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Abstract

This thesis is a theoretical work dealing with the flares from the Galactic
Center. On the basis of a physical model for this phenomenon (hot spot
model), simulations are used to investigate its observational implications.
To this end light curves and centroid motions from the emission region
close to a supermassive black hole are generated with the help of general
relativistic ray tracing methods.

Furthermore the influence of various parameters of this model is studied
in detail to help constrain some properties of the Galactic Center black hole
and its immediate environment from future observations. Existing measure-
ments of flare light curves are used to determine some of these parameters,
whereas others are anticipated by the model.

As a result we find the hot spot model to be in good agreement with
the observations and give some constraints on the shape and evolution of
the hot spot. Simulations for the astrometric motion of the flares anticipate
the observability of high-order general relativistic effects with instruments of
the next generation. We present two examples of such an observation on the
basis of available flare data. The resulting centroid tracks serve as theoretical
predictions of the hot spot model and particularly general relativity.
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Chapter 1

Introduction

The rotational center of our own galaxy, the Milky Way, is briefly called
Galactic Center. It is located about 26 000 lightyears away from earth in
the direction of Sagittarius, a constellation in the southern hemisphere of
the night sky. It cannot be observed in the visible, ultraviolet or soft X-
ray regime due to cool interstellar dust along the line of sight, absorbing
all radiation with such wavelengths. The windows allowing observations of
the Galactic Center region are located at gamma ray, hard X-ray, infrared,
sub-millimeter and radio wavelengths.

The very center of our galaxy coincides with an extended radio source
named Sagittarius A, containing the compact source Sagittarius A? (SgrA?).
Various indications give rise to the conviction that this source must contain
a supermassive black hole. The radiation from SgrA? is presumably gener-
ated via accretion of the surrounding gas onto the black hole, producing an
extended emission and probably an accretion disk. The latter is too small
to be resolved with present instruments, but new concepts in astronomical
interferometry may soon lead to observations with high enough precision to
observe objects in the black hole’s direct vicinity.

1.1 Observations of the Galactic Center

Substantial progress in observational techniques during the past decades
provided ever better knowledge of the Galactic Center and its components.
In the following, some of the most recent findings are outlined in brief.

1.1.1 Stellar dynamics

For several years the Galactic Center stars have been observed in the near
infrared (NIR), providing measurements of their proper motions (see Figure
1.1). The observations clearly show that some stars in the immediate vicinity
of SgrA? - i.e. at distances up to about 30 lightdays - move on Keplerian
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1.1 Observations of the Galactic Center 5

orbits around a central compact mass distribution. The location of the
central object is consistent with the radio-position of SgrA? to high accuracy.
From the shape of the orbits, the distance as well as the mass of SgrA? can
be determined [12]:

DSgrA? = 7.62± 0.32 kpc MSgrA? = 3.61± 0.32 · 106M� (1.1)

Figure 1.1: Pseudo-color image of the central parsec of the Milky Way in the near
infrared (from ESO, MPE).

Since the star S2 approaches the dynamical center by a distance down
to 100AU, the upper limit for the extension of the central object can be
estimated by this number. Without any reasonable doubt such a high mass
density can only be explained with the occurrence of a supermassive black
hole. Its event horizon can be calculated to be roughly 15R�. This yields
an apparent size of about 10µas on sky, the largest of all known black hole
candidates.
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1.1.2 Radio and X-ray emission from SgrA?

The German X-ray satellite ROSAT first detected potential radiation from
SgrA? in the 1990’s. Later, a more reliable identification of X-rays from this
source was possible with Chandra and XMM-Newton thanks to their high
spatial resolution and sensitivity.

While the radio emission of SgrA? only varies slowly on time scales of
several to a few hundred days with an amplitude below ten percent, in the
X-ray regime it is found to exhibit two different states [10]. On the one
hand, weak X-rays are emitted from a slightly extended area around the
black hole (quiescent state), suggesting the existence of hot accreting gas
in the environment of SgrA?. On the other hand, bright flares show up
with a period of about one per day. Then, during several tens of minutes,
SgrA? brightens up strongly (up to 100 times as bright as the quiescent
state) and a distinctive point source emerges at its location. This radiation
must originate from a region within less than 10 Schwarzschild radii of the
supermassive black hole because of the short rise- and decay-times of the
X-ray flares.

1.1.3 Near infrared emission from SgrA?

In the near infrared regime the Galactic Center can be observed with high
angular resolution since the beginning of the 1990’s. However, for quite a
long time no such radiation has been detected at the location of SgrA?. The
first NIR-flare was witnessed during routine observations of the Galactic
Center star cluster at the Very Large Telescope (VLT) on mount Paranal in
Chile on may 9, 2003. Since then many more have been recorded.
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Figure 1.2: Left: SgrA? flare light curves in the NIR (red) and X-ray (blue) from
April 4, 2007. Right: Periodogram of the NIR-flare light curve (from MPE).

These flares typically last for several hours and occur a few times per
day [40]. Additionally they show brightness variations on smaller timescales
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(on the order of 20 minutes), unlike the X-ray flares (see Figure 1.2). Si-
multaneous multi-wavelength observations of the Galactic Center and SgrA?

were carried out from 2004 on. These observations provide the required in-
formation to constrain physical models for the origin of the flares. Some of
these models will be presented in the following section.

1.2 Flare-models

The emission-process of the NIR-flares from the Galactic Center is still un-
clear. For this reason, various physical models have been developed trying
to explain their origin and to find possible associations concerning the black
hole. In the following, three common models are presented in brief.

1.2.1 Star-disk interactions

Nayakshin et al. [30] proposed a model for the origin of the flares from SgrA?

in 2003. They argue that the flares are emitted by bow shocks around stars
when they pass through an inactive disk around the central black hole. The
disk may be a remnant of the past accretion and star formation activity in
the Galactic Center and may have a temperature of about 100K and a size
of at least 104 Schwarzschild radii. They expect a few star-disk crossings per
day, in accordance with the observed rate of flaring events. The periodicity
in the NIR-flares is thought to be a signature of hydrodynamical oscillations
excited in the upper layers of the stars through collision with the disk.

Figure 1.3: Schematic illustration of a star-disk interaction (from [34]).

However, this model seems unlikely, because the discrete periodicity
around 20 minutes and the observed red spectrum of the flares is hard to
reproduce.
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1.2.2 Jet-model

Another approach to modeling the emission process of SgrA? was presented
by Markoff et al. [24]. The basic idea is that the radio emission is produced
by a supersonic, freely expanding conical jet. On either side of the accretion
flow that feeds the jet, a magnetized, relativistic proton and electron plasma
is ejected from a nozzle. The jet is interspersed with a tangled magnetic field
dominating the internal gas pressure and producing a power law energy
distribution of relativistic electrons.

In this model the origin of the flares is described by Markoff et al.
via either an increased accretion rate due to clumps of higher density in the
accretion flow, or sudden shock-acceleration of the particles due to magnetic
reconnection events in the jet. The periodicity in the light curves could come
from individual blobs of denser material being ejected at a pseudo-frequency.

Figure 1.4: Schematic illustration of the jet-model (from [34]).

1.2.3 Orbiting hot spot model

However, many astronomers favor another interpretation for the observed
flares. They consider the emission from matter on a close orbit around the
central supermassive black hole. This is mainly based on the observed peri-
odicities in the flare light curves that seem to match up with the appropriate
orbital period timescales.

It is argued that such a hot spot originates from a magnetic reconnection
in the highly magnetized plasma of the surrounding accretion disk, similar
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to the mechanism responsible for the solar flares (Yuan et al. [43]). In a
confined region of space electrons are accelerated to high energies, causing
them to spiral around the magnetic field lines and emit synchrotron radia-
tion. This hot spot follows the Keplerian rotation of the accretion flow and
completes several orbits around the central black hole until it fades away
due to synchrotron-cooling.

The periodic flux-variations in the observed light curves are produced
by relativistic effects. That close to the black hole, the orbital motion ap-
proaches the speed of light and the curvature of spacetime is non-negligible.
Thus, the hot spot’s appearance depends on its orbital location and thereby
changes periodically with time. This scenario opens up the opportunity to
test the laws of general relativity. For example, one can immediately con-
strain the spin of the black hole knowing both the orbital radius and period
of the hot spot (a = 0.52MSgrA? for the last stable orbit and an orbital pe-
riod of roughly 17 minutes, as observed in the K-band flare from June 16,
2003 by Genzel et al. [18]).

Figure 1.5: Schematic illustration of the orbiting hot spot model (from [34]).

A spatially resolved observation of such a scenario would have tremen-
dous implications on our understanding of fundamental physics, since it
provides a laboratory for many higher order general relativistic effects. Al-
though the black hole in the Galactic Center happens to occupy the largest
apparent size among all known black hole candidates (a Schwarzschild ra-
dius of about 10µas), it has not been possible to resolve it with present
instruments yet.

In principle, radio-interferometry can reach such high resolutions, but
due to scattering effects, images are blurred. With shorter wavelengths, the
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scattering gets weaker. In the NIR one can neglect it, but the challenge in
this regime is to build an interferometer that combines light rays from several
big telescope-mirrors in a coherent way. This means the whole system has
to be stable on scales of micrometers in order to see the desired interference
patterns, or fringes, as they are called among interferometrists.

Currently there are various attempts to build such an instrument. The
Phase-Referenced Imaging and Micro-arcsecond Astrometry (PRIMA) in-
strument for the Very Large Telescope in Chile is currently being developed
by the European Southern Observatory (ESO). The objective of PRIMA is
to enable simultaneous interferometric observations of two objects using two
telescope-mirrors (one baseline).

The Max Planck Institute for Extraterrestrial Physics (MPE) aims at
an even more ambitious goal. Their adaptive optics assisted instrument
for precision narrow-angle astrometry and interferometric phase-referenced
imaging, labeled GRAVITY [11], intends to combine the four 8-meter unit
telescopes at the VLT interferometrically (see Figure 1.6). With its six
baselines it is intended to resolve centroid-motions in two dimensions with
a resolution of 10µas. However, the development of this instrument is still
in an early stage and will probably take around five years from now to be
completed.

Figure 1.6: The Very Large Telescope on mount Paranal in Chile. The white lines
indicate light rays from each telescope that are combined in the laboratory (from
ESO).



Chapter 2

Theoretical background

“I want to know God’s thoughts, the rest are details.”

Albert Einstein (1879-1955)

In order to describe phenomena dealing with matter in the direct vicinity
of extremely high mass densities like black holes, one has to employ the full
machinery of general relativity. The most prominent among them are:

• Bending of light rays

• Frequency shift

• Relativistic beaming

• Perihelion shift

• Frame dragging

Beginning with some basic assumptions of general relativity, further
aspects of black hole physics will be discussed below. This digression into
theory will introduce all the physical quantities used in the simulations.

2.1 Foundations of general relativity

2.1.1 Equivalence principle

Einstein’s most important assumption for the development of general rela-
tivity was the equivalence principle:

“In a local free falling frame of reference all gravitational forces
vanish and the laws of special relativity hold.”

11



12 Chapter 2: Theoretical background

Stated from a more experimental point of view:

“Gravitational mass equals inertial mass.”

or equivalently:

“There is no difference between gravitational and inertial
forces.”

While Newton’s theory of gravitation sees this fact as a coincidence, Einstein
postulated it as an axiom. Until today, all experiments trying to measure a
difference between gravitational and inertial mass confirmed the equivalence
principle with accuracies up to 4 · 10−13 [28].

2.1.2 From flat to curved spacetime

Special relativity states that all inertial frames of reference are equal. Via
Lorentz-transformation one can switch in between them by applying a linear
transformation on the coordinates

xα ≡ (x0, x1, x2, x3) ≡ (ct,−x1,−x2,−x3) (2.1)

with a rotation-matrix Λα
β and a translation aα

x̃α = Λα
βxβ + aα (2.2)

The second statement of special relativity assumes a constant velocity of
light whatever the inertial frame of reference

c = const. (2.3)

Any distance in spacetime is expressed through infinitesimal displacements
of two events via

ds =
√

c2dt2 − dx2
1 − dx2

2 − dx2
3 (2.4)

This can be expressed in an even shorter way by defining the so called
Minkowski-tensor

ds2 = ηαβdxαdxβ with ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.5)

In relativistic theory one often applies Einstein’s summation convention, i.e.
two identical indices in one upper and one lower position indicate a sum
over all their possible values (here: 0,1,2,3). Because the speed of light is
constant, the infinitesimal displacement in one inertial frame of reference
has to be equal in any other inertial frame of reference:

ds̃2 != ds2 (2.6)
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This imposes conditions on the transformation matrix Λα
β in equation (2.2):

ds̃2 = ηαβdx̃αdx̃β = ηαβΛα
γ Λβ

δ dxγdxδ = ηγδdxγdxδ = ds2 (2.7)

Λα
γ Λβ

δ ηαβ = ηγδ (2.8)

This is a linear system of equations which completely determines Λ for a
particular Lorentz-transformation. For instance, an x-boost from one in-
ertial frame of reference at rest in the origin to another one with relative
velocity v = (v, 0, 0), passing the origin at t = 0, yields

Λα
β =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 (2.9)

with
γ :=

1√
1− β2

, β :=
v

c
(2.10)

and consequently

x̃1 = γ(x1 − vt), x̃2 = x2, x̃3 = x3, t̃ = γ(t− x1
v

c2
) (2.11)

With these basic principles one can derive all the essential formulae in special
relativity, including Einstein’s famous E = mc2, time dilation and length
contraction.

Now consider the case of accelerated motion. Accelerated frames always
cause fictitious forces which you won’t be able to eliminate, whichever in-
ertial frame of reference you choose. A rotating frame of reference causes
centrifugal forces, for instance. Therefore one has to consider the most gen-
eral transformation of coordinates

xα(x̃ν) = xα(x̃0, x̃1, x̃2, x̃3) (2.12)

with xα being coordinates of an inertial frame of reference and x̃ν those of an
arbitrary one. For the infinitesimal displacement of two events in spacetime
one obtains

ds2 = ηαβdxαdxβ = ηαβ
∂xα

∂x̃µ

∂xβ

∂x̃ν
dx̃µdx̃ν ≡ gµν(x̃)dx̃µdx̃ν (2.13)

with

gµν(x̃) := ηαβ
∂xα

∂x̃µ

∂xβ

∂x̃ν
(2.14)

called the metric tensor of the particular frame of reference. The important
difference to the Minkowski-tensor is the dependence on the coordinates.
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With the equivalence principle, the meaning of the metric tensor be-
comes evident. The coordinate transformations which define the metric ten-
sor may eliminate all inertial (fictitious) forces. But as these are equivalent
to gravitational forces, gµν is also connected to the gravitational potential.
Moreover from equation (2.13) one can interpret gµν as a quantity that de-
termines the shape or curvature of spacetime, since it is responsible for the
length of any separation between two events. Actually this is the reason
why it is called metric tensor.

2.1.3 Equations of motion

Test particle

Consider a local frame of reference in free fall, a satellite lab orbiting earth,
for instance. The equivalence principle states that the laws of special rel-
ativity may be applied. This yields the following equation of motion for a
test particle with coordinates ξα and proper time τ :

d2ξα

dτ2
= 0 (2.15)

The proper time is the time measured in the test particle’s frame of reference
and is computed via

dτ2 =
ds2

c2
=

1
c2

ηαβdξαdξβ (2.16)

Integration of equation (2.15) yields a straight line in spacetime

ξα = aατ + bα (2.17)

where aα and bα are determined from the boundary conditions. If we now
consider an arbitrary frame of reference with coordinates xµ and metric
gµν(x), the infinitesimal displacement ds2 = gµν(x)dxµdxν can be trans-
formed locally to the form of equation (2.16) at each coordinate x. That
means for every point in spacetime there is a coordinate transformation
ξα(x) = ξα(x0, x1, x2, x3) between ξα and xµ. Plugging this transformation
into equation (2.15) yields:

d2ξα

dτ2
=

d

dτ

(
∂ξα

∂xµ

dxµ

dτ

)
=

∂ξα

∂xµ

d2xµ

dτ2
+

∂2ξα

∂xµ∂xν

dxµ

dτ

dxν

dτ
= 0 (2.18)

Multiplication with ∂xκ

∂ξα and using ∂ξα

∂xµ
∂xκ

∂ξα = δκ
µ one can solve for d2xκ

dτ2 :

d2xκ

dτ2
= −Γκ

µν

dxµ

dτ

dxν

dτ
(2.19)
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where

Γκ
µν :=

∂xκ

∂ξα

∂2ξα

∂xµ∂xν
(2.20)

is referred to as Christoffel symbol. It can also be expressed through first
derivatives of the metric tensor:

Γκ
λµ =

gκν

2

(
∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)
(2.21)

Equation (2.19) is the desired equation of motion for a test particle in a
gravitational field. Because of equations (2.13) and (2.16) there is another
condition for the 4-velocity uµ := dxµ

dτ :

gµνu
µuν = c2 (2.22)

Photon

According to the equivalence principle, light moves on a straight line, when
observed from a local inertial frame of reference. Hence, the motion of a
photon can also be described by equations (2.15) or (2.17). But here, τ may
not be identified with proper time, because for light we have ds = dτ = 0
(lightlike distance). Instead, let us introduce a path parameter λ, such that

d2ξα

dλ2
= 0 (2.23)

One has to assume here, that the photon’s wavelength is much smaller than
the distance of a significant change in gravitational field strength. The same
steps like above lead to the equation of motion for a photon:

d2xκ

dλ2
= −Γκ

µν

dxµ

dλ

dxν

dλ
(2.24)

Because of dτ = 0 we additionally have:

gµν
dxµ

dλ

dxν

dλ
= 0 (2.25)

The solutions to equations (2.19) and (2.24) are called geodesics, they are the
shortest possible connections between two events in curved spacetime. In
particular, solutions to equation (2.24) are labeled null geodesics, referring
to the fact that ds = 0.

