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Chapter 1

Introduction

The Universe has and still does hold many fascinating wonders that have inspired humanity
for millennia. One such puzzle is that of its composition, dominated by components which
have continuously evaded direct observation: the aptly named dark matter and dark energy.
Currently, the consensus is that the latter is responsible for the observed accelerating expansion
of the Universe. However, its nature remains elusive with a multitude of models for its
properties. Under the paradigm of the concordance cosmology of ΛCDM, the behavior of
the Universe implies the presence of a force acting on all scales. Although it is thus accounted
for in current state-of-the-art cosmological simulations, many of the finer details still require
a more thorough analysis. In particular, the question of its perturbative effects on orbits has
often been restricted to the simplest variants: circles. Yet the fewest real orbits actually are
circles, instead exhibiting a zoo of potential configurations. Understanding the impact that
the interplay of the elusive dark matter and dark energy has on visible matter can allow deeper
insight into their nature as well as the consequences of their presence for all structures in the
Universe, from the highest to the lowest redshifts.

The largest of the collapsed structures are galaxy clusters. They have played a vital role
in furthering humanity’s understanding of the Universe. From providing the first indication
of dark matter (Zwicky, 1933) to eventually demonstrating its existence (Lynds & Petrosian,
1986; Soucail et al., 1987; Fort & Mellier, 1994), from posing a challenge to cosmological
frameworks with their massive sizes to playing a vital role in constraining the highest precision
cosmology today (Voit, 2005), much is owed to these great giants. And yet, there is plenty
which is still to be learned from them. They contain some of the highest baryon fractions of all
known collapsed objects, on the order of the mean fraction. This makes them prime targets to
study baryonic processes on a large range of scales (Cimatti et al., 2019). Furthermore, they
can be probed at practically all wavelengths, from X-ray emission due to their hot intracluster
medium (Sarazin, 1988) to optical from the galaxies and intracluster light (Contini, 2021),
millimeter wavelengths from the distortions in the cosmic microwave background due to the
Sunyaev-Zeldovich effect (Sunyaev & Zeldovich, 1972), and finally even radio wavelengths
due to synchrotron emission from relativistic electrons (Allen et al., 2011).

Due to their large masses, they further offer a unique opportunity to use the bending of
light by the presence of mass, known as gravitational lensing, to directly study the distri-
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bution of the otherwise invisible dark matter. Recent findings from both weak and strong
gravitational lensing observations (Jauzac et al., 2016) exhibit substructures present within
the massive galaxy cluster Abell 2744, which Schwinn et al. (2017) showed cannot be repro-
duced in simulations when using the typical structure finders. This is because a significant
portion of the mass was found by Schwinn et al. (2018) to be contributed from the main halo
using the dark matter only simulation Millenium-XXL (Angulo et al., 2012). This raises
two questions: first, whether this is also reproducible for a fully hydrodynamical simulation
and at higher resolution, and second, which differences generally arise between projected
and three-dimensional galaxy cluster properties. The latter in particular has far reaching
implications for future comparison projects between gravitational lensing observations and
cosmological simulations involving substructure.

In summary, this thesis has four central goals:
• Explore the impact of expansion on bound structures characterized by general orbits as

well as extended mass profiles.
• Analyze the relationships of galaxy cluster substructure properties in two and three

dimensions.
• Develop a conversion function between bound and projected substructure masses.
• Determine whether the extreme substructure masses in Abell 2744 are reproducible

within the fully hydrodynamical simulation suite Magneticum Pathfinder.

Chapter 2 first introduces the cosmological framework for ΛCDM before deriving the
behavior of orbits around a point mass when within an expanding frame, including a com-
parison with a reduced code developed for cosmological simulation. The scope is broadened
then to study the impact of expansion on extended mass distributions in Chapter 3. Chapter 4
provides a brief overview of the history of galaxy cluster observations before presenting a
deeper look into the current understanding of their properties as well as structure formation
within the Universe as a whole. The methods commonly employed to observe galaxy clusters
are discussed in Chapter 5. Chapter 6 develops the method to determine projected substruc-
ture masses, with Chapter 7 analyzing more closely the potential tracers for substructure.
Chapter 8 presents the results for the projected properties, develops a conversion function
to convert three to two dimensional substructure masses and answers whether Abell 2744
can be reproduced. Finally, Chapter 9 summarizes the findings of this work and provides an
outlook into exciting future prospects.



Chapter 2

Friedmann-Lemaître versus Archimedes:
Do Not Bother My Circles

Cosmological simulations have quickly become one of the most powerful tools to test physical
understanding and models of a large variety of objects and systems. Many of the relevant
processes for structure formation in the Universe involve a highly non-linear regime making
it practically impossible to fully develop in analytical models (Springel, 2005). But for all the
varied physical processes increasingly included within the simulations, the questions of the
underlying foundation, of the model of the large scale behavior of the Universe itself, is still
an ongoing debate (Ellis et al., 2012). The highly mathematical framework can be daunting
to understand, making it difficult to intuit the impact it has on the resulting processes within
the simulations themselves. Yet it is highly important to have a base comprehension of where
the chosen cosmological model could be significant, and where it is not.

This chapter develops an overview of the most key way in which the current standard model
of cosmology, a Universe with cold dark matter and a cosmological constant Λ commonly
summarized as ΛCDM, directly influences the behavior of orbits of bound structures within
it. Section 2.1 introduces the additional term which arises in the equation of motion, where
in Section 2.2 a step backwards must be taken to the underlying metric itself which is the
progenitor of the term. Therein, a general understanding of the equations is first discussed
within a Newtonian context before considering the extension of the metric to the inclusion of
a point mass. The force which is experienced by a particle for this case is then transformed in
Section 2.3 into a comoving formulation, recovering the initial term from Section 2.1 under
the Newtonian limit. An interpretation of the metric used within cosmological simulations
is discussed. The picture is then extended to the behavior of the Hubble constant and
other parameters for the ΛCDM cosmology in Section 2.4, with a special emphasis on
typical measures of bound structures. Afterwards, Section 2.5 goes over one of the typical
perturbation theory approaches employed to analyze circular orbits around a point mass
potential from the literature, arriving at an initial understanding of how strongly which
bound structures are affected. This understanding is subsequently deepened in Section 2.6
by deriving general analytical solutions for the behavior of orbits within such point mass
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potentials, with a key tool employed being the effective potential. In Section 2.7 the theoretical
conclusions are compared to a specially made simulation, reduced to just the typical comoving
implementation to best facilitate this. The findings are then summarized and discussed in
Section 2.8.

2.1 Getting Things Moving

Over time, all larger simulation codes have adopted practically the same implementation of
the standard model of cosmology, namely a ΛCDM-cosmology (see for example Blumenthal
et al. 1984) with a Friedmann-Lemaître-Robertson-Walker (FLRW) metric (Friedmann, 1922;
Robertson, 1935; Lemaître, 1927; Walker, 1937). However, the equation of motion always
features the same additional term relative to a pure Newtonian case, taking the form in
comoving coordinates as:

¥𝑥(𝑡) = −2𝐻 (𝑡) ¤𝑥(𝑡) + 𝐹 (𝑥, 𝑡)
𝑎3(𝑡)

, (2.1)

with 𝐹 (𝑥, 𝑡) = −𝐺𝑀/𝑥2(𝑡) the gravitational force and 𝑎(𝑡) the scale factor. This striking
term −2𝐻 (𝑡) ¤𝑥(𝑡) is immediately noticeable, and is present consistently. For example it
can be found for GADGET in section 5.6 (Equations 53-55 and 59-62) from Springel et al.
(2001) as well as with a slight amendment for Gadget 2 as per section 4.1 (Equations 27
and 28) from Springel (2005). The latter is the same implementation as for Gadget 3 and
therefore also for Magneticum Pathfinder (Dolag, 2022; Hirschmann et al., 2014; Teklu
et al., 2015), which is the simulation used for the later chapters of this thesis. For Illustris
(Vogelsberger et al., 2014), there is a split-up in the implementation of gas versus dark matter,
with the former done via the code Arepo (Springel, 2010) where the term is described in
section 7.3 (Equations 115-117) and the latter via a TreePM method, where the cosmology
is implemented as in section 2.3 (Equations 8 and 9) from Xu (1995). All of these codes
employ the same functional equation of motion for the collisionless dark matter particles,
which raises the simple question: Where does the additional term come from?

2.2 The Expanding Metric

At the core of any discussion of cosmological simulations lies the model of the Universe
that is assumed, the fundamental systems within which the simulation runs. When taking
inertial systems as the basis, one arrives at Newtonian mechanics, but these have since
been superseded by general relativity (GR). A core new feature there lies in the interaction
between spacetime and the bodies within it, allowing warping and twisting of the fabric of
spacetime (the metric) itself. Furthermore, energy itself also warps spacetime, as it is seen
to be equivalent to mass. To calculate how any system evolves, one would have to solve the
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Einstein Field Equations (Ellis et al., 2012),

𝐺`a =
8𝜋𝐺
𝑐4 𝑇 `a, (2.2)

where 𝐺`a is the Einstein tensor, 𝑇 `a is the stress-energy tensor and `, a are the spacetime
indexes (𝑡, 𝑥, 𝑦, 𝑧). Unfortunately, this proves to be quite troublesome for any realistically
complex systems.

2.2.1 Assumptions and Newtonian “Derivation”

The most common models of the Universe then must make some initial assumptions to
simplify these equations. On very large scales, for ΛCDM it is assumed to be:

• isotropic, so possessing uniformity in all orientations
• homogeneous, so 𝜌′ = 𝑝′ = 0

where primes denote derivatives with respect to space. From these assumptions alone, it
is possible to derive a faux-Newtonian “derivation” (following roughly Hamilton 2020):
homogeneity gives 𝜌 = 𝑐𝑜𝑛𝑠𝑡 and isotropy implies a spherical symmetry that here is taken to
be a sphere of radius 𝑎, such that the total mass of the Universe is then 𝑀 = 4

3𝜋𝜌𝑎
3. Taking

an outer shell of mass 𝑚 and determining the force felt as −𝐺𝑀𝑚/𝑎2, it follows under the
assumption of the total energy being conserved:

1
2
𝑚 ¤𝑎2 + −𝐺𝑀𝑚

𝑎
= 𝐸 = 𝑐𝑜𝑛𝑠𝑡 ≡ − 𝑘𝑚𝑐

2

2
¤𝑎2

𝑎2 +
−2𝐺 · 4𝜋𝜌𝑎3

3𝑎3 = − 𝑘𝑐
2

2𝑎2

¤𝑎2

𝑎2 ≡ 𝐻
2 =

8𝜋𝐺
3

𝜌 − 𝑘𝑐
2

𝑎2 (2.3)

