if present) the n-th element of the list list (starting with 0).

Increases the list size if needed (with nils). When the first argument is an atom, this

references the element just after the atom in the list, thus providing the ability to

maintain classical Lisp ‘‘property lists’’.

Note that this function does not do a physical replacement, and constructs a new list

with the list argument. (See replace−nth, pg. 42.)

Examples:

(# 2 ’(a b c d)) ==> c

(# 2 ’(a b c d) ’foo) ==> (a b foo d)

(# ’x ’(x 4 y 6)) ==> 4

(# ’y ’(x 4 y 6) 8) ==> (x 4 y 8)

(# ’z ’(x 4 y 6) 10) ==> (x 4 y 6 z 10)

(# 6 ’(a b c d) ’foo) ==> (a b c d () () foo)

In fact the index can be any Lisp object, but as the list is scanned to find the same

object (EQ predicate), using atoms is the safest way.

41

42 4. WOOL Reference manual

(# "foo" ’("foo" 1)) ==> ()

(progn (setq name "foo")

(# name (list name 1))) ==> 1

Note: The second argument can also be a:

wob in which case the contents of the wob−property is taken as the list.

symbol which must evaluate to a list, which is then used by the function.

##

replace−nth — physically replaces an element of a list EXPERT

(## n list object)

(## atom list object)

This function physically replaces an element of the list, which is located as with the

function. It returns the modified list.

This provides a way to implement variable-sized lists, such as linked lists, which are

the real lists in the Lisp world, but should be used with care, as you are able to create

circular references with it. To allow the wool garbage collector to handle correctly

circular lists, you should always explicitly set to () the fields of a circular cell before

disposing of it.

Example: a circular list with cells of the form (car cdr):

(setq elt2 ’(b ())) ; second cell of list

(setq elt1 (list a elt2)) ; first one pointing to second

(## 1 elt2 elt1) ; we make a circular list

Now, if we set elt1 and elt2 to (), their storage will not be freed! We must do

(## 1 elt2 ())

before setting them to ().

Note: The second argument can also be a:

wob in which case the contents of the wob−property is taken as the list.

symbol which must evaluate to a list, which is then used by the function.

This is the only case where lists can be extended, by specifying an atom which does

not exist in the list. In this case, if the list is pointed to by many objects, the list is

duplicated, and only the copy pointed to by the wob or atom argument is modified,

e.g.:

(setq l ’(a 1))

(setq l−bis l) ; l and l−bis points to the same list

(## ’b ’l 2) ; only l is modified in place

l ==> (a 1 b 2)

l−bis ==> (a 1)

() — list notation

(elt1 elt2 . . . eltN)

This notation is used to describe a list of N elements, as in other Lisp languages.

Note that wool is not a true Lisp dialect since lists are represented internally as ar-

rays, allowing for a greater speed and a smaller memory usage in the kind of pro-

grams used in a window manager. If you are a die-hard Lisp addict, you can still use

CONS, CAR, and CDR if you want by defining them as:

* · / · % 43

(defun cons (e l) (+ (list e) l))

(defun car (l) (# 0 l))

(defun cdr (l) (sublist 1 (length l) l))

Note: The wool parser ignores extraneous closing parentheses, allowing you to

close top-level expressions in a file by a handful of closing parentheses, such as:

(defun cons (e l) (+ (list e) l)))))))))))))

(setq x 1))))))))

()

nil — the nil value

()

The nil value, backbone of every Lisp implementation. In Lisp an object is said to

be true if it is not nil.

" " — string notation

"string"

Strings are surrounded by double quotes. C-style escape sequences are allowed, that

is:

Sequence stands for

\n newline (Control-J)

\r carriage return (Control-M)

\t tab (Control-I)

\e escape (Control-[)

\\ the backslash character itself (\)

\" double quote

\xNN the character of ASCII code NN in hexadecimal

\nnn the character of ASCII code nnn in octal

\c c if c is any other character

Moreover, you can ignore end-of-lines in strings by prefixing them with \, as in:

(print "This is a very \

long string") ==> This is a very long string

’

quote — prevents evaluation

’object

(quote object)

Returns the object without evaluating it. The form ’ foo is not expanded into

(quote foo) during parsing, but in a ‘‘quoted-expression’’ wool type for efficiency.

*

/

% — arithmetic operators

(* n1 n2)

(/ n1 n2)

(% n1 n2)

Returns, respectively, the product, quotient, and modulo of the integer arguments as

an integer.

44 4. WOOL Reference manual

+ — adds or concatenates

(+ n1 n2 . . . nN)

(+ string1 string2 . . . stringN)

(+ list1 list2 . . . listN)

Numerically add numbers, concatenate strings, or concatenate lists. Determines the

type of the result as being the type of the first argument (() is a list, "" is a string,

0 is a number).

− — arithmetic difference

(− n)

(− n1 n2 . . .)

Returns the arithmetic opposition or difference of numbers. (− n1 n2 n3 n4) is equiv-

alent to (− n1 (+ n2 n3 n4)).

=

equal — tests equality of any two objects

(= object1 object2)

(equal object1 object2)

Returns object1 if object1 is the same as object2, nil otherwise. This is the tradition-

al equal predicate of Lisp.

Equality of lists is tested by testing the equality of all their elements.

< — tests for strict inferiority

(< n1 n2)

(< string1 string2)

Compares two numbers or two strings and returns t if argument 1 is inferior and not

equal to argument 2, and nil otherwise. Strings are compared alphabetically.

> — tests for strict superiority

(> n1 n2)

(> string1 string2)

Compares two numbers or two strings and returns t if argument 1 is superior and not

equal to argument 2, and nil otherwise. Strings are compared alphabetically.

?

print — prints wool objects

(? object1 object2 . . . objectN)

(print object1 object2 . . . objectN)

Prints the objects, without adding spaces or newlines. Output is flushed at the end of

ev ery call to this function. For now, output goes to the stdout stream.

atoi 45

active−label−make — makes a label (text in a given font)

(active−label−make label [font])

Creates a label with string label drawn in the font font. The text will be redrawn on

each expose. (The active label can also be used to paint a string on a pixmap, see

pixmap−make, pg. 77).

Context used:

Variable used for

foreground the color of the text string

font the font of the string if not given

allow−event−processing — un-freezes the server after catching a replayable event

(allow−event−processing)

When you set passive grabs on ‘‘replayable’’ events (see replayable−event,

pg. 80), when such event is caught in an fsm, the grab is activated and the server is

frozen, in such a way that pointer motions or button states is not tracked anymore.

To be able to use a function such as current−mouse−position (see pg. 53) you must

then allow the processing of events by calling this function.

After the call, you will not be able to use ungrab−server−and−replay−event (see

pg. 90) for the event.

alone — specifies that no modifier key is used

Constant

Specifies that no modifier is pressed for a button or key event for use in event de-

scriptions.

and — logical AND of expressions

(and object1 object2 . . . objectN)

Returns () as soon as an argument is false (nil), t otherwise.

any — matches any modifier or button

Constant

Matches any modifier or button or key in events. It can be also used in many other

functions with appropriate semantics.

atoi — ASCII string to integer conversion

(atoi string)

Returns the integer described by string (in base 10).

Example:

(atoi "123") ==> 123

46 4. WOOL Reference manual

atom — makes an atom from a string

(atom string)

Returns the atom of name string. Useful to create atoms with special embedded

characters, such as ’ or blanks. The inverse function is not necessary since every

wool function expecting strings in arguments can accept atoms instead, and will

take the string of their name.

This should be used when accessing property lists via the # function. For instance, if

you store properties on machine names (which are strings), you would use the fol-

lowing call to retrieve the color of an xterm for a machine:

(# (atom machine−name) ’(Maalea "Green" Honolua "Blue"))

background — color of the background

Numeric variable – screen-relative (color)

The value of this global variable is used by many functions as the color of the back-

ground. It is a pixel value, such as returned by color−make, and is initially set to the

pixel of the color white. Note that a non-nil tile context value overrides the back-

ground value.

bar−make — makes a bar descriptor

(bar−make plug/bar1 plug/bar2 . . . plug/barN)

Creates a bar of transversal width11 bounded by the current value of bar−min−width

and bar−max−width, and containing the N plugs or bars, which are centered in the

bar. If a plug is (), it is considered extensible space, which is expanded when the

bar stretches to its actual dimensions. The plugs are clipped on the right if neces-

sary.

Context used:

Variable used for

fsm the finite state machine of the bar

borderwidth the width of the bar’s border in pixels

borderpixel the color of the border

bordertile the pixmap used as the border pattern

background the color of the background

plug−separator the number of pixels between consecutive plugs

tile the pattern of its background (may be ())

menu the default pop-up associated with it

cursor the cursor’s shape when the cursor is in it

property the wool property associated with the bar

bar−min−width the minimum width in pixels of the bar

bar−max−width the maximum width in pixels of the bar (width

for vertical bars, height for horizontal bars)

Note that the plugs are evaluated a second time when the bar is physically created,

allowing you to give expressions for plugs (quoted to evade the first evaluation of

arguments of the bar−make function itself) that will evaluate to a plug on the realiza-

tion of the wob.

11 Bars have their own width and a length which is adjusted to fit around the client window.

For a horizontal bar, the width is their physical height and the length their physical width, and

for a vertical one, it is the opposite.

bar−min−width · bar−max−width 47

For instance, to have the window name in a plug, the bar can be made by:

(bar−make ’(plug−make (label−make window−name)))

If you don’t quote the plug, all the bars will have the same name on the realization of

the bar, the value of window−name at the time of the call to bar-make.

For each recursive lev el of sub-bars, the direction of the bar switches between hori-

zontal and vertical. This means that to make a horizontal sub-bar inside a likewise

horizontal parent bar, you need a construct like (bar−make (bar−make . . .)).

(bar−make ()) means an explicitly adjustable length bar, which may actually in

some situations adjust its width, too (see below). For example, left and right bars

that have in this sense explicitly adjustable size are broadened to prevent truncation

of the title or bottom bars.

• A bar has explicitly adjustable length if it contains at least one () or an ‘‘ad-

justable width’’ bar.

• A bar has ‘‘adjustable width’’ if it contains only (and at least one of) () and ex-

plicitly adjustable length bars.

A bar which has adjustable width does not obey bar−min/max−width any more. Al-

so, watch out for making the left or right bar of a window hav e adjustable width –

they will try to adjust their width to prevent truncation of the title or bottom bars.

Extra space will be equally divided between all ()s and sub-bars with adjustable

width. In case of too little space, truncation will also start equally divided between

all () and adjustable sub-bars. When they hav e disappeared completely, truncation

begins to the right as usual. This means that the (bar−make (bar−make . . .)) con-

struct can be used to encapsulate things that are to be truncated together. Actually,

provided a borderwidth of zero, this construct has no other physical effect than

grouping things in this sense.

If a plug is shaped, this will make a hole trough the whole bar (as opposed to seeing

the bar background behind the plug). Currently the only way to create shaped plugs

is with pixmap−load.

It is possible to have arbitrary shaped background tilings of a bar, with the value of

the global variable tile being a shaped pixmap. The other way is to make a com-

pletely transparent background ‘‘tiling’’. This is achieved with the special construct

of setting tile to t when constructing the bar (perhaps unintuitive, but . . .).

Example: an icon with a label underneath can be designed as:

(with (tile t ;; transparent tiling

borderwidth 0

inner−borderwidth 2)

(window−make ()

(bar−make ()) ;; bar with adjustable width

(bar−make ())

(bar−make () label−plug ())

center−plug))

bar−min−width

bar−max−width — limits to the transversal width of a bar

Numeric variable (number)

The values of these global variables are used by the constructors of bars to limit their

transversal width, clipping the plugs if necessary. bar−min−width defaults to 1 and

bar−max−width defaults to 1000.

48 4. WOOL Reference manual

bar−separator — number of pixels between consecutive bars in menus

Numeric variable (number)

The value of this global variable is used by the constructors of menus to yield the

number of pixels separating two contiguous bars. Default is 4 pixels. Used in the

menu−make function.

bell — rings the keyboard bell

(bell [percent])

Rings the bell on the keyboard, with volume set by the percent numeric argument,

which can take values ranging from −100 to 100 (defaults to 0). −100 means lowest

volume, 0 means base volume, 100 means full volume.

bitwise−and

bitwise−or

bitwise−xor — bitwise operators

(bitwise−op n1 n2 . . . nN)

Returns the result of the bitwise operator on the N arguments.

Examples:

(bitwise−and 3 5) ==> 1

(bitwise−or 1 4) ==> 5

(bitwise−xor 3 5) ==> 6

border−on−shaped — keep borders on shaped windows

Numeric variable (number)

Normally, if gwm tries to decorate a non-rectangular (shaped) window, it automati-

cally removes any border on the main window as it is almost always the intended

look. But this variable when set overrides this behavior for the rare case where it

could be needed.

borderpixel — color of the border of a wob

Numeric variable – screen relative (color)

The value of this global variable is used by the constructors of all wobs as the color

of their border. It is a pixel value, such as returned by color−make, and is initially

set to the pixel of the color black. It is always overridden by the value of

bordertile if not nil.

bordertile — pixmap to tile the border of a wob

Variable (pixmap)

The value of this global variable is used by the constructors of all wobs as the

pixmap to display in their border. It is a pixmap object, such as returned by pixmap−

make. If set to (), the borderpixel value is used.

check−input−focus−flag 49

borderwidth — width in pixels of the border of a wob

Numeric variable (number)

The value of this global variable is used by the constructors of all wobs to set their

border width in pixels. A value of 0 means no border.

boundp — tests if an atom has already been defined

(boundp ’atom)

Returns the (evaluated) atom if it has been defined, () otherwise.

Examples:

(setq foo 1)

(boundp ’foo) ==> foo

(boundp ’bar) ==> ()

button — makes a button event

(button number modifier)

Returns a button event matching the X event ButtonPress of button number num-

ber, and will verify that the modifier argument was pressed during the click. This

ev ent will wait for the corresponding ButtonRelease ev ent before returning.

Number or modifier can take the value any, thus matching any of the values of the

corresponding argument. These button events can then be used in the matching part

of the transitions of fsms or in the grabs field of a window−make description.

Examples:

(button 1 with−alt) matches clicking the left mouse button

while keeping the Alt key pressed.

(button any with−control) matches Control-clicking with any button.

buttonpress — makes a buttonpress event

(buttonpress number modifier)

Same as button, but does not wait for the buttonrelease, meaning that the buttonre-

lease is available for another transition. This can be used to trigger move−window,

since this function waits for a button release to terminate.

buttonrelease — makes a buttonrelease event

(buttonrelease number modifier)

Same as button, but only matches a button release. Useful when you cannot wait for

a button event, for instance when iconifying a window, because if the window is

iconified on a button press, the corresponding release event will be lost (in fact will

go to the window underneath).

check−input−focus−flag — follow input hint for setting focus

Numeric variable (number)

If this flag is set to 1, which is the default, gwm will refuse to set the keyboard focus

via the set−focus call to windows having declared that they didn’t need the focus.

This flag is provided so that you can use clients which set their input hint the wrong

way.

50 4. WOOL Reference manual

circulate−windows−down

circulate−windows−up — circulates mapped windows

(circulate−windows−down)

(circulate−windows−up)

Put the topmost window down, or the lowest window up, respectively.

color−components — giv es RGB color decomposition of a pixel

(color−components pixel)

Given a pixel (integer, normally returned by color−make), returns a list of 3 inte-

gers, the red, green, and blue components of the color. Each of these integers can

take values between 0 and 65535.

color−free — de-allocates a pixel

(color−free pixel)

Frees the entry pixel in the default colormap. pixel must have been the result of a

previous color−make call. This is a very dangerous function, since colors returned

by color−make can be shared with multiple applications.

color−make — allocates a pixel color by name

(color−make color-name)

Takes a string color-name describing the color by its English name (as found in the

rgb.txt system file), and allocates a new entry in the default colormap with a pixel

of this color, and returns it if it wasn’t allocated before, otherwise just returns the

previously allocated pixel if an entry in the colormap already existed. Two consecu-

tive calls with the same argument should then return the same value. A pixel is a

number which is the index of the color in the colormap.

This pixel can later be used as values for foreground and background, or in the

pixmap−make function. If color is not found, prints a warning, and returns the pixel

used for the black color.