2.1.4 Frequency shift

Because the advance of time differs from one frame of reference to another
due to different local gravitational field strengths and relative motions, the
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frequency of radiation is also influenced by gravitation. The time τ displayed
on a clock in an arbitrary frame of reference is determined by

dτ =
dsclock

c
=

1
c

(√
gµν(x)dxµdxν

)
clock

(2.26)

In case there is no gravitational field, we can choose an inertial frame of
reference and use the Minkowski-tensor. For a constantly moving clock we
use dxα = (c,v)dt and get:

dτ =
1
c

(√
ηαβdxαdxβ

)
clock

=

√
1− v2

c2
dt = γ−1dt (2.27)

Here, the coordinate t is displayed by a clock resting in the inertial frame
of reference. Clocks in relative motion to this frame run slower, which is
known as relativistic time dilation.

Suppose a resting observer measures the time dt between two crests of
the light wave emitted by a source in relative motion to him. The wavefront
travels with the speed of light c, while the source moves with the relative
velocity v cos ϑ towards the observer. ϑ is the angle between the velocity
vector v of length v and the line of sight between source and observer (it
is 0 for approaching and π for receding sources). Since the second crest is
emitted closer or farther from the observer than the first one by a distance
of v cos ϑ dτ and time dilation stretches the emitted time interval by a factor
of γ, he gets:

dt = γ

(
dτ − v cos ϑ dτ

c

)
=

1− β cos ϑ√
1− β2

dτ (2.28)

where dτ is the time between two crests, measured in the source’s frame of
reference. The corresponding frequencies are the reciprocal expressions (‘o’
for observer and ‘s’ for source):

1
νo

=
1− β cos ϑ√

1− β2

1
νs

(2.29)

This behavior is referred to as relativistic Doppler effect. The ratio of the two
frequencies is a measure of the relative velocity and is denoted by Doppler
factor zD

zD :=
νo

νs
=

√
1− β2

1− β cos ϑ
(2.30)

Another special case is the one of a resting clock in a nonzero gravita-
tional field. Here we have dx1 = dx2 = dx3 = 0 and consequently

dτ =
√

g00(x) dt (2.31)
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If we consider a static gravitational potential, the metric tensor only depends
on spatial coordinates denoted by the vector r. Let rs be the location of
a resting source of monochromatic electromagnetic radiation and ro the
location of a resting observer. The clocks at these locations show the proper
times

dτs =
√

g00(rs) dt , dτo =
√

g00(ro) dt (2.32)

If dτs and dτo are chosen to be the time intervals between two successive
maxima of the electromagnetic wave, the corresponding frequencies are

νs =
1

dτs
, νo =

1
dτo

(2.33)

A commonly used expression to describe the frequency shift caused by grav-
itation is the so called gravitational redshift parameter zG, defined as

zG :=
νo

νs
=

√
g00(rs)
g00(ro)

(2.34)

In general, frequency shifts caused by time dilation and gravitation occur
simultaneously. For instance, a photon emitted by an approaching massless
body appears blueshifted to the observer, a photon emitted by a resting
massive body appears redshifted.

There is even a third effect leading to frequency shifts of radiation,
namely the so called cosmological redshift. It is due to the expansion of the
universe, described by a time dependent metric of the form

ds2 = c2dt2 − a(t)2
(

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

))
(2.35)

It is an exact solution of the Einstein field equation and was found by Fried-
mann, Lemâıtre, Robertson and Walker. The scale factor a(t) determines
the distance between two points with fixed coordinates. The parameter k
describes the particular geometry of space that provides both homogeneity
and isotropy. There are three possibilities: flat (k = 0), spherical (k = +1)
or hyperbolic (k = −1). The expansion causes a redshift of light observed
in any direction. The cosmological redshift parameter zC is defined as the
ratio between the observed redshift of a certain wavelength and the emitted
wavelength. It can also be expressed via the corresponding scale factors

zC :=
λo − λs

λs
=

λo

λs
− 1 =

νs

νo
− 1 ≡ a(to)

a(ts)
− 1 (2.36)

Since the expansion proceeds slowly, significant redshift can only be observed
in extragalactic distances. It does not play a role in Galactic astronomy.
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2.1.5 Relativistic beaming

Not just the frequency, but also the intensity of radiation is affected by
gravitation. Qualitatively this can be understood by relativistic aberration:
Photons emitted by an approaching object that moves close to the speed of
light will appear to be emitted in a cone around the direction of motion.
When viewed along this direction, the object appears brighter. In a more
quantitative manner this phenomenon is based on Liouville’s theorem in
curved spacetime:

“The phase space volume V occupied by a given set of N
identical particles is independent of location along the world

line of the set.”

In short:
dV

dλ
= 0 (2.37)

with λ being the path parameter along the central geodesic of the swarm.
More convenient for applications is the number density in phase space or
distribution function in the neighborhood of one of these particles:

n :=
N

V
(2.38)

It depends on the location xµ in spacetime and the 4-momentum pµ of the
particle in whose neighborhood the measurements are made. The conserva-
tion law along a particle’s trajectory in phase space is called the collisionless
Boltzmann equation or the kinetic equation:

dn(xµ(λ), pµ(λ))
dλ

= 0 (2.39)

When discussing photons one usually does not think in terms of the number
density in phase space. Rather, one speaks of the specific intensity Iν of
radiation at a given frequency ν, flowing in a given direction n, as measured
in a specified local Lorentz frame. It is defined via the energy dE within a
frequency interval dν crossing an area dA in a time dt and a solid angle dΩ:

Iν :=
dE

dt dAdν dΩ
(2.40)

Let us therefore express the number density of photons in phase space in
terms of the specific intensity. In a time dt, dN photons travel a distance
c dt through an area dA. Their spatial volume is thus Vx = c dt dA and their
momentum volume is Vp = (p0)2dp0dΩ with p0 = E/c. Hence, their number
density is

n =
dN

VxVp
=

c2dN

dt dAE2dE dΩ
(2.41)
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According to Planck’s postulate, a photon’s energy is proportional to its
frequency by Planck’s constant h:

Ephoton = hν , dE = hν dN (2.42)

Using this yields:

n =
c2dN

dt dAh3ν2dν dΩ
=

c2hν dN

dt dAdν dΩ h4ν3
=

c2

h4

(
Iν

ν3

)
≡ const. (2.43)

Thus, if two observers at different events in spacetime receive the same set of
photons, they will see different frequencies ν and different intensities Iν , but
they will obtain identical values for the ratio Iν/ν3. This ratio is a so called
Lorentz invariant in general relativity. From the relativistic Doppler effect
we know that approaching light sources appear blueshifted while receding
ones appear redshifted. In order to keep the ratio constant, the specific
intensity has to increase and decrease respectively.

2.1.6 Einstein field equation

In order to describe spacetime around arbitrary mass distributions one has
to solve one of Einstein’s most famous formulae, his field equation. This
equation states another fundamental law of nature, which was beautifully
put in words by John Archibald Wheeler:

“Matter dictates spacetime how to curve, in turn, spacetime
dictates matter how to move.”

In the form of a mathematical equation it is expressed as

Rµν −
R

2
gµν = −8πG

c4
Tµν (2.44)

Instead of a detailed mathematical derivation, the main components of this
equation will be outlined in brief in the following subsections.

Ricci tensor

The quantity Rµν in equation (2.44) is known as the Ricci tensor. It is
defined via the Riemann curvature tensor and the metric tensor:

Rµν = gκρRκµρν (2.45)

The Riemann curvature tensor can be expressed as

Rρ
µλν =

∂Γρ
µλ

∂xν
− ∂Γρ

µν

∂xλ
+ Γσ

µλΓρ
σν − Γσ

µνΓ
ρ
σλ (2.46)
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This tensor quantitatively describes the curvature of four-dimensional space-
time. If it is zero, spacetime is flat and can be described via Cartesian co-
ordinates. However, this is no longer possible if any component of Rρ

µλν

is nonzero. Because of symmetry properties it has only twenty indepen-
dent components. Contraction (i.e. summing over two equal indices) of the
Riemann curvature tensor leads to the Ricci tensor:

Rρ
µρν = Rµν (2.47)

Another contraction leads to the scalar curvature R:

Rµ
µ = R (2.48)

Stress-energy tensor

The stress-energy tensor Tµν is a quantity that describes the density and
flux of energy and momentum in spacetime, generalizing the stress tensor
of Newtonian physics. It is the source of the gravitational field in general
relativity, just as matter is the source of such a field in Newtonian gravity.
In principle, all predominant forms of energy and momentum are contained
within this tensor. These include kinetic and electromagnetic contributions
as well as mass density and pressure, for instance.

One example for the stress-energy tensor is that of an ideal fluid. An
ideal fluid is seen as a physical system, described through a mass density
ρ(r, t), a velocity field v(r, t) and an isotropic pressure P (r, t). Viscosity
(inner friction) is not considered. Applying Newton’s laws to these quanti-
ties yields the most important equations of hydrodynamics, namely Euler’s
equation and the continuity equation, which states the conservation of mass:

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇P (2.49)

∂ρ

∂t
+∇ · (ρv) = 0 (2.50)

For a special relativistic treatment of these formulae one has to replace
the velocity field v(r, t) by the Lorentz vector field uα(x) and calculate the
Lorentz transformed mass density and pressure. The generalized version of
the above equations then has to be covariant under Lorentz transformation
and reduce to the original form for v � c. It then simply reads:

∂βTαβ = 0 (2.51)

with

Tαβ =
(

ρ +
P

c2

)
uαuβ − ηαβP (2.52)



2.2 The static black hole 21

In general relativity, the Minkowski coordinates xα are then replaced by
curvilinear coordinates xµ:

Tµν =
(

ρ +
P

c2

)
uµuν − gµνP (2.53)

From equation (2.53) it is obvious, that Tµν is symmetric. Additionally, Tµν

may contain yet other forms of energy, such as electromagnetic contributions.
Coming back to the Einstein field equation now, we can gain a little

more insight into its structure. Since Rµν , Tµν as well as gµν are symmetric
tensors with hence ten independent components, the Einstein field equation
actually consists of ten algebraic equations. But due to equation (2.51),
only 10− 4 = 6 of them are effectively independent. This indeterminacy of
gµν can be unraveled by imposing a gauge condition. If gµν(x) is a solution
of (2.44), a coordinate transformation xµ → x̃µ provides another solution
g′µν(x̃). Since a coordinate transformation corresponds to four equations,
the field equations may only fix six components.

The possibility to choose any coordinate transformation offers the free-
dom of gauge. A particular gauge may be used in order to ease the solution
of a certain problem. This invariance of physical laws under arbitrary coor-
dinate transformations is referred to as the principle of covariance in general
relativity.

Another common form of the Einstein field equation can be obtained
by contraction of equation (2.44):

Rµ
µ −

R

2
δµ
µ = R− 4

R

2
= −R = −8πG

c4
Tµ

µ ≡ −
8πG

c4
T (2.54)

and by replacing the scalar curvature R by 8πGT/c4:

Rµν = −8πG

c4

(
Tµν −

T

2
gµν

)
(2.55)

2.2 The static black hole

“Black holes are the most perfect macroscopic objects there are
in the universe: the only elements in their construction are our
concepts of space and time.”

Subrahmanyan Chandrasekhar (1910-1995)

Black holes are created when a massive object like the sun is compressed
to a sphere with a radius of three kilometers, thereby creating such strong
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spacetime curvatures that it can no longer communicate with the external
universe. In particular no light may escape from its surface or below it.

However, our sun won’t evolve into a black hole, because its self grav-
itation will be too low to overcome its electron degeneracy pressure in the
white dwarf stage. Nevertheless, very massive stars may form neutron stars
or even black holes if they evolve a nonrotating mass of more than 1.44
solar masses in the degenerate state. This mass limit is designated as Chan-
drasekhar limit in recognition of its discoverer. There are also other possible
formation scenarios:

• Accretion of matter from a companion in a binary system

• Merging of a whole star cluster into a supermassive black hole

• Perturbations in the initial density distribution of the expanding uni-
verse (primordial black holes)

But what is the surface of a black hole in particular and how is its
environment influenced by it? In the following subsections these issues will
be investigated further.

2.2.1 Schwarzschild metric

Consider a static spherical massive body with radius r0 and mass M . If we
want to know the metric surrounding it, we have to solve the Einstein field
equation in that region. But before doing so, a preliminary design of the
metric tensor can be made by exploiting symmetry and boundary conditions.
Because of spherical symmetry, spherical coordinates xµ = (ct,−r,−θ,−φ)
with

dxµ = (cdt,−dr,−rdθ,−r sin θdφ) (2.56)

make the calculations easiest. In the limit r →∞ the metric should reduce
to the Minkowski-metric of empty space:

ds2 = ηµνdxµdxν = c2dt2 − dr2 − r2
(
dθ2 + sin2 θ dφ2

)
(2.57)

In the closer region of the object’s gravitational field additional coefficients
appear, denoted by A, B and C:

ds2 = B(r)c2dt2 −A(r)dr2 − C(r)r2
(
dθ2 + sin2 θ dφ2

)
(2.58)

Due to the assumed isotropy and time independence, these coefficients can-
not depend on θ, φ or t. Linear terms in dθ or dφ cannot exist, since they
would also violate isotropy. A possible coefficient of the form D(r)drdt may
be eliminated by introducing a new time variable t → t + Ψ(r), which does
not change the physical properties of the metric because of gauge freedom.
The same holds for the radial coordinate r, so C(r) may as well be set to 1.
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This general ansatz for an isotropic and statical metric is a standard form for
various problems. From the boundary condition (2.57) the two remaining
coefficients have to fulfill

A(r), B(r) r→∞−→ 1 (2.59)

Unlike the angular coordinates θ and φ, which have the same meaning as in
Minkowski spacetime, t and r are the coordinates displayed by a clock and
a ruler in infinite distance.

The metric tensor can now be written as:

gµν =


B(r) 0 0 0

0 −A(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

 (2.60)

With it we can solve the Einstein field equation outside the massive body
and get expressions for A and B. Since the stress-energy tensor is zero in
the region under consideration, the field equation (2.55) reduces to the so
called vacuum field equation

Rµν = 0 (r ≥ r0) (2.61)

No source field explicitly appears in it, but the above assumptions for the
matter distribution already influenced the shape of the metric tensor.

The proceeding is straight forward. The Ricci tensor is defined via
Christoffel symbols, which can be seen from equation (2.46):

Rµν =
∂Γρ

µρ

∂xν
− ∂Γρ

µν

∂xρ
+ Γσ

µρΓ
ρ
σν − Γσ

µνΓ
ρ
σρ (2.62)

These can then be calculated from the metric tensor (equation (2.21)), given
by the ansatz (2.60). After some cumbersome calculations one finally ends
up with:

R00 = −B′′

2A
+

B′

4A

(
A′

A
+

B′

B

)
− B′

rA
(2.63)

R11 =
B′′

2B
− B′

4B

(
A′

A
+

B′

B

)
− A′

rA
(2.64)

R22 = −1− r

2A

(
A′

A
− B′

B

)
+

1
A

(2.65)

R33 = R22 sin2 θ (2.66)

Rµν = 0 , for µ 6= ν (2.67)
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where primed quantities denote derivatives with respect to r. Hence, the
vacuum field equation is trivially satisfied for µ 6= ν and the remaining
independent equations are:

R00 = 0 , R11 = 0 , R22 = 0 (2.68)

Solving these for A and B yields:

A(r) =
1

1−Rs/r
, B(r) = 1− Rs

r
(2.69)

with Rs being a constant of integration. Its magnitude can be determined
by comparing B with the Newtonian limit of the metric’s first component,
which holds for weak gravitational field strengths:

B(r) = g00 ≈ 1− 2GM

rc2

(
GM

rc2
� 1

)
(2.70)

⇒ Rs =
2GM

c2
(2.71)

It is called Schwarzschild radius. Just like the Schwarzschild metric

ds2 =
(

1− Rs

r

)
c2dt2 −

(
1− Rs

r

)−1

dr2 − r2
(
dθ2 + sin2 θ dφ2

)
(2.72)

it is named after the German physicist and astronomer Karl Schwarzschild.
Since a resting clock in r displays the time interval

dτ =

√
1− Rs

r
dt (2.73)

the time interval dt (measured by a remote observer) becomes infinite at
r = Rs. This means, a photon emitted from there sustains an infinitely
large redshift (zG = 0) and thus is not observable. It also implies that t is
no adequate time coordinate for events in the region r ≤ Rs. An object with
radius r0 ≤ Rs is denoted as black hole, because no photon may emanate
into the outer domain r > Rs. The Schwarzschild radius defines the so
called event horizon of a nonrotating black hole, referring to the fact that
any events in spacetime are causally separated by the surface with radius
Rs.