This first equivalence 𝐸 = −𝑘𝑚𝑐2/2 cannot be derived by a Newtonian treatment and instead
comes from general relativity, and in a more rigid derivation 𝑘 is a measure for the curvature,
with 𝑘 = 0 representing a flat metric. As curvature of the underlying space is not a part of
the Newtonian treatment, this equivalence is to be treated with caution. Nonetheless, this
recovers the form of the first Friedmann equation, and by assuming adiabatic expansion the
second can be derived. Via the first law of thermodynamics:

d𝐸 + 𝑝d𝑉 = 0

𝐸=𝑐2𝜌𝑉
−−−−−−→ d

(
𝑐2𝜌

4𝜋𝑎3

3

)
+ 𝑝d

(
4𝜋𝑎3

3

)
= 0

𝑐2d(𝜌𝑎3) + 𝑝d(𝑎3) = 0

1
d𝑡
¤𝜌 + 3

(
𝜌 + 𝑝

𝑐2

) ¤𝑎
𝑎
= 0

¤𝜌 = −3
(
𝜌 + 𝑝

𝑐2

) ¤𝑎
𝑎

(2.4)
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If Equation 2.3 is then multiplied by 𝑎2 and differentiated with respect to time it takes the
form:

2 ¤𝑎 ¥𝑎 =
8𝜋𝐺

3
( ¤𝜌𝑎2 + 2𝜌𝑎 ¤𝑎)

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.4
−−−−−−−−−−→ 2 ¤𝑎 ¥𝑎 =

8𝜋𝐺
3
𝑎 ¤𝑎

(
−𝜌 − 3

𝑝

𝑐2

)
¥𝑎
𝑎
= −4𝜋𝐺

3

(
𝜌 + 3

𝑝

𝑐2

)
(2.5)

This represents the second Friedmann equation, and together both equations are indeed
equivalent to those derived by careful treatment of the derivation (see Arnau Romeu (2014)
for a nice example of this). They are discussed further in Section 2.3, but also immediately
raise an interesting question. The derivation of the second law required the assumption of
adiabatic expansion, that is to say the entropy is conserved. This is indeed the case for an
FLRW universe even with a different mix of particles (Hamilton, 2020). And yet clearly
entropy does increase, so what is happening here? It is the fluctuations away from perfect
homogeneity and isotropy, the core assumptions of the FLRW metric, that allow entropy to
increase. Thus, fundamentally, the FLRW is at best an approximation of the actual metric,
and at worst can lead to false conclusions if employed without caution.

2.2.2 A Static Treatment

If one were to require the Universe to remain static, this is equivalent to setting the condition
of 𝑎(𝑡) = 𝑎 = 𝑐𝑜𝑛𝑠𝑡 for the scale factor. It follows then that 𝐻 ∝ ¤𝑎2 = 0 and then from
Equation 2.3:

8𝜋𝐺
3

𝜌 =
𝑘𝑐2

𝑎2 ←→ 𝜌static =
3𝑘𝑐2

8𝜋𝐺𝑎2 .

Thus to remain static the Universe must have a density exactly equal to 𝜌static. This, however,
requires also ¥𝑎 = 0, such that with Equation 2.5 this would imply that there is a dominant
vacuum energy with an equation of state as 𝑐2𝜌static = −1

3 𝑝. This universe is unstable, in the
sense that any slight perturbation to either curvature or the cosmological constant density will
either cause fully accelerated expansion or re-collapse into a singularity (Ellis et al., 2012).

2.2.3 The Expanding de Sitter Universe

If this term from a dominant vacuum energy is added, but the Universe is allowed to expand
Equation 2.3 gives:

𝐻2 =
8𝜋𝐺

3
𝜌𝑣 =

Λ𝑐2

3
.

This results in 𝑎(𝑡) = 𝑎0 exp𝐻 (𝑡 − 𝑡0) which is then an exponentially expanding Universe.
For some models of inflation this is essentially what occurs, where for the example of the
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single field slow-roll model in the phase where − ¤𝐻/𝐻2 ≪ 1 this solution is exactly recovered
– see Kamionkowski & Kovetz (2016). Note that the curvature term has been ignored because
it goes as ∝ 𝑎−2 and thus quickly vanishes for such an expanding Universe – which is also the
reason why inflation of this kind predicts a flat Universe. Hence though not of importance for
later times, the expanding de Sitter Universe is of great interest when considering the very
early phases.

2.2.4 Recovering the Friedmann-Lemaître-Robertson-Walker Metric

From the assumptions of homogeneity and isotropy it is possible to derive the well-known
FLRW metric when working in the general relativistic framework. This is done by assuming
further the cosmic matter-energy fluid to be perfect (i.e., dissipation-less) and by modifying
Equation 2.2, namely adding a cosmological constant Λ,

𝐺`a + Λ𝑔`a = 8𝜋𝐺
𝑐4 𝑇 `a, (2.6)

where 𝑔`a is the metric tensor. The Λ term is added because observations find the Universe
to be flat (Komatsu et al., 2011; Planck Collaboration, 2020), 𝑘 = 0, such that without it the
requirements of homogeneity and isotropy would give 𝜌 = 0 for the fluid. The full derivation
of the FLRW metric starting just from this Equation 2.6 is quite tedious – see Mitra (2012) –
but recovers the well-known result as their Equation 59:

d𝑠2 = d𝑡2 − 𝑎2(𝑡)
(

d𝑟2

1 − 𝑘𝑟2 + 𝑟
2dΩ

)
. (2.7)

Note that the term should indeed have a plus as written here in front of the 𝑟2dΩ term, which
can be seen when plugging in their results into Equation 58 from Mitra (2012). Furthermore,
it should be noted that this derivation is done in the comoving frame, thus confirming the
FLRW metric in this form to be the comoving version (so 𝑟 is the comoving position). This
is a non-trivial observation, as prior derivations would implicitly assume Weyl’s postulate,
stipulating that there exists a family of spatial hyperslices everywhere orthogonal to the world
lines of the fluid particles. Sometimes this additionally includes the stipulation that all world
lines are timelike geodesics and originate from/cross only in one point (the Big Bang).

The intuitive understanding of the consequence of this postulate is that there exists
a reference frame for each time 𝑡, such that the fundamental fluid particles can define a
comoving frame where their physical coordinates are constant (at least relative to the impact
of expansion), as seen in Figure 2.1. The mathematical consequence is that no terms as
d𝑡 · d𝑥𝑦𝑧 appear in the metric, creating a clear 3+1 split between space and time. A good
description of the impact of this postulate and how in prior derivations of the FLRW metric it
is implicitly and necessarily assumed is given in Rugh & Zinkernagel (2010), with Equation 1
therein the natural fundamental form of the metric when assuming Weyl’s postulate. The
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Figure 2.1: Illustration of the Weyl postulate as given by Melia (2012), showing the orthogonal
hypersurfaces (dashed lines) at different times given by their position along the timelike geodesics of
the fundamental fluid particles (solid lines). Each dashed line thus defines a comoving frame.

cosmological principle (homogeneity and isotropy) then provides the form of the spatial
component after the split and recovers Equation 2.7.

2.2.5 From the Metric to Force Terms

The typical FLRW metric of the Universe as given in Equation 2.7 makes as assumptions for
large scales: homogeneity, isotropy, no diffusion terms and entropy conservation, as discussed
prior. However, the Universe fulfills none of those conditions on smaller scales, such that
there must be a transition at some scale and subsequently also in the metric employed. A
possible bridge between the large-scale FLRW metric and smaller scales is the one given by
McVittie (1933). Here the smaller scale metric employed is the Schwarzschild metric for non-
expanding isotropic coordinates, such that the asymptotic behavior of the McVittie metric
at large/small scales collapses to FLRW/Schwarzschild. A full derivation and extension
(accounting also for the closed/open form of the metric, not just the flat 𝑘 = 0 variant) of
this metric using geometric algebra on the basis of GR is done by Nandra et al. (2012). It
is important to note here that usage of the Schwarzschild metric at small scales necessarily
defines an event horizon within which no matter can take part in expansion. The final metric
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for a flat Universe follows as Equation 23 therein (given in natural units 𝑐 = 𝐺 = 1):

d𝑠2 =

[
1 − 2𝑀

𝑟
− 𝑟2𝐻2(𝑡)

]
d𝑡2 + 2𝑟𝐻 (𝑡)

(
1 − 2𝑀

𝑟

)−1/2
d𝑟d𝑡 −

(
1 − 2𝑀

𝑟

)−1
d𝑟2 − 𝑟2dΩ2,

(2.8)
where𝑀 is the mass of the particle giving rise to the Schwarzschild portion of the metric, 𝑟 the
physical distance of any test particle to this point-mass, and where dΩ2 = d𝜔2 + 𝑠𝑖𝑛2(𝜔)d𝜙2

and 𝑡 is the cosmic time. For easier comparability to following derivations, Equation 2.8 is
converted to SI-units by noting 2𝑀/𝑟 ≡ 𝑟𝑠/𝑟 = (2𝐺𝑀/𝑐2)/𝑟. Furthermore, it is sensible to
define (2𝐺𝑀/𝑐2)/𝑟 ≡ 𝛿, which is then a measure for the distance 𝑟 of the test particle with
limr→∞ 𝛿 = 0. Additionally, another variable is defined as 𝜎 ≡ 𝑟/(𝑐/𝐻 (𝑡)), thus representing
a measure for the distance of the test particle relative to the horizon scale 𝑐/𝐻 (𝑡). The form
of Equation 2.8 in SI-units then is:

d𝑠2 = 𝑐2 [
1 − 𝛿 − 𝜎2] d𝑡2 + 2𝑐𝜎

√
1 − 𝛿

d𝑟d𝑡 − 1
1 − 𝛿d𝑟2 − 𝑟2dΩ2 (2.9)

In this metric, the total background density is equivalent to that obtained from FLRW,
which intuits one of the core principles that the McVittie metric essentially describes a point-
mass within an otherwise spatially-flat FLRW background. Geodesic motion of a test particle
within such a metric (for example orbiting the central mass while both lie in the expanding
frame given by FLRW) gives the equation of motion through solving the Euler-Lagrange
equations, as done by Nandra et al. (2012). The resulting acceleration for the particle in the
case of a flat Universe (𝑘 = 0) is given by Equation 61 therein:

¥𝑟 = 𝐿2

𝑟3

(
1 − 3𝑀

𝑟

)
− 𝑀
𝑟2 + 𝑟𝐻

2(𝑡) − 2𝑟2𝐻 (𝑡)𝐻′(𝑡)
1 − 2𝑀

𝑟
− 𝑟2𝐻2(𝑡)

¤𝑟 ¤𝑡

+ 𝑟𝐻′(𝑡)√︃
1 − 2𝑀

𝑟

(
1 − 2𝑀

𝑟
− 𝑟2𝐻2(𝑡)

) ¤𝑟2 +
𝑟𝐻′(𝑡)

√︃
1 − 2𝑀

𝑟

1 − 2𝑀
𝑟
− 𝑟2𝐻2(𝑡)

(
1 + 𝐿

2

𝑟2

)
(2.10)

where it should be noted that this is also in natural units (𝑐 = 𝐺 = 1). Dots denote
differentiation with respect to the proper time 𝜏, while primes are with respect to the cosmic
time 𝑡. 𝐿 = 𝑟2 ¤𝜙 is the peculiar angular momentum per mass of the test particle, with ¤𝑝ℎ𝑖 the
angular speed. Converting again to SI-units gives:

¥𝑟 = 𝐿2

𝑟3

(
1 − 3

2
𝛿

)
− 𝑐

2𝛿

2𝑟
+ 𝑐𝜎𝐻 (𝑡) − 2𝜎𝑟𝐻′(𝑡)

𝑐(1 − 𝛿 − 𝜎2)
¤𝑟 ¤𝑡

+ 𝑟𝐻′(𝑡)
𝑐2
√

1 − 𝛿
(
1 − 𝛿 − 𝜎2) ¤𝑟2 + 𝑟𝐻

′(𝑡)
√

1 − 𝛿
1 − 𝛿 − 𝜎2

(
1 + 𝐿2

𝑐2𝑟2

)
¥𝑟 = 𝐿2

𝑟3

(
1 − 3

2
𝛿

)
− 𝑐

2𝛿

2𝑟
+ 𝑐𝜎𝐻 (𝑡) + 𝑟𝐻

′(𝑡)
√

1 − 𝛿
1 − 𝛿 − 𝜎2

[
2𝜎 ¤𝑟 ¤𝑡

𝑐
√

1 − 𝜎
+ ¤𝑟2

𝑐2(1 − 𝜎)
+

(
1 + 𝐿2

𝑐2𝑟2

)]
.