Colors can also be specified directly by their RGB12 values, with the #-convention:

if the color-name string begins with a # sign, the following characters are taken as

hexadecimal digits specifying the most significant part of the red, green, and blue

values, with the following syntax (each letter stands for a digit):

#RGB

#RRGGBB

#RRRGGGBBB

#RRRRGGGGBBBB

Examples:

(color−make "DarkSlateBlue")

(color−make "light grey")

(color−make "#f00") ; pixel for red

(color−make "#300000a076be")

12 Red, Green, Blue.

context−save · context−restore 51

color−make−rgb — creates a color from RGB values

(color−make−rgb red green blue)

This function takes three numeric arguments giving the values of the red, green, and

blue components of the color which will be returned. Components are scaled be-

tween 0 and 65535 (half brightness is 32767 and no light is 0).

compare — ordering comparison

(compare n1 n2)

(compare string1 string2)

Compares two numbers or two strings and returns −1, 0, or 1 if its first argument is

lesser than, equal to, or greater than the second.

cond — conditional test

(cond (condition1 then1) [(condition2 then2) . . .])

This is the classical ‘‘cond’’ Lisp function, returning the evaluation of the then part

of the first true condition.

(defun fib (n)

(cond

((= n 0) 1)

((= n 1) 1)

(t (+ (fib (− n 1))

(fib (− n 2))))))

confine−grabs — cursor stays confined in grabbing wobs

Numeric variable (number)

If set, during all grabs (either via pop−menu or grab−server) will confine the pointer

inside the grabbing wob during the duration of the grab.

confine−windows — forces windows to stay on-screen

Numeric variable (number)

If set, during all interactive moves or resizes, gwm will ensure that windows stay en-

tirely within screen bounds.

context−save

context−restore — context management

(context−save context)

(context−restore context)

A context is a kind of property list, it is an even-sized list whose even elements are

atoms and whose odd ones are their values (see the with function), of the form

(var1 val1 var2 val2 . . . varN valN). context−save creates a new context where the

vali are the result of the evaluation of the vari in the argument context, whereas

context−restore does a (setq vari vali) for each of its variable/value pairs.

Note: the provided vali serves as default for context−save in the case where the

corresponding vari is undefined:

(setq my−context (list ’a 1 ’b 2))

(setq a "foo") ; b is undefined

(print (context−save my−context)) ==> (a foo b 2)

52 4. WOOL Reference manual

copy — copies a wool object EXPERT

(copy object)

Returns a copy of the object argument, which can only be a list for now. This func-

tion is flagged as ‘‘Expert,’’ because it is of use to people doing physical replace-

ment functions, which are reserved to experts.

current−event−code — code of the last event

(current−event−code)

Returns the code (button or keycode) of the last ev ent received (the one which trig-

gered the transition you are in).

current−event−from−grab — tests if last event was generated by a grab

(current−event−from−grab)

If the last event was a crossing or focus event consecutive to a grab set or removed,

returns t.

current−event−modifier — modifier of the last event

(current−event−modifier)

Returns the modifier (state of Shift, Control, Alternate, . . .) keys that were pressed

when the last ev ent occurred (the one which triggered the transition you are in).

Note that the combination of two modifiers is expressed by bitwise-oring the modi-

fiers.

current−event−time — time in milliseconds of the last event

(current−event−time)

Returns the time at which occurred the last button, key, crossing, or focus event.

Time is expressed as a number of milliseconds.

current−event−window−coords — relative position of the last event

(current−event−window−coords)

Returns the list of coordinates of the last event, if it was a pointer or a key event, rel-

ative to the current client window.

This list has six elements:

Element Meaning

0 x position in size increments (character positions for xterm)

1 y position in size increments

2 same x position in pixels

3 same y position in pixels

4 x position in pixels relative to the decorating window

5 y position in pixels relative to the decorating window

WARNING: The position in size increments does not work in the general case, but

only for windows having the text widget flush to the bottom right corner of their

main windows, like Xterm. There is no fix for it, but this function is a kind of a hack

anyways.

cursor−[NS][WE] · cursor−[NSWE] 53

current−event−x

current−event−y

current−event−relative−x

current−event−relative−y — position of the last event

(current−event−x)

(current−event−y)

(current−event−relative−x)

(current−event−relative−y)

Returns the x or y coordinate (number) of the mouse during the last ev ent, if it was a

key or button event (the one which triggered the transition you are in).

The first coordinates are relative to the root, whereas the last ones are relative to the

wob where they occurred.

current−mouse−position — queries server for mouse position

(current−mouse−position)

Queries the server for the mouse state and returns it as a list of four element where

the first element is x, second is y, third is state of modifiers and buttons bitwise-

ored, and fourth is the number of the screen where the pointer is.

current−user−event — name of the last user event

(current−user−event)

If the last event was an user event, returns the label of the event (the atom that was

given as argument to the send−user−event call). Triggers an error if the last event

was not a user event.

cursor — shape of the cursor in a wob

Variable (cursor)

The value of this global variable, which must be a cursor returned by a call to

cursor−make, is used by the constructors of all wobs to set the appearance of the

mouse cursor when the pointer is in the wob. If set to (), the cursor will not change

when entering the wob.

This is also used by functions like grab−server, move−window, and resize−window

to change the shape of the cursor during a function.

cursor−[NS][WE]

cursor−[NSWE] — cursor shapes for the 8 directions

Variables (cursor)

These values (cursor−NW, cursor−NE, cursor−SW, cursor−SE, cursor−N, cursor−S,

cursor−W, cursor−E) define cursors to be used on the eight directions by some func-

tions, such as resize-window with the mwm-like style (see resize−style, pg. 80).

The eight corners are, respectively: NorthWest, NorthEast, SouthWest, SouthEast,

North, South, West, and East.

54 4. WOOL Reference manual

cursor−make — makes a cursor with a bitmap and a mask

(cursor−make foreground-bitmap-filename mask-bitmap-filename)

(cursor−make cursor-name)

(cursor−make number)

Constructs a mouse cursor with two bitmaps (strings containing the file names).

This cursor can then be used in the cursor variable. The bitmaps are files searched

for in the same path as in the pixmap−make function (see pg. 77).

The convention in use for naming a cursor foo is to name the foreground bitmap as

foo−f.xbm and the mask bitmap as foo−m.xbm. This convention is used in the call-

ing of cursor−make with one argument, so that (cursor−make "foo") is equivalent

to (cursor−make "foo−f" "foo−m").

You can also select one of the predefined cursors in the server cursor font by giving

its index in the font as the number argument to cursor−make. See Appendix B of

the Xlib manual for the list of available cursors. For instance, the ‘‘star trek’’ cursor

can be made by the call (cursor−make 142). The symbolic names of these cursors

are defined in the cursor−names.gwm file. Once this file is loaded, you can, for in-

stance, use the ‘‘star trek’’ cursor by a (cursor−make XC_trek).

cut−buffer — contents of cut buffer 0

Active value (string)

Its value is the content of the X cut buffer 0, returned as a string. When set, it takes

the string argument and stores it in the same cut buffer. This can be used to commu-

nicate with clients still using this obsolete way to perform cut-and-paste operations,

such as xterm.

defun

defunq

lambda

lambdaq

de

df — defines a wool function

(defun function-name (arg1 . . . argN) instructions . . .)

(defunq function-name (arg1 . . . argN) instructions . . .)

(lambda (arg1 arg2 . . . argN) instructions . . .)

(lambdaq (arg1 arg2 . . . argN) instructions . . .)

Defines a Lisp function and returns the atom pointing to the function. The list of ar-

guments must be present, even if (). If defined by defun, the function will evaluate

its arguments before executing, and will not evaluate them if defined by defunq.

The return value of an execution of the function is the value returned by the last in-

struction of its body. de and df are just synonyms for defun and defunq. The

lambda call, which evaluates its arguments, defines a function (without binding it to

a name) while lambdaq creates a function which does not evaluates its arguments.

The two following expressions are equivalent:

(defun foo(x) (+ x 1))

(setq foo (lambda (x) (+ x 1)))

When lists are evaluated, wool applies the result of the evaluation of the CAR of the

list to its CDR, like in the Scheme language. Thus to apply a lambda function to its

arguments, just eval the list constructed with the lambda construct and its arguments.

The classic Lisp apply function could thus be defined by:

defname 55

(defun apply (function list−of−arguments)

(eval (+ (list function) list−of−arguments)))

Since functions are Lisp objects, to define a synonym of a function, you must use

setq. Thus, you can change the meaning of a function easily, for instance to make

move−window always raise the window, you would say in your profile:

(setq original−move−window move−window)

(defun move−window ()

(raise−window)

(original−move−window))

This means also that an atom can only have one value, and (setq move−window 1)

will erase the definition of move-window if you didn’t sav e it in another atom.

Example:

(defunq incr (value delta)

(set value (+ (eval value) (eval delta))))

(setq x 4)

(incr x 2)

(print x) ==> 6

Functions taking a variable number of arguments can be defined by providing a pa-

rameter name instead of a list of parameters. In the body of the function during its

execution, this parameter will be set to the list of the parameters given to the func-

tion.

(defun max l

(with (max−val 0)

(for obj l

(if (> obj max−val) (setq max−val obj)))

max−val))

(max) ==> 0

(max 34 65 34 12) ==> 65

Note: You are not allowed to redefine active values (such as window) or numeric

variables (such as foreground), or use them as names for the parameters to the func-

tion.

(defun window (a b) (+ a b)) ==> ERROR!

(defun my−window (wob)

(window wob)) ==> ERROR!

defname — declares a name in a namespace

(defname name namespace [value])

Defines the atom name to be a name in the namespace. If the value is given, for

each state of the namespace, a (set name (eval value)) is done, otherwise the val-

ue of name is left undefined in all the states.

Suppose you want to have a variable dpi giving the density of the screen in dots per

inches for each screen:

(defname ’dpi screen.

(/ (* screen−width 254)

(* screen−widthMM 10)))

56 4. WOOL Reference manual

delete−nth — physically removes an element of a list EXPERT

(delete−nth index list)

(delete−nth key list)

This function physically removes an element of a list and returns the list. Elements

are specified as for the # function. For property lists, the key and the value are delet-

ed.

(setq l ’(a 1 b 2 c 3 d 4))

(delete−nth 5 l)

l ==> (a 1 b 2 c d 4)

(delete−nth ’b l)

l ==> (a 1 c d 4)

delete−read−properties — flags to delete X properties after reading them

Numeric variable (number)

If non-zero, all calls to get−x−property delete the X property after reading it.

delete−window — asks client to delete one of its windows

(delete−window [window])

This function will ask the client owning the argument window (or the current win-

dow if none is given) to delete it. This is only possible if the client participates in

the WM_DELETE_WINDOW ICCC protocol, in which case the function returns t,

otherwise ().

This is different from the kill−window call, which destroys the client and every top-

level window owned by it, in that other windows of the client should survive the call.

describe−screen — user function called to describe a screen

(describe−screen)

This function must be provided by the user. It must return the description of the

screen (cursor, fsm, . . .), made with a window−make call. Of the window−make pa-

rameters, only the opening (expression evaluated when all windows are decorated,

just before entering the main loop of gwm) and closing (expression evaluated just

before ending) parameters are used.

Context used:

Variable used for

fsm the fsm of the root window

menu the default menu of the root window

cursor the shape of the cursor when in root

property the initial value of the property field

tile the pixmap to be tiled on the screen

(() means do not touch the existing screen)

This function is called by gwm for each managed screen once. In the current ver-

sion, only one screen is managed. Before each invocation of this function, the

screen characteristics (visual, depth, . . .) are updated to reflect the characteristics of

the corresponding screen.

display−name 57

describe−window — user function called to decorate a new window

(describe−window)

When a new window must be decorated by gwm, it calls this user-defined function

with window and wob set to the new window. It must return a list of two window de-

scriptors made with window−make (see pg. 94) describing, respectively, the window

and the icon of the new client window.

A recommended way to use describe−window is to store in advance all the window

descriptions in the resource manager by resource−put calls and use a resource−

get call in your describe−window function to retrieve the appropriate description.

But this is not mandatory and you are free to design the way to describe a window

freely. For instance, with the following describe-window function:

(defun describe−window ()

(resource−get

(+ window−client−class "." window−client−name)

"any−client.any−client"))

(resource−put "any−client.any−client" any−window)

(resource−put "XTerm.xterm" xterm−window)

gwm will decorate xterm windows by the description held in xterm−window, and

will decorate the windows of any other client by the any−window description.

dimensions

width

height — dimensions of a wool object

(dimensions object)

(width object)

(height object)

These functions return the width and height in pixels of any wob, pixmap, active la-

bel, cursor, or string. For wobs, the returned dimensions include the borderwidth.

For strings, these are the dimensions that such a string would take on the screen, if

printed in the current font, thus including the label−horizontal−margin and

label−vertical−margin.

The dimensions function returns a list of four values: x, y, width, height. x and y

are non-null only for wobs, in which case they are the coordinates of the upper-left

corner of the wob relative to the parent wob.

direction — direction of menus

Numeric variable (number)

This variable controls the main direction of menus created by the menu−make con-

structor. Possible values are horizontal or vertical.

display−name — name of the X server

Variable (string)

This variable holds the name of the display on which gwm is running.

58 4. WOOL Reference manual

double−button

double−buttonpress — makes a double-click button event

(double−button number modifier)

(double−buttonpress number modifier)

These events look for an incoming X ButtonPress ev ent and matches it if the last

key or button event was on the same button, in the same wob, and not a key event,

and happened less than double−click−delay milliseconds before it.

The button to be pressed is specified by the number number, and these events verify

that the modifier argument was pressed during the click. double−button waits

for the corresponding ButtonRelease ev ent before returning, while double−

buttonpress returns immediately. Number or modifier can take the value any, thus

matching any of the values of the corresponding argument.

Note that handling double-click events this way implies that the action that is done

on a simple click event is executed even for a double click event, just before the ac-

tion associated with it. The recommended way to use double-clicks is to place the

double−button ev ent before the button ev ent in the state of the fsm as in:

(on (double−button 1 any) (do−double−action))

(on (button 1 any) (do−simple−action))

Note: The ‘‘last’’ event can be a ButtonRelease ev ent only if it is waited for explic-

itly by a gwm buttonrelease ev ent, in which case the double−click−delay is mea-

sured between the release of the first click and the press of the second. Otherwise (if

the first click is awaited by a button ev ent) the delay is taken between the two

‘‘presses’’ of the button.

double−click−delay — maximum time between double clicks

Numeric variable

If two buttonpress events are closer in time than double−click−delay millisec-

onds then the second one can be matched by the double−button and double−

buttonpress ev ents.

draw−line — draws a line in a pixmap

(draw−line pixmap x1 y1 x2 y2)

Draws a line (via the XDrawLine(3) X call) in the pixmap from point x1, y1 to point

x2, y2 in the pixmap coordinates.

Context used:

Variable used for

foreground the color of the line

draw−rectangle — draws a (filled) rectangle in a pixmap

(draw−rectangle pixmap x y width height border style)

Draws a rectangle in the pixmap. The upper-left corner is placed at coordinates x, y

in the pixmap, with the rectangle dimensions being width and height. border is the

border width. Note that a value of 0 for border does not mean ‘‘no border’’ but a

border drawn with 0-width lines, which in X means the default line width, usually 1.

In the X tradition, the upper-left corner is taken inside the border, and the dimension

do not include the border.

enter−window−not−from−grab · leave−window−not−from−grab 59

style tells which kind of rectangle to draw, namely:

Value Style of rectangle

0 nothing drawn

1 only border is drawn

2 only filled rectangle without border

3 filled rectangle + border

Context used:

Variable used for

foreground the color of the border, if any

background the color of the inside, if any

draw−text — draws a string of characters in a pixmap

(draw−text pixmap x y font text)

Draws a string of characters text in font font into the pixmap pixmap. The baseline

of the string will start at coordinates x, y in the pixmap.

Context used:

Variable used for

foreground the pen color

elapsed−time — gets running time of gwm

(elapsed−time)

Returns the time in milliseconds for which gwm has been running.

end — terminates gwm

(end)

Terminates gwm, de-iconifying all the windows, un-decorating them, restoring their

original borderwidth, and closing the display.

enter−window

leave−window — events generated when the pointer crosses the border of a wob

Constant (event)

This event is sent to the wob when the pointer crosses its border. Note that no leave

ev ent is generated if the pointer goes over a child window inside it.

enter−window−not−from−grab

leave−window−not−from−grab — pointer actually crosses the border of a wob

Constant (event)

When the server is grabbed (for instance by gwm when popping a menu or mov-

ing/resizing a window), the cursor appears to leave the current window it is in, and

thus a leave−window is sent to this window. These events allow you to wait only for

real crossing events, and not these grab-provoked ones. This distinction is needed to

code some tricky menu actions.

60 4. WOOL Reference manual

eq — tests strict equality of any two objects EXPERT

(eq object1 object2)

Returns true only if the two object are the same, i.e., if they are at the same memory

location.

Example:

(setq l ’(a b c))

(setq lc ’(a b c))

(= l lc) ==> t

(eq l lc) ==> ()

(eq (# 1 l) (# 1 lc)) ==> t

error−occurred — traps errors occurring in expressions

(error−occurred expressions . . .)