The Schwarzschild metric becomes singular at the event horizon, but
that does not necessarily imply a singularity of spacetime. A suitable choice
of new coordinates may eliminate this singularity (for instance Eddington-
Finkelstein coordinates). In such a coordinate system the Schwarzschild
radius is no designated region anymore; for this reason that kind of singu-
larity is called a coordinate singularity.

In contrast to this is the case r = 0. The singularity at this point
corresponds to a point mass with r0 → 0 and hence leads to a real physical
infinity.
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2.2.2 Orbital motion

Having determined the gravitational field of a spherical symmetric object, we
can now study the relativistic generalization of the classical Kepler problem,
i.e. the movement of a test particle in a central symmetric, static potential
well. In general relativity the movement of photons may also be included,
since they are deflected by gravitational fields as well.

The starting point is the equation of motion for a test particle (2.19):

d2xκ

dτ2
= −Γκ

µν

dxµ

dτ

dxν

dτ

For a photon, τ has to be replaced by the path parameter λ (equation (2.24)).
Once again the Christoffel symbols can be calculated from the Schwarzschild
metric. The four components of the equation of motion then look like this:

d2t

dτ2
= −B′

B

dt

dτ

dr

dτ
(2.74)

d2r

dτ2
= −B′c2

2A

(
dt

dτ

)2

− A′

2A

(
dr

dτ

)2

+
r

A

(
dθ

dτ

)2

+
r sin2 θ

A

(
dφ

dτ

)2

(2.75)

d2θ

dτ2
= −2

r

dr

dτ

dθ

dτ
+ sin θ cos θ

(
dφ

dτ

)2

(2.76)

d2φ

dτ2
= −2

r

dr

dτ

dφ

dτ
− 2 cot θ

dθ

dτ

dφ

dτ
(2.77)

With A and B given by (2.69), we further get:

c
dt

dτ

(
1− Rs

r

)
= const. =: ε (2.78)

ε2 − κ

2
=

1
2

(
dr

dτ

)2

− Rsκ

2r
+

`2

2r2
− Rs`

2

2r3
(2.79)

θ =
π

2
(2.80)

r2 dφ

dτ
= const. =: ` (2.81)

where ε, ` and κ are constants of integration. In (2.80) θ is chosen to be π/2
without loss of generality, since the problem is invariant under arbitrary ro-
tations in space. Equation (2.81) suggests that ` is the angular momentum
per mass and hence can be interpreted as the angular momentum conserva-
tion law. Analogously, conservation of energy per mass is stated by (2.78).
κ is determined by the normalization condition for the four-velocity ((2.22)
for test particles and (2.25) for photons respectively):

κ =

{
c2 , if m 6= 0
0 , if m = 0

(2.82)
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Lastly, equation (2.79) can be rewritten in the form

1
2

(
dr

dτ

)2

+ Veff(r) =
ε2 − κ

2
(2.83)

with the effective Potential

Veff(r) =


−GM

r
+

`2

2r2
− GM`2

c2r3
, if m 6= 0

`2

2r2
− GM`2

c2r3
, if m = 0

(2.84)

The term proportional to 1/r corresponds to the attractive Newtonian po-
tential known from classical mechanics, it is not present for photons. The
expression scaling with 1/r2 is the classical centrifugal barrier, preventing
two point masses with nonzero angular momentum from colliding. A new
feature in general relativity is the term proportional to 1/r3. It dominates
at small radii and thus nearby bodies are attracted stronger than in classical
mechanics.

The formal solution to the radial equation (2.83) is given by the integral

τ = ±
∫

dr√
ε2 − κ− 2Veff(r)

(2.85)

Due to the relativistic term in Veff(r), it is an elliptic integral which cannot be
solved by elementary functions. However, the characteristics of the solutions
can be elucidated graphically by plotting Veff(r) for different values of `:

Figure 2.1: Effective potential for test particles with different specific angular
momenta in the Schwarzschild metric.
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The energy of a moving particle is constant and can be illustrated by a
horizontal line. The intersections of this line with the effective potential de-
termine the turning points (see Figure 2.1). There are four different possible
trajectories for test particles:

a) Motion in a bound region in space between rmin and rmax, analog to
the elliptic motion in Newtonian theory. The trajectory is not a conic
section and, in general, not closed. This fact is responsible for the so
called perihelion shift of orbits.

b) A particle from infinity approaches the central body, reaches rmin and
moves back to infinity. This trajectory is an analogue of hyperbolic
motion in the classical case.

c) The particle falls into the central object, because its energy is higher
than the maximum of the effective potential. This type of motion
is impossible in Newtonian mechanics and denoted as gravitational
capture.

d) In the neighborhood of the central body a particle may first recede from
the center, reach rmax and then fall back into the center.

Figure 2.2: Trajectories of test particles in the Schwarzschild metric (from [31]).

For photons, case a) does not exist, because there is no minimum in
the effective potential. It does not change qualitatively for different angular
momenta due to the appearance of the factor `2 in every summand (see
Figure 2.3).

Circular orbits

A special case of the motion of a test particle in a bound orbit is the circular
orbit. It has a constant radius:

dr

dτ
= 0 (2.86)
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Figure 2.3: Effective potential for photons with different specific angular momenta
in the Schwarzschild metric.

- i.e. the horizontal line in the plot degenerates to a point in the minimum
of Veff(r). Although this is also the case for the maximum of Veff(r), here the
solutions are unstable, since small perturbations lead to exponentially grow-
ing or shrinking orbits. The criterion for stationary points of the potential
reads:

dVeff(r)
dr

=
GM

r2
− `2

r3
+

3GM`2

c2r4
= 0 (2.87)

with the solutions

r1,2 =
`2

c2Rs
± `

c

√
`2

c2R2
s

− 3 (2.88)

In order to obtain two different real solutions, the specific angular momen-
tum must satisfy

` >
√

3Rsc =: `cr (2.89)

In this case, r1 and r2 are the radii of maximum and minimum effective
potential, respectively. For ` → `cr the centrifugal barrier becomes smaller
until maximum and minimum of Veff(r) coincide at ` = `cr. For ` < `cr

the effective potential decreases monotonically towards the center and the
particle is gravitationally captured, regardless of its energy.

Hence, stable circular orbits are only possible for test particles with
` ≥ `cr and thus only exist for

r ≥ 3Rs (2.90)

The orbit with r = 3Rs is referred to as the last stable orbit (LSO). The
test particle travels on it with half the speed of light. Furthermore it is of
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interest to note that the orbital period Tcirc of this motion (as measured
by a remote observer) is correlated with the radius of the orbit exactly by
Kepler’s third law:

Tcirc =
2π√
GM

r
3
2 (2.91)

which can be easily derived from equations (2.78), (2.79), (2.81) and (2.88).
In particular, the orbital period of the last stable orbit is:

TLSO =
6
√

6π

c
Rs (2.92)

Photons may also move on circular orbits, if their energy equals the
maximum of the effective potential. This is the case at the so called photon
sphere with the radius

rps =
3
2
Rs (2.93)

However, these orbits are unstable and small perturbations finally lead to
either gravitational capture or deflection to infinity. The latter causes images
of light-emitting objects orbiting massive bodies to appear more than once
in different places. One speaks of secondary or even tertiary images of one
and the same object. In principle, infinitely many images should appear
around the central body, but due to photons being ejected from the circular
orbit into arbitrary directions, the probability for observing photons that
have traveled more than three revolutions is practically zero.

2.3 The rotating black hole

The gravitational collapse of a realistic star produces a black hole somewhat
different from the very special case of a Schwarzschild black hole. This is
because the star may be nonspherical and have a net intrinsic angular mo-
mentum and charge. Perturbation-theory calculations predict a final black
hole with an external field determined entirely by the mass M , the charge
Q and the intrinsic angular momentum S (spin) of the collapsing star. In
the early 70’s, Stephen Hawking, Werner Israel and Brandon Carter could
strongly support this fact to be valid for the final black hole as well [26]. The
famous theoretician John Wheeler expressed this insight in a more casual
way:

“Black holes have no hair.”

To put it another way, all other information about the matter which formed
the black hole or is falling into it, disappears behind the black hole event
horizon and is therefore permanently inaccessible to external observers.
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2.3.1 Kerr metric

Solving the Einstein field equation subject to the constraints imprinted by
M , Q and S is pretty complex and won’t be illustrated here. The solution
turns out to be the so called Kerr-Newman metric, first found by Ezra
Newman et al. in 1965. In astrophysics, the total electric charge of a body
can typically be treated as small and accordingly be neglected. Thus, for
our purpose it is enough to study the case Q = 0, which reduces the Kerr-
Newman metric to the Kerr metric, named after the mathematician Roy
Kerr, who found it in 1963 [22].

Written in the t, r, θ, φ coordinates of Boyer and Lindquist [4], which
are generalized Schwarzschild coordinates, it reads:

ds2 =
(

1− Rsr

Σ

)
c2dt2 +

2Rsrac sin2 θ

Σ
dtdφ− Σ

∆
dr2−Σ dθ2− A sin2 θ

Σ
dφ2

(2.94)
with

Σ := r2 + a2 cos2 θ , ∆ := r2 −Rsr + a2

A :=
(
r2 + a2

)2 − a2∆ sin2 θ
(2.95)

The quantity a is called the spin-parameter of the black hole, defined as

a :=
S

cM
(2.96)

It can be shown that the Kerr metric has a horizon and therefore describes
a black hole, if and only if

a2 <
G2M2

c4
=
(

Rs

2

)2

(2.97)

It seems likely that in any collapsing body violating this constraint, cen-
trifugal forces will halt the collapse before a black hole can be formed, but
this could not be proven yet.

The metric coefficients in (2.94) are independent of t and φ, thus the
spacetime geometry is time-independent (stationary) and axially symmetric
in the chosen reference frame. Due to the non-diagonal element g03 in the
metric tensor, local coordinate frames are tilted with respect to different r
and θ. This so called frame dragging is caused by the black hole’s spin and
produces a precession of gyroscopes relative to distant stars. The dragging
becomes more and more extreme the closer one approaches the horizon of
the rotating black hole, which is located at

∆ = 0 ⇒ r = rh :=
Rs

2
+

√(
Rs

2

)2

− a2 (2.98)
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and is smaller than the Schwarzschild horizon. Before the horizon is reached
though, at a surface described by

Rsr

Σ
= 1 ⇒ r = rsl :=

Rs

2
+

√(
Rs

2

)2

− a2 cos2 θ (2.99)

the dragging becomes so extreme that no observer can possibly remain at
rest there, relative to the distant stars. The world line of an observer with
constant r, θ and φ changes from timelike at r > rsl to spacelike at r < rsl,
since g00 changes sign at rsl. That means, all observers within rsl must orbit
the black hole in the same direction in which it rotates. This critical surface
is called the static limit and coincides with the horizon only at the poles of
the rotating black hole. The region of spacetime between the horizon and
the static limit is referred to as ergosphere (see Figure 2.4).

Figure 2.4: Event horizon and ergosphere of a Kerr black hole (from Wikipedia).

2.3.2 Orbital motion

In general, the motion of test particles and photons along geodesics in the
gravitational field of a rotating black hole is fairly complicated, because the
field has no spherical symmetry. However, exploitation of axial symmetry
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provides three integrals of motion [31]:

ε =
(

1− 2Mr

Σ

)
dt

dτ
+

2Mra sin2 θ

Σ
dφ

dτ
(2.100)

`z = −2Mra sin2 θ

Σ
dt

dτ
+

A sin2 θ

Σ
dφ

dτ
(2.101)

κ = a2 cos2 θ
(
κ− ε2

)
+ `2

z cot2 θ + Σ2

(
dθ

dτ

)2

(2.102)

where ε can be again identified with the specific energy and `z the specific
angular momentum, projected onto the rotation axis of the black hole. κ
is a further constant of motion found by Brandon Carter in 1968 [7]. The
definition of κ is the same as in (2.82). Notice, that the above equations
are written in geometrized units with G = c = 1 (see Appendix B). For the
sake of clarity it is better to use this unit system further on.

One can now express the four equations of motion through these con-
served quantities:

Σ
dt

dτ
= a

(
`z − aε sin2 θ

)
+

r2 + a2

∆
[
ε
(
r2 + a2

)
− `za

]
(2.103)

Σ
dr

dτ
= ±

√
[ε (r2 + a2)− `za]2 −∆

[
κr2 + (`z − aε)2 + κ

]
(2.104)

Σ
dθ

dτ
= ±

√
κ − cos2 θ

[
a2 (κ− ε2) +

`2
z

sin2 θ

]
(2.105)

Σ
dφ

dτ
=

`z

sin2 θ
− aε +

a

∆
[
ε
(
r2 + a2

)
− `za

]
(2.106)

Investigation of the radial equation (2.104) yields a criterion for characteriz-
ing the type of motion. In order to keep a positive sign beneath the square
root, for ε2 < 1 the radial coordinate r has to be finite. Only if ε2 > 1 can
the motion be infinite.

For a more detailed analysis of orbits it is convenient to work with an
effective potential, as done before in the nonrotating case. Let us rewrite
(2.104) as

Σ
dr

dτ
= ±

√
αε2 − 2βε + γ (2.107)

with
α := r4 + a2

(
r2 + 2Mr

)
, β := 2aM`zr

γ := `2
za

2 −
(
κr2 + `2

z + κ
)
∆

(2.108)

The radial turning points occur when dr/dτ = 0 and can be determined by
the condition

ε =
β ±

√
β2 − αγ

α
=: V ±

eff(r) (2.109)
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which defines an effective Potential. The motion of a particle with specific
energy ε is possible only in the regions with either ε ≥ V +

eff or ε ≤ V −
eff .

Apparently, the specific energy can be negative as well. It can be shown that
orbits with negative ε are possible within the ergosphere for any θ 6= 0, π.
These orbits grant the possibility to devise processes that extract rotational
energy from the black hole. Such processes were discovered by Roger Penrose
in 1969.

For a rotating black hole the variety of trajectories becomes wider and
their classification is much more involved than in the Schwarzschild case.
Again there are bound as well as unbound motions resulting in either stable
movements, gravitational capture (see Figure 2.5) or rejection to infinity.
But due to the breakdown of spherical symmetry, orbits are not necessarily
confined to a plane anymore. Additionally one has to distinguish between
co-rotating and counter-rotating orbits, meaning the sense of rotation with
respect to the black hole spin.

Figure 2.5: Trajectory of a particle, dragged along by the spacetime around a
clockwise rotating Kerr black hole. Due to frame dragging the geodesic is forced to
follow the rotation of the black hole at a certain distance to it.

Circular orbits

Let us now focus on circular motion of massive particles (κ = 1) in the
equatorial plane. To this end we have to consider the special case of θ = π/2
and find the extrema of V ±

eff(r). From this one obtains the expressions for
the specific energy and angular momentum as functions of the radius of the
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circular motion:

εcirc =
r2 − 2Mr + a

√
Mr

r
(
r2 − 3Mr + 2a

√
Mr
)1/2

(2.110)

`circ = ±

√
Mr

(
r2 − 2a

√
Mr + a2

)
r
(
r2 − 3Mr + 2a

√
Mr
)1/2

(2.111)

The upper sign corresponds to co-rotating orbits (`z, a > 0) and the lower
sign corresponds to counter-rotating orbits (`z, a < 0).