(2.11)
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This is the full form of the force for a test particle traveling in an expanding background
which includes a fixed point-mass.

Finally, to compare with the force the test particle would feel in a non-expanding, purely
Newtonian universe, it can be noted that the Newtonian gravitational acceleration is exactly
the term 𝑎Newton = 𝐺𝑀/𝑟2 = 𝑐2𝛿/(2𝑟), while the centrifugal acceleration is 𝑎cent = 𝑟 ¤𝜙2 ≡
𝑟𝜔2 = 𝐿2/𝑟3. All other terms arise from the general relativistic treatment of the expanding
McVittie metric.

2.3 From the Force Terms to Cosmological Simulation Codes

Given the complicated form of the force-law of a test particle in an expanding universe with
one other mass 𝑚 at fixed position as given in Equation 2.11 (i.e, for the McVittie metric), it
is reasonable to seek out approximations. To this end, the values of the parameters (𝛿, 𝜎) are
considered, noting that for any scales where particle to particle forces matter their separation
𝑟 is significantly smaller than the Hubble length, i.e., 𝜎 = 𝑟/(𝑐/𝐻 (𝑡)) ≪ 1. Similarly, aside
from incredibly dense objects the interaction occurs also on scales significantly larger than
the Schwarzschild radius, i.e., 𝛿 = 𝑟𝑠/𝑟 ≪ 1. These conditions combined are also called the
“weak-field” approximation when expanding to first order (Nandra et al., 2012). Additionally
assuming the test particles to be moving at non-relativistic comoving velocities ¤𝑟 ≈ 0 it
follows further that the proper and coordinate time are approximately the same, ¤𝑡 = 1. In this
combined “Newtonian” limit it follows that 1 − 𝜎, 1 − 𝛿, 1 − 𝛿 − 𝜎2 ≈ 0, as well as 𝑐 −→ ∞,
such that Equation 2.11 becomes:

¥𝑟 = 𝐿2

𝑟3 · 1 −
𝑐2𝛿

2𝑟
+ 𝑐𝜎𝐻 (𝑡) + 𝑟𝐻

′(𝑡) · 1
1

[0 + 0 + 1]

¥𝑟 = 𝐿2

𝑟3 −
𝐺𝑀

𝑟2 + 𝑟𝐻
2(𝑡) + 𝑟𝐻′(𝑡) = 𝐿2

𝑟3 −
𝐺𝑀

𝑟2 +
¥𝑎
𝑎
𝑟 =

𝐿2

𝑟3 −
𝐺𝑀

𝑟2 − 𝑞(𝑡)𝐻
2(𝑡)𝑟, (2.12)

where in the final step the deceleration parameter 𝑞 = −(𝐻′(𝑡)/𝐻2(𝑡) + 1) was introduced.
Note that in the following the centrifugal term is dropped as the comoving frame chosen is not
co-rotating to the test particle. For this limit it can then be seen that the apparent “force” felt
by the particle through the addition of the expanding background is the term −𝑞(𝑡)𝐻2(𝑡)𝑟,
matching the result found in Equation 62 of Nandra et al. (2012). Some caution must be
kept when working with varying frames of definition, as for example simply equating the
change in physical coordinate 𝑟 with a change in proper distance is true only for the case
of a flat Universe 𝑘 = 0 (Nandra et al., 2012). Nonetheless, there is a certain beauty when
considering that gravity itself is also more accurately formulated as a distortion of spacetime,
and that the mass and energy as the cause for this distortion further impact the large-scale
behavior, which in turn manifests as a separate force-like term from the drag in the expanding
behavior of spacetime. An exceedingly simple variant on the derivation of Equation 2.12
directly from the Newtonian limit of the metric (Equation 2.10) has been shown by Nesseris
& Perivolaropoulos (2004).
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It is important to emphasize two key points: firstly, that the additional term is not a
force in the true sense but instead a pseudo-force appearing depending on the coordinate
system chosen (see also Section 2.5) and secondly, it is not the act of expanding which causes
the additional term (as all terms ¤𝑎 cancel), but rather the acceleration or deceleration of
the expansion. expansion ¤𝑎 > 0 causes particles to join the Hubble flow as their peculiar
momentum decays with time relative to the recession velocity (Davis et al., 2003), but whether
they join it by receding from an observer or by coming towards them, passing them by and
then joining it on the other side is determined by 𝑞, with the former happening for 𝑞 < 0 and
the latter for 𝑞 > 0 (Davis et al., 2003).

There are a few things to note for the initial form of Equation 2.11. Firstly, as the point-
mass forms the basis of the Schwarzschild portions of the metric this does not account for
coupled interaction back from the test particle. As such this is not the metric for multiple
particles lying within an expanding background, as in this case one would have to include a
Schwarzschild metric portion for every point-mass to model the local distortions of spacetime
individually. Furthermore, realistic systems have extended distributions of mass, i.e., are not
point-like. The Newtonian limit defined here, however, is equivalent to requiring the local
dynamics to be essentially Newtonian in nature, thus allowing the modeling of multiple point
masses without the need for individual Schwarzschild modeling. Furthermore, this allows
the shell theorem (Newton, 1687) to be applied, such that for an extended mass distribution
which is spherically symmetric in nature a particle orbiting would feel a gravitational force
equivalent to a point mass at the center, while all mass outside would have a net zero force.
This allows the equation of motion in Equation 2.12 derived originally for a particle orbiting a
point mass also to be applied to such extended mass distributions, which is done in Chapter 3.

By adopting a flat Universe, Equation 2.7 simplifies such that a comoving frame can be
defined which has a direct proportionality to the physical frame dependent on only the scale
factor 𝑎(𝑡),

𝑟 (𝑡) = 𝑎(𝑡) · 𝑥(𝑡). (2.13)

Finally, Equation 2.12 and Equation 2.1 can then be related directly by noting −𝑞(𝑡)𝐻2(𝑡)𝑟 =
¥𝑎𝑥 such that:

−𝐺𝑀
𝑟2 − 𝑞(𝑡)𝐻

2(𝑡)𝑟 !
= ¥𝑟 (𝑡) = d2(𝑎𝑥)

d𝑡2
= ¥𝑎𝑥 + 2 ¤𝑎 ¤𝑥 + 𝑎 ¥𝑥

− 𝐺𝑀
(𝑎𝑥)2

+ ¥𝑎𝑥 = ¥𝑎𝑥 + 2 ¤𝑎 ¤𝑥 + 𝑎 ¥𝑥

⇔ 𝑎 ¥𝑥 = − 𝐺𝑀

(𝑎𝑥)2
− 2 ¤𝑎 ¤𝑥

¥𝑥(𝑡) = − 2𝐻 (𝑡) ¤𝑥(𝑡) + 𝐹 (𝑥, 𝑡)
𝑎3(𝑡)

, (2.14)

where in the final step 𝐹 (𝑥, 𝑡) ≡ −𝐺𝑀/𝑥2(𝑡) and the form of Equation 2.12 is fully recovered.
Interestingly then, in the comoving frame the dependency on ¥𝑎 disappears, meaning that the
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impact of the acceleration of the expanding Universe on a particle inherently matches that
from transforming to a comoving frame.

This, however, is not where some implementations stop. The velocity dependence that
arises can be somewhat tedious to account for, especially when employing integrators such
as the Leapfrog KDK where force calculations want to be purely position dependent to split
up “kick” and “drift” steps – see Binney & Tremaine (2008) for more. As such it is elegant
to transform to another frame, akin to the comoving one but which results in simpler force
laws. It turns out to be useful to define the time-coordinate as 𝜏 = ln(𝑎) for this system, such
that – denoting derivatives in 𝜏 with primes – for a given variable 𝑔:

¤𝑔 =
d𝑔
d𝑡

=
d𝑎
d𝑡

d ln(𝑎)
d𝑎

d𝑔
d ln(𝑎) =

¤𝑎
𝑎
𝑔′ = 𝐻 (𝑎)𝑔′. (2.15)

Note that 𝜏 is not the proper time. Defining 𝑝 ≡ 𝑎2 ¤𝑥 and its derivative in 𝜏 gives:

𝑝′
(2.15)
=

1
𝐻 (𝑎) ¤𝑝 =

1
𝐻 (𝑎)

(
2𝑎 ¤𝑎 ¤𝑥 + 𝑎2 ¥𝑥

)
=

𝑎

𝐻 (𝑎) (2 ¤𝑎 ¤𝑥 + 𝑎 ¥𝑥)

(2.1)
=

𝑎

𝐻 (𝑎)

(
2 ¤𝑎 ¤𝑥 − 2 ¤𝑎 ¤𝑥 + 𝐹 (𝑥, 𝑎)

𝑎2

)
=
𝐹 (𝑥, 𝑎)
¤𝑎 , (2.16)

which is effectively the new acceleration term, while for the velocity:

𝑥′
(2.15)
=

1
𝐻 (𝑎) ¤𝑥 =

𝑝

𝑎2𝐻 (𝑎)
. (2.17)

The set of variables for the new transformed system are then (𝑥, 𝑥′, 𝑝′) with the time variable
𝜏, and is equivalent to the set of parameters employed for GADGET-2 (Springel, 2005) and
thus also for Magneticum Pathfinder (Dolag, 2022), with the advantage that both time-
dependent variables, (𝑥′, 𝑝′), are dependent only on the time 𝜏 and one other variable,
allowing a split up of the time integration steps. Note that therein the integration is however
done with a TreePM method as opposed to a Leapfrog KDK.

2.4 ΛCDM and Different Cosmologies

To understand what the results from Section 2.2 imply for bound structures in the Universe,
it is first necessary to be able to quantify them as well as the large-scale properties of the
Universe itself. To this end, this section will explore some of the critical parameters for a flat
FLRW Universe 𝑘 = 0 which will later allow for simpler forms of the equations.