Executes the given expressions and returns () if everything went fine, but returns t

as soon as a wool error occurred and does not print the resulting error message.

eval — evaluates a wool expression

(eval wool-expression)

This function evaluates its argument. Note that there is a double evaluation, since

the argument is evaluated by Lisp before being evaluated by eval.

Example:

(? (eval (+ ’(+) ’(1 2)))) ==> prints "3"

execute−string — executes a wool string

(execute−string string)

Parses the string argument as a wool program text and evaluates the read expres-

sions. Returns () if an error occurred in the evaluation, t otherwise. Very useful in

conjunction with cut−buffer, to evaluate the current selection with:

(execute−string cut−buffer)

focus−in

focus−out — events received when input focus changes on the client window

Constant (event)

These events are sent to a wob when a child receives or loses the keyboard focus,

i.e., the fact that all input from the keyboard goes to that child regardless of the

pointer position. Only window wobs receive these events when their client window

gets the focus, they must redispatch them to their children (bar wobs) if they are ex-

pected to respond to such events (a title bar might want to invert itself for instance)

by using the send−user−event function.

font — default font

Numeric variable (number)

This is the font ID used by default for the constructors label−make and active−

label−make. Initialized to ‘‘fixed’’ or your local implementor’s choice. It is also the

font returned by font−make when it fails to find a font.

freeze−server 61

font−make — loads a font

(font−make font-name)

This function loads a font in memory, from the ones available on the server. You can

list the available fonts by the xlsfonts(1) unix command. The function returns the

descriptor (number) of the loaded font. If it fails to find it, it will issue a warning

and return the default font found in the font global variable.

for

mapfor — iterates through a list of values

(for variable list-of-values inst1 inst2 . . . instN)

(mapfor variable list-of-values inst1 inst2 . . . instN)

This Lisp control structure successively sets the variable (not evaluated) to each of

the elements of the evaluated list-of-values, and executes the N instructions of the

body of the for. The variable is local to the for body and will be reset to its previ-

ous value on exit.

for returns the value of the evaluation of instN in the last iteration, whereas mapfor

builds a list having as contents the successive values of insti for the iterations.

Examples:

(for window (list−of−windows) ; will move all windows to

(move−window 0 0)) ; the upper−left corner

(for i ’(a b 2 (1 2))

(print i ",")) ==> a,b,2,(1 2),

(mapfor i ’(a b 2 (1 2))

(list i)) ==> ((a) (b) (2) ((1 2)))

foreground — color of the foreground

Numeric variable – screen relative (color)

The value of this global variable is used by the constructors of graphics (labels and

pixmaps) to paint the graphic. It is a pixel value, such as returned by color−make,

and is initially set to the pixel of the color black.

freeze−server — stops processing other clients during grabs

Numeric variable (number)

If set to t or 1, the X server is frozen, i.e., it doesn’t process the requests for other

clients during the move−window, resize−window, and grab−server operations, so

that you cannot have your pop-up menu masked by a newly mapped window, or

your display mangled when moving or resizing a window.

If set to () or 0, the processing of other clients requests are allowed so that you can

print in an xterm while popping a menu, for instance. (If the server is frozen, and

gwm tries to write on an xterm whose X output is blocked, gwm is deadlocked, forc-

ing you to log in from another system to kill it!) This should happen only when de-

bugging, though, so that the default for this variable is t (menus are normally coded

so that user actions are triggered after de-popping).

62 4. WOOL Reference manual

fsm — Finite State Machine of the wob

Variable (fsm)

This global variable is used by all wob constructors to determine their future behav-

ior. Holds an fsm made with fsm−make, or () (no behavior).

fsm−make — compiles an automaton

(fsm−make state1 state2 . . . stateN)

This function creates a finite state machine with N states. Each wob has an associat-

ed fsm, and a current state, which is initially the first state. Each time a wob receives

an event, its current state of its fsm is searched for a transition which matches the

ev ent. If found, the corresponding action is executed and the current state of the fsm

becomes the destination state of the transition. If no destination state was specified

for the transition (see the on function), the current state of the fsm does not change.

See the on and state−make functions.

geometry−change — event generated when window changes size

Constant (event)

This event is sent to the window when its geometry changes by a resize operation ei-

ther from the client or from gwm.

get−wm−command — gets the WM_COMMAND property

(get−wm−command)

Returns the command line that can be used to restart the application which created

the current window in its current state as a list of strings. (For instance, ("xterm"

"−bg" "Blue")). See save−yourself, pg. 83.

get−x−default — gets a server default

(get−x−default program-name option-name)

Calls the XGetDefault(3) Xlib function to query the server defaults about an option

for a program. This function should be used to retrieve defaults set either by the ob-

solete .Xdefaults files or the xrdb(1) client. It returns () if no such option was de-

fined, or the option as a wool string.

get−x−property — gets an X property on the client

(get−x−property property-name)

Returns the value of the X11 property of name property−name of the current client

window. It only knows how to handle the types STRING and INTEGER. For in-

stance, (window−name) is equivalent to (get−x−property "WM_NAME").

The value of the global variable delete−read−properties determines whether the

read property is deleted afterwards.

gwm−quiet 63

getenv — gets the value of a shell variable

(getenv variable-name)

If variable-name (string) is the name of an exported shell variable, getenv returns its

value as a string, otherwise returns the nil string.

grab−keyboard−also — grab-server grabs also keyboard events

Numeric variable (number)

If set, all grabs will also grab the keyboard, i.e., all keyboard events will also be redi-

rected to the grabbing wob, whereas if unset only the pointer events get redirected.

grab−server — grabs the server

(grab−server wob [’nochild])

Grab-server freezes the server, so that only requests from gwm are processed, and

ev ery event received by gwm is sent to the wob (called the ‘‘grabbing’’ wob) passed

as argument, or to a child of it. Re-grabbing the server afterwards just changes the

grabbing wob to the new one if it is not a child of the wob currently grabbing the

server, in which case the function has no effect. Grabbing the server by a wob is a

way to say that all events happening for wobs which are not children of the grabbing

wob are to be processed by it.

For instance, the pop-menu function uses grab−server with the menu as argument

in order for the children to be able to receive enter and leave window events and to

catch the release of the button even outside the pop-up.

Grabbing the server sets the mouse cursor to the value of cursor if not ().

If the atom nochild is given as optional argument, if an event was sent to a child of

the grabbing wob, it is redirected to the grabbing wob as well (the default is not to

redirect it).

grabs — passive grabs on a window

Variable (list)

The events specified in this list are used by the window−make constructor to specify

on which events gwm establishes passive grabs on its window to which the client

window gets reparented. Passive grabbing means redirecting some events from a

window (bars, plugs, client) to the main window, ‘‘stealing’’ them from the applica-

tion.

grid−color — color to draw (xor) the grids with

Numeric variable – screen relative (color)

This is the color (as returned by color−make) that will be used to draw the grid with

(in XOR mode) on the display. Initially set to the black color.

gwm−quiet — silent startup

Numeric variable (0/1)

This variable evals to 1 if the users specified (by the −q option) a quiet startup. Your

code should check for this variable before printing information messages.

64 4. WOOL Reference manual

hack — raw access to gwm internal structures EXPERT

(hack type memory-location)

WARNING: Internal debug function: returns the wool object constructed from C

data supposed present at memory-location (number). The type of the type argument

is used to know what to find:

type interpretation of pointer returns

number pointer to integer number

string C string string

() object object

atom numberpointer to a wool object

This function is not intended for the normal user, it should be used only as a tempo-

rary way to implement missing functionalities or for debugging purposes.

hashinfo — statistics on atom storage

(hashinfo)

Prints statistics on atom storage.

horizontal

vertical — directions of menus

Constant (number)

Used to specify orientation of menus in menu−make.

hostname — name of the machine on which gwm is running

Active value (string – not settable)

This string holds the name of the host gwm is currently running on.

iconify−window — iconifies or de-iconifies a window

(iconify−window)

Iconify the current window (or de-iconify it if it is already an icon). The current

window is then set to the new window.

WARNING: Never trigger this function with a button ev ent, but with a

buttonpress or buttonrelease ev ent. If you trigger it with a button ev ent, the

window being unmapped cannot receive the corresponding release event and gwm

acts weird!

WARNING: Due to the grab management of X, an unmapped window cannot re-

ceive events, so a grab on this window is automatically lost.

if — conditional test

(if condition1 then1 [condition2 then2] . . . [conditionN thenN] [else])

This is similar to cond but with a level of parentheses suppressed. It executes the

then part of the first true condition, or the else part (if present) if no previous condi-

tion is true.

(defun fib (n)

(if (= n 0) 1

(= n 1) 1

(+ (fib (− n 1) (− n 2)))))

key · keypress · keyrelease 65

inner−borderwidth — borderwidth of the client window

Numeric variable (number)

When gwm decorates a new window, it sets the width of the border of the client win-

dow to the value of the inner−borderwidth variable at the time of the evaluation of

the window−make call.

If inner−borderwidth has the value any, which is the default value, the client win-

dow borderwidth is not changed.

invert−color — color to invert (xor) the wobs with

Numeric variable – screen relative (color)

This is the color (as returned by color-make) that will be used by wob−invert (see

pg. 100) to quickly XOR the wob surface. Initially set to the bitwise-xoring of

Black and White colors for each screen.

invert−cursors — inv erts the bitmaps used for making cursors

Numeric variable (number)

Due to many problems on different servers, you might try to set to 1 this numerical

global variable if your loaded cursors appear to be video-inverted. Defaults to 0 (no

inversion).

itoa — integer to ASCII string conversion

(itoa number)

Integer to ASCII yields the base 10 representation of a number in a wool string.

(itoa 10) ==> "10"

key

keypress

keyrelease — keyboard events

(key keysym modifier)

(keypress keysym modifier)

(keyrelease keysym modifier)

Returns an event matching the press of a key of keysym code keysym13, with the

modifier14 key modifier pressed. The key ev ent will wait for the corresponding

keyrelease event before returning, while the keypress ev ent will return immediately.

Ke ysym or modifier can take the value any, thus matching any of the values of the

corresponding argument.

Ke ysyms can be given as numbers or as symbolic names.

Examples:

(key 0xff08 with−alt) ; matches typing Alternate−Backspace

(key "BackSpace" with−alt) ; same effect

Note: These functions convert the keysym to the appropriate keycode for the key-

board, so you should do any re-mapping of keys via the set−key−binding function

(see pg. 86) before using any of them.

13 A keysym is a number representing the symbolic meaning of a key. This can be a letter

such as ‘‘A’’, or function keys, or ‘‘Backspace’’, . . . The list of keysyms can be found in the

keysymdef.h file in the /usr/include/X11 directory.
14 See the list of modifiers at the with−alt entry, page 99.

66 4. WOOL Reference manual

key−make — makes a key symbol out of a descriptive name

(key−make keyname)

Returns a keysym (number) associated with the symbolic name keyname (string),

to be used with the key, keypress, keyrelease, and send−key−to−window func-

tions. The list of symbolic names for keys can be found in the include file

/usr/include/X11/keysymdef.h.

For instance, the backspace key is listed in keysymdef.h as:

#define XK_BackSpace 0xFF08 /* back space, back char */

and you can specify the keysym for backspace with:

(key−make "BackSpace") ==> 65288 (0xFF08)

keycode−to−keysym — converts a key code to its symbolic code

(keycode−to−keysym code modifier)

This function returns the server-independent numeric code (the keysym) used to de-

scribe the key whose keyboard code is code while the modifier modifier is pressed.

Note: Only the alone and with−shift modifiers are meaningful in this X function.

keysym−to−keycode — converts a symbolic code to a key code

(keysym−to−keycode keysym)

This function returns the keycode, i.e., the raw code sent by the display’s keyboard

when the user presses the key whose server-independent numeric code is listed in

the /usr/include/X11/keysymdef.h include file and given as a number as the

keysym argument.

kill−window — destroys a client

(kill−window [window])

Calls XKillClient(3) on the current window or on window if specified. This is really

a forceful way to kill a client, since all X resources opened by the client owning the

window are freed by the X server. If only you want to remove a window of a client,

use delete−window (see pg. 56).

label−horizontal−margin

label−vertical−margin — margins around labels

Numeric variables (number)

The value of these global variables are used by the label−make functions to add

margins (given in pixels) around the string displayed. label−horizontal−margin

defaults to 4 and label−vertical−margin to 2.

label−make — makes a pixmap by drawing a string

(label−make label [font])

Creates a label with string label drawn with foreground color in the font font (or

font, if giv en) on a background background. This function builds a pixmap which

is returned.

list−of−windows 67

Note that when used in a plug, the resulting pixmap is directly painted on the back-

ground pixmap of the wob, speeding up the redisplay since re-exposure of the wob

will be done directly by the server, but consuming a small chunk of server memory

to store the pixmap.

Context used:

Variable used for

foreground the color of the text string

background the color of the background

font the font of the string if not given

label−horizontal−margin

label−vertical−margin
the margins around the string

last−key — last key pressed

(last−key)

If the last event processed by an fsm was a key event, returns the string generated by

it. (Pressing A yields the string "A"). It uses XLookupString(3) to do the transla-

tion.

length — length of list or string

(length list)

(length string)

Returns the number of elements of the list or the number of characters of the string.

list — makes a list

(list elt1 elt2 . . . eltN)

Returns the list of its N evaluated arguments.

(list (+ 1 2) (+ "foo" "bar")) ==> (3 "foobar")

list−make — makes a list of a given size

(list−make size elt1 elt2 . . . eltN)

Returns a list of size size (number) elements. The element of rank i is initialized to

eltj, where j = i modulo N , if elements are provided, () otherwise.

(list−make 8 ’a ’b ’c) ==> (a b c a b c a b)

(list−make 3) ==> (() () ())

list−of−screens — list of managed screens

(list−of−screens)

Returns the list of screens actually managed by gwm.

list−of−windows — returns the list of managed windows

(list−of−windows [’window] [’icon] [’mapped] [’stacking−order])

Returns the list of all windows and icons managed by gwm, mapped or not. Called

without arguments, this function returns the list of all windows (not icons), mapped

or not. It can take the following atoms as optional arguments:

68 4. WOOL Reference manual

window lists only main windows

icon lists only realized icons

mapped lists only currently mapped (visible) windows or icons

stacking−order lists windows in stacking order, from bottommost (first) to

topmost (last). This option is slower than the default which

is to list them by the order in which they were managed by

gwm, from the the newest to the oldest.

The window and icon arguments are mutually exclusive.

Note: The two following expressions do not return the same list:

(list−of−windows ’icon)

(mapfor w (list−of−windows) window−icon)

The first one will return the list of all realized icons, that is, only the icons of win-

dows that have already been iconified at least once, but the second one will trigger

the realization of the icons of all the managed windows, by the evaluation of

window−icon, on all the windows.

Note: The main window of an application is always realized, even if the application

started as iconic.

load — loads and executes a wool file

(load filename)

Loads and executes the wool file given in the filename string argument, searching

through the path specified by the GWMPATH variable or the −p command line

switch. Defaults to .:$HOME:$HOME/gwm:INSTDIR, where INSTDIR is your local

gwm library directory, which is normally /usr/local/X11/gwm, but can be changed

by your local installer.

On startup, gwm does a (load ".gwmrc").

Returns the complete pathname of the file as a string if it was found, () otherwise,

but does not generate an error, only a warning message.

Searches first for filename.gwm, then filename in each directory in the path. If the

filename includes a / character, the file is not searched through the path. If any error

occurs while the file is being read, wool displays the error message and aborts the

reading of this file. This implies that you can’t expect gwm to run normally if there

has been an error in the .gwmrc. (You can turn off this behavior and make gwm con-

tinue reading a file after an error at your own risk, with the −D command line option).

lower−window — lowers the current window below other windows

(lower−window [window])

Lowers the current window below all other top-level windows or, if the window ar-

gument is present, just below the window giv en as argument.

make−string−usable−for−resource−key — strips string from dots and stars

(make−string−usable−for−resource−key string)

Replaces all characters ‘‘.*& ’’ (dots, stars, ampersands, and spaces) in the string

string by underscores ‘‘_’’. This function should be used before using names for

keys in the resource manager functions, as X can go weird if you do not handle the

match 69

good number of classes and names to the resource manager (see resource−get,

pg. 82).

The string argument is not modified; if replacement is done, a new string is returned.

map−notify — event sent when window is mapped

Constant (event)

This event is sent to a window or icon just afterwards being actually mapped.

map−on−raise — should the window be mapped when raised?

Variable (boolean)

This context variable is used in window decorations, and, if set, will make the win-

dow be mapped (and de-iconified it it was iconified), when the client raises it.