The angular frequency of a test particle on the circular orbit as seen by
a distant observer is computed via equations (2.103) and (2.106):

ωcirc =
dφ

dt
=

dφ

dτ

dτ

dt
= ±

(
r3/2

√
M

+ a

)−1

(2.112)

From here one can easily derive the generalization of Kepler’s third law,
which relates the orbital period with the orbital radius of particles around
rotating bodies:

Tcirc =
∣∣∣∣ 2π

ωcirc

∣∣∣∣ = 2π

(
r3/2

√
M

+ a

)
(2.113)

Note that the denominator in the expressions for εcirc and `circ is real
only for those values of r meeting the condition

r2 − 3Mr + 2a
√

Mr > 0 (2.114)

This sets a lower limit to the radius of the circular orbit which describes the
photon sphere for rotating black holes:

rps = 2M

{
1 + cos

[
2
3

arccos
(
− a

M

)]}
(2.115)

It can only be occupied by particles as fast as light, i.e. photons, and it is
unstable. Massive particles only move on circular orbits with r > rps. These
are unstable for radii smaller than the last stable orbit of the Kerr metric,
given by

rLSO = M
[
3 + Z2 ∓

√
(3− Z1) (3 + Z1 + 2Z2)

]
(2.116)

with

Z1 := 1 +
(

1− a2

M2

)1/3 [(
1 +

a

M

)1/3
+
(
1− a

M

)1/3
]

(2.117)

Z2 :=

√
3

a2

M2
+ Z1

2 (2.118)
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Obviously, particles co-rotating with a spinning black hole may get closer to
it than particles on counter-rotating orbits or particles orbiting static black
holes without being captured. The absolute velocity v of the orbiting particle
can be calculated in the locally nonrotating frame (LNRF), a reference frame
in some sense “rotating with the geometry” of Kerr-spacetime [3]. Only this
choice of coordinate system gives a meaningful definition of the ordinary
local velocity. One finds:

v =
M1/2

(
r2 − 2aM1/2r1/2 + a2

)
∆1/2

(
r3/2 + aM1/2

) (2.119)

As a summary, Figure 2.6 displays all the characteristic radii derived
above. In the limiting case of a = M the last stable orbit coincides with the
photon sphere and the horizon. Note also that the last stable orbit does not
enter the ergosphere until a ≈ 0.94M .

Figure 2.6: Characteristic radii in the Kerr metric for all possible values of a.
Shown are the last stable orbit (blue), the photon sphere (green), the static limit
in the equatorial plane (yellow) and the horizon (red).

It is interesting to see how equation (2.113) deviates from the third
classical Kepler law (2.91). In Figure 2.7 and Figure 2.8 this is illustrated
by three-dimensional plots showing the dependency of the orbital period of
a co-rotating test particle on its orbital radius and the spin-parameter in the
case of SgrA?. In Figure 2.7 the orbital radius is expressed in Schwarzschild
radii, whereas in Figure 2.8 it is displayed in units of the last stable orbit.
The latter representation accentuates the influence of the black hole spin
more strongly.
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Figure 2.7: Dependency of the orbital period Tcirc in minutes on the spin-
parameter a[MSgrA? ] and the orbital radius r in units of Rs = 2MSgrA? . Unstable
orbits are assigned Tcirc = 0. For every multiple of 20min a contour line is drawn.

Figure 2.8: Dependency of the orbital period Tcirc in minutes on the spin-
parameter a[MSgrA? ] and the orbital radius r in units of the last stable orbit radius.
For every multiple of 20min a contour line is drawn.
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Visualization

In this chapter the method of four-dimensional ray tracing in nontrivial
spacetimes will be outlined in brief. First, the basic concept is discussed
with the help of simple examples. Further to this the special cases of
Schwarzschild- and Kerr-geometry will be investigated more closely.

3.1 Concept

An image from our surroundings is generated as light hits our retina. It can
be retained on a screen capable of recording the visible information, like a
photographic film or a CCD-chip. This light may either emanate directly
from a light source (primary rays), or indirectly from a reflecting object
(secondary rays, or shadow rays).

However, only a diminutive fraction of this light, generally emitted into
any direction, reaches the eye or the camera of the observer. A technique
simulating this natural process would be enormously inefficient, since most
of the light rays would unnecessarily be traced. Instead, light rays are traced
back from the eye of the observer or the camera to the place of their emission.
This procedure is called ray tracing concept (see Figure 3.1).

3.1.1 Conventional ray tracing

Conventional three-dimensional ray tracing assumes a static scene, straight
light rays and neglects their finite propagation speed. An image is created
by generating a light ray for each pixel.

This primary ray is then checked to see if it hits either a light source
or an object. In the latter case the object has to be inspected to determine
whether it is illuminated from a light source or a further reflecting object.
In order to do this, a secondary ray is created to test for sections with all
other objects. The direction of the secondary ray is determined by geometric
and physical criteria like angle of incidence, surface integrity and reflexion

37
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Figure 3.1: Concept of ray tracing: light rays are traced back from the observer
to the scene until they hit an object or leave the considered region. Additionally,
secondary rays, or so called shadow rays are traced (from [29]).

Figure 3.2: Ray traced image of three spheres that reflect off the floor and each
other (from Wikipedia).
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properties respectively. As an example, Figure 3.2 displays an arrangement
of three spheres on a checkered, reflecting floor. The spheres also cause
reflections on each other.

3.1.2 Ray tracing in special relativity

The extension to four-dimensional ray tracing also takes into account the fi-
nite speed of light and the temporal evolution of the scene. Therefore, both
the camera and every single object may move in space with velocities up
to c. In this case every ray has to be Lorentz-transformed into the inertial
reference frame of the moving object at the place of incidence. In addi-
tion to these pure geometrical issues, frequency shifts due to the relativistic
Doppler effect and intensity variations via relativistic beaming have to be
implemented.

Consider for instance a set of 16 balls, aligned in a row on the y-axis and
at rest in the reference frame S. Another ball (reference frame S’) moves with
v = 0.9c above this row in the positive y-direction. The observer (reference
frame S”) moves along the x-axis with the same speed towards the row. At
a certain time, he takes an image of this scene with a panorama camera.
Figure 3.3 displays the setup of the scene and the resulting image (without
taking into account frequency shifts and intensity variations).

Figure 3.3: Ray tracing in special relativity. Left: Setup of a special relativistic
scene. Right: An observer approaching along the x-axis with 90 percent the speed
of light observes this image (from [29]).

Notice that the balls appear to be rotated in the image. This effect is
due to different propagation times of light rays originating from the side and
the front of the object.

3.1.3 Ray tracing in general relativity

The concept of four-dimensional ray tracing can further be extended to
curved spacetimes. In that case light rays are bent, they follow null geodesics
and have to be computed from the geodesic equations. To this end a traverse
is numerically calculated by an integrator with a certain accuracy and then
intersected with the objects of the scene. This is a very intricate procedure,
since every segment of the light ray has to be intersected with every object.



40 Chapter 3: Visualization

Fortunately, the fact that different null geodesics do not affect each other
allows for parallelizing the code, i.e. subdividing the field of view into smaller
partitions to be computed and connected later on.

Three limits on the integration of the geodesic equations are specified.
Firstly, a maximum amount of points tolerated for the entire geodesic has
to be fixed. The second limit is a bounding box, assigning a finite domain for
the computation of geodesics. A geodesic leaving this bounding box is not
taken care of anymore. Lastly, the third limit is set by the spacetime itself,
which defines the observable light trajectories. In the Schwarzschild metric,
one limit is given by the event horizon, for example.

A further difficulty is the description of objects in curved spacetime.
The freedom to choose arbitrary coordinates for a spacetime brings about
different appearances of the objects. One has to decide on such a coordinate
system that visualizes the objects correctly. Another aspect is the deforma-
tion of extended bodies due to tidal forces, which must not be confused with
the effect of light bending.

When all the components of a scene are defined, they make up a device.
It contains all the elements necessary for the construction of the image:

• A metric describing the spacetime

• An integrator for the null geodesics

• A ray generator

• An observer camera

• A local reference frame of the observer

• A projector for the image synthesis

• A light source manager

• The objects

In practice, the visualization of a general relativistic scene is computa-
tionally quite intensive. A geodesic with a minimum of a thousand points
has to be calculated for every single pixel. The generated polyline then has
to be intersected segment-wise with every object. For an image of 1000 ×
1000 pixels and a single object this already yields one billion intersections,
taking roughly 50 minutes of computing time for a single-CPU machine.
Rendering a movie sequence of merely one second (about 25 frames) takes
25 hours. Thus it is inevitable to parallelize the image computation to run
on multiple CPU’s.

An impressive application for a general relativistic scene is a differen-
tially rotating dust torus around a static black hole. Properties of such a
disk are calculated in smoothed particle hydrodynamics. Figure 3.4 shows
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such a configuration. Light bending and Doppler effects are clearly visi-
ble. The clumps in the accretion disk are high density concentrations of hot
matter.

Figure 3.4: Ray tracing in general relativity. A clockwise differentially rotating
accretion disc around a static black hole, seen from 10 degrees above the equatorial
plane (from [29]).

3.2 Visualization of an orbiting hot spot

3.2.1 Setup

We now focus on the favored scenario for the origin of the flares from Sagit-
tarius A?, namely the orbiting hot spot model. We consider a very simplified
configuration with a nonrotating sphere (radius 0.25Rs) on a circular orbit
in the equatorial plane around a static or rotating black hole. Its surface
is homogeneous and emits light isotropically. Tidal forces and gravitational
influences of the sphere on the spacetime are neglected. Figure 3.5 displays
a sequence of eight ray traced images of such a scenario, without accounting
for Doppler- and beaming-effects. The observing camera is a pinhole cam-
era, situated 60Rs away from a black hole of mass M , 30 degrees above the
equatorial plane.

The visualization was carried out by GeoViS, a four-dimensional ray
tracing software designed by Thomas Müller at the department for theoret-
ical astrophysics in Tübingen, Germany [29].

One can clearly see a distortion of the sphere, especially as it passes the
rear part of the orbit. Furthermore, multiple images of the object appear at
different locations of the image. A secondary image, corresponding to light
rays that orbit the black hole once, can be seen in every frame. Occasionally,
even a tertiary image appears. It is very faint, because only few photons
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Figure 3.5: Ray traced images of a sphere orbiting a Kerr black hole (a = 0.52M)
on the LSO in 70◦ inclination. Only the effects of light bending are shown.
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complete two orbits and then reach the observer. The location of the addi-
tional images is not only determined by the location of the source, but also
by the travel times of the light rays. An illustration is given in Figure 3.6.

Figure 3.6: Real and apparent locations of the sphere at the observer’s coordinates
to and ro. While the light rays from the source travel to the observer, the source
continues moving. The secondary image of the sphere stems from even earlier times
and appears at an angle ξ (from [29]).

3.2.2 Data output

The ray tracing simulations do not provide only geometrical information on
the moving sphere; the computation of frequency shifts as well as emission
times of the observed light rays is also supported.

In order to distinguish multiple images of the source it is useful to have
the emission time of each light ray that reaches the observer. Therefore,
each pixel contains a real number T . It specifies the date in coordinate
time, when the light ray was emitted. Thus, higher-order images have earlier
emission times than primary images. Knowing T for every pixel allows to
transform the intrinsic brightness evolution of the source from proper time
to coordinate time, including the light travel times to the observer.

In addition to this the simulations provide maps of frequency shifts with
one real number D per pixel, giving the ratio of the emitted frequencies in
the observer’s and the source’s frame of reference:

D =
νo

νs
(3.1)

These frequency shifts depend both on the motion of the source and the
geometry of spacetime.

For a particular configuration, one whole orbit is divided into a sequence
of equally separated frames. Frame rate and field of view of each configu-
ration have to be adjusted properly to achieve a reasonable temporal and
spatial resolution.
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3.2.3 Simulation parameters

The occurrence of an orbiting hot spot in the vicinity of the supermas-
sive black hole in the Galactic Center may appear in one of many possible
configurations. In order to establish comparison with observed data, it is
convenient to set up a grid of several parameters that characterize the model
best. In this work these are:

• Radius of the orbit (ro/rLSO = 1.0, 1.2, 1.5, 2.0)

• Inclination of the orbit (i = 20◦, 50◦, 70◦, 90◦)

• Spin of the black hole (a/M = 0, 0.52, 0.7, 0.998)

For each parameter the values in brackets have been decided on. All possible
combinations of these yield a grid of 4 · 4 · 4 = 64 different setups to be
simulated. They were carried out by Thomas Müller on a computer cluster
at the Institut für Visualisierung und Interaktive Systeme (VIS) in Stuttgart
(for a = 0.998M , only a few simulations were carried out).
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The code

The raw data produced by the ray tracing code is the basis for all the
simulations described in this work. Here, the main components of the code
will be illustrated to elucidate how the output is assembled. Furthermore,
the implementation of a hot spot model will be motivated on the basis of
various physical assumptions.

4.1 Subroutines

The code consists of four major subroutines which are stored in differ-
ent include-files and can be run independently from each other. They
are all written in Yorick, an interpreted programming language for sci-
entific simulations. It is an open-source software, which is available at
http://yorick.sourceforge.net. Originally, these subroutines were coded by
Thibaut Paumard at the MPE. However, in the course of this work they
have been modified and extended.

4.1.1 Simulation initializer

In order to start a new simulation run it is necessary to specify its detailed
properties. First of all, a name for the particular run must be assigned to
distinguish between different models. Then, one of the grid-configurations
has to be loaded and its parameters passed on to calculate the orbital pa-
rameters. All the specific parameters of the different flare models and the
observing instrument can be declared and varied here. They will be intro-
duced in the following subsections.

It is also possible to define the quality of the simulation by specifying
the number of frames to be computed and the time steps between them.
The quality is limited by the number of frames delivered by the ray tracing
code. All important variables declared in the initializer can be stored in a
text file. This is important for comparison of different models later on.
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Finally, the data-processing subroutines are called. It is also possible to
loop over many different grid-configurations.

4.1.2 Image integrator

The image integrator is responsible for creating physically motivated realistic
images from the raw frames. Its main purpose is to co-add (integrate) all the
frames of one orbit and assign different apparent brightnesses to different
orbital locations of the hot spot. This procedure allows the assignment of
an arbitrary brightness distribution to the whole orbit of the spot, which
may include a shearing arc or an accretion disk as described in section 4.2.

It is implemented as follows: The apparent flux density S of the blob
and its multiple images in a particular frame depends both on the emission
times T of the received light rays and the frequency shifts D caused by
gravitational redshift and Doppler effects. It can be expressed via the specific
intensity Iν or the specific flux density Sν :

S = S(T,D) ≡
∫

Sν(T,D) dν ≡
∫∫

Iν(T,D) dν dΩ (4.1)

Suppose the sphere emits radiation with a power law spectral energy distri-
bution (SED). Let the specific flux density in the sphere’s reference frame
behave as

νsSνs = k ν α
s (4.2)

with k ≡ k(T ) being a constant of proportionality and α the spectral index
of the SED. We can now apply Liouville’s theorem (section 2.1.5) and use
the expression for the Lorentz invariant to obtain the specific flux density a
remote observer would measure (‘s’ for source and ‘o’ for observer):

Sνs

ν 3
s

=
Sνo

ν 3
o

≡ const. (4.3)

Instead of specific intensities we can also use specific flux densities, since we
assume a constant solid angle Ω in the observation. For the SED measured
in the observer’s frame of reference we get:

νoSνo = νoD
3Sνs = νoD

3k ν α−1
s = νoD

3k
(νo

D

)α−1
= D4−αk ν α

o (4.4)

yielding the same power law as in (4.2) with an additional factor of D4−α.
Finally we integrate over all frequencies within the observing band of the
telescope and get the apparent flux density So:

So =
∫ ν2

ν1

D4−αk ν α−1
o dνo =

{
k D4−α(ν α

2 − ν α
1 )/α , if α 6= 0

k D4 ln(ν2/ν1) , if α = 0
(4.5)
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The temporal evolution of the sphere’s intrinsic brightness is completely
determined by k = k(T ). It is one of the most important model-parameters
to be varied within the simulations. Once it is assigned to the sphere,
the resulting apparent flux density as seen by a remote observer can be
calculated via (4.5) for every pixel in each frame.

One frame consists of a 1000×1000 pixel map for the values of T and D.
A pixel with T = 0 is interpreted as a pixel with zero brightness. Since the
pixels of higher order images show earlier emission times than lower order
images, their brightness evolution lags behind.

We now have a sphere, emitting light with a power spectrum with spec-
tral index α, revolving the black hole once. Of course, we can add more
orbits to that motion by simply adding the orbital period to the emission
time as soon as one orbit is closed and using the same frames again:

Tn(i) = n · Tcirc + T (i) , n ∈ N (4.6)

n denotes the number of completed orbits, i the frame number and Tn(i)
the time of emission in the (n + 1)’th orbit at frame i.

Eventually, we also may want other parts of the orbit to be illuminated.
The compact sphere may not represent a realistic enough model due to
gravitational shear or diffusion. In such a scenario material will spread out
from the sphere and distribute along the orbit to build up an arc. This
can be simulated by simply adding up all the frames of one whole orbit and
assigning them a suitable brightness distribution. This is done for all of the
images computed above in the following way: every pixel that has nonzero
values for T in a frame j within one orbital period around a particular frame
i is assigned the time of emission value

T arc
n (i, j) = Tn(i) (4.7)

of the central frame i. This enables us to synchronize the brightness evolu-
tion of the whole arc, spread out over the entire orbit.