From Equation 2.3 for a flat FLRW universe 𝑘 = 0 it follows that the total energy density
𝜌 must be equal to the critical density (Binney & Tremaine, 2008), defined as:

𝜌𝑐 (𝑡) ≡
3𝐻2(𝑡)
8𝜋𝐺

. (2.18)
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Under the current understanding, if the current critical density is defined as 𝜌c,0 ≡ 𝜌𝑐 (𝑡 = 0)
and the fraction contained in matter is Ωm,0 ≡ 𝜌m(𝑡 = 0)/𝜌c,0, it follows that the observed
total matter density is smaller than the critical density with only Ωm,0 ≤ 0.3 (Binney &
Tremaine, 2008). A possible solution is the presence of other forms of energy, with differing
equations of state. It is in large parts this discrepancy which is a key motivator for the
existence of dark energy.

The definition of the critical density allows Equation 2.3 to take a simple form even in
the presence of mutliple forms of energy. Defining Ωi(𝑡) ≡ 𝜌i(𝑡)/𝜌𝑐 (𝑡), with 𝜌i the different
components of the total energy density, Equation 2.3 takes the form:

1 = Ω = Ωm +Ω𝑟 +ΩΛ.

Often the behavior of the energy densities is replaced with their current values (denoted by
subscript “0”), considering that the energy densities 𝜌i all vary differently with volume as
Ωi(𝑡) = Ω0,i ·𝑎𝑙i (𝑡), such that instead pulling all time dependence into the scale factor directly:

𝐻2(𝑎)
𝐻0

= Ω0,r · 𝑎−4 +Ω0,m · 𝑎−3 +Ω0,Λ

𝐻 (𝑎) = 𝐻0

√︃
Ω0,r · 𝑎−4 +Ω0,m · 𝑎−3 +Ω0,Λ (2.19)

Note that the equation of state for dark energy considered here is that for ΛCDM, i.e.,
𝑝Λ = 𝑤𝜌Λ = −1 · 𝜌Λ, hence ΩΛ(𝑡) = Ω0,Λ · 𝑎0(𝑡) = Ω0,Λ.

To understand the implications of Equation 2.34, it is first necessary to examine the
behavior of the term 𝑎/ ¥𝑎. This is done for three possible cosmologies, where all are taken to
be flat Ω𝑘 = 0. The phases considered are a matter or dark energy dominated phase (Ωm = 1
or ΩΛ = 1) as well as an intermittent phase 0 < Ωm < 1. Beginning with the first Friedmann
equation, given in the form Equation 2.19 and assuming Ω𝑟 (𝑡) ≈ 0 for the times considered,
it can be rearranged as:

d𝑎
d𝑡
𝑎−1 =

¤𝑎
𝑎
= 𝐻 (𝑎) = 𝐻0

√︃
Ω0,m · 𝑎−3 +Ω0,Λ

d𝑎√︁
Ω0,m · 𝑎−1 +Ω0,Λ · 𝑎2

= d𝑡𝐻0∫
𝑑𝑎√︁

Ω0,m · 𝑎−1 +Ω0,Λ · 𝑎2
=

∫
d𝑡𝐻0 (2.20)

For the cases Ωm = 1 or ΩΛ = 1 this is analytically solvable as the typical results 𝑎(𝑡) ∝ 𝑡2/3

or 𝑎(𝑡) ∝ exp 𝑡, where it should however be cautioned that it is important to define a relative
time and scale factor. Taking 𝑎0 to be the scale factor at time 𝑡0 it follows then for Ωm = 1
that:

𝑎m(𝑡) =
[
𝐻0 ·

3
2
(𝑡 − 𝑡0) + 𝑎3/2

0

]2/3
, (2.21)
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Figure 2.2: The scale factor as a function of coordinate time (defined relative to 𝑎0 = 1 at 𝑡0 = 0) for
the case of a dark energy (blue) and mass (orange) dominated Universe, as well as the numerically
integrated form for an intermittent variant with Ωm = 0.272 and ΩΛ = 0.728 (purple), in accordance
with the WMAP-7 parameters (Komatsu et al., 2011). The analytical approximations out to third and
fourth order of 𝑡 (𝑎) are depicted in red and pink, with the inversion 𝑎(𝑡) of the third order line in
brown.

while for ΩΛ = 1
𝑎Λ(𝑡) = 𝑎0 · exp (𝐻0 · (𝑡 − 𝑡0)) , (2.22)

with the subscripts denoting the dominant phase (matter or dark energy).

The intermittent phase 0 < Ωm,ΩΛ < 1 unfortunately is not analytically solvable, though
it can be numerically integrated. However, even an approximated form of 𝑎(𝑡) would allow
for functional form of 𝑎(𝑡)/ ¥𝑎(𝑡), which in turn would allow exact tracing of the impact
of expansion with time (see also Section 2.5). To this end, Appendix A.1 discusses more
extensively a Taylor expansion of the integrand on the left in Equation 2.20.

The resulting relations between the scale factor 𝑎 and the coordinate time 𝑡 are plotted
for the three cases, as well as for the analytical approximations of both 𝑡 (𝑎) and the inversion
𝑎(𝑡) from Appendix A.1, in Figure 2.2. The purple line for the chosen WMAP-7 parameters
(Komatsu et al., 2011) shows the bend downwards resulting from matter-domination for early
times, resulting in an age of the Universe of 𝑡age = 1/𝐻0 ≈ 13.9 Gyr, somewhat larger than
the values found by Komatsu et al. (2011) due to the exclusion of the radiation term Ω𝑟 here
which would further increase the downwards trend. At later times, the scale factor begins to
increase exponentially as the Universe becomes dominated by dark energy. The form of 𝑎(𝑡)
is reproduced quite well by the analytical forms of 𝑡 (𝑎) from the Taylor expansion as well as
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Figure 2.3: The scale factor as a function of time (defined relative to 𝑎0 = 1,𝑡0 = 0) for the case of a
dark energy (blue) and mass (orange) dominated Universe, as well as the numerically integrated form
for an intermittent variant with Ωm = 0.272 and ΩΛ = 0.728 (green), in accordance with the WMAP-7
parameters (Komatsu et al., 2011).

the analytical inversion 𝑎(𝑡) in Appendix A.1, where the latter fails beyond 𝑡 ·𝐻0 > 0.8 as the
third order 𝑡 (𝑎) bends around here and therefore would require two 𝑦-values for one 𝑥-value.

Figure 2.3 shows on the left a zoomed in region of the 𝑎 − 𝑡 relation for a cosmology
with Ωm = 0.272 and ΩΛ = 0.728 as per WMAP-7 (Komatsu et al., 2011). Depicted are
the curve from the numerical integration in purple, as well as the Taylor series of 𝑡 (𝑎) up
to order 3 (pink) or 4 (red), with both fitting the immediate range around 𝑎0 = 1 quite well.
The inversion 𝑎(𝑡) of the third order 𝑡 (𝑎) is the brown line, showing a good match to the
numerical line. This can be seen more clearly on the right, where the ratio of the two is
plotted as a function of coordinate time. For the range −0.45 < 𝐻0𝑡 < 0.5 the deviation is
below 1%. This would therefore allow generally for an approximated analytical form of ¥𝑎
and subsequently of the expanding force in Equation 2.12, however the derivatives quickly
grow to unwieldy sizes and are as such not pursued here further.

2.4.1 Critical Overdensities

Having defined the large scale properties of an expanding Universe, it is then necessary to do
the same for some typical measures of bound structures within it. This is accomplished by
defining regions of overdensities which have a mean density that is a factor Δ𝑐 higher than
the critical density 𝜌𝑐 (𝑎) as given in Equation 2.18. The total mass within the region 𝑀Δc is
then governed entirely by its extend 𝑟Δc and the critical density, as:

𝑀Δc (𝑎) =
4𝜋
3
𝑟3
Δc
(𝑎) · Δ𝑐𝜌𝑐 (𝑎) =

4𝜋
3
𝑟3
Δc
(𝑎) · Δ𝑐 ·

3𝐻2(𝑎)
8𝜋𝐺

=
Δ𝑐

2
·
𝑟3
Δc
(𝑎) · 𝐻2(𝑎)
𝐺

,

𝑀Δc (𝑎)
(2.19)
=

Δ𝑐

2
·
𝑟3
Δc
(𝑎) · 𝐻2

0

𝐺

(
Ω0,r · 𝑎−4 +Ω0,m · 𝑎−3 +Ω0,Λ

)
(2.23)
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or equivalently

𝑟Δc (𝑎) =
(

2
Δ𝑐
·
𝐺𝑀Δc

𝐻2(𝑎)

)1/3
, (2.24)

where it should be emphasized that as the critical density changes with time (i.e., with scale
factor) so is the definition of 𝑀Δc and subsequently 𝑟Δc time dependent. One commonly
used measure is that for Δ200 = 200, where then 𝑀200 is the mass within a sphere of mean
density 200 times the critical density, given via Equation 2.23 as:

𝑀200(𝑎) = 100𝐻2(𝑎)
𝑟3

200
𝐺
. (2.25)

2.5 The Impact on Bound Systems

There has been much debate about bound systems within an expanding Universe over the years.
Clearly, there appears an additional term ¥𝑎/𝑎 · 𝑟 in the equation of motion as Equation 2.12,
but what is its impact? Can bound systems even survive, or is the influence of expansion
negligible? To this end, the simplest system to consider is a particle on a circular orbit
around a point mass. Early analyses done by McVittie (1933) found constant orbital radii for
fixed coordinates in the solar system, though this interpretation was challenged by Ferraris
et al. (1996) when more closely scrutinizing the chosen coordinate system. As discussed by
Cooperstock et al. (1998) this type of back and forth happened quite frequently within the
community at the time, and found both decreasing and constant proper orbital radii which were
difficult to compare due to varying choices of coordinate systems. Their own calculation in
the “locally inertial frame” (Landau & Lifshitz, 1975) find decreasing orbital radii for the case
of a matter-dominated flat universe. For the following analyses in Section 2.6 and Chapter 3 it
is useful here to retread for aΛCDM-Universe some of the underlying mathematics employed
for the cases of the matter-dominated (Cooperstock et al., 1998) and phantom-energy as well
as quintessence dark energy-dominated Universes (Nesseris & Perivolaropoulos, 2004). The
derivation in the following closely adheres that presented by Cooperstock et al. (1998) but
adds some of the crucial intermediate steps.