This is mainly useful for buggy clients assuming that since they put up motif dialog

boxes on the screen, they cannot be iconified since mwm doesn’t provide a way to do

it. Setting this flag on FrameMaker v3.0 windows will allow correct mapping of

iconified dialog boxes.

map−window — maps window

(map−window [window])

Maps (makes visible) the window window (or current window). Does not raise it.

match — general regular expression matching package

(match regular-expression string [number] . . .)

This is the general function to match and extract substrings out of a wool string.

This string is matched against the pattern in regular expression, and returns () if the

pattern could not be found in the string, and the string otherwise.

If number is given, match returns the sub-string matching the part of the regular

expression enclosed in between the number-th open parenthesis and the matching

closing parenthesis (the first parenthesis is numbered 1). Do not forget to escape

twice the parentheses, once for gwm parsing of strings, and once for the regular ex-

pression; e.g., to extract ‘‘bar’’ from ‘‘foo:bar’’ you must use: (match ":\\(.*\\)"

"foo:bar" 1). If a match cannot be found, match returns the nil string "".

If more than one number argument is given, returns a list made of of all the specified

sub-strings in the same way as for a single number argument. If a sub-string wasn’t

matched, it is the null string. For instance, to parse an X geometry such as

80x24+100+150 into a list (x y width height), you can define the following function:

(defun parse−x−geometry (string)

(mapfor dim

(match

"=*\\([0−9]*\\)x\\([0−9]*\\)\\([−+][0−9]*\\)\\([−+][0−9]*\\)"

string 3 4 1 2)

(atoi dim))

(parse−x−geometry "80x24+100+150") ==> (100 150 80 24)

Note that this function returns an error if there is a syntax error in the given regular

expression.

70 4. WOOL Reference manual

The accepted regular expressions are the same as for ed(1) or grep(1), viz:

1. Any character except a special character matches itself. Special characters are

the regular expression delimiters plus \, [, . and sometimes ^, *, $.

2. A . matches any character.

3. A \ followed by any character except a digit or (or) matches that character.

4. A nonempty string s bracketed [s] (or [^s]) matches any character in (or not

in) the string s. In s, \ has no special meaning, and] may only appear as the

first letter. A substring a−b, with a and b in ascending ASCII order, stands for

the inclusive range of ASCII characters.

5. A regular expression of the above forms 1–4 followed by * matches a sequence

of 0 or more matches of the regular expression.

6. A regular expression, x, of form 1–8, bracketed \(x\) matches what x match-

es.

7. A \ followed by a digit n matches a copy of the string that the bracketed regular

expression beginning with the nth \(matched.

8. A regular expression of form 1–8, x, followed by a regular expression of form

1–7, y, matches a match for x followed by a match for y, with the x match be-

ing as long as possible while still permitting a y match.

9. A regular expression of form 1–8 preceded by ^ (or followed by $), is con-

strained to matches that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1–9 picks out the longest among the leftmost

matches in a line.

11. An empty regular expression stands for a copy of the last regular expression en-

countered.

member — position of element in list or in string

(member element list)

(member substring string)

In the first form, scans the list (with the equal predicate) to find the object element.

If found, returns its index in the list (starting at 0), () otherwise.

In the second form, looks for the first occurrence of the string substring in the string

string, and returns the character position at which it starts, or () if not found.

meminfo — prints memory used

(meminfo)

Prints the state of the malloc allocator of all dynamic memory used, by wool or by

Xlib. You will note that reloading your profile consumes memory. This is unavoid-

able.

menu — menu associated with wob

Variable (menu)

The value of this global variable is used by the constructors of all wobs to set the as-

sociated menu of the wob. It should be set to a menu constructed with menu−make or

(). This menu is the default one used by the pop−menu and unpop−menu functions.

meter 71

menu−make — makes a menu

(menu−make bar1 bar2 . . . barN)

Creates a menu, vertical or horizontal depending on the value of the context variable

direction (horizontal or vertical). This function returns a menu descriptor and

at the same time realizes the corresponding menu wob (to get the wob, use the menu−

wob function below). Unlike the plug−make or bar−make functions that return the

wool description to be used to create different wob instances, this is the only wool

function which really creates a wob (as an unmapped X window) on execution.

A vertical menu is composed of horizontal bars stacked on top of each other. A hor-

izontal menu is composed of vertical bars aligned from left to right. The menu takes

the width (or height) of the largest bar, then adjusts the others accordingly in the lim-

its defined by the values of menu−max−width and menu−min−width.

If a bar argument is (), it is just skipped.

Context used:

Variable used for

fsm its finite state machine

direction the direction of the menu

borderwidth the width of the menu’s border in pixels

borderpixel its color

bordertile if it has a pixmap as border pattern

background the color of the background

bar−separator the number of pixels between consecutive bars

tile the pattern of its background (may be ())

cursor the cursor’s shape when in it

property the property associated with the menu

menu−min−width the minimum width of the menu, stretching its bars

(if necessary) to fit

menu−max−width the maximum width of the menu, clipping its bars

menu−wob — returns wob associated with menu

(menu−wob menu-descriptor)

Returns the wob representing the menu as given by the descriptor returned by menu−

make and used in the context variable menu.

meter — sets meter attributes

(meter [key value] . . .)

(meter list)

Sets the attributes of the current screen meter. The key must be an atom, and the cor-

responding attribute is set to the value. If a list is given, it must be a list of keys and

values.

The allowed keys/attributes are:

72 4. WOOL Reference manual

Key Value

font the font of the text displayed in the meter

background the background color of the meter,

defaults to black

foreground the color the text will be drawn with,

defaults to white

horizontal−margin in pixels between text and sides of meter

vertical−margin in pixels between text and top and bottom of meter

x x position of ‘‘anchor’’

y y position of ‘‘anchor’’

gravity which corner of the meter is put at the ‘‘anchor’’

(gravity is a number from 1 to 9, default being 1,

NorthWest)

borderwidth the width in pixels of the border, defaults to 0

(no border)

borderpixel the color of the border, defaults to white

Gravity is expressed as in X11 calls, i.e., by the numbers:

1 2 3

4 5 6

7 8 9

meter returns a list of keys and values describing the previous values of attributes

that have been changed. This list can then be given as argument to meter to restore

the previous values. For instance, to set temporarily the meter on the lower right

corner of the screen:

(setq previous−meter−config

(meter ’x screen−width ’y screen−height

’gravity 9))

; ==> (x 0 y 0 gravity 1)

(my−code...)

(meter previous−meter−config)

meter−close — unmaps the meter

(meter−close)

Closes the meter (makes it disappear).

meter−open — displays the meter

(meter−open x y string)

Displays the meter at location x, y. The string argument is only used to set the mini-

mum width of the meter, call meter−update to display a string in it.

meter−update — writes a string in the meter

(meter−update string)

Change the string displayed in the meter to string. Updates the width of the meter

accordingly. Since the meter is generally used in a context where speed is impor-

tant, it is never shrunk, only expanded.

move−window 73

move−grid−style

resize−grid−style — style of grid for move and resize

Numeric variables (number)

These variables control the kind of grid which is displayed on move or resize opera-

tions. Currently available grids are:

Value Style of grid

0 outer rectangle of the window (default)

1 outer rectangle divided in 9 (uwm-style)

2 outer rectangle with center cross (X) inside

3 outer rectangle + inner (client) outline

4 styles 1 and 3 combined

5 2 pixel wide outer rectangle

move−meter

resize−meter — shows meter for move and resize

Numeric variables (number)

If set to 1, the meter is shown during an interactive move, displaying the coordinates

of the moved window.

move−window — moves window interactively or not

(move−window)

(move−window window)

(move−window x y)

(move−window window x y)

Moves the window. If coordinates are specified, directly moves the current window

(or window argument if specified) to x, y (upper-left corner coordinates in pixels). If

coordinates are not specified, moves the window interactively, i.e., displays the grid

specified with the current value of move−grid−style, and tracks the grid, waiting for

a buttonrelease for confirmation or a buttonpress for abort. If confirmed, the window

is moved to the latest grid position. The cursor will take the shape defined by the

variable cursor if not (). When move−window is called on another event than

buttonpress, there is no way to abort the move.

If you have a strange behavior on moving or resizing windows, check if you didn’t

trigger them with a button ev ent instead of a buttonpress, since gwm will wait for

a release already eaten by move-window!

When used interactively (first two forms), the return value can be one of:

Return Case

() Ok

0 X problem (window disappeared suddenly,

other client grabbing display, etc.)

1 pointer was not in the window screen

2 user aborted by pressing another button

3 user released button before the function started

Also, when used interactively, if the context variable confine−windows is set, the

window will stay confined to the screen.

74 4. WOOL Reference manual

name−change — event generated when window changes its name

Constant (event)

This event is sent to the window when the client changes its name. The window

should then warn the appropriate wobs, by a send−user−event if needed. It is

equivalent to the event made by the call (property−change "WM_NAME").

namespace — sets current state of a namespace

(namespace namespace current-state-index)

Sets the current state of the namespace argument to the index returned from the

namespace−add function at the creation of the state. If the index is out of bounds

(like ‘‘−1’’), returns the current index.

namespace−add — adds a state to a namespace

(namespace−add namespace)

Adds a new state to the argument namespace and returns the index (numeric offset

starting at 0) of the newly created state. This index should then be used to set the

current state of the namespace by the namespace function.

namespace−make — creates a namespace

(namespace−make)

Creates a new namespace and returns it. A namespace is a set of variable names,

called names, that have different values for each state in which the namespace can

be.

The special namespace screen. has as many spaces as there are screens, and its cur-

rent state is always updated by gwm to match the current screen. Other namespaces

must switch states by the namespace function.

For instance, to define a namespace application.with a name application.border

which will depend on the current application:

(setq application. (namespace−make))

(setq application.clock (namespace−add application.))

(setq application.load (namespace−add application.))

(defname ’application.border application.)

(namespace application. application.clock)

(setq application.border 1)

(namespace application. application.load)

(setq application.border 2)

(namespace application. application.clock)

application.border ==> 1

(namespace application. application.load)

application.border ==> 2

namespace−of — returns namespace of a name

(namespace−of name)

Returns the namespace where the name name is declared in, otherwise (if it is a

plain atom or an active value) returns ().

on · on−eval 75

namespace−remove — removes a state from a namespace

(namespace−remove namespace state-index)

Destroys a state (made with namespace−add of a namespace namespace. The num-

ber state-index is the index returned by namespace-add at the creation of the state.

namespace−size — number of states in the namespace

(namespace−size namespace)

Returns the number of the states of the namespace, i.e., the number of possible val-

ues for each name in this namespace. The legal values for the index to be giv en to

the namespace function are in the range from 0 to the return value − 1.

never−warp−pointer — disables any pointer warping

Numeric variable (number)

If set, GWM will never attempt to warp the pointer (move the pointer without actual

user mouse motion).

not — logical negation

(not object)

Logical negation. Returns t if object is (), () otherwise.

oblist — prints all defined objects

(oblist)

Prints the name and value of all currently defined wool atoms.

on

on−eval — triggers a transition on an event in a state of an fsm

(on event [action [state]])

(on−eval event [action [state]])

This is the function used to build transitions in the states of the fsms. on evaluates

only its event argument, so that it is not necessary to quote the action or state argu-

ments, whereas on−eval evaluates all its arguments.

When an event is handled by an fsm, it checks sequentially all the transitions of the

current state for one whose event field matches the incoming event. If found, it calls

the wool function found in the action field, which must be a function call, and

makes the state argument the current state of the fsm. If no state is given, it is taken

as the same state of the fsm. If no action is given, no action is performed.

The destination state is an atom which should have a state value defined in the cur-

rent fsm (i.e., set by setq of an atom with the result of a state−make) at the time

when the fsm is evaluated, which means that you can make forward references to

states, as in the following example.

Example: To define the behavior of a wob cycling through 3 states on the click of

any button, use this fsm:

(fsm−make

(setq state1 (state−make (on (button any any) (? "1") state2)))

(setq state2 (state−make (on (button any any) (? "2") state3)))

(setq state3 (state−make (on (button any any) (? "3\n") state1))))

76 4. WOOL Reference manual

opening

closing — wool hooks on creation and deletion of windows

Variables (Wool)

The values of these global variables are used by the window−make constructor to de-

fine wool expressions which are evaluated just before creating or just after destroy-

ing a window or an icon.

Note: The opening field of a window is always evaluated on the creation of the win-

dow, thus the opening of an icon is only executed on the first iconification of the

corresponding window.

or — logical OR of expressions

(or object1 object2 . . . objectN)

Logical OR. Returns the first non-() object or ().

pixmap−load — loads an XPM X pixmap from an ASCII file

(pixmap−load filename [symbolic-color-name color-value] . . .)

This function builds a pixmap by reading its description in the file filename.xpm or

filename, searched in the directory path held by the GWMPATH shell variable (see

pg. 6). In case of error the default pixmap returned is the same as the one returned

by the pixmap−make function.

The pixmap is expected to be described in the XPM (for ‘‘X pixmap’’) format.

XPM is a de-facto standard X pixmap format which can be found on ftp.x.org

or any of its mirrors, or koala.inria.fr, or by WWW at http://www.inria.fr/

koala/lehors/xpm.html.

XPM allows you to associate symbolic color names to pixels in the file, which may

be overridden by actual colors to be used at load time. For instance, to use an icon

undo defining the symbolic colors lite, dark, and pen in a ‘‘blue’’ context, you may

want to load it by a

(pixmap−load ’undo ’lite (color−make "LightBlue")

’dark (color−make "SteelBlue")

’pen black)

whereas if you want to give it a pinkish look

(pixmap−load ’undo ’lite (color−make "pink1")

’dark (color−make "pink4")

’pen (color−make "DeepPink4"))

Note: a color can also be specified as the string "none", in which case the pixels are

transparent and the resulting pixmap can be used as tiles to construct shaped (non-

rectangular) decorations.

(pixmap−load ’undo ’lite (color−make "pink1")

’dark "none"

’pen (color−make "DeepPink4"))

place−menu 77

pixmap−make — builds a pixmap (color image)

(pixmap−make filename)

(pixmap−make width height)

(pixmap−make background-color file1 color1 file2 color2 . . .)

With a single argument, loads the bitmap file given in the filename string argument,

searching through the bitmap path specified by the GWMPATH variable or the −p

command line switch (see pg. 6). Searches first for filename.xbm, then filename

in each directory in the path. If the filename includes a / character, the file is not

searched through the path. The pixmap is built by drawing the ‘‘unset’’ bits of the

bitmap with the color held by the background variable and the ‘‘set’’ bits with the

color held by the foreground variable.

When used with two arguments, pixmap−make returns a newly created pixmap of

width width and height height filled with the current foreground color if the vari-

able tile is nil, or filled with the pixmap pointed to by the tile variable, if any.

When used with three or more arguments, returns the pixmap constructed by using

the bitmaps given as arguments to paint only the ‘‘set’’ bits of bitmap in file filei

(searched along the same rules as for the first form) to the color colori. The ‘‘unset’’

bits remain untouched. The pixmap is first painted with the color given in the back-

ground-color argument.

If the specified bitmap cannot be loaded, either because the file cannot be found or

does not contain a bitmap, a default built-in bitmap is used and a warning is issued.

The default is the MIT X Consortium logo as a 20x15 bitmap. Bitmaps can be of

any size, they will be centered in the resulting pixmap which will be of the maxi-

mum size of its components.

The file arguments can also be replaced by:

active-labels The string is centered on the bitmap, drawn in the following color.

pixmaps The pixmap is painted in the center, with its own background col-

or (note that label−make returns a pixmap!). The following color

is then ignored, but must be specified for consistency purposes.

place−menu — maps a menu as a normal client window

(place−menu name menu [x y])

Places a menu (made with menu−make) on the screen. This window is then managed

like any other client window. Its client class and, client name are given by the con-

text variables class−name and client−name, by default Gwm and menu, and its win-

dow name is given by the parameter name. The window is placed at position x, y if

specified and at 0, 0 otherwise (it is placed at the last popped position if it was a

popped menu). Returns the created wob.

WARNING: Be careful not to mix popup menus and placed ones. Calling pop−

menu on an already ‘‘placed-menu’’ will result in unpredictable behavior.

Context used:

Variable used for

class−name the client class of the window. Default Gwm.

client−name the client name of the window. Default menu.

icon−name the name of the icon for the window.

If () (default), uses name.

starts−iconic if the menu will first appear as an icon

78 4. WOOL Reference manual

plug−make — makes a plug

(plug−make pixmap)

(plug−make active-label)

This function builds a plug, the atomic wob object. It is composed of a graphic ob-

ject (either a pixmap, created with pixmap−make or label−make, or another type of

object such as an active label). The size of the graphic object determines the size of

the plug. Thus if you change the pixmap of the plug via wob−tile, the plug is re-

sized accordingly.