Once again we assign a suitable brightness distribution to the arc.
Therefore every pixel with T 6= 0 gets a value for its apparent flux den-
sity according to equation (4.5), except this time we can specify another
spectral index α and another function k for the temporal evolution of the
brightness. But not only the temporal but also the spatial distribution of
the arc may be determined. The image integrator loops over all the frames
i for the primary image computation elucidated above. The secondary im-
age computation including the arc is done in a sub-loop for every image i,
looping over the same total number of frames with index j. Within this
loop the brightness distribution of the arc can depend both on the time of
emission of the central frame Tn(i) and Tn(j) of the particular frame j to
be computed. Hence,

karc = karc (Tn(i), Tn(j)) (4.8)
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For the sake of clarity the index n will be omitted in the following.
Figure 4.1 shows an example of an image produced with the technique

discussed above. One can see how the arc is composed out of many different
frames of the sphere with changing brightness. The integrated frames also
produce the arc in the secondary image.
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Figure 4.1: An integrated image of a radiating sphere with extended arc, following
a Gaussian brightness distribution.

4.1.3 Photometry and astrometry calculator

Having computed a sequence of images for several orbits of a radiating sphere
changing shape and brightness with time, we’re now able to simulate an
observation of this setup that could be carried out by present or future
telescopes.

Light curve

As yet, the only dynamical information available from the flares of the Galac-
tic Center are light curves (photometry and polarimetry). Therefore it is
appropriate to create light curves from the simulated images to be compared
with the experimental data. Since a light curve is nothing else than the tem-
poral evolution of the integrated flux density (luminosity) of a certain area
on sky, we can calculate it by summing over all the pixels in the field of view
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and normalizing by the field of view’s area Afov:

So =
1

Afov

∑
pix

So (x, y) (4.9)

Here, x and y are the pixel-coordinates within the field of view. The origin
is placed in its center.

Centroid

One goal of current developments in astronomy is to combine multiple tele-
scopes interferometrically and thereby reach very high spatial resolutions
(see introduction). Although it won’t be soon possible to totally resolve the
light sources orbiting the black hole, movements of the centroid of the emis-
sion might be observable [35]. It can easily be computed from the simulated
data:

−→
C =

1∑
pix

So (x, y)


∑
pix

So (x, y) · x∑
pix

So (x, y) · y

 (4.10)

Flux integration

Not only the spatial, but also the temporal resolution of a telescope is lim-
ited. It has to collect a significant amount of flux until it can produce an
image. It is therefore necessary to integrate the received flux over an appro-
priate integration time. The code simulates this by averaging a number of
consecutive frames.

Furthermore one has to consider a blind time between successive in-
tegrations. This is because the observation of an image always requires
calibration time. For the integrated light curve and centroid we then get:

< So > (l) =
1

∆i

jl+∆i−1∑
i=jl

So(i) (4.11)

<
−→
C > (l) =

1
∆i

jl+∆i−1∑
i=jl

−→
C (i) (4.12)

where i is the frame number, ∆i the number of frames to be integrated over
and jl an iteration constraint defined as

jl := 1 + (l − 1)(∆i + ∆b) , l ∈
[
1, 2, ..., lmax

]
(4.13)

∆b is the blind time counted in frames and lmax the total number of inte-
grations for a total of N frames. It can be expressed as

lmax = b N

∆i + ∆b
c (4.14)
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Noise

For the simulation of a realistic observation we still have ignored external
influences on the light rays when they travel towards the observer. Already
the interstellar medium in the line of sight to the source reddens and ex-
tenuates the radiation. In addition, light rays are deflected slightly due to
atmospheric turbulences when they cross the earth’s atmosphere. This ef-
fect is called seeing and can be corrected to great extent by an adaptive
optics system using deformable mirrors. Finally, the telescope itself is an
imperfect device and adulterates the captured signal in many places. For
example, this is the case at the detector, which produces intrinsic noise.

Hence, there are plenty of disturbing influences on the wavefronts that
add up in a very complicated manner. But since most of these fluctuations
are randomly distributed, it is easy to reproduce them. The simplest way
to do that is to add a normally (Gaussian) distributed noise to each data
point:

< S̃o >=< So > +σS · RGauss (4.15)

<
−̃→
C >=<

−→
C > +

(
σCx · RGauss

σCy · RGauss

)
(4.16)

RGauss is a normally distributed random number with a mean of zero and
standard deviation of one. Multiplication with the uncertainties σS and
σCx , σCy of the light curve and the components of the centroid respectively,
scales the standard deviation to the corresponding values. Their magnitude
can be taken from existing observational data.

4.1.4 Movie generator

All of the produced data can be visualized in a small video clip in mpeg-
format. The simulated frames are colorized using a proper color palette
that indicates the apparent flux density of every pixel. Arranging the im-
ages one after another with appropriate spacing creates a smooth movie.
Additionally, a real time drawing of the light curve and the centroid track is
implemented, so one can immediately observe the influences from the model
on the observational data.

4.2 Model implementation

At this point we begin to specify particular properties of the matter in the
close black hole orbit. The hot spot scenario has plenty degrees of freedom
of which many will be fixed by further assumptions. Especially the electron
heating process via magnetic reconnection is a complex phenomenon. Strong
simplifications will be used to describe such an event. Moreover one has to
consider shear or diffusion, which can be caused by different effects.
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4.2.1 Blob-arc-model

The major constraints for modeling the flares from SgrA? are the observed
light curves. In first order approximation they all appear quite symmetric,
showing a smooth rise followed by a smooth decay, in total lasting for a
timescale of roughly one hour. On top of these fairly bright flares one can
distinguish smaller variations on a typical timescale of about 20 minutes, in
our model corresponding to the orbital period of a hot spot.

We will now proceed on the assumption that the shorter variations are
due to a compact source (sphere/blob) on a circular orbit around the black
hole, periodically brightened and dimmed through relativistic effects de-
pending on the orbital phase. Furthermore we add an arc, spreading from
the sphere due to shear or diffusion. We assume the broad shape of the
flare light curve is caused by a heating process of the sphere. It is heated
or excited in the vicinity of the black hole and then spreads along the orbit
and cools again.

For the intrinsic brightness evolution of the sphere we use two Gaussians,
one for the rise part and one for the decay part:

ks =



ks
peak exp

−1
2

(
T (i)− T s

peak

σs
rise

)2
 , if T (i) < T s

peak

ks
peak exp

−1
2

(
T (i)− T s

peak

σs
decay

)2
 , if T (i) > T s

peak

(4.17)

The width of each Gaussian can be adjusted by σs
rise and σs

decay, the peak
brightness and the corresponding peak time of the light curve by ks

peak and
T s

peak, respectively.
For the arc we additionally have to consider the spreading, which can

be described by another Gaussian Q, also depending on the arc-frame j:

ka =



ka
peak exp

−1
2

(
T (i)− T a

peak

σa
rise

)2
Q(i, j) , if T (i) < T a

peak

ka
peak exp

−1
2

(
T (i)− T a

peak

σa
decay

)2
Q(i, j) , if T (i) > T a

peak

(4.18)
with

Q(i, j) := exp

(
−1

2

(
T (j)− T (i)

∆

)2
)

, (4.19)

∆ :=
Tcirc

2
T (i)
τshear

(4.20)
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Thus, the arc has a similar brightness evolution as the sphere, described by
σa

rise, σa
decay, ka

peak and T a
peak. Additionally, its extension is described by ∆,

the width of Q. It is linearly changing with time being zero at T (i) = 0 and
half an orbital period at T (i) = τshear. Hence, τshear is the characteristic
shear time of the arc that determines the smearing of the entire orbit on a
one sigma level. Depending on the shear mechanism, τshear is in different
parts influenced by the orbital parameters of the hot spot, the properties
of the plasma, the magnetic field and possibly even more quantities. Two
special cases for the shear mechanism are illustrated below.

Figure 4.2 illustrates the spatial and temporal brightness distribution of
a blob with a spreading arc. The elevation of the plotted surface represents
the intrinsic flux density of the two sources.

Figure 4.2: Temporal and spatial intrinsic brightness distribution of a blob-arc-
model. Model-parameters: σs

rise = σa
rise = 1.1Tcirc, σs

decay = σa
decay = 2.1Tcirc,

ks
peak/ka

peak = 1.3, T s
peak = T a

peak = 2.5Tcirc, τshear = 1.7Tcirc

4.2.2 Accretion disk

Although there is yet no evidence for a persistent accretion disk around
the Galactic black hole, comparison with other galactic nuclei suggests its
occurrence. This accretion disk may be fed by infalling clumps of matter
once in a while, giving rise to luminous flare events. In our simulation, it
can be approximated by a homogeneously radiating ring, spread over the
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entire blob-orbit. Its intrinsic brightness can be described by

kd =



kd
peak exp

−1
2

(
T (i)− T d

peak

σd
rise

)2
Q(i, j) , if T (i) < T d

peak

kd
peak exp

−1
2

(
T (i)− T d

peak

σd
decay

)2
Q(i, j) , if T (i) > T d

peak

(4.21)
with

Q(i, j) ≡ const. ≡ 1 (4.22)

Similar to the arc, its temporal brightness evolution can be specified by
the parameters σd

rise, σd
decay, kd

peak and T d
peak. However, the disk’s spatial

extension is uniform and not changing with time, so it only modulates the
contrast of blob and arc.

4.2.3 Gravitational shear

Consider a spherical clump of matter of radius rs without any bonding forces
among its constituents, its center revolving a black hole on a stable circular
orbit of radius r. Gravitational shear is due to different orbital periods at
different radii, so that an extended object in orbit experiences tidal forces.
The object’s outermost part at ro = r + rs has a longer revolving time
than its innermost part at ri = r − rs, which leads to a spreading of the
loose matter. A characteristic shear-timescale τshear is reached when the
innermost part “overtakes” the outermost part and thus has completed one
more orbit. In terms of the phase angles φo(t) and φi(t) this means:

φi(τshear) = φo(τshear) + 2π (4.23)

and expressed through angular velocities:

ωi τshear = ωoτshear + 2π ⇒ τshear =
2π

ωi − ωo
(4.24)

With equation (2.112) the gravitational shear time τshear becomes:

τshear =
2π√
M

[
(r + rs)3/2 + a

√
M
][

(r − rs)3/2 + a
√

M
]

(r + rs)3/2 − (r − rs)3/2
(4.25)

It depends on the orbital radius r, the spin-parameter a and the radius rs of
the object (the black hole mass M is constant). Table 4.1 lists the gravita-
tional shear times for all possible grid configurations. Obviously they grow
with increasing orbital radius and decreasing black hole spin and range from
8 minutes to more than 10 hours in the case of SgrA?. Table 4.2 contains
the corresponding orbital periods of each setup. A graphical representation
of Table 4.1 is given in Figure 4.3 and Figure 4.4.
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τshear a[MSgrA? ]
[min] 0 0.52 0.7 0.998

r[
r L

S
O
] 1.0 108 48 32 6

1.2 171 74 48 8
1.5 299 127 80 11
2.0 616 256 159 18

τshear a[MSgrA? ]
[Tcirc] 0 0.52 0.7 0.998

r[
r L

S
O
] 1.0 4.0 2.9 2.5 1.4

1.2 4.8 3.4 2.9 1.5
1.5 6.0 4.3 3.6 1.7
2.0 8.0 5.6 4.7 2.0

Table 4.1: Gravitational shear times τshear in minutes (left) and in terms of the
orbital period (right) for an object radius of 0.25Rs for different orbital radii and
black hole spins.

Tcirc a[MSgrA? ]
[min] 0 0.52 0.7 0.998

r[
r L

S
O
] 1.0 27.3 16.7 12.9 4.4

1.2 35.9 21.6 16.6 5.2
1.5 50.1 29.9 22.6 6.5
2.0 77.2 45.4 34.1 9.1

Table 4.2: Orbital periods Tcirc of the blob-center in minutes (coordinate time)
for different orbital radii and black hole spins.

Figure 4.3: Dependency of the gravitational shear time τshear on the spin-
parameter a[MSgrA? ] and the orbital radius r in units of the last stable orbit radius.
For every multiple of 60min a contour line is drawn.
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Figure 4.4: Dependency of the gravitational shear time τshear in units of the orbital
period Tcirc on the spin-parameter a[MSgrA? ] and the orbital radius r in units of
the last stable orbit radius. For every multiple of one orbital period a contour line
is drawn.

4.2.4 Magnetohydrodynamic shear

The crucial assumption for considering gravitational shear is to neglect any
bonding forces within the plasma around the black hole. However, a strong
magnetic field is likely to be present and may prevent hot spots from shearing
on the Kepler-timescale.

The characteristic shear-timescale of such a scenario is increasing with
higher magnetic field strengths. This is due to a so called magneto-rotational
instability (MRI), discovered by Balbus and Hawley in 1991 [1]. It acts
against the tidal forces caused by the gravitational field and creates an
attractive force among adjacent elements of the accretion disk, trying to
enforce a rigid rotation. In Figure 4.5 this force is visualized by a spring.

Thus, in the case of a very strong magnetic field, the hot spot can be
regarded as a rigid source, retaining its shape during the whole duration of
a flare. In this limit the shear time can be approximated to be infinite.
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Figure 4.5: Illustration of the magneto-rotational instability of a magnetized
accretion disk around a rotating black hole (from [27]).



Chapter 5

Modeling flares from SgrA?

The code developed above allows us to study the influences of various pa-
rameters on the simulated light curves and centroid tracks. We will start
simulating a simple light source to analyze how the different relativistic
effects are revealed in the data. Hereafter more realistic models will be
discussed and checked against real observations.

5.1 Compact blob-model

In order to study only relativistic effects it is most convenient to set up a
light source as simple as possible. To this effect we will simulate a single
blob without any spatial elongation or intrinsic temporal evolution. Thus,
it is sufficient to only compute one full orbit in a given configuration. The
simulation parameters for the realization of this scenario are:

σs
rise = σs

decay = ∞, ks
peak = 1, ka

peak = 0, T s
peak = 0, αs = 0 (5.1)

By setting ka
peak = 0 we simply “ switch off ” the arc, that’s why we don’t

have to specify the other parameters concerning it.
For the mass and distance of the black hole we will use the values of

the Galactic Center black hole given in the introduction in order to produce
realistic data comparable to observations.

5.1.1 Photometry

Let us first focus on the light curves. In a classical situation we would expect
a constant light curve throughout the whole orbital period, since the bright-
ness of a constant light source on a Keplerian orbit should not depend on
time. In a highly relativistic regime though, Doppler- and beaming-effects
make the apparent brightness of the source depend on its relative velocity to
the observer. Since it moves on a circular orbit, the light curves are modu-
lated with a sine-pattern. But due to the fact that the hot spot moves with

57
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velocities close to the speed of light, the relativistic Doppler effect makes it
appear slower when it is receding, and faster when it is approaching the ob-
server. This stretches the sine-pattern around its minimum and compresses
it around its maximum. Furthermore, the bending of light rays produces
multiple images of the source in different locations, leading to a substructure
in the light curves.

Below we investigate in detail how the shape of the curves depends on
changes in the basic parameters of the model. We normalize each light curve
to its minimum flux and plot it against the orbital phase in radiants (zero
designates the point where the hot spot is closest to the observer). This
representation is quite suitable for the comparison of the curves, since it
scales them to the same length and provides an easy way to read off the
amplification of flux from minimum to maximum.

Orbital radius and inclination

Figure 5.1 displays light curves of hot spot orbits with different orbital radii
and inclinations around a Schwarzschild black hole (details are given in the
figure caption). Obviously, decreasing the orbital radius generally leads
to narrower and higher peaks. This is due to the increasing spot-velocity
leading to stronger relativistic Doppler- and beaming-effects, respectively.

The same changes can be produced by increasing the inclination of the
orbit, since this increases the line of sight velocity of the hot spot (both
relativistic Doppler- and beaming-effects depend on the line of sight velocity
v cos ϑ, see section 2.1). In our range for the parameters, changes in the
inclination indicate these relativistic effects even stronger than changes in
the orbital radius.

Furthermore, the light curves with 90◦ inclination reveal an additional
feature. Before each light curve reaches its usual peak-maximum, a spiky
second peak appears. Its peak-flux exceeds the latter’s by far. It originates
from the development of an Einstein ring, an apparent ring-shaped image
of the hot spot around the black hole. It occurs, when the light source, the
black hole and the observer are aligned (and the black hole is in between).
In this axially symmetric geometry, the lengths of the light paths between
source and observer are rotationally invariant with respect to the line of
sight. Hence, the observer receives a rotationally symmetric image and the
total observed flux is increased significantly.