First, the base setup is for a circular orbit of a test particle around a mass 𝑚 within the
locally inertial frame of the particle. The equation of motion is then Equation 2.12, where
here it is advantageous to instead work in cylindrical coordinates (𝑟, \, 𝑧) with the orbit
occurring in the plane perpendicular to 𝑧. This implies that all forces work centrally and only
(𝑟, \) must be considered, or equivalently the Cartesian coordinates 𝑥, 𝑦. Equation 2.12 has
then the form (note the use of vectors, such that the centrifugal term is not present yet but
arises implicitly from the cylindrical coordinate system):

¥𝒓 = −𝐺𝑀
𝑟2 𝒆𝑟 +

¥𝑎
𝑎
𝒓

⇔ d2

d𝑡2

(
𝑟 cos \
𝑟 sin \

)
= −𝐺𝑀

𝑟2

(
cos \
sin \

)
+ ¥𝑎
𝑎

(
𝑟 cos \
𝑟 sin \

)
(2.26)
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where the split up into (𝑥, 𝑦) = (𝑟 cos \, 𝑟 sin \) has made two equations arise as:

d2(𝑟 cos \)
d𝑡2

=
d
d𝑡
( ¤𝑟 cos \ − 𝑟 ¤\ sin \) = cos \ ( ¥𝑟 − 𝑟 ¤\2) − sin \ (2 ¤𝑟 ¤\ + ¥\)

= −𝐺𝑀
𝑟2 cos \ + ¥𝑎

𝑎
𝑟 cos \ = cos \

(
−𝐺𝑀
𝑟2 +

¥𝑎
𝑎
𝑟

)
, (2.27)

d2(𝑟 sin \)
d𝑡2

=
d
d𝑡
( ¤𝑟 sin \ + 𝑟 ¤\ cos \) = sin \ ( ¥𝑟 − 𝑟 ¤\2) + cos \ (2 ¤𝑟 ¤\ + ¥\)

= −𝐺𝑀
𝑟2 sin \ + ¥𝑎

𝑎
𝑟 sin \ = sin \

(
−𝐺𝑀
𝑟2 +

¥𝑎
𝑎
𝑟

)
. (2.28)

As both equations must hold for all \, two conditions follow:

2 ¤𝑟 ¤\ + ¥\ = 0, (2.29)

¥𝑟 − 𝑟 ¤\2 = −𝐺𝑀
𝑟2 +

¥𝑎
𝑎
𝑟, (2.30)

where the latter exactly recovers Equation 2.12. Assuming then the impact of expansion to
be perturbative in nature, i.e., 𝑟 (𝑡) = 𝑟0 + 𝛿𝑟 (𝑡) and \ (𝑡) = \0(𝑡) + 𝛿\ (𝑡), and then noting
that the unperturbed angle of a circular orbit \0(𝑡) changes with time according to the initial
angular velocity,

\0(𝑡) = 𝜔0 · 𝑡 =
√︄
𝐺𝑀

𝑟3
0
𝑡, (2.31)

Equation 2.29 becomes:

2𝛿 ¤𝑟 ·
(
𝜔0 + 𝛿 ¤\

)
+ (𝑟0 + 𝛿𝑟0) · (0 + 𝛿 ¥\) = 2𝛿 ¤𝑟 · 𝜔0 + 𝑟0 · 𝛿 ¥\ = 0,

⇔ 𝛿 ¥\ = −2𝜔0
𝑟0

𝛿 ¤𝑟 −→ 𝛿 ¤\ = −2𝜔0
𝑟0

𝛿𝑟, (2.32)

where terms of higher order in the perturbations were dropped in the first step. The last step
was an integration in 𝑡 and then equals exactly Equation 4.6 from Cooperstock et al. (1998).
Similarly, Equation 2.30 is then:

d2(𝑟0 + 𝛿𝑟)
d𝑡2

− (𝜔0 + 𝛿 ¤\)2 · (𝑟0 + 𝛿𝑟) = −
𝐺𝑀

(𝑟0 + 𝛿𝑟)2
+ ¥𝑎
𝑎
· (𝑟0 + 𝛿𝑟),

𝛿 ¥𝑟 − 𝜔2
0 · (𝑟0 + 𝛿𝑟) − 2𝛿 ¤\ · 𝑟0 = −𝐺𝑀

𝑟2
0
· 1

1 + 2 𝛿𝑟
𝑟0

+ ¥𝑎
𝑎
· (𝑟0 + 𝛿𝑟),

(2.32)
⇔ 𝛿 ¥𝑟 − 𝜔2

0 · (𝑟0 + 𝛿𝑟) − 2
(
−2𝜔0
𝑟0

𝛿𝑟

)
· 𝑟0 = −𝑟0𝜔

2
0 ·

(
1 − 2𝛿𝑟

𝑟0

)
+ ¥𝑎
𝑎
· (𝑟0 + 𝛿𝑟),

𝛿 ¥𝑟 + 𝜔2
0𝛿𝑟 −

¥𝑎
𝑎
· (𝑟0 + 𝛿𝑟) = 0, (2.33)

which recovers Equation 4.9 from Cooperstock et al. (1998) except that the term from
expansion does not assume matter-domination, and further does not drop its 𝛿𝑟 term. Arguing
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that the change in perturbation varies only slowly with time and is therefore small relative to
the other two terms, it follows finally:

𝛿𝑟 (𝑡) = − 𝑟0

1 − 𝜔2
0 ·

𝑎(𝑡)
¥𝑎(𝑡)

. (2.34)

For the actual radius with time it follows finally that

𝑟 (𝑡) = 𝑟0

(
1 −

(
1 − 𝜔2

0 ·
𝑎(𝑡)
¥𝑎(𝑡)

)−1
)
. (2.35)

The temporal dependence of the perturbation in the radius then is entirely given by the ratio
of 𝑎/ ¥𝑎, while its radial dependence is governed by the remaining term 𝜔2

0. This results in an
interesting conclusion for the relative perturbation of the radius as typically 𝜔2

0𝑎/ ¥𝑎 ≫ 1 (see
Equation 2.39) such that for a given time 𝑡:

𝛿𝑟

𝑟0
∝ 𝜔−2

0 =
𝑟3

0
𝐺𝑀 (≤ 𝑟0)

∝ 1
𝜌(≤ 𝑟0)

(2.36)

where 𝑀 (≤ 𝑟0), 𝜌(≤ 𝑟0) are the mass and density within the circular orbit at 𝑟0 and where
the density profile is assumed to be spherically symmetric, with the sign of the perturbation
dictated by ¥𝑎. The radial behavior of the relative perturbation is then entirely dictated
by the mean density within the circular orbit, with a higher density resulting in a smaller
perturbation and vice versa. Therefore, comparing the impact of expansion between different
bound structures, say between a galaxy and galaxy cluster, must be treated with caution. It
is not a difference in mass of the bound structure which dictates whether expansion has a
larger impact or not – if a characteristic radius is chosen based on the density within, for
example, the resulting perturbation of a circular orbit at that distance is equal for any size
of bound structure. For a main halo with a typical density profile 𝜌(𝑟) ∝ 𝑟−2 it follows
𝜔2

0 ∝ 𝑟
1
0/𝑟

3
0 = 𝑟−2

0 such that (𝛿𝑟/𝑟0) ∝ 𝑟2
0 . A circular orbit at twice the distance is therefore

perturbed four times as strongly by expansion for such density profiles.

2.6 Probing Implications on Forces and Potentials

Considering then that expansion indeed perturbs circular orbits as per Equation 2.35, this
raises the question of how this perturbation changes with time. Though the dependence on
the coordinate time 𝑡 cannot be given analytically – due to 𝑎(𝑡) not having an analytical form,
see also Section 2.4 – it is possible to instead work with the scalefacter 𝑎 and subsequently
redshift 𝑧 as a measure of time directly.

Futhermore, although the analysis of circular orbits around a point-mass potential from
Section 2.5 on the basis of perturbation theory as per Cooperstock et al. (1998) is a good
starting point, it will be extended to an entirely analytical form considering also orbits of
varying forms in Section 2.6.2.
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To understand the following implications of both Equation 2.12 and Equation 2.35, it is
necessary to first find the form of ¥𝑎/𝑎 for the chosen cosmology. Here ΛCDM is assumed
such that the Universe is flat, Ω𝑘 ≈ 0, and for the later times considered dominated by matter
and dark energy Ωm +ΩΛ = 1. Dark energy has an equation of state as 𝑝 = 𝑤𝜌 with 𝑤 = −1,
where the impact of expansion on orbits for the cases of 𝑤 < −1 and −1 < 𝑤 < −1/3
are extensively covered by Nesseris & Perivolaropoulos (2004). In the following, all plots
will assume ΛCDM with Ωm = 0.272 and ΩΛ = 0.728, in accordance with the WMAP-7
parameters (Komatsu et al., 2011), unless specifically noted otherwise. Taking Equation 2.19
for this flat cosmology with only matter and dark energy it follows:

¥𝑎
𝑎
=

1
𝑎

d𝑎
d𝑡

d(𝐻 (𝑎)/𝑎)
d𝑎

=
¤𝑎𝐻0
𝑎

Ω0,Λ𝑎 −Ω0,m/(2𝑎2)√︁
Ω0,m𝑎−1 +Ω0,Λ𝑎2

=
¤𝑎𝐻0
𝑎

Ω0,Λ𝑎 −Ω0,m/(2𝑎2)
¤𝑎/𝐻0

,

¥𝑎
𝑎
= 𝐻2

0

(
Ω0,Λ −

Ω0,m

2𝑎3

)
, (2.37)

This has very interesting implications, as the term from expansion vanishes at

𝑎NT =

(
Ω0,m

2 · Ω0,Λ

)1/3
≈ 0.5717 (2.38)

or equivalently at 𝑧NT ≈ 0.7493. For comparison, Ω0,m = 0.3147 as per Planck Collaboration
(2020) finds 𝑧NT = 0.6331 while Ω0,m = 0.3 results in 𝑧 = 0.67 as also stated by Nandra et al.
(2012). At this point the Universe switches from decelerated to accelerated expansion, 𝑞 = 0,
and as such orbits which previously under matter domination were slightly perturbed inwards
now are instead increasingly perturbed outwards as dark energy beings to dominate. This can
be seen directly by considering the resulting fluctuation in a circular orbit at a characteristic
radius 𝑟𝑥 defined by Equation 2.24, given as:

𝜔2
Δc
· 𝑎¥𝑎 =

𝐺𝑀Δc

𝑟3
Δc

· 𝑎¥𝑎
(2.23),(2.37)

=
Δ𝑐

2
· Ω0,Λ +Ω0,m/𝑎3

Ω0,Λ −Ω0,m/(2𝑎3)
. (2.39)

which when plugged into Equation 2.35 takes the form:

𝑟Δc (𝑎) = 𝑟0,Δc (𝑎)
(
1 −

(
1 − Δ𝑐

2
· Ω0,Λ +Ω0,m/𝑎3

Ω0,Λ −Ω0,m/(2𝑎3)

)−1)
. (2.40)

This is the perturbation at different times of a circular orbit at a radius enclosing a mean density
a factorΔ𝑥 higher than the mean density for a matter and dark energy dominated flat Universe.
Note that this is not an actual orbit as 𝑟0,Δc (𝑎) changes with time (see Equation 2.24).