Context used:

Variable used for

fsm its finite state machine

borderwidth the width of the plug’s border in pixels

borderpixel its color

bordertile the pixmap to paint the border with

background the color of the background

menu the pop-up associated with it

cursor the cursor’s shape when in it

property the property associated with the plug

A plug can be shaped (non-rectangular) if made by pixmap−loading an XPM file

with some transparent color pixels (or color none in XPM terms).

plug−separator — inter-plug space in bars

Numeric variable (number)

The value of this global variable is used by the bar−make function to give the space

in pixels between 2 consecutive plugs not separated by extensible space.

pop−menu — pops a menu

(pop−menu [menu] [position] [’here])

This function grabs the server (using the grab−server function, see pg. 63), thus

preventing other client requests to be processed by the server, and maps the given

menu (or the menu associated with the current wob if menu is not given or is set to

()). The menu is guaranteed to be on the screen when this function returns. The be-

havior of the menu is then determined by the menu’s fsm. The cursor will take the

shape defined by the variable cursor if it is non-nil.

The position number is the item in which you want the cursor to appear (centered),

the first item is numbered 0.

If the atom here is given, the menu is not moved under the current position of the

pointer, it stays at the last position it was. So to pop a menu menu at (67, 48), do:

(move−window (menu−wob menu) 67 48)

(pop−menu menu ’here)

The current wob at the time of the call to pop−menu becomes the parent of the menu.

Note: A menu is not a gwm window, so when a menu is popped, the current window

becomes the window parent of the wob which has popped the menu.

Note: The arguments to pop−menu can be given in any order and are all optional.

property−change 79

print−errors−flag — controls printing of error messages

Numeric variable (number)

If nonzero, wool error messages are printed on gwm’s output device, which is the

default. error−occurred sets this variable to 0 to prevent printing errors.

print−level — controls printing depth of lists

Numeric variable (number)

This variable controls the maximum depth at which the lists will be printed.

(setq print−level 2)

’(1 (2 (3 (4 rest)))) ==> (1 (2 (...)))

process−events — recursively process all pending events EXPERT

(process−events [sync])

This function reads the event queue and recursively processes all pending events by

re-entering the main gwm loop. It returns when there are no more pending events on

the X event queue.

This functions allows a pseudo-multitasking capability for gwm. You can thus im-

plement ‘‘background jobs’’ such as a general desktop space cleaning routine, to be

called after each move, opening, or closing function that pauses by calling process−

events at regular intervals to let gwm do its other tasks. You should then take into

account the fact that the current function could be recursively called by another

move operation triggered by an event processed by process−events, howev er, and

thus must be re-entrant.

If a non-nil argument sync is given, gwm does a ‘‘Sync’’, i.e., requests the server to

send all its pending events, before processing the events on the queue.

process−exposes — treats all pending expose events

(process−exposes)

This function reads the event queue and processes all expose events it finds for gwm

objects on the screen. It is used by pop-menu to be sure that the menu is completely

drawn before letting it react to user events.

{ }

progn — sequence of instructions

(progn inst1 inst2 . . . instN)

{inst1 inst2 . . . instN}

The classical Lisp progn function, evaluating all its arguments and returning the re-

sult of the last evaluation. Useful in places where more than one Lisp instruction is

expected, for instance in then fields of the if instruction, or in the action field of the

on function. The brace notation is just a shortcut for writing progn sequences.

property−change — event generated when a client window changes a property

(property−change property-name)

This event is sent when the property of name property-name is changed on the client

window.

80 4. WOOL Reference manual

raise−window — raises the current window on top of other windows

(raise−window [window])

Raises the current window on top of all other top-level windows or, if the window

argument if present, above the window giv en as argument.

re−decorate−window — re-decorates the client window by gwm

(re−decorate−window [window])

Un-decorate the client window and re-decorate it as if it had appeared on the screen.

Useful after a (load ".gwmrc") to quickly test any modifications to your profile.

reenter−on−opening — process events on the queue just before mapping a new window

Numeric variable (number)

If nonzero (default), gwm will process all events in the queue before mapping a new

window. This may pose re-entrancy problems (wool code may be called during a

call to place−menu, for instance), and thus can be turned off.

refresh — refreshes the screen

(refresh [window])

If a window argument is provided, refreshes only this window, otherwise forces a re-

draw of the screen like xrefresh(1). Refreshing is done by mapping and unmapping

a new window over the area to refresh.

replayable−event — makes a replayable event from a normal event

(replayable−event event)

Makes the given button or key event event replayable (see ungrab−server−and−

replay−event, pg. 90). This is not the default for events because replayable events

freeze the server state for gwm when a passive grab is activated with them, which

might not be desirable.

(set−grabs (replayable−event (button 1 alone)))

WARNING: It is recommended to un-freeze the server if you are to do some pro-

cessing before the button or key is released, either by replaying the event by ungrab−

server−and−replay−event or allow−event−processing (see pg. 45).

resize−style — style of interactive resize

Numeric variable (number)

This variable controls the way the interaction with the user is handled during resizes,

and can take the numeric values:

resize−window 81

Value Style of resize

0 is a uwm-like resize, i.e., the window is divided in nine regions, and

you are allowed to drag which side or corner of the window you were

in when the resize began.

1 is an mwm-like resize, i.e., you resize the window by its side or cor-

ner, the width of the corners (in pixels) being determined by the value

of the global variable mwm−resize−style−corner−size. If you are

dragging the side of the window and you go at less than mwm−resize−

style−corner−size of a corner, you then drag this corner, if the

global variable mwm−resize−style−catch−corners is nonzero.

The corner or side dragged is reflected by the shape of the cursor you

have put in the global variables cursor−NW, cursor−NE, cursor−SW,

cursor−SE, cursor−N, cursor−S, cursor−W, cursor−E (see pg. 53).

While you are not dragging anything, the cursor is still determined by

the value of cursor.

resize−window — resizes the window interactively or not

(resize−window)

(resize−window window)

(resize−window width height)

(resize−window window width height)

Resizes the window. If the dimensions are specified, directly resizes the current

window (or the given window argument) to the given size, specified in pixels, round-

ed down to the allowed size increments. (If you want to resize by increments, use

the window−size active value.) If the dimensions are not specified, resizes the win-

dow interactively, i.e., displays the grid specified with the current value of resize−

grid−style, and tracks the grid, waiting for a buttonrelease for confirmation or a

buttonpress for abort. If confirmed, the window is resized to the latest grid position.

The cursor will take the shape defined by the variable cursor, if it is non-nil.

NOTE: The dimensions given to resize-window are those of the outer window, in

pixels, including the gwm decoration. Use the window−size active value if you want

to specify the client dimensions.

WARNING: When resize-window is called on an event other than buttonpress, there

is no way to abort the resize.

The interactive resize interaction is set by the value of the global variable resize−

style.

When used interactively (first two forms), the return value can be one of:

Return Case

() Ok

0 X problem (window disappeared suddenly,

other client grabbing display, etc.)

1 pointer was not in the window screen

2 user aborted by pressing another button

3 user released button before the function started

Also, when used interactively, if the context variable confine−windows is set, the

window will stay confined to the screen.

82 4. WOOL Reference manual

resource−get — searches gwm database for a resource

(resource−get name class)

Calls the X11 resource manager for an object of name name and class class (strings

of dot-separated names) previously stored by a call to resource−put matching the

description. (See the X11 documentation for a precise description of the rule-match-

ing algorithm of the resource manager.)

This is the recommended way to retrieve the window descriptions associated with a

client in the describe−window function.

WARNING: The name and class must have the same number of dots in them! (See

make−string−usable−for−resource−key, pg. 68.)

resource−put — puts a resource in gwm database

(resource−put name value)

Puts the value in the gwm resource database so that it can be retrieved by a future

call to resource−get. Names can use the same conventions as in the .Xdefaults

file for normal X11 clients.

This is the recommended way to store the window descriptions associated with a

client so that they can be retrieved later in the describe−window function.

restart — restarts gwm

(restart)

(restart "prog" "arg1" "arg2" . . . "argN")

Without arguments, restarts gwm, more precisely, it does an exec(2) of gwm with the

same arguments that were given on startup.

With arguments, terminates gwm and starts a new process with the given command-

line arguments. This useful to restart gwm with another profile, as in:

(restart "gwm" "−f" "another−profile")

root−window — the root window

Active value (window ID)

Holds the wob describing the root window of the current screen. For instance, to set

the background pixmap of the screen to the bitmap in file ingrid, say:

(with (wob root−window) (setq wob−tile (pixmap−make "ingrid")))

When set to a root window wob, sets the current wob and window to it, and screen to

the screen it belongs to.

rotate−cut−buffers — rotate server cut buffers

(rotate−cut−buffers number)

Exchange the contents of the 8 cut buffers on the X server so that buffer n becomes

buffer (n + number) modulo 8.

send−button−to−window 83

save−yourself — asks client to update its WM_COMMAND property

(save−yourself [window])

Sends to the current window’s (or to given window’s) client window the ICCC

message WM_SAVE_YOURSELF, telling the application to update its WM_COM-

MAND X property to a command line which should restart it in its current state.

This function returns t if the window supported this protocol, and hence is supposed

to update its WM_COMMAND property, and returns () otherwise (see get−wm−

command, pg. 62).

screen — current screen

Active value (screen number)

Returns or sets the current screen as the screen number (the same number as X in

DISPLAY=unix:0.X). Setting the screen also sets the active values wob and window

to the root window of the screen. See the warning about using screen in with con-

structs under the window entry, pg. 91.

screen−count — number of screens attached to the display

Constant (number)

The number of screens attached to the display. Not equal to (length (list−of−

screens)) if you excluded screens by the −x command line option.

screen−depth

screen−height

screen−width — screen dimensions

Constants (number)

These numerical variables hold the size of the current screen in bitplanes (screen−

depth) and pixels (screen−width and screen−height). A screen−depth of 1

means that you are on a monochrome screen.

screen−heightMM

screen−widthMM — actual screen size in millimeters

Constants (number)

Hold the dimensions of the screen in millimeters.

screen−type — visual type of screen

Active value (atom – not settable)

Returns the screen visual type as an atom, which can be either color, gray, or mono,

if the screen is a color, gray scale, or monochrome device.

send−button−to−window — sends button event to a client

(send−button−to−window button modifier x y)

Sends a buttonpress and a buttonrelease X event to the client application of the win-

dow. The event is generated as if the user pressed on the button number button, with

the modifier keys down and at location x, y in the client window coordinates (in pix-

els). In particular, this means that the event is sent to the smallest subwindow of the

application containing x, y and having selected to receive button events.

84 4. WOOL Reference manual

send−current−event — re-sends X event to the client of a window

(send−current−event window)

Re-sends the last key or button event to the client of the window argument. If win-

dow is (), it is taken as the current window.

send−key−to−window

send−keycode−to−window — sends key event to a client

(send−key−to−window keysym modifier)

(send−key−to−window string modifier)

(send−keycode−to−window keycode modifier)

These three functions are used to send key events to the client of the current window,

to define function keys in gwm, or to implement mouse positioning of the cursor in

Emacs, for instance. The third form sends the keycode (as returned by current−

event−code), the first the keysym as defined in the include file keysymdef.h. Both

keysyms and keycodes must be numbers, not names. You can, however, specify the

symbolic name of the key with the key−make function. The modifier parameter indi-

cates which modifier keys or which buttons were supposed to be down for the event.

The second form sends each character of the string (this works for ASCII characters

only) with the modifier modifier to the window. A Shift modifier is automatically

added to all uppercase characters.

send−user−event — sends a gwm ‘‘user’’ event

(send−user−event atom [wob [do-not-propagate]])

This function sends a ‘‘user’’ event to the current window, if no argument is present,

or to the wob specified as argument. A user event is a gwm concept and is NOT an

X event, i.e., it is not seen by the server and is immediately processed before send−

user−event terminates. The peculiarity of an user-event is that it recursively propa-

gates downwards in the wob tree from the destination wob, the event being sent first

to the child, then to the wob itself. That is, if you send a user-event to the window,

all its decorations will receive it. The atom, which is evaluated by the function, and

thus needs to be quoted, is used merely as a kind of label for the event.

If you provide a non-nil third argument, the event is sent to the given wob, but is not

propagated to its children.

Example:

(send−user−event ’get−focus)

Note: send−user−event saves and restores the current wob, window, screen, and

ev ent. Thus if a piece of code triggered in another fsm sets the current wob to anoth-

er one, it will be restored to its previous value on exit of the calling send−user−

event.

set−acceleration — sets mouse speed

(set−acceleration numerator denominator)

Accelerates the mouse cursor movement by a ratio of numerator/denominator (two

numbers).

set−icon−sizes 85

set−colormap−focus — sets the window whose colormap is installed

(set−colormap−focus [window])

Installs the colormap of the current window (or the given window). Once a window

has the colormap focus, if the client changes its colormap, the new colormap is auto-

matically installed by gwm.

If the window has no declared colormap, the default colormap (the colormap of the

root window) is installed instead.

If the argument is (), the default colormap for the screen is re-installed.

set−focus — sets input focus on a window

(set−focus [window])

Sets the focus to the current window, or to the given window. The keyboard input

will then go to the client of this window, reg ardless of the pointer position. If win-

dow is (), the focus is reset to PointerRoot mode, i.e., the focus is always on the

window under the pointer.

If the client of the current window follows the ICCC WM_TAKE_FOCUS protocol,

gwm does not try to set the focus to the window, it just sends the WM_TAKE_FO-

CUS message to the client which should then set the focus itself.

NOTE: set−focus will not set the focus on a client window that does not need it, so

that set−focus on xclock(1), for instance, has no effect. This is the only case where

set−focus will return (); it returns t otherwise.

set−grabs

unset−grabs — grabs events occurring in the window

(set−grabs event1 event2 . . . eventN)

(unset−grabs event1 event2 . . . eventN)

set−grabs establishes what is called a passive grab on a button or a key on the

current window, i.e., all events matching the given events will be transmitted to the

window itself, even if they hav e occurred on a bar, plug, or client window of the

window.

unset−grabs removes events from the list of grabbed events. They do not exit an

existing active grab.

The set−grabs call is used when decorating a window on the grabs list.

Example:

(set−grabs (button 3 alone)

(buttonpress any with−alt)

(key (key−make "Delete") any))

(unset−grabs (key any any))

set−icon−sizes — sets desired icon sizes

(set−icon−sizes min-width min-height

max-width max-height

width-inc height-inc)

This function sets a property of name WM_ICON_SIZE on the root window, which

tells the clients what the desirable size for their icon pixmaps or icon windows is, if

they define any, as returned by window−icon−pixmap and window−icon−window.

86 4. WOOL Reference manual

set−key−binding — redefines keyboard for all applications

(set−key−binding keycode keysym [keysym1 [keysym2 . . . [keysymN]]])

This rebinds the keys on the server’s keyboard. When the key of keycode keycode is

pressed, it will be decoded as the keysym keysym if pressed alone, keysym1 if

pressed with modifier 1, . . . , keysymN if pressed with modifier N . (Modifiers are

Shift, Control, Lock, Meta, etc.)

WARNING: The storage used by this function is never released.

Note: To obtain the list of current bindings of your server you can use the xprkbd(1)

or xmodmap(1) X11 utilities.

set−screen−saver — sets screen-saver parameters

(set−screen−saver timeout interval prefer-blanking allow-exposures)

Sets the way the screen-saver operates:

timeout is the time in seconds of no input after which the screen

blanks (0 means no screen saver, −1 means restore default)

interval is the interval in seconds between random motion of the back-

ground pattern (0 disables motion)

prefer-blanking makes the screen go blank if 1

allow-exposures if 0 means that the screen saver operation should not generate

exposures, even if this implies it cannot operate.

set−subwindow−colormap−focus — installs the colormap of a subwindow

(set−subwindow−colormap−focus [number])

If the current window currently has the colormap focus, as set by the set−colormap−

focus function, and the client has set a WM_COLORMAP_WINDOWS property on

its window which tells gwm to install the colormaps of its subwindows, calling set−

subwindow−colormap−focus without an argument installs the next different color-

map in the list of subwindows whose colormaps must be installed.

If a numeric argument is given, it is taken as an offset in the list of subwindows

(modulo the size of the list), and the corresponding window’s colormap is installed.

The main window is always at offset zero.

Calling set−colormap−focus on the window resets the current offset to zero, for

subsequent calls to set−subwindow−colormap−focus.

set−threshold — sets mouse acceleration threshold

(set−threshold number)

Sets the minimum pointer movement in pixels before acceleration takes place (see

mouse−acceleration). The number argument must not be 0.

set−x−property — sets an X property on a client window

(set−x−property property-name value)

Sets the X11 property of name property-name on the current client window. The

value currently must be a STRING (or atom) or an INTEGER. For instance,

(window−name "foo") is equivalent to (set−x−property "WM_NAME" "foo").