Higher order Einstein rings appear, when light rays revolve the black
hole. For instance, the secondary Einstein ring appears, when the hot spot
passes in front of the black hole. We then receive photons from the far side
of the spot that revolved the black hole once. Actually it occurs a bit later,
since one still has to consider the finite speed of light on its way round the
black hole. The corresponding peaks can also be seen in the last plot of
Figure 5.1, although they are a lot smaller than the ones created by the
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Figure 5.1: Light curves of a compact hot spot orbiting a Schwarzschild black
hole in different orbital radii and inclinations. Colors indicate the orbital radius
(blue: 1.0rLSO, green: 1.2rLSO, yellow: 1.5rLSO, red: 2.0rLSO).

primary Einstein ring.
It is interesting to see how the occurrence of the Einstein rings depends

on the orbital radius of the spot. At larger radii, the primary Einstein ring
emerges at a smaller orbital phase. This is again due to the relativistic
Doppler effect, that makes the light source appear slower on the receding
side. If it is strong, the Einstein ring is more delayed. The occurrence of
the secondary Einstein ring is determined by two counteracting effects: the
travel time of the light rays revolving around the black hole grows with
higher orbital radii, but so does the orbital period. The latter effect dom-
inates and therefore the secondary Einstein ring appears at lower orbital
phases with increasing radii.

Figure 5.2 shows simulated images of a primary and a secondary Einstein
ring for a compact hot spot on the last stable orbit. The secondary ring is
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very dim and can just be resolved in the used pixelscale.
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Figure 5.2: Primary and secondary Einstein ring of a compact hot spot orbiting
a Schwarzschild black hole on the last stable orbit in 90◦ inclination.

If we go back to lower inclinations, we expect no Einstein rings, but
still multiple images of the hot spot. Obviously, their effects on the light
curves are marginal. Only the light curves with 70◦ inclination show a slight
distortion of the main peak, suggesting the existence of a secondary image.
It is not only the small size that prevents the secondary image from being
observable in the light curves, but also the fact that its brightness is not as
variable as the Einstein ring’s.

Spin

Now that we know that relativistic effects show up most strongly at 90◦

inclination, we will investigate the impact of different black hole spins on
such a configuration. Figure 5.3 displays the corresponding light curves
for various spin-parameters. A logarithmic representation (in magnitudes)
emphasizes the fainter parts of the light curves more strongly. Here, one
can even see another peak, corresponding to the tertiary Einstein ring. The
main differences between the curves is due to the fact that the last stable
orbit shrinks with higher spin-parameters. Thus, they change in the same
way as before, when we changed the orbital radius.

By looking more closely to the Einstein ring peaks, one can find a slight
broadening with higher spin. This is due to the fact that the blob occupies
a bigger fraction of the orbit at smaller radii. The result is that the required
conditions for an Einstein ring are met for a larger orbital phase. It is hard
to tell, whether there is another effect solely caused by the black hole spin.
By all means its influence on the light curve shapes is marginal.
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Figure 5.3: Light curves of a compact hot spot orbiting a Schwarzschild black
hole (blue), a Kerr black hole with a = 0.52M (green), a = 0.7M (yellow) and
a = 0.998M (red) in 90◦ inclination with an orbital radius of 2rLSO. The plot to
the right shows the normalized magnitude of the light curves to the left (m :=
−2.5 log10So).

Spectral index

Changing the SED of the hot spot emission has strong implications on the
light curves as well. Since we’re observing in a confined range of frequencies
(observing band), Doppler shifting the emitted radiation makes us observe
different parts of the SED every instant of time. If, for instance, the hot
spot is approaching us, the observed radiation is blue-shifted. In the rest
frame of the blob, though, this radiation was emitted at lower frequencies.
Depending whether the hot spot emission follows a blue, white or red SED,
the observed flux is lower, equal or higher, respectively. This means that a
red SED (αs < 0) amplifies the beaming effect by brightening the hot spot
on the approaching side and dimming it on the receding side, while a source
with a blue SED (αs > 0) behaves contrariwise. A white or constant SED
(αs = 0) does not affect the observed flux at all.

Figure 5.4 displays light curves for all three cases. Clearly, the peaks
broaden with increasing spectral index. In higher inclinations (right plot)
the effect of the spectral index gets stronger. One can see that in the case
of a blue SED the observed flux of the hot spot at the approaching side is
dimmed so strongly, that the secondary image of the blob is revealed. Its
flux exceeds the brightness of the primary image for a short fraction of the
orbital period. In the case of a red SED the opposite happens: the primary
peak gets so narrow and bright, that the secondary peak appears before.
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Figure 5.4: Light curves (in magnitudes) of a compact hot spot orbiting a
Schwarzschild black hole on the last stable orbit in 20◦ and 70◦ inclination. Each
plot shows light curves for three different spectral indices of the emitted hot spot
SED with αs = 0 (black), αs = −3 (red), αs = 3 (blue).

5.1.2 Astrometry

The centroid tracks of our simplified hot spot model provide further infor-
mation on its configuration. In the following, the same parameters as above
will be varied and their impact analyzed.

Orbital radius and inclination

Obviously, decreasing the orbital radius leads to smaller centroid tracks, as
can be seen in Figure 5.5. Then, just as with the light curves, the relativistic
effects increase, i.e. the deviation of the centroid tracks from the classical
ones (dashed lines) gets bigger. On the one hand, this deviation is caused by
multiple images of the hot spot. When the secondary image gets brightest,
the centroid of the received light lies somewhere in between the primary and
the secondary image. But since the latter only brightens up shortly (it moves
faster on the approaching side), this causes a cusp in the centroid track. On
the other hand, deflection of the primary rays distorts the centroid track
as well. The rear part of the orbit appears to be folded upwards in higher
inclinations.

Like before, raising the inclination leads to stronger relativistic effects.
The cusp in the centroid track, for instance, becomes more and more promi-
nent. Since the centroid track for the 90◦ case is just a horizontal line, we
instead plot the orbital phase φ(t) against x(t), as shown in the last plot of
Figure 5.5. First, one can see how the classical sine-pattern is deformed due
to the relativistic Doppler effect, as discussed above. Second, distinct spikes
appear in the pattern. These can be associated with the Einstein rings.
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Figure 5.5: Centroid tracks of a compact hot spot orbiting a Schwarzschild black
hole in different orbital radii and inclinations. Colors indicate the orbital radius
(blue: 1.0rLSO, green: 1.2rLSO, yellow: 1.5rLSO, red: 2.0rLSO). The dashed lines
indicate the classical behavior neglecting any relativistic effects.

Comparing the occurrence of these spikes with the occurrence of the sub-
peaks in the light curves, one can ascertain that they appear at the same
orbital phase for a given configuration. Thus, the first spike (in the first half
of the orbital period) corresponds to the secondary Einstein ring and the
second spike (in the second half of the orbital period) corresponds to the
primary Einstein ring.

The jitter of the curve at the receding side is due to the limited resolution
of the ray traced images. It starts, when a secondary image of the blob
appears at the approaching side. Because it only consists of a few bright
pixels, the location of the centroid is highly sensitive on changes in the
number of integrated pixels.
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Spin

Higher spin makes the last stable orbit shrink. Thereby the centroid tracks
deform even stronger, i.e. the cusp develops more strongly and the rear part
of the orbit is dragged up further. In addition, a second cusp emerges on
the receding side, due to the tertiary image of the spot. The cusps may even
turn into loops provided the multiple images are bright enough, as apparent
from the left plot in Figure 5.6.

Figure 5.6: Centroid tracks of a compact hot spot orbiting a Schwarzschild black
hole (blue), a Kerr black hole with a = 0.52M (green), a = 0.7M (yellow) and
a = 0.998M (red) in 70◦ and 90◦ inclination with an orbital radius of 2rLSO. The
dashed lines indicate the classical behavior neglecting any relativistic effects.

The right plot shows the 90◦ case. Just like the sub-peaks in the light
curves, the spikes in the deformed sine-pattern are broadened with higher
spin-parameters of the black hole. In the high-spin case the secondary Ein-
stein ring even dominates throughout the entire first half of the orbital
motion. Thereby it shrouds the motion of the hot spot almost completely.

Spectral index

As the light curves have shown, the slope of the hot spot SED may either in-
tensify (red spectrum) or attenuate (blue spectrum) the relativistic beaming
effect. In Figure 5.7 it appears that the centroid tracks with a red spectrum
are dragged towards the approaching side, whereas the one’s with a blue
spectrum towards the receding side. The multiple images have a greater in-
fluence on the shape of the centroid track in the case of a red SED, since the
primary image of the hot spot is dimmed stronger on the receding side of the
orbit, whereas the secondary image is amplified stronger on the approaching
side.
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Figure 5.7: Centroid tracks of a compact hot spot orbiting a Schwarzschild black
hole on the last stable orbit in 20◦ and 70◦ inclination. Each plot shows centroid
tracks for three different spectral indices of the emitted hot spot SED with αs = 0
(black), αs = −3 (red), αs = 3 (blue).

5.1.3 Combination of photometry and astrometry

Light curves and centroid tracks comprise complementary information on
the configuration of the considered system. It is therefore possible to break
degeneracies in some of the parameters of the model by regarding both
photometric and astrometric information.

For example, one can compare the flux-amplification in the light curves
with the diameter of the centroid tracks. Since both properties depend
on the inclination, the orbital radius and the spin-parameter of the con-
figuration, they are suitable for this kind of analysis. The amplification A
is defined as the difference between the apparent magnitudes of the light
curve’s maximum and minimum within one orbital period:

A := |mmax −mmin| = 2.5 log10

(
So

max

So
min

)
(5.2)

In Figure 5.8 the amplification of each light curve is plotted against
the horizontal diameter of the corresponding centroid track for each grid-
configuration. Obviously, in such a representation it is possible to distinguish
every single configuration by the set of parameters {r, i, a, Tcirc}. This is
because the inclination mainly influences the light curve peaks and does not
change the horizontal centroid deflection so much, whereas the orbital radius
has a stronger influence on the centroid deflection than on the light curves.
Changing the spin-parameter of the black hole has no big effect on either
the amplification or the diameter of the centroid track. Configurations with
the same location in this plot (i.e. same orbital radius and inclination) can
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Figure 5.8: Amplification of the light curve in magnitudes plotted against the
horizontal diameter of the centroid track in µas for each grid-configuration in the
compact blob-model. The symbol-shape indicates different inclinations (star: 20◦,
diamond: 50◦, triangle: 70◦, square: 90◦). Colors indicate the orbital radius (blue:
1.0rLSO, green: 1.2rLSO, yellow: 1.5rLSO, red: 2.0rLSO). The symbol-size indicates
the spin-parameter (big: a = 0, medium: a = 0.52M , small: a = 0.7M , tiny:
a = 0.998M).

be distinguished by their orbital period that can be taken from the light
curves. Then, the spin-parameter is determined via equation (2.113).

Thus, obtaining astrometric data from SgrA? could on the one hand
help to verify the hot spot model and constrain its properties, especially the
spin of the black hole. On the other hand though, the new data could rule
out the hot spot model and favor other scenarios instead.

5.1.4 Multiple blobs

The simple model of a single compact light source can be easily extended
by adding further blobs on the same orbit. On average, flares occur once a
day, so it is not unlikely that two flare events may sometimes coincide. As
a result one would expect the light curve to contain two sequences of major
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peaks, displaced according to the separation of the two blobs.
In the special case of a separation of half an orbital phase one would ex-

pect the light curve to show twice the frequency in the oscillations compared
to the single blob case. Hence, it might be hard to distinguish between a
single blob on a close orbit with orbital period Tcirc and two blobs on farther
orbits with each an orbital period of 2Tcirc. In both cases the resulting light
curves would show a periodicity of Tcirc.

Figure 5.9 demonstrates the two cases showing the corresponding light
curves (again normalized to the minimum flux) and centroid tracks for a
particular configuration. Obviously, the two blobs create far weaker and
broader oscillations than the single one. Say we assumed the two-blob light
curve to be caused by a single blob on a closer orbit around the black hole.
We then have to stretch the first half of the corresponding light curve to the
full orbital phase. Thus, the resulting light curve would peak earlier than
the real single-blob light curve and show a far broader modulation.

Figure 5.9: Light curves (left) and centroid tracks (right) of one blob (red, r =
1.2rLSO) and two oppositely situated blobs (blue, r = 2.0rLSO) orbiting a Kerr black
hole with a = 0.52M in 70◦ inclination.

Also the shapes of the centroid tracks suggest how to discriminate the
two models. Although one might naively expect the centroid track in the
two-blob case to degenerate into a single spot, this is not the case due
to relativity. The relativistic Doppler effect causes the two blobs to never
appear equally fast because of their opposite line of sight velocities. Thus,
most of the time the blobs are seen on the receding side, separated by
less than half an orbital phase (see Figure 5.10). Nevertheless the resulting
centroid motion is dragged further to the approaching side due to relativistic
beaming.

Multiple images play a minor role, because their brightness is always
outreached by the one blob closest to the approaching side. This makes the
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cusp in the centroid track almost disappear.
In general one can say that relativistic effects are suppressed in the case

of two oppositely situated sources. Yet it might be hard to discriminate
between one and two blobs in a real observation.

−40 −20  0  20  40

−40

−20

 0

 20

 40

x [µas]

y 
[µ

as
]

.

−40 −20  0  20  40

−40

−20

 0

 20

 40

x [µas]

y 
[µ

as
]

.

.

−40 −20  0  20  40

−40

−20

 0

 20

 40

x [µas]

y 
[µ

as
]

.

.

.

−40 −20  0  20  40

−40

−20

 0

 20

 40

x [µas]

y 
[µ

as
]

Figure 5.10: Sequence of two blobs orbiting a Kerr black hole with a = 0.52MSgrA?

in 70◦ inclination and 2.0rLSO distance, separated by half an orbital perimeter. The
images are taken roughly every 7.5 minutes as measured by a distant observer,
showing half an orbital period of each blob. The white cross marks the centroid of
the particular image and leaves a trace of its previous motion.

5.2 Shearing blob-arc-model

The conception of a single compact object revolving a supermassive black
hole in its closest vicinity, maintaining a constant shape and brightness is
somewhat artificial and has presumably little physical relevance. In order to
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improve this model we will additionally implement an elongated arc, which
is spreading from the blob due to gravitational shear. Both components
(blob and arc) will furthermore vary their intrinsic brightness with time to
emulate heating and cooling sequences.

The timescales for these processes is determined by the synchrotron
cooling time τsyn, which depends on the magnetic field strength B and the
wavelength λ of the observed synchrotron radiation. For the case of SgrA?

it is estimated as [20]:

τsyn ≈ 8 (B/30Gauss)−3/2 (λ/2µm)1/2 min (5.3)

Computational models in general relativistic magnetohydrodynamics (GR-
MHD) suggest that in the close vicinity of a Kerr black hole the magnetic
field strength within the accretion disk decreases with radial distance. In
contrast, higher spin-parameters lead to stronger magnetic fields [9]. These
dependencies are fairly complicated and presumably cannot be derived an-
alytically. Since a full GRMHD-simulation exceeds the scope of this work,
we will determine the heating and cooling timescales from the observations.

From the flare light curves one can estimate these parameters to be
of the order of the orbital timescale, i.e. the temporal separation between
two successive major peaks. The decaying edge of the flare usually turns
out to be wider than the rising one. For these reasons we fix the rise- and
decay-times of blob and arc to the following values:

σs
rise = σa

rise = Tcirc , σs
decay = σa

decay = 2Tcirc (5.4)

The exact values for these parameters vary from flare to flare and may de-
viate from the ones above, but since we’re only modeling the flares qualita-
tively in this section, they are reasonable. The same holds for the peak-flux
ratio of blob and arc. We use

ks
peak/ka

peak = 4/1 (5.5)

which means the blob is five times as bright as the arc, since the arc-
brightness is also added at the location of the blob. The total number
of orbits and the location of the flux-maxima of blob and arc are chosen to
be:

n = 6 , T s
peak = T a

peak = 2Tcirc (5.6)

The shear time τshear is determined by equation (4.25), since we’re as-
suming purely gravitational shear. τshear is shortest for small orbital radii
and high black hole spins, i.e. the effect of shear is strongest in these con-
figurations.

Now, only the spectral indices of blob and arc remain to be specified.
Observations from the flares in the Galactic Center suggest a connection
between brightness and color. In times where the flare is dim it shows a
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red spectrum, whereas in bright states it is rather white [20]. Since in our
model the blob is brighter than the arc, motivated by the observations, we
use the following values:

αs = 0 , αa = −3 (5.7)

With this set of parameters we simulate all the grid-configurations and
investigate the impacts of the grid-parameters on light curves and centroid
tracks, respectively.