The resulting perturbations are plotted in Figure 2.4. As depicted on the left, the general
behavior of circular orbits goes from being perturbed inward for the matter dominated phase
𝑎 < 𝑎NT to being perturbed outwards for Λ-dominated times. For particles orbiting farther
inwards at 𝑟500, the overall distortion between 𝑧 = 4 and 𝑧 = 0 is on the order of just 0.5%.
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Figure 2.4: Left: The perturbation from a Newtonian circular orbit at 𝑟Δc as a function of scale factor 𝑎
for different overdensities, with the limiting cases of Ωm = 1 (dashed) and ΩΛ = 1 (dotted). The black
lines denote the Newtonian case (horizontal) and the transition from matter to dark energy dominated
(vertical). 𝑟Δc here varies with time. Right: The Hubble parameter (purple) from Equation 2.19 and
the acceleration term ¥𝑎/𝑎 (brown) given by Equation 2.37 as a function of scale factor 𝑎, with the
limiting cases and vertical black line as before.

Figure 2.5: The perturbation from a Newtonian circular orbit at 𝑟Δc as a function of scale factor 𝑎 for
different overdensities, with colored solid lines as in Figure 2.4 depicting the perturbation for circular
orbits at each time 𝑎. Dashed lines represent the temporal behavior of an orbit initialized at 𝑎 = 0.2 for
a fixed system, while dotted are for a starting time 𝑎 = 1.0. Radii are given as a fraction of their initial
𝑟Δc , i.e., the scaling relates directly to a fixed physical size. The black lines denote the Newtonian case
(horizontal) and the transition from matter to dark energy dominated (vertical).

This effect increases farther out as the density within the orbit decreases, as per Equation 2.36,
up to slightly over 2% difference for 𝑟100 between 𝑧 = 4 and 𝑧 = 0.
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Given instead a fixed real orbit which is circular at 𝑎0 with 𝑟0 = 𝑟Δc (𝑎0) and 𝑤0, i.e.,
around a fixed central mass, Equation 2.40 becomes:

𝑟 (𝑎) = 𝑟0
©«1 −

(
1 − Δ𝑐

2
·

Ω0,Λ +Ω0,m/𝑎3
0

Ω0,Λ −Ω0,m/(2𝑎3)

)−1ª®¬ . (2.41)

This is depicted in Figure 2.5 for varying overdensities and when initializing the circular
orbit at different times, with the colored solid lines as in Figure 2.4. As can be seen from the
dashed lines for a system initialized at 𝑎 = 0.2, the perturbation of a circular orbit around a
fixed system behaves differently from the circular orbits at different times. This is because
the density enclosed by the original orbit at 𝑎 = 0.2 stays constant, i.e., increases in density
contrast against the decreasing background 𝜌𝑐 (𝑎). As it is the density contrast which dictates
the strength of the expanding term, this increased contrast leads to decreased perturbations.
This demonstrates that orbits starting at early times also change most strongly at early times,
becoming less and less perturbed with time. The same is depicted for a system initialized
at 𝑎 = 1 with the dotted lines, where the times 𝑎 < 1 are faded as it is unclear if the orbit
at earlier times would not be unbound at some point. It should be emphasized that the radii
here are defined relative to their enclosed density as opposed to the mass or radius in absolute
values to highlight the fact that the relative impact from expansion is only dependent on the
former.

2.6.1 Acceleration and the Turnaround Radius

Turning then away from circular orbits to more general properties, this section examines the
acceleration experienced by a particle around a central point mass 𝑀 . The frame of reference
is fixed on the central mass, such that Equation 2.12 loses the angular momentum term.
Through the fixed choice of cosmology resulting in Equation 2.37 this acceleration can be
put into more explicit terms as:

¥𝑟 (𝑟, 𝑎) = − 𝐺𝑀
𝑟2(𝑎)

+ ¥𝑎
𝑎
𝑟 (𝑎) = − 𝐺𝑀

𝑟2(𝑎)
+ 𝐻2

0

(
Ω0,Λ −

Ω0,m

2𝑎3

)
· 𝑟 (𝑎). (2.42)

The distance where no acceleration is felt by a particle is then

𝑟turn ≡
(

𝐺𝑀

𝐻2
0 · (Ω0,Λ −Ω0,m/(2𝑎3))

)1/3

. (2.43)

It follows that for all times 𝑎 < 𝑎NT = 0.572 as per Equation 2.38 there exists no such
radius, because there the expanding term also points inwards. Only once expansion begins
to accelerate do there exist radii 𝑟 > 𝑟turn where a particle at rest would get accelerated away
from the mass 𝑀 to eventually join the Hubble flow.

These parameters can be related to typical scaling parameters defined through overden-
sities relative to the critical density as in Section 2.4.1. Defining 𝐴Δc ≡ 𝐺𝑀Δc/𝑟2

Δc
as the
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Figure 2.6: Left: The acceleration scaled according by 𝐴Δc resulting from a point mass for the purely
Newtonian (black) versus expanding (colored) cases as a function of distance 𝑟 . Different times 𝑧 are
depicted in different colors for the case of Δ𝑐 = 200, where the Newtonian case is 𝑧 independent. For
𝑧 = 0 additionally Δ𝑐 = 100, 500 are shown as dash-dotted and dashed lines, respectively. Right: The
same, zoomed in to the central region.

magnitude of purely Newtonian acceleration at a distance 𝑟Δc and 𝑏 ≡ 𝑟/𝑟Δc , where for now
the central mass is assumed to be point like, Equation 2.42 takes the form:

¥𝑟 (𝑏, 𝑎)
𝐴Δc (𝑎)

= − 1
𝑏2 +

𝑏

Δ𝑐/2
· Ω0,Λ +Ω0,m/𝑎3

Ω0,Λ −Ω0,m/(2𝑎3)
. (2.44)

Figure 2.6 depicts the resulting accelerations experienced by a particle around a point
mass for the Newtonian (black) and expanding (colored) cases. There is little deviation in the
behavior for radii 𝑟 < 𝑟200. It can be seen that for 𝑧 = 0.749 or equivalently 𝑎 = 0.5717 = 𝑎NT

the acceleration for the expanding and Newtonian background are identical. For 𝑧 = 0 in blue
the expanding term points outwards and there exist radii for which the acceleration is away
from the central mass, 𝐴 > 0, with the crossing point given by Equation 2.43. As shown by
the three blue lines, a lower density (dashed) leads to a smaller ratio 𝑟/𝑟Δc of the transition
point, which corresponds to the statement that for a fixed central mass 𝑀 the transition radius
is a fixed value 𝑟, i.e., 𝑟/𝑟Δc varies.

2.6.2 The Effective Potential

Orbits of particles within a central potential must not be exclusively circular – rather they
cannot be circular due to the varying acceleration from expansion as seen in Figure 2.5. To
understand real orbits the simple perturbation theory approach from Section 2.5 has to be
extended to account for all types of orbits, which is best accomplished by considering the
effective potential. This describes the potential actually felt by the particle within its own
inertial system, i.e., including frame-dependent terms such as the angular momentum and the
acceleration from expansion.
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Equation 2.30 already describes the effective acceleration felt by the orbiting particle
within its own locally inertial frame, and as such a conversion to the effective potential per
unit mass follows as:

𝑉eff (𝑟, 𝑎)
𝑚

= −
∫

d𝑟
(
𝐿2

𝑟3 −
𝐺𝑀

𝑟2 +
¥𝑎
𝑎
𝑟

)
=
𝐿2

2𝑟2 −
𝐺𝑀

𝑟
− ¥𝑎
𝑎
· 𝑟

2

2
. (2.45)

As the expanding term is central, ∥ 𝒓, the angular momentum is still conserved, 𝐿 = 𝑐𝑜𝑛𝑠𝑡.
However the acceleration varies with time, meaning that when expansion is significant the
total energy of the orbit is not conserved anymore (see for example Noether 1918 or Appendix
D.1 from Binney & Tremaine 2008).

Defining then
𝑏 ≡ 𝑟

𝑟Δc

(2.46)

as the ratio between the radius and extent of the mass distribution and

𝑙 ≡ 𝐿√︁
𝐺𝑀Δc · 𝑟Δc

(2.47)

as the fractional specific angular momentum of a Newtonian spherical orbit at 𝑟Δc , Equa-
tion 2.45 can be written as:

𝑉eff (𝑟, 𝑎)
𝑚

=
𝑙2 · (𝐺𝑀Δc𝑟Δc)

2 · 𝑏2𝑟2
Δc

−
𝐺𝑀Δc

𝑏𝑟Δc

− ¥𝑎
𝑎
·
𝑏2𝑟2

Δc

2
,

𝑉eff (𝑟, 𝑎)
𝑚

=
𝐺𝑀Δc

𝑟Δc

·
[
𝑙2

2 · 𝑏2 −
1
𝑏
−

𝑟3
Δc

𝐺𝑀Δc

· ¥𝑎
𝑎
· 𝑏

2

2

]
. (2.48)

By noting that 𝑣2
Δc
(𝑎) ≡ 𝐺𝑀Δc/𝑟Δc is the circular velocity at 𝑟Δc for an object of mass 𝑀Δc ,

𝑉Δc (𝑎) ≡ 𝑚 · 𝑣2
Δc
(𝑎) (2.49)

can be identified as the Newtonian effective potential for a particle at rest at 𝑟Δc . Note that
this value can either be fixed for a given structure at 𝑎0 or can vary with time if defined for
the current overdensity. Plugging Equation 2.39 in Equation 2.48 then gives:

𝑉eff (𝑟, 𝑎)
𝑉Δc (𝑎)

=

[
𝑙2

2 · 𝑏2 −
1
𝑏
− 𝑏

2

Δ𝑐
· Ω0,Λ +Ω0,m/𝑎3

Ω0,Λ −Ω0,m/(2𝑎3)

]
. (2.50)

For an overdensity Δ𝑐 = 100 the resulting effective potential for particles with varying
angular momenta 𝑙 is depicted in Figure 2.7 at 𝑎 = 0.2 (left) and 𝑎 = 1 (right). First it
should be noted that as the scale factor𝑉100(𝑎) varies here with time the absolute values vary
between the panels. This is also the reason why both the matter- (dotted) and dark energy-
dominated (dashed) cases appear identical with time, as per Equation 2.49 the expanding
term’s 𝑎-dependency vanishes such that different times are simply scaled in their absolute
values but not in their shape. The actual behavior forΛCDM lies between these two extremes,
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Figure 2.7: Left: The effective potential at 𝑎 = 0.2 scaled with 𝑉100(𝑎 = 0.2) resulting from a point
mass for the purely Newtonian (black) versus expanding (colored) cases as a function of distance 𝑟 ,
with the cases of Ωm = 1 (dotted) and ΩΛ = 1 (dashed) depicted for comparison. Right: The same for
𝑎 = 1 scaled with 𝑉100(𝑎 = 1).

Figure 2.8: The perturbation from a Newtonian circular orbit at 𝑟Δc as a function of scale factor 𝑎 for
different overdensities for the approximation Equation 2.34 (colored) as from Cooperstock et al. (1998)
and analytical roots of Equation 2.51. The horizontal and vertical black lines denote the Newtonian
case and the transition from matter to dark energy dominated, respectively.

transitioning towards dark energy domination at later times as expected with a brief moment
at 𝑎 = 𝑎NT where the curves equal the Newtonian ones. For small radii all cases behave
practically identical.
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Figure 2.9: Left: The effective potential at 𝑎 = 0.2 scaled with 𝑉100(𝑎 = 0.2) resulting from a point
mass for the purely Newtonian (black) versus expanding (colored) cases as a function of distance 𝑟 ,
with the cases of Ωm = 1 (dotted) and ΩΛ = 1 (dashed) depicted for comparison. Right: The same for
𝑎 = 1 scaled with 𝑉100(𝑎 = 0.2).