This is the recommended way for communicating between gwm and an X applica-

tion.

state−make 87

setq

set

: — variable assignment

(setq atom value)

(set object value)

This is the assignment function of all Lisp dialects. In the first form, the first argu-

ment is not evaluated, in the second it is. (Thus allowing non-standard atom names

to be set via the atom constructor atom, as in (set (atom "foo bar") 1)). Both

forms evaluate their second argument and set the value of the first argument to the

resulting value. Setting active values doesn’t modify their value, but calls a prede-

fined function on the value.

: is just a synonym for setq.

Example:

(setq b ’c)

(setq a (+ 1 2))

(set b 4)

yields a = 3 and c = 4 .

sort — sorts a list in place EXPERT

(sort list comparison-function)

This function sorts (puts in ascending order) in place the list argument using the

‘‘quicksort’’ algorithm with the user-provided comparison function. This function is

called on pairs of elements and should return −1, 0, or 1 if its first argument is less

than, equal to, or greater than the second.

This function is flagged as ‘‘Expert,’’ as it physically modifies the list. For instance,

to obtain a list of windows sorted by names, do:

(sort (list−of−windows)

(lambda (w1 w2)

(compare (with (window w1) window−name)

(with (window w2) window−name))))

stack−print−level — number of stack frames printed on error

Numeric variable (number)

On error, wool prints a stack dump. The number of stack frames printed is given by

the value of this variable. Setting it to a negative number puts no limits on the depth

of the dump.

state−make — makes a state of an fsm

(state−make transition1 transition2 . . . transitionN)

Makes a state of an fsm (see the fsm−make and on functions) composed of the transi-

tions given as arguments. Returns the constructed state which can be assigned a

name via setq to be used as the destination state in transitions.

If an argument is itself a state, the new state will include all the transitions in the ar-

gument state.

88 4. WOOL Reference manual

sublist — extracts a sub-list out of a list

(sublist from to list)

Returns the sublist starting at the from-th element and ending at the to-th element of

list list (both from and to are numbers). from is inclusive and to is exclusive, and if

they are greater than the size of the list, the elements are set to (). Elements are

numbered starting at 0.

Examples:

(sublist 2 4 ’(1 2 3 4)) ==> (3 4)

(sublist 5 9 ()) ==> (() () () ())

(sublist 10 −8 ’(1 2)) ==> ()

t — the logical ‘‘true’’ value

t

The ‘‘true’’ value, evaluates to itself.

tag

exit — non-local goto

(tag tag-name inst1 inst2 . . . instN)

(exit tag-name inst1 inst2 . . . instN)

The pair of functions tag/exit implements a non-local goto. When tag is called,

the non-evaluated tag-name becomes the label of the goto. The instructions are then

evaluated in progn fashion. If a call to exit with the same tag-name (non-evaluat-

ed) is made during these instructions, the evaluation of the tag instructions is aborted

and tag returns the evaluation of the instructions of the exit call, evaluated like

progn.

If exit makes the flow of control exit from a with local variable declarations con-

struct, the previous variable values are restored.

WARNING: Do not, when in a file being loaded by load, do an exit with a tag set

outside the load call – this breaks gwm in the current version.

tile — background pixmap

Variable (pixmap)

The value (pixmap) of this global variable is used by the constructors of all wobs to

set their background pixmap. For now, it is only used in bars and screens.

together — combines keyboard modifiers

(together modifier1 modifier2 . . . modifierN)

Used to indicate that the modifiers must be pressed simultaneously,

(button 1 (together with−shift with−alt))

type 89

trace

trace−level — traces wool function calls

Active values

This is a primitive debugging tool. When the trace value is set to a non-null number

(or t) every call to any wool function is printed, with the arguments and return val-

ue. If set to an expression, this expression will be evaluated before and after each

list evaluation (Setting trace to 1 instead of t re-enables the evaluation of the previ-

ous expression).

The trace level variable holds the current indentation (stack depth) of the calls. You

might reset it to 0 if you re-enable the tracing after disabling it at a non-0 level.

NOTE: This is a primitive debugging tool, others will be added in the future.

trigger−error — triggers a wool error

(trigger−error expr . . .)

This will trigger an error, returning instantly to the toplevel (unless trapped by a

error−occurred (see pg. 60). It will issue an error message, print all the given ar-

guments expr . . . , and append a newline.

type — type of a wool object

(type object)

Returns the wool type of the object as an atom. Current types are:

Atom Description

active wool active value atom

atom wool normal atom

bar bar descriptor

client window descriptor

collection syntax tree node

cursor X cursor

event X event

fsm finite state machine

fsm−state state of an fsm

subr built-in function

fsubr non-evaluating built-in function

expr user-made function (defun)

fexpr non-evaluating user function (defunq)

label active-label

list wool list

menu menu used in pop-ups

number number (used for fonts, wobs, colors, . . .)

pixmap X pixmap

plug plug descriptor

pointer atom pointing to a memory location

quoted−expr quoted expression

state−arc transition arc of an fsm state

string character string

90 4. WOOL Reference manual

unbind — undefines a symbol

(unbind atom)

Undefine the (evaluated) atom in argument, so that a boundp on it will return nil.

ungrab−server — releases grab on the X server

(ungrab−server [wob])

Ungrabs the server, allowing other client requests to be processed. If an argument is

given, ungrabs the server only if the argument was the last wob to grab the server,

otherwise does nothing. With no argument, unconditionally ungrab the server (key-

board and pointer).

ungrab−server−and−replay−event — releases grab on the X server and replay grabbing event

(ungrab−server−and−replay−event flag)

When the X server has been grabbed by a passive grab (a grab set on a window by

the grabs context variable or by the set−grabs function), you can release the grab

and make the X server replay the event as if the grab didn’t occur by calling this

function.

You must set the flag parameter to () if the grab was on a mouse button, and to a

non-nil object if the grab was on a key.

This call is useful in click to type window managers, to re-send the event which

changed the current active window to the client window.

Note: An event can only be replayed if it has been grabbed on a replayable ev ent

(see replayable−event, pg. 80).

unmap−window — unmaps (makes invisible) a window

(unmap−window [window])

Unmaps (makes invisible) the window (or the current one).

unpop−menu — makes a popped menu disappear

(unpop−menu [menu])

Removes the grab set by the menu (or the menu associated with the current wob if

no argument is given) and unmaps it. The menu argument can be either a menu (as

returned by the menu−make function) or a wob (as provided by the wob active-value).

This function synchronizes gwm with the server, so the menu is guaranteed to be un-

mapped when it returns.

Warning: The current wob is not changed by this function. The wob which trig-

gered the menu can be accessed as the parent of the menu.

user−event — events internal to gwm

(user−event atom)

This function is used in transitions to match user-events of the given (evaluated)

atom (see send−user−event).

Example:

(on (user−event ’get−focus) (set−pixmap focus−pattern))

window−client−class 91

visibility−unobscured

visibility−fully−obscured

visibility−partially−obscured — events sent when window visibility changes

Constants (event)

This events are sent to a window when its visibility changes, e.g., when it gets ob-

scured by moving another window on top of it.

warp−pointer — warps the mouse pointer to a location EXPERT

(warp−pointer x y [window-relative-to])

Warps (sets) the mouse pointer to the position (x, y), relative to its current position if

no third argument is given, or in the coordinates of the window-relative-to if given.

For instance, to warp the pointer to the next screen at the same relative location say:

(setq coordinates (current−mouse−position))

(setq screen (% (+ (# 3 coordinates) 1) screen−count))

(warp−pointer (# 0 coordinates) (# 1 coordinates) root−window)

WARNING: Use this function just like you would use goto in normal program-

ming: never. warp−pointer will ruin a window management policy just as easily as

gotos will ruin a program.

while — while loop

(while condition inst1 inst2 . . . instN)

Executes the N instructions in sequence until condition becomes (). Returns al-

ways ().

window — current window ID

Active value (window ID)

Returns or sets the descriptor of the current window as a wool number. The current

window is the default for all window functions. Setting window to a value sets also

the current wob to this window.

WARNING: A (with (window w) . . .) call will modify the value of the current

wob:

; window is A, wob is B

(with (window C) (foo)) ; in foo, window is C, wob is C

; window is A, wob is A

So, if you want the previous call not to modify wob, do a (with (wob w) . . .) call

instead. The same remark holds for the screen active value: a (with (screen s)

. . .) will set the value of window and wob to the value of screen before the with

call.

window−client−class — client application class

Active value (string)

Returns a string containing the class of the client owning the window, e.g., "XTerm"

for an xterm window.

92 4. WOOL Reference manual

window−client−height

window−client−width

window−client−x

window−client−y

window−client−borderwidth — inner window geometry in pixels

Active value (number – not settable)

Returns the dimensions in pixels of the client window, its position inside the gwm

window frame, and the borderwidth of the client window (i.e., the inner-borderwidth

of the decorated window).

window−client−name — client application name

Active value (string)

Returns a string containing the name of the client owning the window, e.g., "xterm"

for an xterm window.

window−group — manages groups of windows

Active value (window ID)

In X11, windows can be grouped with each window in the group bearing a reference

to a distinguished window, the group leader. gwm maintains such groups as a list of

windows, the group leader being the first one in the list. This active value returns ()

if the window does not belong to a group, otherwise it returns the list of windows in

the group.

The user can himself define groups of windows by setting the window−group active

value to a window ID, which is the group leader to which the window should be

grouped. The entire group (list) can also be passed as argument, in which case the

first element is taken as the window to be grouped to.

To remove a window from a group, just assign () to window−group for this window,

it is removed from the group it was in. If the window was a group leader, the group

is broken and all the windows in it are ungrouped.

Note: A window can only belong to one group.

window−icon — icon associated to window

Active value (window ID – not settable)

Returns the icon associated with the current window. If the current window is al-

ready an icon, returns the current window itself.

Note: When gwm decorates a window, it caches the wool description given for the

icon, but does not create it. The icon is physically created (and its opening field

evaluated) on the first access to the window−icon active value or the first call to the

iconify−window function (see pg. 64). To just check that the window has an associ-

ated icon, without creating it if it didn’t exist, use window−icon?.

window−icon? — tests if icon has already been created

(window−icon? [window])

Returns t if the icon has already been created, () if not, without creating it.

window−is−shaped 93

window−icon−name — name of the icon

Active value (string)

Returns the name that the client of the current window has given to its icon. If set,

will modify the X property on the client name specifying the icon, so that this

change will survive a window manager restart, but the name will be overridden by

the client application if it changes its icon name in the future.

window−icon−pixmap — pixmap to be used in the icon

Active value (pixmap – not settable)

Returns the pixmap given as a hint by the current client to be used in its icon, or ()

if no pixmap was specified. The bitmap specified by the application is used to con-

struct the returned pixmap by painting the unset pixels with the background color

and the set pixels with the foreground color on the invocation of this function for

each window. Thus each time it is called a new pixmap is created. It is highly rec-

ommended that you store the returned value instead of re-calling the function anoth-

er time.

Use it as the plug argument of the window−make function after making a plug via

plug−make.

window−icon−pixmap−change — pixmap to be used in the icon has changed

Constant (event)

When an application changes its pixmap to be used as its icon, this event is generat-

ed. You should then use the window−icon−pixmap function to retrieve it if your icon

style supports it.

window−icon−pixmap−id — X ID of pixmap to be used in the icon

Active value (number – not settable)

This ID is used to know which bitmap the client provided, and if it has changed

since last time.

window−icon−window — window to be used as the icon

Active value (window ID – not settable)

Returns a descriptor (number) of the window provided by the current client to be

used as its icon, or () otherwise. Should only be used as the plug argument of the

window−make function.

window−is−mapped — tells if window is visible

Active value (boolean – not settable)

If the current window is mapped (visible) returns it, () otherwise.

window−is−shaped — tells if window has a non-rectangular shape

Active value (boolean – not settable)

If the current client window has a non-rectangular outline (on servers supporting the

Shape X11 extension), returns t, () otherwise.

94 4. WOOL Reference manual

window−is−transient−for — tells if window is transient

Active value (window – not settable)

If not (), the window is transient for another window, and thus you might decide not

to decorate it too much. (The window it is transient for is returned.)

window−is−valid

wob−is−valid — tests if gwm window ID is still valid

(window−is−valid window)

(wob−is−valid wob)

Since in gwm, windows and wobs are represented by reference, i.e., by numbers

meaning a pointer to some data, there is the risk of ‘‘dangling pointers’’, i.e., access-

ing a memory location no longer containing a valid window. To test for these cases,

two functions are provided. wob−is−valid will test if wob is any valid (non closed)

plug, bar, menu, window, icon, or root window, whereas window−is−valid will veri-

fy that window is actually only a window or icon. These functions are not strictly

necessary, but are useful for debugging purposes.

window−machine−name — name of host on which the client is running

Active value (string – not settable)

Returns the string containing the name of the machine on which the client owning

the window executes. (Defaults to "machine" if not set.)

window−make — makes a template to decorate a window with

(window−make titlebar leftbar rightbar basebar plug)

Returns a description of a gwm window to decorate a newly created X window.

This is also used to describe the associated icon and the screen. The four bars are

the ones that frame the client and are evaluated another time when the window is

physically created. This allows you to give expressions for bars (quoted to evade the

first evaluation of arguments of the window−make function itself) which evaluate to a

bar on the realization of the wob. Any bar can be set to (), indicating that that no

corresponding bar should be created.

base bar

title bar

le
ft

 b
a

r

ri
g

h
t

b
a

r

client
window

border of GWM window

The fifth argument plug is only used when describing an icon, to be used as the cen-

tral window around which the bars will be framed. You can give a plug (or an ex-

pression which when evaluated gives a plug) or the value of window−icon−window

for the window. If set to (), the icon has the dimension of the longest side bar, or if

they are also set to (), the dimension of the longest top or base bar.

window−name 95

title
title

title

base
base

base

plugle
ft

le
ft

ri
g
h
t

ri
g
h
t

icon no plug

no plug,

no side bars

Context used:

Variable used for

fsm the fsm of the window

borderwidth the width of its border

borderpixel the color of its border

bordertile the pixmap tiling its border

inner−borderwidth the border width of the client window

menu the default menu associated to the window

cursor the shape of the cursor when in the window

(in fact in the border, which is the only visible part)

property the initial value of the property field

grabs ev ents grabbed from all children of the window

opening wool code evaluated on the creation of the window

closing wool code evaluated on the destruction of the window

grabs is a list of button, buttonpress, key, or keypress ev ents which will be

‘‘grabbed’’ from the client window to be sent to the gwm window. This means that

the event will be sent directly to the gwm window and not to the client window. For

instance, to implement a ‘‘uwm’’ move style (moving a window on Alternate/right

button anywhere in the window), the grabs list should include a (buttonpress 3

with−alt), and the fsm of the window should have a (on (buttonpress 3 with−

alt) (move−window)) transition.

Events declared in the grabs list are trapped on the whole surface of the window, in-

cluding the bars and the client window, and redirected to the main window’s fsm.

opening and closing are two Lisp expressions that are evaluated when the window

(or icon) is created and destroyed, respectively, just before being mapped or un-

mapped. This is the right place to position or resize the window before it appears.

For the screen, opening is evaluated once all windows already on screen have been

framed and closing is evaluated when leaving gwm.

When used for screen description, no arguments are used, only the context values for

grabs, opening, closing, fsm, menu, cursor, and property context variables, with

the additional context value:

Variable used for

tile tiling the screen with a pixmap (if set to a pixmap)

or defining the screen color (if set to a color).

() means do not change the screen background.

window−name — name of the window

Active value (string)

Returns the string containing the name of the window, as set by the client owning it.

Note that it is a transient property, and the event name−change is issued when it is

changed by the client.

96 4. WOOL Reference manual

When window−name is set, the WM_NAME X property on the client window is up-

dated accordingly, resulting in a PropertyNotify X event to be sent to the window by

the X server. This change will survive a window manager restart, but the name will

be overridden by the client application if it changes its window name in the future.

Note: All dots in the name are converted to underscores, so that you can use the val-

ue of window−name safely as a name for the X resource manager.

window−program−set−position

window−program−set−size — tells if program explicitly specified the geometry

Active value (boolean – not settable)

Return t if the position or size of the current window was set by default by the pro-

gram.

window−property

wob−property — wool property associated to a wob

Active value

To each wob is associated a property, which is any Lisp object given by the user.

These active values return or set the stored property for the current wob or window.