5.2.1 Photometry

In contrast to the previous model, now the shape of the major peaks in the
light curves is changing with time. While the first peaks may be similar to
the ones already discussed in the last section, the later ones differ strongly.
This is due to the fact that in the beginning of the simulation we start with
a compact blob, which is then spreading into an arc along the orbit. The
degree of deformation depends on the shear time.

Light curves for various configurations are presented below. As before,
the abscissa shows the orbital phase in radiants and the ordinate is normal-
ized to the minimum flux.

Figure 5.11: Light curves of the shearing blob-arc-model for different orbital
radii and inclinations in the case of a Schwarzschild black hole. Colors indicate the
orbital radius (blue: 1.0rLSO, green: 1.2rLSO, yellow: 1.5rLSO, red: 2.0rLSO).
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Orbital radius and inclination

Figure 5.11 displays light curves with different orbital radii and inclinations.
The first orbital period shows a similar behavior as in the compact blob-
model. The peak-modulations are stronger for lower orbital radii and higher
inclinations, for reasons discussed above (at low inclination and high orbital
radii the arc occupies a significantly larger area on sky, in this case the
total flux is rising with the orbital radius). This feature is continuously
reversed in the subsequent peaks, due to faster shear at lower radii. While
for r = 2.0rLSO there are still distinct peaks after four orbital periods, for
r = 1.0rLSO the modulations become very weak and even may reveal a more
narrow peak caused by the compact blob.

In the case of 90◦ inclination the sub-peaks associated with the Einstein
rings evolve similarly. Note, that the major peaks tend to move towards
the sub-peaks during the flare, i.e. they peak earlier every following or-
bital period. This is caused by the rise and decay of the arc-brightness,
superimposed on the orbital variations.

Spin

Finding imprints of the black hole spin in the light curves becomes even
harder in this model. As we have seen in the last section, higher spin-
parameters cause the Einstein ring peaks to broaden slightly. Since higher
spin means smaller orbital radii and thus stronger shear, the broadening is
not solely due to the latter effect, but also due to gravitational shear. Hence,
it is hard to disentangle between these two processes.

Figure 5.12: Light curves of the shearing blob-arc-model with 90◦ inclination and
an orbital radius of 2rLSO for different black hole spins. Colors indicate the spin-
parameter: Schwarzschild (blue), Kerr with a = 0.52M (green), a = 0.7M (yellow)
and a = 0.998M (red). The plot to the right shows the normalized magnitude of
the light curves to the left (m := −2.5 log10So).

Figure 5.12 shows four light curves with each different black hole spins.
Even in the logarithmic representation one can hardly find the secondary
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Einstein ring peaks. As soon as the arc has developed, most of the substruc-
ture in the light curves is suppressed.

5.2.2 Astrometry

The motion of the centroid does not result in a closed curve in the shearing
blob-arc-model anymore. Due to the extension of the light source it tends
to converge to a single point, producing a spiral centroid track. As for the
light curves, gravitational shear dilutes the relativistic effects gradually.

Figure 5.13: Centroid tracks of the shearing blob-arc-model in different orbital
radii and inclinations in the case of a Schwarzschild black hole. Colors indicate the
orbital radius (blue: 1.0rLSO, green: 1.2rLSO, yellow: 1.5rLSO, red: 2.0rLSO).
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Orbital radius and inclination

In Figure 5.13 one can see how the cusp, associated with the secondary
image of the source, fades away with every new orbital period. As the light
distribution spreads out, the contribution of the higher order images to the
total flux becomes negligible.

Classically, the centroid would converge to the center of the image, but
due to relativistic beaming, the point of convergence is shifted to the ap-
proaching side. It moves further with increasing inclination due to stronger
beaming. The same happens with growing orbital radius, although beaming
decreases. At higher radii this trend would reverse and the point of conver-
gence would approach the center. One can already see that in the cases of
high orbital radius, the spiral becomes more and more symmetric.

Spin

Apart from gaining a lower limit for the spin-parameter from the diameter
of the centroid tracks, any signature of the black hole spin is again very
hard to find, even in the centroid motion. In order to see some effects it is
important to look at the very beginning of the flare before the shear smears
the centroid track.

As shown in Figure 5.14, in the high spin case, the centroid converges
quickest. Unfortunately, most of the relativistic effects can only be observed
in the first orbital motion. This fact imposes high demands on observational
instruments that aim at performing such measurements, because they have
to be operational immediately when the flare starts.

Figure 5.14: Centroid tracks of the shearing blob-arc-model with 70◦ and 90◦

inclination and an orbital radius of 2rLSO for different black hole spins. Colors
indicate the spin-parameter: Schwarzschild (blue), Kerr with a = 0.52M (green),
a = 0.7M (yellow) and a = 0.998M (red).
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5.3 Fitting observational data

The developed model for the possible origin of the flares from SgrA? is now
ready to be tested. This means one can try to arrange its parameters in
such a way that it reproduces the observational data. A fit of the simulated
light curves to the observed ones will help to determine these parameters
and provide theoretical predictions for future measurements.

5.3.1 Approach

Due to the complexity of the model and its numerous degrees of freedom it
does not make any sense to implement a fitting routine that determines all
the parameters at once. Not only that this approach would be far too time
consuming, but also due to the degeneracy in many of the parameters one
would not get any reasonable result.

Instead, it is more handy to estimate several parameters from the ob-
served data and then run a simulation with only a few degrees of freedom.
The resulting light curves can then be fitted to the observation. The pa-
rameters of the best fitting ones are then improved by further simulations
and fits until one ends up with a single best fit model. The single steps can
be summarized as follows:

• Determine the orbital period from the observed light curve by mea-
suring the distance between successive major peaks or computing a
periodogram.

• Choose most suitable configurations from table 4.2 that have orbital
periods close to the one measured1.

• Estimate heating and cooling timescales (σrise, σdecay), peak fluxes
(kpeak) and peak times (Tpeak) of blob and arc as well as the shear
time (τshear) and the number of orbital periods (n) from the shape of
the observed light curve.

• Run a simulation for each configuration with this set of parameters.

• Fit the resulting light curves to the data-points of the observation by
reshifting in x (time) and rescaling in y (brightness). We’re free to do
this since the absolute values for the occurrence and the peak-flux of
the flare are not specified by the simulations, they are free parameters.

• Pick the best-fit model(s) and try to improve the values of the param-
eters mentioned above.

1Of course there are many combinations of orbital radius and spin-parameter that give
the same orbital period, but since the influence of the black hole spin on the shape of light
curves and centroid tracks is marginal, we decide on those configurations and use them to
constrain the other parameters.
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• Start a simulation with these new values and fit the computed light
curves to the real flare again.

• Repeat the last two steps a number of times until the fit cannot be
improved anymore.

In order to evaluate the quality of a fit it is helpful to compute the
corresponding reduced chi-square, defined as

χ2 :=
1

N − F

N∑
i=1

(
Sm(ti)− Ss(ti)

dSm(ti)

)2

(5.8)

where Sm/s(ti) is the i’th data-point of the light curve at the time ti (‘m’
for measured and ‘s’ for simulated), dSm(ti) the corresponding error, N the
total number of data-points and F the number of free parameters in the fit.
Here, F = 2 due to the freedom of scaling in the y-direction and shifting in
the x-direction. The reduced chi-square estimates the goodness of a fit and
ideally takes the value one (for Gaussian noise). In this case the data-points
of the fitting function are compatible with the error bars of the measured
data. The higher the reduced chi-square the poorer the fit.

The above procedure was applied to two of the best IR-flares ever ob-
served from the Galactic Center. The best fits for these are presented below.

5.3.2 L-band flare from April 4, 2007

Photometry

The light curve of this flare was already presented in the introduction. It has
three major, fairly broad peaks with quite a substructure. Additionally, four
smaller peaks are found on the wings of the light curve. The periodogram
indicates a periodic timescale of about 23 minutes. The configurations at
hand with the closest orbital period to that timescale are the ones with
r = 1.5rLSO and a = 0.7M yielding Tcirc = 22.6min.

The peaks in the flare-data don’t give any indication for gravitational
shear since there is no broadening with time. For this reason we start the
simulations with an already extended arc with a constant elongation. The
parameter to describe its shape is the arc-extension ∆ defined in equation
(4.20). But, instead of using this definition we simply replace the right hand
side by a constant number determining the full width half maximum of the
Gaussian extension.

In Figure 5.15 the best fits for four different inclinations are shown. Each
light curve constitutes n = 7 orbital motions of a compact blob (αs = 0)
with a constantly extended arc (αa = −3). The simulation parameters found
from the fit are given in Table 5.1.



76 Chapter 5: Modeling flares from SgrA?

Figure 5.15: Best-fit light curves for the L-band flare from April 4, 2007. Colors
indicate the inclination (blue: 20◦, green: 50◦, yellow: 70◦ and red: 90◦), the
corresponding reduced chi-square values are given in the upper right of the plot.
At the bottom the residuals of the fit are drawn.

σrise σdecay kpeak Tpeak ∆
Blob 1.1Tcirc 1.8Tcirc 3 3.3Tcirc -
Arc 1.1Tcirc 1.8Tcirc 1 3.3Tcirc 1.2Tcirc

Table 5.1: Best-fit parameters for the L-band flare from April 4, 2007.

Obviously, the reduced chi-square values favor lower inclinations. How-
ever, this should not be taken too seriously for the following reasons:

First, the arc-extension ∆ and the inclination are degenerate parameters
which both determine the width and the hight of the peaks. If ∆ is raised,
at some point the order of the chi-square values is reversed in terms of
inclinations.

Second, the fit gets worse towards the wings of the flare. By checking
the distances between the major peaks one finds that the outer peaks don’t
match the 23 minutes timescale anymore. However, the flux in these parts
of the light curve is quite low and may more strongly be influenced by
background sources (the errors might be underestimated). For these reasons
the very low flux levels should be considered as less significant.
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Higher inclinations produce sharper sub-peaks on top of the major
peaks. These are generated by the compact blob and may reproduce some
substructure in the observed flare quite well. The Einstein ring peaks in
the 90◦ case are still compatible with the data, however, the sampling of
the instrument is too wide to constrain them. An unambiguous detection
of such a peak could directly suggest the occurrence of an Einstein ring, a
high-order general relativistic effect.

Periodogram

Having found a reasonable fit to the observed flare light curve it is of in-
terest to extract its periodic properties by computing a periodogram and
comparing it to the one obtained from the experimental data. To this end
we use a routine called Lomb normalized periodogram, which belongs to the
data analysis software IDL (Interactive Data Language) and is a standard
tool for analyzing time series.

In order to make the simulated and the observed data best comparable,
we pick out only those data-points from the simulated light curve that lie
closest in time to the ones measured. Thus we get the same amount of
data-points and nearly the same sampling.

Figure 5.16: Lomb normalized periodogram of the best-fit light curves from Figure
5.15 and the observed light curve (black).
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The periodograms for the four best-fit light curves from above and the
observed flare are plotted in Figure 5.16. Obviously, the 23min-feature is
nicely reproduced in the simulated data. Higher inclinations show more
power in the periodogram due to the fact that the peaks in the corresponding
light curves are higher and more confined. The rise towards higher timescales
is caused by the overall structure of the flare light curves, yielding a periodic
timescale of the whole flare duration.

Higher frequencies, though, are suppressed in comparison to the ob-
served data. This is due to the fact that the source as well as the observing
instrument generate intrinsic noise. While the power spectral density (PSD)
of the instrumental noise is usually Gaussian (i.e. constant), the one gener-
ated by the source may have a more complicated profile (like a broken power
law, for instance). In this case the periodogram of the observed flare shows
a slight rise to longer timescales.

It is still being discussed in the scientific community which kind of physi-
cal processes could generate these profiles in the PSD and how to distinguish
between purely random processes and distinct non-probabilistic events. The
quality of this flare data is still not considered good enough to unambigu-
ously rule out a random physical process in favor of a rotating hot spot
model. Still it is remarkable how well the simulated periodograms fit the
measured ones. The basic assumption of a periodically moving object in our
model does not produce a significantly higher power in the orbital timescale
than the power in the observed characteristic timescale. Also the rise to-
wards longer timescales below the orbital period is present.

If we want to include the observational process into our simulations we
can artificially add noise to our data. We can also mimic the flux-integration
at the detector of the telescope by using the method described in section
4.1.3. Figure 5.17 shows the light curves from above, treated with the said
procedure. First, the light curves were integrated with an integration time
of 45 seconds, which is the average value from the observation. Then, a
normally (Gaussian) distributed noise with a mean of zero and a standard
deviation of 5 percent of the flare-peak-flux was superimposed. This value
can be obtained by comparison of the mean error in the flare-data to its
maximum flux-value.

Running a periodogram on these new light curves leads to the result
presented in Figure 5.18. The power in the high frequencies is raised and
has a flat shape, pretty similar to the observed data (the fact that there is
more power in the simulated periodograms at short timescales may be due
to an overestimation of the observational errors). The peaks associated with
the 23min-timescale now match up very well, a slight discrepancy can be
found in the middle part of the spectrum, where the observation suggests
higher power in slightly shorter timescales. One could argue to have an
underlying red noise process here, but this is yet a vague conclusion.
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Figure 5.17: Best-fit light curves from Figure 5.15, added with Gaussian noise.

Figure 5.18: Lomb normalized periodogram of the noisy light curves from Figure
5.17 and the observed light curve (black).
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Astrometry

Having acquired the best-fit parameters for a particular flare light curve one
can immediately use them to compute the corresponding centroid tracks.
These are direct predictions of our flare-model and may be checked against
real observations in the future.

Figure 5.19: Centroid tracks of the best-fit model for the L-band flare from April
4, 2007 for different inclinations. The progression of the centroid motion is indicated
via color coding, changing from black to violet, blue, green, yellow and finally red.

In Figure 5.19 the centroid tracks of the four best-fit models from above
are displayed. At first glance they seem to show strong relativistic effects,
but a look at the axis labeling reveals their scaling. Due to the rather
strong contribution of the extended arc (ks

peak/ka
peak = 3/1), the centroid

of emission is not moving far, yielding deflections of at most 2µas relative
to its starting point. The centroid track is dragged to the approaching side
because of relativistic beaming, additionally, lensing effects shift it upwards.
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The higher the inclination the stronger are these effects, except for the 90◦

case where symmetry avoids a shift in the y-direction. The evolution of the
blob’s and arc’s intrinsic brightness makes the centroid track move a bit
every orbit. As time goes by it draws off towards the upper right side of the
field of view.

It may be impossible to astrometrically resolve a flare like this in the near
future, but it is noteworthy that the smearing of the light source relatively
strengthens the relativistic features in the centroid tracks.

5.3.3 L-band flare from July 22, 2007

Photometry

Another fairly bright flare from the Galactic Center was caught in July
2007 at the VLT under good observing conditions (see Figure 5.20). Only
a few short interruptions on account of calibration issues had to be carried
out, causing gaps in the light curve data. Qualitatively, this light curve
appears quite differently compared to the one before. The major peaks
are more prominent and the overall rise and decay of the whole flare light
curve is suppressed. In particular, the separation of the peaks is noticeable,
amounting to roughly 45 minutes.

In order to fit this flare one needs to assume a larger orbital radius of
the orbiting material and a more compact emission region. To this end we
use the same flare-model as before and find the best-fit parameters given in
Table 5.2. We used configurations with r = 2.0rLSO and a = 0.52M yielding
an orbital period of 45.4 minutes and simulated n = 5 orbits.

σrise σdecay kpeak Tpeak ∆
Blob 0.5Tcirc 1.0Tcirc 85 1.8Tcirc -
Arc 4.0Tcirc 7.0Tcirc 1 1.8Tcirc 1.05Tcirc

Table 5.2: Best-fit parameters for the L-band flare from July 22, 2007.

The resulting best-fit light curves are superimposed on the flare-plot
in Figure 5.20. The corresponding reduced chi-square values suggest an
even better approximation than in the April flare. Because the blob is
dominant in this fit, the 90◦ case shows very strong Einstein ring peaks,
by far exceeding the observed flux. The arc only contributes little to the
light curve flux, it just broadens the wings of the major peaks. Its rise- and
decay-time is so long that it barely varies in brightness.

In contrast, the blob must vary much stronger in order to reproduce
the observed peaks. Although its rise- and decay-time seems to be very
short in terms of the orbital period, it is comparable to the same timescales
in the April flare. Multiplying the orbital period leads to σs

rise = 22.7min,
σs

decay = 45.4min for the July flare and σs
rise = 24.9min, σs

decay = 40.7min for
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Figure 5.20: Best-fit light curves for the L-band flare from July 22, 2007. Colors
indicate the inclination (blue: 20◦, green: 50◦, yellow: 70◦ and red: 90◦), the
corresponding reduced chi-square values are given in the upper right of the plot.
At the bottom the residuals of the fit are drawn.

the April flare. This surprising concordance might indicate a fundamental
heating- and cooling-process of the flares, not changing from one event to
the other.