Of special interest is the case of 𝑙 = 1 (red line) as it has the angular momentum of a
circular orbit at 𝑟Δc . The behavior of just this curve is further plotted in isolation in Figure A.5,
where it can also be seen explicitly that for 𝑎 = 𝑎NT the Newtonian curve is reproduced. By
definition, the curve’s minimum describes a circle as considered for the perturbation approach
in Section 2.5. As found there in Equation 2.34, the minimum changes with increasing time
towards slightly higher values 𝑟/𝑟100. Given the analytical form in Equation 2.50 it is possible
to define also an analytical form of Equation 2.34 by requiring the derivative to be zero as:

d𝑉eff
d𝑏

= − 𝑙
2

𝑏3 +
1
𝑏2 − 𝑏 ·

2
Δ𝑐

Ω0,Λ +Ω0,m/𝑎3

Ω0,Λ −Ω0,m/(2𝑎3)
!
= 0

0 = −𝑙2 + 𝑏 − 𝑏4 · 2
Δ𝑐

Ω0,Λ +Ω0,m/𝑎3

Ω0,Λ −Ω0,m/(2𝑎3)
. (2.51)

The form recovered is that of a quartic 𝑒 · 𝑏4 + 𝑓 · 𝑏3 + 𝑔 · 𝑏2 + ℎ · 𝑏 + 𝑗 , where the roots
are analytical and given for example by Weisstein (2022c). As 𝑒 in this case is a function
of 𝑎, so are the roots varying with time. The resulting analytical solution is compared in
Figure 2.8 against Equation 2.34. For an overdensity of Δ𝑐 = 500 and Δ𝑐 = 200 the orbits
are only weakly disturbed by the expanding term such that the perturbative result is generally
sufficient. There do start to appear some differences for the latter case at very low and high 𝑎,
i.e., the farther away from the Newtonian transition point at 𝑎NT the stronger the difference.
The strongest deviation for Δ𝑐 = 100 is however only on the order of 10% different from the
perturbative approximation, which means that the impact of expansion on circular orbits at
all times is small and the result from Equation 2.34 can be generally applied.

A striking feature of Figure 2.7 is that for matter-domination generally expansion strongly
accelerates particles towards each other, allowing in principle for bound orbits of any energy
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and angular momentum as the effective potential increases for large radii as 𝑟2. Even orbits
with a very high angular momentum, for example 𝑙 = 5, appear to be able to possess a circular
orbit. This, however, does not mean that these orbits would actually be able to occur in this
way as the potential changes with time. Furthermore, it appears that unlike the statements
made in Section 2.5 the minima for 𝑙 = 4 and 𝑙 = 5 disappear with time, such that there do
exist circular orbits that are entirely pulled apart by expansion.

To better understand the implications for actual systems, it is necessary to take a fixed
system initialized at 𝑎0 = 0.2, i.e., where the scaling variables do not vary with time, where
for example 𝑟100 = 𝑟100(𝑎0) and 𝑉100 = 𝑉100(𝑎0). The resulting effective potential is shown
in Figure 2.9. The left panel simply equals a zoomed-out version of the left panel from
Figure 2.7, because this is the time when the system is initialized. However, as seen on
the right the impact of expansion is actually not as severe as perhaps expected. This is
as the initial overdensity Δ𝑐 = 100 at 𝑎 = 0.2 grows to much larger values as the critical
density decreases with time, and a larger density contrast leads to a smaller impact from
expansion. Therefore, a system formed at earlier times does not actually converge to the dark
energy-dominated (dashed) curves. Another thing of note is that for system within a purely
matter-dominated (dotted) universe the impact from expansion decreases with time as ∝ 𝑎3,
slowly converging to the Newtonian effective potential, while for dark energy-domination no
change occurs with time and the impact of expansion is always the same.

Taking then for example a particle with 𝑙 = 5 on a circular orbit at 𝑎 = 0.2, such that it has
a total specific energy of 𝑒5 ≈ 0.34 ·𝑉100, it follows from the right panel that at 𝑎 = 1 no bound
orbit exists anymore. Expansion has successfully removed a particle on a circular orbit – but
how is this possible? Here the perturbative approach from Section 2.5 breaks down and the
deviation as already noted in Figure 2.8 grows to infinity. Mathematically this corresponds to
the real positive double root of Equation 2.51 for the initial circular orbit vanishing, instead
resulting in one positive real root for the inner intersection at around 𝑏 ≈ 4.7, one negative
real root at 𝑏 ≈ −7.6 and then a complex root pair. Physically, however, it is not as simple
to state that the initial set-up ever even was a real orbit. To see this, take again the example
circular orbit with 𝑙 = 5 for an object with some fixed 𝑀100 at 𝑎 = 𝑎0 = 0.2, such that
𝑟5 ≈ 6.5 · 𝑟100. Assuming the central object to have a density profile as 𝜌 = 𝑓 · 𝑟−2, with 𝑓

constant, then

𝑀 (< 𝑟100) =
∫

d𝑟 4𝜋𝑟2 · 𝑓 𝑟−2 = 4𝜋 · 𝑓 𝑟100
!
= 𝑀100 ⇔ 𝑓 =

𝑀100
4𝜋 · 𝑟100

𝜌(𝑟5) =
𝑀100

4𝜋𝑟100

1
(6.5 · 𝑟100)2

=
𝑀100

4𝜋𝑟3
100
· (6.5)−2 =

100𝜌𝑐
3
· (6.5)−2 ≈ 0.8 · 𝜌𝑐 (2.52)

Clearly this is not a real orbit then unless the density profile were to fall off even flatter
than 𝑟−2. Furthermore, the orbital period is given as 𝑇 = 2𝜋

√︃
𝑟3

5/(𝐺 · 𝑀100), which for
𝑀100 = 1× 1012 M⊙ would be 𝑇 ≈ 6 Gyr. Comparing with Figure 2.2 this would correspond
to one orbit being completed from 𝑎0 = 0.2 to 𝑎end ≈ 0.54, at which point the Universe has
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already almost entered the dark energy dominated phase. Therefore, direct conclusions can
be difficult to make without a physical comparison or actual simulated systems.

Nonetheless, the initial interpretation there are orbits which are disturbed by expansion
so strongly as to be end up unbound holds true – if a particle is initially infalling from
far out and would originally end up bound, the flattening of the effective potential can
lead to it exiting again instead. Though it has never completed a full orbit, this does have
potential implications for the inflow of material into the bound structure itself. Furthermore,
this analysis does not account for two body interactions which could temporarily elevate a
particle to higher energies that would normally simply return to the central potential, but
due to expansion manage to break the threshold and are accelerated away. Overall then, the
general behavior holds true: for matter domination the effective potential is pushed upwards,
accelerating the particles towards each other, while for dark energy domination the reverse
is true. As such, the transition from early to late times experiences a continuous decrease
in the effective potential felt by a particle in a central potential, increasingly significant with
distance.

2.7 Simply Simulating

Finally, to see an actual orbit there is no way to avoid simulating the system. The code
employed here utilizes a Leapfrog KDK where force calculations are split up into “kick” and
“drift” steps – see Binney & Tremaine (2008) – and for the expanding case the additional
terms are accounted for by transforming into coordinates (𝑥, 𝑥′, 𝑝′) with the time variable 𝜏
as described in Section 2.3. This corresponds to the typical comoving implementation for
GADGET (Springel et al., 2001), and is used here to simulate particle orbits within a point mass
potential. The reduction to only the cosmological formulation without the inclusion of any
additional physics allows for a direct comparison to the theoretical findings from Section 2.6.

General bound orbits can be either circles or ellipses, depending on whether their total
specific energy has one or two crossing points with the effective potential. These crossing
points can be determined to predict the possible evolution of the orbits, including elliptical
ones. Defining 𝑉 ≡ 𝑉eff (𝑟, 𝑎0)/𝑉Δc (𝑎0) as the fractional fixed total energy of a particle, and
multiplying Equation 2.50 by 𝑏2 gives:

0 =
𝑏4

Δ𝑐
· Ω0,Λ +Ω0,m/𝑎3

Ω0,Λ −Ω0,m/(2𝑎3)
+ 𝑏2 · 𝑉 + 𝑏 − 𝑙

2

2
. (2.53)

This, akin to Equation 2.51, is a quartic and as such has analytical solutions. These have the
form 𝑏(𝑉, 𝑙, 𝑎,Δ𝑐) such that when assuming the effect of expansion to be merely perturbative
the first two parameters are constant with time and only the direct dependency on 𝑎 in the
expanding term remains. This will again break down when the orbits gain sufficient energy
from expansion to become unbound. Δ𝑐 defines the scaling parameters which are used for
the other variables, i.e., if Δ𝑐 = 100 then 𝑉, 𝐿, 𝑏 must be stated as fractions of their Δ𝑐 = 100
equivalents. For an ellipses, 𝑏(𝑉, 𝑙, 𝑎,Δ𝑐) has two real positive solutions, corresponding to
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Figure 2.10: Left: The effective potential scaled with a fixed 𝑉100(𝑎 = 0.2) resulting from a point
mass for the expanding case at two times, 𝑎 = 0.2 and 𝑎 = 1, as a function of distance 𝑟/𝑟100.
Horizontal colored lines indicate each chosen particle’s energy. Center: The theoretical evolution
(solid lines) of the inner and outer radii of an orbit with total energy as given for the same color on
the left. Dashed lines are the minimum and maximum radii of the simulated equivalent orbits around
a central mass 𝑀 = 1 × 1012 M⊙, with the initial rise occurring as the particle makes its first orbit
outwards. Right: The theoretical evolution (solid lines) of the eccentricity of the orbits as a function
of scale factor, given as a ratio to the original eccentricity. Crosses denote the eccentricity of the last
full orbit at 𝑎 = 1 of the simulated equivalents.

the lengths of the semi-minor and major axes which are subsequently referred to as the inner
𝑟in and outer radius 𝑟out. The particle is then a length 𝑟in away from the central mass at the
periapsis, and 𝑟out at the apoapsis.