When creating a wob, the property is taken as the current value of the global variable

property.

window−size — client window size specified in resize increments

Active value (list of two numbers)

Returns the size of the window expressed as a list of two numbers, multiples of the

minimal size (e.g., character positions for xterm). When set, the window is resized

accordingly. This is the size of the inner client window, to specify the outer dimen-

sions, use resize−window.

window−starts−iconic — state in which window must first appear

Active value (boolean)

If not (), the window appears as an icon on its first mapping or the first time it is

decorated by gwm. This ‘‘hint’’ can thus be set either by the application or the win-

dow manager.

window−status

wob−status — state of the window

Active value (atom – not settable)

Returns the type of the current wob or window as an atom. Possible types are:

Atom type of wob

window main window around a client

icon icon of a window

menu menu created with menu−make

root the root window

bar a bar

plug a plug

window−wm−state 97

Thus, to check if the current window is an icon, just say:

(if (= window−status ’icon) . . .)

window−to−client

client−to−window — client window X ID to gwm wob conversions

(window−to−client gwm-window)

(client−to−window X-window-id)

Converts gwm windows gwm-window to and from actual decorated client window

IDs X-window-id (numbers used by xwininfo(1), for instance).

window−user−set−position

window−user−set−size — tells if user explicitly specified the geometry

Active value (boolean – not settable)

Returns t if the position or size of the current window was set explicitly by the user

at creation time via command line switches, () otherwise. If called on an icon, tells

if the user defined the initial icon position.

window−was−on−screen — tells if window was already on screen

Active value (boolean – not settable)

Returns t if the window was already on the screen before gwm started. You may

test its value to perform certain actions only on newly created windows (if ()), such

as interactive placement.

window−width

window−height

wob−height

wob−width — window dimensions in pixels

Active value (number – not settable)

These functions return the size of the current window (with decoration) or wob in

pixels. These do not include the width of the border, following the X11 conventions.

window−window — main window associated with an icon

Active value (window ID – not settable)

Returns the window associated with the current window if it is an icon. If the cur-

rent window is not an icon, returns the current window itself.

window−wm−state — the WM_STATE of a window

Active value (atom – not settable)

Returns an atom indicating which state the window is in, according to the

WM_STATE property. The state of the window can be:

window icon WM_STATE

mapped mapped normal

mapped unmapped normal

unmapped mapped iconic

unmapped unmapped withdrawn

98 4. WOOL Reference manual

The atom window is returned if the window is in the normal state, the atom icon is

returned if it is iconic, and () is returned if it is withdrawn.

This state information is used by session managers and other window managers, for

instance gwm itself will re-iconify the windows that were previously iconified on a

restart.

window−wm−state−icon — declares user icon for WM_STATE

Active value (window ID)

gwm automatically manages the WM_STATE property on client windows. Howev-

er, if you implement in a wool package your own icons which are not the gwm

ones, which are managed by the window−icon and iconify−window primitives, for

instance by creating a window via the place−menu primitive, you need to declare

which window must logically be considered as the icon for your window. This is

done by setting the window−wm−state−icon on the window to the icon.

Once you have declared that a window has a user-managed icon, gwm no longer up-

dates the WM_STATE property, so you should call window−wm−state−update each

time you change the state of the window.

window−wm−state−update — updates WM_STATE property for windows with user icon

(window−wm−state−update [state])

Once you have declared that a window has a user-managed icon, you should update

the WM_STATE property by calling this function with the window global variable

set to the managed window each time the state of the window changes.

An optional argument window, icon, or () forces the WM_STATE property to be set

to normal, iconic, or withdrawn, respectively. This can be useful for example if

‘‘iconifying’’ is done by unmapping the window.

window−x

window−y — position of upper-left corner of window in root coordinates

Active value (number – not settable)

These functions return the coordinates of the upper-left corner of the current win-

dow, including its decoration, in the root window.

with

with−eval — local variable declaration

(with (var1 value1 . . . varN valueN) instructions . . .)

(with context instructions . . .)

(with−eval expression instructions . . .)

This is the construct used to declare and initialize variables local to a group of in-

structions. Active values and functions are handled as expected, resetting their ini-

tial value after the execution of the body of the with. The values are evaluated se-

quentially.

A context is a list of variables and associated values that can be re-used in many

with functions (see context−save).

with−eval first evaluates the expression and then uses it as a context, so that the two

following calls are equivalent:

wob 99

(with (a 1 b 2) c)

(with−eval (+ ’(a 1) ’(b 2)) c)

Due to the structure of the wool interpreter, with works also with active values and

functions. For example, the following call can be made to move the window ‘‘my-

window’’ to the upper left corner of the screen.

(with (window my−window move−ul (lambda () (move−window 0 0)))

(move−ul))

Example:

(setq bluegreen ’(foreground green background blue))

(with bluegreen (pixmap−make "Bull"))

(with (a 2 b (+ a 1)) (print b)) ==> 3

with−shift

with−control

with−alt

with−lock

with−modifier−N

with−button−N — modifier states

Constants (number)

These numerical values describe what was in a ‘‘down’’ state (i.e., pressed) when a

key or button event was sent. You can combine them with the together function,

for instance if you want Shift and Control pressed.

N can takes values 2 to 5 for modifiers and 1 to 5 for buttons, e.g., the with−

modifier−5 and with−button−1 variables are defined.

with−output−to−file — redirect output to a file

(with−output−to−file filename instructions . . .)

Opens the file filename for writing, and then evaluates the instructions, writing all

output (produced with print or ?) to the file. The file is closed on exit from the

function.

with−output−to−string — redirect output to a string

(with−output−to−string instructions . . .)

Evaluates the instructions, concatenating all output (produced with print or ?) into

a string which is returned.

wob — current wob

Active value (wob ID)

Returns the descriptor of the current wob (i.e., the wob which received the event be-

ing processed) as a wool number. The current wob is the default for all wob func-

tions. When set, the current wob is now the wob argument.

100 4. WOOL Reference manual

wob−at−coords — wob containing coordinates

(wob−at−coords x y)

Returns the wob including the coordinates relative to the root. Returns () if the co-

ordinates were off-screen.

wob−background — (solid) background color of wob

Active value (color)

Returns or sets the (solid) background color of the wob. If set, discards the tile of

the wob (if there was one) to paint its background with a solid color. Works only

with bars and screens.

wob−borderpixel — color of border

Active value (color or pixmap)

Get or set the solid color or pixmap of the border of the current wob.

wob−borderwidth — width of the border of a wob

Active value (number)

Gets or sets the width in pixels of the border of the current wob. If it is in a compos-

ite wob, the parent is then resized.

wob−cursor — cursor displayed when pointer is in a wob

Active value (cursor)

This active value allows the user to get or modify the mouse cursor which is dis-

played when the pointer is in the current wob.

wob−fsm — gets or sets the fsm associated with current wob

Active value (fsm)

This active value allows the user to get or modify the fsm associated with a wob. If

you set the fsm of a wob, it is placed in the initial state. This function is intended for

debugging purposes, and its use should be avoided in normal operation. Try using

multiple-state fsms instead of changing the fsm.

wob−invert — quick and dirty inversion of a wob

(wob−invert)

Inverts the colors over the surface of the current wob. This is just drawn on top of

ev erything else, and does not affect permanently the wob. This should only be used

after calling grab−server and then process−exposes. (Note that pop−menu does

that for you.) This is a ‘‘lightweight’’ function to be used on transient objects. To

invert a wob in a cleaner way, use wob−tile.

The wob is inverted by using the invert−color color (screen relative). This color

should be chosen to be the bitwise-xoring of two colors that will be inverted by this

functions, the other colors being affected in an unpredictable way.

xid−to−wob 101

wob−menu — gets or sets the menu associated with current wob

Active value (menu)

This active value allows the user to get or modify the menu associated with a wob.

wob−parent — finds the parent of a wob

Active value (wob ID – not settable)

Returns the parent of the current wob. Note that the parent of a pop-up is the wob

which called the pop−menu function. The parent of windows and icons is the root

window itself, and the parent of a root window is nil.

wob−tile

wob−pixmap — graphic displayed in a wob

Active value (pixmap)

Returns or sets what is the current wob’s pixmap background. For the screen itself

or a bar, this is its background tile; for a plug this is the pixmap around which the

plug is built. If you change the size of the wob−tile for a plug, it is automatically

resized (but not a bar or a screen). wob−pixmap is just a synonym for wob−tile for

backward compatibility purposes.

wob−x

wob−y — absolute screen position in pixels of current wob

Active values (wob ID – not settable)

Returns the position of the top left corner of the wob, including its border as abso-

lute pixel coordinates in its screen.

xid−to−wob — translates X ID to wob object

(xid−to−wob id)

Returns the wob whose associated X window has the X ID id . If no wob if found,

returns (). The X ID is the identification of windows used by all standard X tools

such as xwininfo(1).

5. Quick Reference

This chapter lists all wool objects (functions, variables, and active values) grouped

by topics.

5. 1. WOOL constructs

; 41wool comment

(), nil 43the nil value

t 88the logical ‘‘true’’ value

’, quote 43prevents evaluation of argument

eval 60evaluates a wool expression

load 68loads and executes a wool file

set 87variable assignment

:, setq 87variable assignment

=, equal 44tests equality of any two objects

eq 60tests strict equality of any two objects

execute−string 60executes (parses and evaluates) a wool string

hack 64raw access to gwm internal structures

type 89type of a wool object

with 98local variable declaration

with−eval 98local variable declaration (with evaluation)

5. 2. Flow control

progn, { } 79sequence of instructions

if 64conditional test

cond 51conditional test

for 61iterates through a list of values

mapfor 61constructs a list by iterating through a list of values

while 91while loop

tag 88non-local goto: label

exit 88non-local goto: branching

end 59terminates gwm

error−occurred 60traps errors occurring in expressions

trigger−error 89triggers a wool error

process−events 79recursively process all pending events

5. 3. I/O

?, print 44prints wool objects

bell 48rings the keyboard bell

with−output−to−file 99redirects all output to a file

with−output−to−string 99redirects all output to a string

102

5. 8. Strings 103

5. 4. Atoms

atom 46makes an atom from a string

boundp 49tests if an atom has already been defined

unbind 90undefines an atom

5. 5. Namespaces

namespace−make 74creates a namespace

namespace−add 74adds a state to a namespace

namespace−remove 75removes a state from a namespace

defname 55declares a name in a namespace

namespace 74sets current state of a namespace

namespace−of 74returns namespace of a symbol

namespace−size 75number of states in the namespace

5. 6. Functions

defun, de 54defines a wool function evaluating its arguments

defunq, df 54defines a wool function quoting its arguments

lambda 54defines an unnamed wool function evaluating its arguments

lambdaq 54defines an unnamed wool function quoting its arguments

5. 7. Lists

#, nth 41accesses or modifies an element of a list or a property

list

##, replace−nth 42physically replaces an element of a list or a property list

() 42list notation

+ 44appends lists

length 67length (number of elements) of a list

list 67creates a list

member 70position of element in a list

sublist 88extracts a sub-list out of a list

delete−nth 56physically removes an element of a list

copy 52copies a list

list−make 67makes a list of a given size

sort 87sorts a list in place

5. 8. Strings

" " 43string notation

+ 44concatenates strings

< 44tests for strict lexicographic inferiority

> 44tests for strict lexicographic superiority

compare 51compare two strings for lexicographic order

member 70position of substring in string

atoi 45ASCII string to integer conversion

itoa 65integer to ASCII string conversion

atom 46makes an atom from a string

length 67length (number of characters) of a string

match 69general regular expression matching and extracting package

104 5. Quick Reference

5. 9. Logical functions

(), nil 43the nil value

t 88the logical ‘‘true’’ value

and 45logical AND of expressions

not 75logical negation

or 76logical OR of expressions

5. 10. Numbers

+ 44adds numbers

*, /, % 43arithmetic binary operators

− 44arithmetic difference or sign inversion

< 44tests for strict numerical inferiority

> 44tests for strict numerical superiority

compare 51compare two numbers

bitwise−and 48bitwise and operator

bitwise−or 48bitwise or operator

bitwise−xor 48bitwise exclusive-or operator

atoi 45ASCII string to integer conversion

itoa 65integer to ASCII string conversion

5. 11. Graphical primitives

active−label−make 45makes a label (text in a given font)

bordertile 48pixmap to tile the border of a wob

foreground 61color of the foreground

dimensions 57position and dimensions of a wool object

height 57height of a wool object

width 57width of a wool object

label−horizontal−margin 66margins around labels

label−vertical−margin 66margins around labels

active−label−make 45makes a graphic string object refreshing itself

on exposures

label−make 66makes a pixmap by drawing a string

pixmap−make 77builds a pixmap (color image)

pixmap−load 76builds a pixmap from an XPM file

description

tile 88background pixmap for creating a wob

wob−tile, wob−pixmap 101gets/sets the graphic displayed in a wob

draw−line 58draws a line in a pixmap

draw−rectangle 58draws a (filled) rectangle in a pixmap

draw−text 59draws a string of characters in a pixmap

5. 12. System interface

! 41executes a shell command

getenv 63gets the value of a shell variable

restart 82restarts gwm

elapsed−time 59gets time used by gwm in milliseconds

hostname 64name of the machine on which gwm is running

5. 13. Events 105

5. 13. Events

any 45matches any modifier or button

button 49makes a button event

buttonpress 49makes a buttonpress event

buttonrelease 49makes a buttonrelease event

current−event−code 52code of the last event

current−event−modifier 52modifier of the last event

current−event−from−grab 52tests if last event was generated by

a grab

current−event−window−coords 52relative position of the last event

current−event−x 53absolute position of the last event

current−event−y 53absolute position of the last event

current−event−relative−x 53relative position of the last event

current−event−relative−y 53relative position of the last event

current−event−time 52time in milliseconds of the last event

current−user−event 53name of the last user event

double−button 58makes a double-click button event

double−buttonpress 58makes a double-click buttonpress event

double−click−delay 58maximum time between double clicks

enter−window 59ev ent generated when the pointer crosses

the border of a wob

leave−window 59ev ent generated when the pointer crosses

the border of a wob

enter−window−not−from−grab 59ev ent generated when the pointer

actually crosses the border of a wob

leave−window−not−from−grab 59ev ent generated when the pointer

actually crosses the border of a wob

focus−in 60ev ent received when input focus changes

on the client window

focus−out 60ev ent received when input focus changes

on the client window

geometry−change 62ev ent generated when window changes

size

key 65makes a key event

keypress 65makes a keypress event

keyrelease 65makes a keyrelease event

key−make 66makes a key symbol out of a descriptive

name

last−key 67last key pressed

name−change 74ev ent generated when window changes

its name

property−change 79ev ent generated when a client window

changes a property

window−icon−pixmap−change 93pixmap to be used in the icon has

changed

send−user−event 84sends a gwm ‘‘user’’ event to another

wob

user−event 90ev ent internal to gwm

set−grabs 85grabs events occurring in the window

unset−grabs 85removes grabs set by set−grabs

map−notify 69ev ent sent when window is mapped

visibility−unobscured 91ev ents sent when window visibility

visibility−fully−obscured 91changes

visibility−partially−obscured 91

106 5. Quick Reference

5. 14. Keyboard modifiers

alone 45specifies that no modifier key is used

any 45matches any modifier or button

together 88combines keyboard modifiers

with−shift 99shift key was pressed for the event

with−control 99control key was pressed for the event

with−alt 99alt key was pressed for the event

with−lock 99lock key was pressed for the event

with−modifier−N 99modifier N key was pressed for the event

with−button−N 99button N was pressed for the event

5. 15. Access to X11 primitives

screen−type 83returns visual type of screen

current−mouse−position 53queries server for current mouse

position

wob−at−coords 100wob containing coordinates

display−name 57name of the X server

get−x−property 62gets an X property on a client

window

set−x−property 86sets an X property on a client

window

grab−server 63grabs the server

ungrab−server 90releases grab on the X server

replayable−event 80makes a replayable event from a

normal event

allow−event−processing 45un-freezes the server after catching a

replayable event

ungrab−server−and−replay−event 90releases grab on the X server and

replay grabbing event

refresh 80refreshes the screen

resource−get 82searches gwm database for a

resource

resource−put 82puts a resource in gwm database

set−focus 85sets input focus on a window

set−colormap−focus 85sets the window whose colormap is

installed

set−subwindow−colormap−focus 86installs the colormap of a subwindow

set−key−binding 86redefines keyboard for all

applications

keycode−to−keysym 66converts a key code to its symbolic

code

keysym−to−keycode 66converts a symbolic code to a key

code

set−screen−saver 86sets screen-saver parameters

set−acceleration 84sets mouse speed

set−threshold 86sets mouse acceleration threshold

process−exposes 79treats all pending expose events

warp−pointer 91warps the mouse pointer to a

location

xid−to−wob 101translates X ID to wob object

5. 18. Wobs 107

5. 16. Global variables controlling GWM behavior

describe−screen 56user function called to describe a screen

describe−window 57user function called to decorate a new window

freeze−server 61stops processing other clients during grabs

grab−keyboard−also 63grab-server grabs also keyboard events

confine−grabs 51cursor stays confined in grabbing wobs

confine−windows 51forces windows to stay on-screen

reenter−on−opening 80process events on the queue just before

mapping a new window

invert−cursors 65inverts the bitmaps used for making cursors

move−grid−style 73style of grid for move

resize−grid−style 73style of grid for resize

resize−style 80style of interactive resize

check−input−focus−flag 49follows input hint for setting focus

print−errors−flag 79controls printing of error messages

print−level 79controls printing depth of lists

gwm−quiet 63silent startup

never−warp−pointer 75disables any pointer warping

border−on−shaped 48keep borders on shaped windows

map−on−raise 69should the window be mapped when raised?