Periodogram

A simulated realistic observation is shown in Figure 5.21 using an integration
time of 50 seconds and a Gaussian noise with a standard deviation of 6 per-
cent of the flare-peak-flux (average values from the data). The corresponding
periodogram is given in Figure 5.22. It yields quite a good agreement be-
tween the simulations and the observation. The power in the characteristic
timescale of the flare exceeds the one in the April flare by nearly one order
of magnitude. This is due to the concentrated emission of the compact blob
in the center of the hot spot, which produces more accentuated peaks in the
light curves.

The fit at the middle part of the spectrum shows a better agreement in
the July flare. The slightly too high power in the upper frequencies again
suggests an overestimation of the errors in the measurement.
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Figure 5.21: Best-fit light curves from Figure 5.20, added with Gaussian noise.

Figure 5.22: Lomb normalized periodogram of the noisy light curves from Figure
5.21 and the observed light curve (black).
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Astrometry

The astrometric motion of the centroid, as it results from this fit, yields
better prospects regarding future measurements than the April flare. As
can be seen in Figure 5.23, diameters of up to 40µas are reached in the
centroid tracks. This is due to the bright compact component in this model.
Because the blob’s brightness varies strongly, the centroid deflection grows
first and then shrinks again, until it finally reaches its starting point.

Figure 5.23: Centroid tracks of the best-fit model for the L-band flare from
July 22, 2007 for different inclinations. The progression of the centroid motion is
indicated via color coding, changing from black to violet, blue, green, yellow and
finally red.

As for the light curves, observations of the centroid motion as it might
be possible in future experiments can be simulated. Therefore we again
integrate every 50 seconds and add a Gaussian noise to both the x- and
y-component of the centroid. Its standard deviation is chosen to be 10µas,
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the aimed resolution of ground-based interferometric instruments.
Figure 5.24 displays the obtained data-points of this procedure. In order

to shrink the error bars, it is useful to average over several successive points
(here about 10). In the cases of 50◦ and 70◦ inclination the plots additionally
contain the x(t) versus φ(t) motion of the centroid (shifted to x(0) = 0) to
visualize its deflection more clearly.

Figure 5.24: Centroid tracks from Figure 5.23, superimposed by simulated data-
points obtained by an instrument with 50 seconds integration time and 10µas res-
olution. The cases of 50◦ and 70◦ inclination additionally contain the x(t) versus
φ(t) motion of the centroid shifted to x(0) = 0.

Obviously, the centroid tracks in higher inclinations are harder to catch.
Nevertheless, significant deflections of the centroid can be measured in most
cases. A comparison of many different flare events could further constrain
the configuration of hot spot and black hole.



Chapter 6

Analytic approach

To a certain extent it is possible to derive some observable properties of the
hot spot model analytically. Of course, several simplifications and approxi-
mations have to be considered in order to keep the calculations simple. In
the following we will neglect:

• Relativistic lensing effects (responsible for the distortion of an image,
changing light travel times and the occurrence of multiple images)

• The finite extension of the source

• The acceleration of the source’s frame of reference

The remaining relativistic effects to be considered are the relativistic
Doppler effect caused by the high velocity of the orbiting source and the
gravitational redshift due to the curvature of spacetime. Both are responsi-
ble for frequency shifts of radiation, as we have seen in section 2.1. However,
in the Kerr metric, the notions of Doppler shift and gravitational redshift
cannot be treated as independent quantities anymore due to the effect of
frame dragging.

A generalized redshift factor zKerr can be extracted from the metric by
simply plugging in the properties of the circular orbit, namely:

dr = 0 , θ =
π

2
, dθ = 0 , dφ = ωcircdt (6.1)

This yields:

ds2 = c2dτ2 =
(

1− Rsr

Σ

)
c2dt2 +

2ωcircRsrac

Σ
dt2 − ω2

circA

Σ
dt2 =

=
(

1− Rs

r

)
c2dt2 +

2ωcircRsac

r
dt2 − ω2

circ

(
r2 + a2 +

Rsa
2

r

)
dt2 (6.2)
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and thus:

zKerr =
dτ

dt
=

√(
1− Rs

r

)
+ 2ωcirc

Rsa

rc
−

ω2
circ

c2

(
r2 + a2 +

Rsa2

r

)
(6.3)

This expression allows to transform between the proper time of the moving
object close to the black hole and the coordinate time of the remote observer.
Due to the finite propagation speed of light we still have to consider the
stretch or compression of signals when the source is moving with a nonzero
line of sight velocity v cos ϑ with respect to the observer. Hence, the number
D from subsection 3.2.2 can be expressed as:

D ≡ νo

νs
=

zKerr

1− β cos ϑ
(6.4)

ϑ depends on the location of the source on its orbit (orbital phase φ = ωcircτ)
and the inclination i of the orbital plane. Assuming the distance between
source and observer to be infinite one simply gets:

cos ϑ = − sin(i) sin(ωcircτ) (6.5)

The minus sign appears here, because we assign τ = 0 to the, with respect
to the observer, closest point of the clockwise orbiting hot spot. Finally, the
velocity v of the source can be calculated from equation (2.119). It depends
on the orbital radius and the spin-parameter.

Now we can also approximate the emission time T of the light rays from
the source if we neglect the change of light travel time in different light rays.
Therefore we simply integrate equation (6.4):

T ≡ t =
∫ τ

0
D−1 dτ ′ =

1
zKerr

∫ τ

0

(
1 + β sin(i) sin(ωcircτ

′)
)

dτ ′ =

=
1

zKerr

[
τ − β

ωcirc
sin(i)

(
cos(ωcircτ)− 1

)]
(6.6)

6.1 Photometry

As long as the image of the source is not markedly distorted during one
revolution, it roughly occupies a constant area on sky. The total flux is then
only modulated via frequency shifts and relativistic beaming, assuming a
constant intrinsic brightness of the source. This and equation (4.5) yields:

So ∝ So ∝ D4−α (6.7)

Plotting the integrated flux density So against the emission time T and
normalizing the resulting curve to its minimum, allows us to compare it to
the simulated light curves of the compact blob-model. In Figure 6.1 this
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is illustrated with increasingly relativistic configurations. One can clearly
distinguish the limits of our approximation. It mainly deviates due to the
negligence of multiple images, but since these only contribute significantly
in cases of high inclination and/or low orbital radius, it is quite good. In
this way it enables us to disentangle the influence of relativistic lensing from
all other effects in the light curves.

Figure 6.1: Comparison of analytically derived light curves (blue) with simulated
light curves from the compact-blob model (red) in various configurations.

The light curve is a function of the orbital radius, the inclination, the
spin-parameter and the spectral index:

So = So(r, i, a, α) (6.8)

An advantage of the analytical approach is the possibility to vary these
parameters continuously. A characteristic property of each light curve is its
amplification A, defined in equation (5.2). It can easily be determined using
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our approximation:

A ≈ 2.5log10

(
Dmax

Dmin

)4−α

= 2.5 (4− α) log10

(
1 + β sin(i)
1− β sin(i)

)
(6.9)

Figure 6.2 shows how A depends on these parameters in this approximation.
We must expect strong deviations from these curves at high inclination or
small orbital radius, since then multiple images cannot be neglected.

Figure 6.2: Dependency of the amplification on orbital radius, inclination, spin-
parameter and spectral index in the analytic light curves. In each plot one of
these parameters is varied and all the other ones are held constant with values:
r = 1.0rLSO, i = 70◦, a = 0, α = 0.

The dependency on the spin-parameter looks somewhat unexpected at
first glance. The amplification starts to rise as the spin increases, but sud-
denly falls down again at high spin. This is due to the character of the hot
spot-velocity on the last stable orbit, which is influenced by two counteract-
ing effects. Increasing the spin-parameter on the one hand leads to smaller
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orbital radii and thus to higher orbital velocities (according to Kepler’s third
law). On the other hand, frame dragging becomes stronger and the orbital
velocity in the locally nonrotating frame decreases. The turnaround happens
when the last stable orbit enters the ergosphere.

6.2 Astrometry

Applying the above derived approximation to compute the centroid of emis-
sion in our simplified model yields:

−→
C ≡ 1∫

So(x, y) dx dy

( ∫
So(x, y) · x dx dy∫
So(x, y) · y dx dy

)
≈

≈ 1∫
So δ(x− x0)δ(y − y0) dx dy

( ∫
So δ(x− x0)δ(y − y0) · x dx dy∫
So δ(x− x0)δ(y − y0) · y dx dy

)
=

=
1
So

(
So x0

So y0

)
=

(
x0

y0

)
(6.10)

where x0 and y0 are the classical coordinates of the blob-center on sky. Thus
the centroid track is an ellipse just as in the classical case, because we’re
omitting lensing effects. In order to derive its proper shape we would have
to include the computation of geodesics for all points and directions, which
goes beyond the scope of this work. For this, the numerical approach is
convenient.
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Conclusion

We have studied the hot spot model as a physical origin of the observed
flares from the Galactic Center. To this end we created a model for the
hot spot emission and applied general relativistic ray tracing simulations to
visualize its appearance for a remote observer.

In the case of a confined spherical emission-region (compact blob-model)
various relativistic effects can be studied in detail. Both light curves and
centroid tracks show strong deviations from the laws of classical physics,
especially if the hot spot is close to the black hole and its orbit is highly
inclined. In such configurations the occurrence of Einstein rings and multiple
images can be inferred from the substructure in the data. The spin of
the central black hole can be determined by combining photometric and
astrometric measurements.

A more advanced model for the hot spot assumes an elongation of the
compact source with a certain temporal evolution (shearing blob-arc-model).
Gravitational shear gradually modifies the shape of light curves and centroid
tracks with time and thereby “washes out” the substructure caused by high-
order relativistic effects. Most rigorously this happens at small orbital radii
and high black hole spins.

The parameters of this model can be adjusted in such a manner that the
observed light curves from the Galactic Center (SgrA?) can be reproduced
fairly well. The best fit models for the flares from April 4 and July 22, 2007
both suggest a negligible shear of the hot spot. Anyhow, some properties
of the hot spot seem to vary from flare to flare, such as the orbital radius
or the contribution of the arc. An analysis of the simulated light curves
in frequency space yields an astonishing agreement with the observed data.
This fact strongly supports the hot spot model.

The centroid tracks from the best fit models anticipate future high res-
olution measurements. Especially the July-case announces the possible de-
tection of a centroid motion. Such a measurement would not only further
constrain the hot spot model, but also probe spacetime in the strong field
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limit of general relativity. Thus, the simulations provide theoretical predic-
tions from fundamental physics that can be tested in the near future.

There are several ways to further extend the simulations for the hot spot
model. For instance one could vary the radius of the emitting sphere and
study its influence on light curves and centroid tracks. Additionally, other
types of orbital motion could be investigated, like orbits off the equatorial
plane or plunge orbits. Last but not least it is possible to model the polar-
ization of the hot spot emission and study the influence of relativistic effects
on polarization degree and polarization angle a remote observer would mea-
sure. This method provides further constraints on the black hole spin and
the orientation of the orbital plane. However, these simulations are a great
deal more time-consuming and require further parameters to be determined
for the model.



Appendix A

Fundamental constants and
units

Gravitation constant G = 6.673 · 10−11 m3/kg s2

Speed of light c = 2.997924562 · 108 m/s
Planck’s constant h = 6.6263 · 10−34 J s
Boltzmann’s constant kB = 1.38 · 10−23 J/K
Electron rest mass me = 9.11 · 10−31 kg
Proton rest mass mp = 1.67 · 10−27 kg
Quantum of charge e = 1.60 · 10−19 A s
Solar mass M� = 1.989 · 1030 kg
Solar radius R� = 6.96 · 108 m
Solar luminosity L� = 3.85 · 1026 W
Astronomical unit 1AU = 1.5 · 1011 m
Lightyear 1ly = 9.46 · 1015 m
Parsec 1pc = 3.09 · 1016 m
Jansky 1Jy = 10−22 W/m2 s Hz
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Geometrized unit system

In this unit system, the speed of light, the gravitation constant and Boltz-
mann’s constant are all set to unity:

c = G = kB ≡ 1 (B.1)

The standard unit, in terms of which length, time, mass, energy, momen-
tum, etc. is measured, is centimeters. One obtains a desired value in
geometrized units by multiplying the given SI value by a factor of unity,
expressed through c, G and kB, such that one gets centimeters.

For instance, the mass of the sun can be converted as follows:

M� = 1.989 · 1030 kg = 1.989 · 1030 kg ·G/c2 = 1.477 · 105 cm (B.2)

In order to go the other direction, one has to invert this procedure:

M� = 1.477 · 105 cm = 1.477 · 105 cm · c2/G = 1.989 · 1030 kg (B.3)
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Appendix C

How to use the code developed
in this work

Here, the procedure for running a simulation is described in detail. It may
be of interest for someone who wants to continue this study on the hot spot
model.

C.1 Processing raw data

The basis for all simulations are the ray-traced images delivered by Thomas
Müller. A zip-file contains data for one particular configuration of orbital
radius, inclination and spin-parameter, stated in the filename. It consists of
ray-traced images for one full orbit of the particular configuration. These
are subdivided into “frequency-shift” and “time-of-emission”, containing the
values T and D for every pixel, respectively. The data is stored in the HDF5 -
format (filename extension “.h5”), which is an open source data management
tool for handling complex datasets. The scientific programming language
IDL (Interactive Data Language) provides a package of procedures and func-
tions to access these files. To read in the raw datasets, an IDL-script called
make-indexed.idl is used. It does the following:

• Extract the zipped HDF5 -files

• Read in the 1000× 1000 pixel maps of T and D for every frame

• Only store those values unequal zero to save memory

• Assign an index to every nonzero pixel according to its position

• Store the indexed pixels in a FITS -file (Flexible Image Transport Sys-
tem, extension “.fits”)

In order to facilitate the access to the desired configuration, a particular
directory structure is applied. Each raw zip-file is stored in a directory
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stating the corresponding grid-parameters, like gc_a*_i*_rlso*_bs*. The
wildcard character “*” stands for the particular values of spin-parameter
(a/M), inclination (i), orbital radius (r/rLSO) and blobsize (this parameter
hasn’t been varied in this work, it is always rblob = 0.25Rs). This directory
also contains the indexed files after processing. All these various configura-
tions are found in the directory Raw_data. The script make-indexed.idl is
called in IDL by typing

.run "make-indexed.idl"

in the command line from the directory of a particular configuration.

C.2 Running a simulation

The simulation of the hot spot model is implemented in Yorick. Before
initializing the detailed properties of a simulation one has to decide on the
basic model of the hot spot, namely:

• Compact blob-model (run_blob.i)

• Two oppositely situated compact blobs (run_2blob.i)

• Shearing blob-arc-model (run_arc.i)

• Constantly elongated blob-arc-model (run_disk.i)

In brackets, the filename of the corresponding main routine (simulation ini-
tializer) is stated. Each file allows to specify all the parameters for the
related model. In order to run a simulation one has to:

• Specify a name for the simulation run (simrun)

• Choose the desired configurations to be simulated (simlist)

• Define resolution and duration of the simulation (step, n_periods)

• Specify the model-parameters (the names of the parameter-variables
should be intuitively clear)

• Decide whether a video clip shall be created (make-movie.i)

To start the simulation for a compact blob-model, for instance, one has to
run the corresponding main routine by typing

#include "run_blob.i"

in Yorick’s command line from the root-directory RotatingBlob. The pro-
gression of a simulation is written into the terminal showing the actual frame
that is being computed.
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C.3 Simulation output

The output of a simulation run is stored in the directory Simulations, which
contains the same directories as RawData . There, each grid-configuration di-
rectory contains the directories of the different simulation runs. The output
consists of:

• A file astrometry.fits containing all the photometric and astromet-
ric data computed in the simulation

• A file parameters.txt containing the model-parameters and other
specifications of the simulation

• Preliminary plots of light curves and centroid tracks

• A video clip, if specified in the simulation initializer

In order to generate light curves and centroid tracks it is convenient to use
IDL, since it provides nice plotting tools. The simulated data can be ac-
cessed by opening the file astrometry.fits and storing its contents in a
two-dimensional array. The first dimension of this array specifies a partic-
ular quantity and the second dimension the frame number. There are ten
quantities stored in the file:

1. Frame number

2. Coordinate time t

3. Integrated flux density So (light curve)

4. x-coordinate of centroid Cx

5. y-coordinate of centroid Cy

6. Minimum flux density value in the image Smin
o

7. Maximum flux density value in the image Smax
o

8. Averaged integrated flux density with noise < S̃o >

9. Averaged x-coordinate of centroid with noise <
−̃→
Cx >

10. Averaged y-coordinate of centroid with noise <
−̃→
Cy >

For example, a light curve is created by plotting the third against the second
quantity of this array.
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