5. 17. Colors

color−make 50allocates a pixel color by name

color−make−rgb 51creates a color from RGB values

color−free 50de-allocates a pixel

color−components 50gives RGB color decomposition of a pixel

background 46color of the background

borderpixel 48color of the border of a wob

foreground 61color of the foreground

grid−color 63color to draw (xor) the grids with

invert−color 65color to invert (xor) the wobs with

5. 18. Wobs

borderpixel 48color of the border of a wob

bordertile 48pixmap to tile the border of a wob

borderwidth 49width in pixels of the border of a wob

dimensions 57position and size of a wool object

height 57height of a wool object

width 57width of a wool object

menu 70menu associated with wob

root−window 82the root window

wob−property 96wool property associated to a wob

wob−status 96state of the window

wob−x 101x position in pixels

wob−y 101y position in pixels

wob−height 97wob height in pixels

wob−width 97wob width in pixels

wob 99current wob

wob−at−coords 100wob containing screen coordinates

wob−borderpixel 100color of border

108 5. Quick Reference

wob−borderwidth 100width of the border of a wob

wob−fsm 100gets or sets the fsm associated with current wob

wob−invert 100quick and dirty inversion of a wob

wob−menu 101gets or sets the menu associated with current wob

menu−wob 71returns wob associated with menu

wob−parent 101finds the parent of a wob

wob−tile 101graphic displayed in a wob

wob−pixmap 101graphic displayed in a wob

wob−cursor 100cursor displayed when pointer is in a wob

5. 19. Plugs

plug−make 78makes a plug

wob−tile 101graphic displayed in a wob

wob−pixmap 101graphic displayed in a wob

5. 20. Bars

bar−make 46makes a bar descriptor

bar−min−width 47minimum transversal width of a bar

bar−max−width 47maximum transversal width of a bar

background 46color of the background

plug−separator 78inter-plug space within bars

wob−background 100(solid) background color of wob

wob−tile 101graphic displayed in a wob

wob−pixmap 101graphic displayed in a wob

5. 21. Menus

direction 57direction of menus

bar−separator 48number of pixels between consecutive bars in menus

horizontal 64direction of menus

vertical 64direction of menus

menu 70menu associated with wob

menu−make 71makes a menu

place−menu 77maps a menu as a normal client window

pop−menu 78pops a menu

unpop−menu 90makes a popped menu disappear

wob−menu 101gets or sets the menu associated with current wob

5. 22. Windows

describe−window 57user function called to decorate a new window

circulate−windows−down 50circulates mapped windows

circulate−windows−up 50circulates mapped windows

grid−color 63color to draw (xor) the grids with

iconify−window 64iconifies or de-iconifies a window

inner−borderwidth 65borderwidth of the client window

kill−window 66destroys a client

list−of−windows 67returns the list of all windows

lower−window 68lowers current window below another window

map−window 69maps window

5. 23. Window characteristics 109

move−window 73moves window

raise−window 80raises current window on top of other windows

re−decorate−window 80re-decorates the client window by gwm

resize−window 81resizes the window

root−window 82the root window

unmap−window 90unmaps (make invisible) a window

window 91current window id

window−make 94makes a template to decorate a window with

window−property 96wool property associated to a wob

window−size 96client window size specified in resize

increments

5. 23. Window characteristics

window−client−borderwidth 92inner window borderwidth in pixels

window−client−class 91client application class

window−client−name 92client application name

window−client−height 92inner window height in pixels

window−client−width 92inner window width in pixels

window−client−x 92inner window x in pixels

window−client−y 92inner window y in pixels

window−group 92manages groups of windows

window−icon 92icon associated to window

window−window 97window associated with an icon

window−icon−name 93name of the icon

window−icon−pixmap 93pixmap to be used in an icon

window−icon−window 93window to be used as icon

window−is−mapped 93tells if window is visible

window−is−shaped 93tells if window has non-rectangular

shape

window−is−transient−for 94tells if window is transient

window−machine−name 94name of host on which the client is

running

window−name 95name of the window

window−size 96client window size specified in resize

increments

window−starts−iconic 96state in which window must first appear

window−status 96state of the window

window−user−set−position 97tells if user explicitly specified the

position

window−user−set−size 97tells if user explicitly specified the size

window−program−set−position 96tells if program explicitly specified the

position

window−program−set−size 96tells if program explicitly specified the

size

window−was−on−screen 97tells if window was already on screen

window−width 97window width in pixels

window−height 97window height in pixels

window−x 98x position of upper-left corner of

window in root

window−y 98y position of upper-left corner of

window in root

grabs 63ev ents grabbed on the whole window

110 5. Quick Reference

5. 24. Screen

screen 83current screen

describe−screen 56user function called to describe a screen

root−window 82the root window

screen−depth 83screen depth

screen−height 83screen height

screen−width 83screen width

screen−heightMM 83screen height in millimeters

screen−widthMM 83screen width in millimeters

list−of−screens 67list of managed screens

screen−count 83number of screens attached to the display

tile 88background pixmap

wob−background 100(solid) background color of wob

5. 25. Context

context−save 51context management

context−restore 51context management

with 98local variable declarations

with−eval 98local variable declarations

5. 26. Cursors

cursor 53shape of the cursor in a wob

cursor−make 54makes a cursor with a bitmap and a mask

invert−cursors 65inverts the bitmaps used for making a cursor

5. 27. Communication with other X11 clients

GWM_EXECUTE 14sending commands to gwm

cut−buffer 54contents of cut buffer 0

rotate−cut−buffers 82rotate server cut buffers

get−x−property 62gets an X property on the client

set−x−property 86sets an X property on a client window

delete−read−properties 56flags to delete X properties after reading them

resource−get 82searches gwm database for a resource

resource−put 82puts a resource in gwm database

get−x−default 62gets a server default

get−wm−command 62gets the WM_COMMAND property

send−button−to−window 83sends button event to a client

send−key−to−window 84sends key event to a client

send−keycode−to−window 84sends key event to a client

send−current−event 84re-sends X event to the client of a window

window−wm−state 97gets the WM_STATE property of a window

window−wm−state−icon 98declares user icon for WM_STATE

window−wm−state−update 98updates WM_STATE property for windows

with user icon

set−icon−sizes 85sets desired icon sizes

delete−window 56asks client to delete one of its windows

window−to−client 97gwm wob to client window X ID conversion

client−to−window 97client window X ID to gwm wob conversion

5. 33. Debugging tools 111

5. 28. Session manager functions

save−yourself 83asks client to update its WM_COMMAND property

5. 29. Fonts

font 60default font

font−make 61loads a font

5. 30. Fsms

fsm 62Finite State Machine of the wob

fsm−make 62compiles an automaton

on 75triggers a transition on an event in a state of an fsm

on−eval 75triggers a transition on an event in a state of an fsm

state−make 87makes a state of an fsm

wob−fsm 100gets or sets the fsm associated with current wob

5. 31. Meter

meter−close 72unmaps the meter

meter−open 72displays the meter

meter−update 72writes a string in the meter

meter 71sets meter attributes

move−meter 73shows meter during moves

resize−meter 73shows meter during resizes

5. 32. Hooks

opening 76wool expression evaluated at the creation of a window

or icon

closing 76wool expression evaluated at the destruction of a window

or icon

5. 33. Debugging tools

trace 89traces wool function calls

trace−level 89traces wool function calls

stack−print−level 87number of stack frames printed on error

hashinfo 64statistics on atom storage

meminfo 70prints memory used

oblist 75prints all defined objects

window−is−valid 94tests if window is still valid

wob−is−valid 94tests if wob is still valid

Index

!, 41

" ", 43

’, 43

(), 43

(), 42

{ }, 79

*, 43

+, 44

−, 44

/, 43

:, 87

;, 41

<, 44

=, 44

>, 44

?, 44

%, 43

#, 41

##, 42

.profile.gwm, 15

GWMPATH, 6

GWM_EXECUTE, 14

active−label−make, 45

allow−event−processing, 45

alone, 45

and, 45

any, 45

atoi, 45

atom, 46

background, 46

bar−make, 46

bar−max−width, 47

bar−min−width, 47

bar−separator, 48

bell, 48

bitwise−and, 48

bitwise−or, 48

bitwise−xor, 48

border−on−shaped, 48

borderpixel, 48

bordertile, 48

borderwidth, 49

boundp, 49

button, 49

buttonpress, 49

buttonrelease, 49

check−input−focus−flag, 49

circulate−windows−down, 50

circulate−windows−up, 50

class−name, 77

client−name, 77

client−to−window, 97

closing, 76

color−components, 50

color−free, 50

color−make, 50

color−make−rgb, 51

compare, 51

cond, 51

confine−grabs, 51

confine−windows, 51

context−restore, 51

context−save, 51

copy, 52

current−event−code, 52

current−event−from−grab, 52

current−event−modifier, 52

current−event−relative−x, 53

current−event−relative−y, 53

current−event−time, 52

current−event−window−coords, 52

current−event−x, 53

current−event−y, 53

current−mouse−position, 53

current−user−event, 53

cursor, 53

cursor−NW, 53

cursor−make, 54

custom−menu, 28

customize, 27

cut−buffer, 54

de, 54

defname, 55

defun, 54

defunq, 54

delete−nth, 56

delete−read−properties, 56

delete−window, 56

deltabutton, 24

describe−screen, 56

describe−window, 57

df, 54

dimensions, 57

direction, 57

display−name, 57

double−button, 58

double−buttonpress, 58

double−click−delay, 58

draw−line, 58

draw−rectangle, 58

112

Index 113

draw−text, 59

dvroom, 22

elapsed−time, 59

emacs−mouse, 27

end, 59

enter−window, 59

enter−window−not−from−grab, 59

eq, 60

equal, 44

error−occurred, 60

eval, 60

execute−string, 60

exit, 88

fast, 39

float, 24

focus−in, 60

focus−out, 60

font, 60

font−make, 61

for, 61

foreground, 61

frame−win, 32

framemaker, 27

freeze−server, 61

fsm, 62

fsm−make, 62

geometry−change, 62

get−wm−command, 62

get−x−default, 62

get−x−property, 62

getenv, 63

grab−keyboard−also, 63

grab−server, 63

grabs, 63

grid−color, 63

gwm−quiet, 63

hack, 64

hashinfo, 64

height, 57

horizontal, 64

hostname, 64

icon−groups, 23

icon−name, 77

iconify−window, 64

if, 64

inner−borderwidth, 65

insert−at, 35

invert−color, 65

invert−cursors, 65

itoa, 65

key, 65

key−make, 66

keycode−to−keysym, 66

keypress, 65

keyrelease, 65

keysym−to−keycode, 66

kill−window, 66

label−horizontal−margin, 66

label−make, 66

label−vertical−margin, 66

lambda, 54

lambdaq, 54

last−key, 67

leave−window, 59

leave−window−not−from−grab, 59

length, 67

list, 67

list−make, 67

list−of−screens, 67

list−of−windows, 67

load, 68

lower−window, 68

make−string−usable−for−resource−key, 68

map−notify, 69

map−on−raise, 69

map−window, 69

mapfor, 61

match, 69

match−windowspec, 35

member, 70

meminfo, 70

menu, 70

menu−make, 71

menu−max−width, 71

menu−min−width, 71

menu−wob, 71

meter, 71

meter−close, 72

meter−open, 72

meter−update, 72

mon−keys, 25

move−grid−style, 73

move−meter, 73

move−opaque, 24

move−window, 73

mwm−resize−style−catch−corners, 81

mwm−resize−style−corner−size, 81

name−change, 74

namespace, 74

namespace−add, 74

namespace−make, 74

namespace−of, 74

namespace−remove, 75

namespace−size, 75

near−mouse.gwm, 36

never−warp−pointer, 75

nil, 43

not, 75

nth, 41

oblist, 75

114 Index

on, 75

on−eval, 75

opening, 76

or, 76

pixmap−load, 76

pixmap−make, 77

place−3d−button, 34

place−menu, 77

plug−make, 78

plug−separator, 78

pop−menu, 78

print, 44

print−errors−flag, 79

print−level, 79

process−events, 79

process−exposes, 79

progn, 79

property−change, 79

quote, 43

raise−on−iconify, 16

raise−on−move, 16

raise−on−resize, 16

raise−window, 80

re−decorate−window, 80

reenter−on−opening, 80

refresh, 80

replace−nth, 42

replayable−event, 80

resize−grid−style, 73

resize−meter, 73

resize−style, 80

resize−window, 81

resource−get, 82

resource−put, 82

restart, 82

root−window, 82

rotate−cut−buffers, 82

save−yourself, 83

screen, 83

screen−count, 83

screen−depth, 83

screen−height, 83

screen−heightMM, 83

screen−type, 83

screen−width, 83

screen−widthMM, 83

send−button−to−window, 83

send−current−event, 84

send−key−to−window, 84

send−keycode−to−window, 84

send−user−event, 84

set, 87

set−acceleration, 84

set−colormap−focus, 85

set−focus, 85

set−grabs, 85

set−icon, 18

set−icon−sizes, 85

set−icon−window, 19

set−key−binding, 86

set−placement, 19

set−screen−saver, 86

set−subwindow−colormap−focus, 86

set−threshold, 86

set−window, 18

set−x−property, 86

setq, 87

simple−ed−win, 31

simple−icon, 33

simple−win, 30

sort, 87

stack−print−level, 87

standard−decorations, 30

standard−icons, 33

standard−profile, 15

standard−styleguide, 36

starts−iconic, 77

state−make, 87

std−popups, 25

std−virtual, 22

sublist, 88

suntools−keys, 25

t, 88

tag, 88

term−icon, 34

tile, 88

timeout−win, 32

together, 88

trace, 89

trace−level, 89

trigger−error, 89

type, 89

unbind, 90

unconf−move, 25

ungrab−server, 90

ungrab−server−and−replay−event, 90

unmap−window, 90

unpop−menu, 90

unset−grabs, 85

user−contrib−utils, 36

user−event, 90

utils, 34

vertical, 64

virtual, 21

visibility−, 91

visibility−fully−obscured, 91

visibility−partially−obscured, 91

visibility−unobscured, 91

vscreen, 21

warp−pointer, 91

Index 115

while, 91

width, 57

window, 91

window−client−borderwidth, 92

window−client−class, 91

window−client−height, 92

window−client−name, 92

window−client−width, 92

window−client−x, 92

window−client−y, 92

window−group, 92

window−height, 97

window−icon, 92

window−icon?, 92

window−icon−name, 93

window−icon−pixmap, 93

window−icon−pixmap−change, 93

window−icon−pixmap−id, 93

window−icon−window, 93

window−is−mapped, 93

window−is−shaped, 93

window−is−transient−for, 94

window−is−valid, 94

window−machine−name, 94

window−make, 94

window−name, 95

window−program−set−position, 96

window−program−set−size, 96

window−property, 96

window−size, 96

window−starts−iconic, 96

window−status, 96

window−to−client, 97

window−user−set−position, 97

window−user−set−size, 97

window−was−on−screen, 97

window−width, 97

window−window, 97

window−wm−state, 97

window−wm−state−icon, 98

window−wm−state−update, 98

window−x, 98

window−y, 98

with, 98

with−alt, 99

with−button−N, 99

with−control, 99

with−eval, 98

with−lock, 99

with−modifier−N, 99

with−output−to−file, 99

with−output−to−string, 99

with−shift, 99

wob, 99

wob−at−coords, 100

wob−background, 100

wob−borderpixel, 100

wob−borderwidth, 100

wob−cursor, 100

wob−fsm, 100

wob−height, 97

wob−invert, 100

wob−is−valid, 94

wob−menu, 101

wob−parent, 101

wob−pixmap, 101

wob−property, 96

wob−status, 96

wob−tile, 101

wob−width, 97

wob−x, 101

wob−y, 101

xid−to−wob, 101