The simulation is then initialized at 𝑎 = 0.2 for a central mass of 𝑀 = 1 × 1012 M⊙ with
particles 𝑖 orbiting around it at varying distances. All orbits are chosen to have the same total
angular momentum 𝑙 = 1 scaled according to Δ𝑐 = 100, with varying total specific energies
𝑒i as depicted by the colored horizontal lines on the left in Figure 2.10. The roots from
Equation 2.53 then provide the starting positions, either initializing at the periapsis 𝑟i = 𝑟in

or the apoapsis 𝑟i = 𝑟out. Here 𝑟 = 𝑟in is chosen. As 𝑙 = 1, so 𝐿 = 𝑣100/𝑟100, the velocity
can be derived as 𝑣i = 𝑣100 · (𝑟i/𝑟100). The resulting minimum and maximum radii of the
simulated orbits are depicted in the center of Figure 2.10 as dashed lines, where an overall
good match is found to the theoretical results from Equation 2.53. Especially interesting is
the orange orbit which corresponds to a circle initially, but is slightly perturbed to instead
trace an ellipse. The effect within the simulation is here somewhat smaller than the predicted
one, but is present nonetheless. Given the simulated orbits, it is then possible to determine
an increase in ellipticity versus the original orbits. This is shown on the right in Figure 2.10
as crosses, compared to the predicted increase. Indeed, the ellipticity of the orbits in the
simulation has increased. The greatest relative increase of around 0.85% is found for the
orbit farthest in also as predicted, with a minor offset present. The original circle orbit is not
depicted as its initial ellipticity is 𝜖0 = 0 and thus 𝜖/𝜖0 is undefined.

It is interesting to note that the exact same results are found when instead initializing a
scaled up variant with a central mass of 𝑀 = 1 × 1015 M⊙, as can be seen in Figure A.6.
This shows what was emphasized in Section 2.5, that it is the overdensity which defines the
impact of expansion, not the absolute scale itself. To further see this, the same simulation is
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Figure 2.11: Left: The effective potential scaled with a fixed 𝑉200(𝑎 = 0.2) resulting from a point
mass for the expanding case at two times, 𝑎 = 0.2 and 𝑎 = 1, as a function of distance 𝑟/𝑟200.
Horizontal colored lines indicate each chosen particle’s energy. Center: The theoretical evolution
(solid lines) of the inner and outer radii of an orbit with total energy as given for the same color on
the left. Dashed lines are the minimum and maximum radii of the simulated equivalent orbits around
a central mass 𝑀 = 1 × 1012 M⊙, with the initial rise occurring as the particle makes its first orbit
outwards. Right: The theoretical evolution (solid lines) of the eccentricity of the orbits as a function
of scale factor, given as a ratio to the original eccentricity. Crosses denote the eccentricity of the last
full orbit at 𝑎 = 1 of the simulated equivalents.

run also for parameters scaled according to an overdensity of Δ𝑐 = 200 with a central mass
𝑀 = 1 × 1012 M⊙ with the result depicted in Figure 2.11. Here the change in eccentricity
is lessened as the orbits lie farther in and are thus less affected by expansion, only reaching
around 0.45 or 0.55% at the highest for the simulated and theoretical cases. The trend to
higher eccentricity increase with lower initial orbital radii as found in Figure 2.10 persists
here. Similarly, the initial circle orbit in orange expands to an ellipse, though even less so
than for Figure 2.10.

As both 𝑟in and 𝑟out are solutions to Equation 2.53, one could conclude that it should
make no difference whether the particle orbit is initialized at one or the other. However, as
can be seen in Figure 2.12, there is a clear discrepancy between the two cases, with particles
initialized at the periapsis reaching much farther out to the theoretical values. When instead
starting at the apoapsis the orbits do not reach as far as predicted by the theory, instead only
going out to their initial position 𝑟out. This can also be seen in Figure A.7, where they also do
not reach as far in as expected leading to decreasing eccentricities. One possible explanation is
that the derivation of the effective potential were faulty, that the periapsis and apoapsis belong
to two different orbits and so should not agree. This can be tested by initializing the orbits
in a “frozen” expanding background, so simulating in a Newtonian non-comoving frame but
adding the contribution from expansion at 𝑎 = 0.2 as a fixed acceleration term. If the values
belong to a single orbit at 𝑎 = 0.2, within this frame they should trace identical ellipses.
This is exactly what is found in Figure 2.13 on the left where the Newtonian orbits with the
additional expansion term stay on the same orbits shifted by half a period. Furthermore,
the extent matches the crossing points of the effective potential as in Figure 2.10, indicating
that the interpretations of the orbits on the basis of the effective potential as done so far are
correct. Another noticeable feature is the differing orbital periods between the bottom two
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Figure 2.12: The orbits in the plane, initialized at the periapsis (top row) and the apoapsis (top row)
for different overdensities from left to right as Δ𝑐 = 100 to Δ𝑐 = 500, with the black 𝑥 indicating the
location of the central point mass. The differences between the top and bottom row are increasingly
lessened the higher the overdensity. Furthermore, the varying additional term from expansion also
leads to a precession of the orbits.

orbits, which arises due to the fast that the potential on the left is as steep as the one at 𝑎 = 0.2
for the whole time while the expanding case flattens the potential and thus the particle orbits
slower there – see also Figure 2.9. Note further that only for the expanding case on the right
do the times correspond to varying scale factors as can be seen on the top, as the left is frozen
at 𝑎 = 0.2.

As the only remaining explanation then, it appears that when initialized at the apoapsis
the particles lose energy compared to those at the periapsis, or conversely that those at the
periapsis gain energy. This is theoretically possible as the force is not time independent due
to the expansion term and as such energy is not conserved. The specific total energy of the
particles´in the locally inertial system of the central mass is given by

𝑒 =
𝑣2

2
− 𝐺𝑀

𝑟
− 𝑟

2

2
· 𝐻2

0 ·
(
Ω0,Λ −

Ω0,m

2𝑎3

)
. (2.54)

The resulting energies are plotted on the left in Figure 2.14, with the colors corresponding as
before to the orbits. Note the presence of three additional orbits farther out which. Dashed
lines represent particles initialized at the apoapsis, with solid lines for those starting at the
periapsis. Immediately, the former rapidly loses energy as the particle falls towards the
central point mass and then rises again in a hump before reaching a relatively stable energy.
As can be seen from the right this final stable energy approximately corresponds to the initial
Newtonian energy of the orbit, given by Equation 2.54 without the expanding term ∝ 𝑟2.
Note further that for orbits farther out the Newtonian energies begin fluctuating, indicating
that here the expanding term alternatively adds or removes some energy.
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Figure 2.13: Radii as a function of time of orbits with equal angular momentum 𝑙 = 1 (as defined
in Section 2.6) for varying total peculiar energies. The top row is initialized at the periapsis and the
bottom row at the apoasis. The left depicts the “Newtonian” potential, where simply an additional
force term is added to mimic the effective potential during expansion at 𝑎 = 0.2 but no comoving
frame used, while the right is for the fully comoving implementation. There the corresponding scale
factor is given for the latter, with 𝑎NT highlighted as a thin vertical black line. The colors correspond
to those in Figure 2.10 and Figure 2.12.
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Figure 2.14: Left: The total energy as given by Equation 2.54 of the orbits within the locally inertial
system of the central mass. Solid lines are the orbits initialized at the periapsis, with dashed those
at the apoapsis. The colors correspond to those in Figure 2.10 to Figure 2.13, with three additional
orbits farther out. Their radii can be seen in Figure A.8. 𝑎NT is highlighted as a thin vertical black
line. Right: The same for the Newtonian energy, given as Equation 2.54 without the expanding term
∝ 𝑟2.

To better understand this, one can picture the effective potential felt by the particles as a
slide pointing towards the center. At high 𝑧 this slide is further pushed upwards, becoming
steeper due to matter domination. Were the particle starting at the apoapsis able to complete a
half an orbit then under the same initial potential, it would rapidly accelerate and arrive at the
center exactly where the periapsis is as was seen on the left in Figure 2.12. However, this does
not happen. While the particle is falling inwards, the expanding term continuously flattens
out the slide, such that the particle has to expend increasingly more kinetic energy. The result
is that it does not reach as far into the center as it would have for the initial potential, instead
settling on an orbit of lower energy. Conversely, the particle starting at the pericenter would
for the initial potential have to expend more energy when moving away from the central mass
as the slide was stepper. As expansion flattens out, however, the slide it originally had to
climb becomes more shallow and thus allows it to reach farther out with its kinetic energy.
This is why the solid lines experience the initial jump in energy on the left of Figure 2.14.
Furthermore, after the initial rise or fall all orbits exhibit the converse behavior, corresponding
to them reaching the other half of their orbit and thus going from infalling to outgoing and
vice versa. This also therefore reverses the effects, but as the potential changes most rapidly
at higher 𝑎 the resulting amplitude is lessened. Generally, then, it makes a crucial difference
where a particle is on its orbit in addition to its energy, unlike the Newtonian case where the
definition of equal angular momentum and energy ensures the same orbits.

Finally, three additional orbits can be seen that are added to test the border of energies for
which at 𝑎 = 1 bound orbits become impossible. The orbits are then initialized with 𝑙 = 1
at 𝑉 = −0.125,−0.1, 0 · 𝑉100 colored as brown, pink and blue, and from the theory as per
Figure 2.9 should correspond to an orbit barely staying bound, an orbit just slightly over the
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threshold and one which rapidly becomes unbound even before 𝑎 = 𝑎NT. As can be seen
from the Newtonian energy on the right, this is exactly what occurs when initialized at the
periapsis (solid lines): the blue particle rapidly gains energy as it is increasingly accelerated
away from the central mass, removed entirely. The pink orbit starts out with a fluctuation
which initially rises with the same slope as the brown curve. Unlike that one, however, it
does not stop and eventually even increases its slope outwards as expansion takes over. This
can also be seen from the radii plotted in Figure A.8, where for the top right the two orbits
(blue and pink) become unbound. As is visible on the top left, this is not the case for the
Newtonian case with the expanding term frozen at 𝑎 = 0.2 added. The energies then do
correspond to stable elliptical orbits at the time they are initialized, however when moving
outwards as expansion flattens the slide as described above they manage to make it over the
hump and escape. Conversely, when initialized at the apoapsis (bottom row) the increasingly
flat slide does not allow them to reach as far in and they stay bound on lower energy orbits.

Reinterpreting the results, when a particle with an initial kinetic energy 𝐾 falls into a
potential well frozen at 𝑎 = 0.2 and would gain kinetic energy up to a value (1 + 𝑛) · 𝐾 at its
nearest point, with 𝑛 > 0, it then loses an equal amount as it leaves the potential and leaves
with the same kinetic energy 𝐾 . The net change in kinetic energy is then 0. However, in
an expanding Universe the potential well flattens out as it falls in. Therefore, as it reaches
its nearest point it would instead have (1 + 𝑓 ) · 𝐾 with 0 < 𝑓 < 𝑛. As it then leaves the
potential well increasingly flattens such that it only requires 𝑝 · 𝐾 to leave, with 0 < 𝑝 < 𝑓 ,
resulting in a net gain in kinetic energy ( 𝑓 − 𝑝) ·𝐾 . In the case of a photon, this is equivalent
to a blueshift as it passes through a flattening potential well and is known as the integrated
Sachs-Wolfe (Sachs & Wolfe, 1967) or also Rees-Sciama effect (Rees & Sciama, 1968). It is
the same principle here which results in the asymmetry between the orbits.

2.8 So What Was the Point?

This chapter has focused on the behavior of bound structures within an expanding Universe,
placing a special interest on the cosmological implementations of current state-of-the-art
simulation codes. This implementation was found to be generally consistent between varying
codes in Section 2.1. Section 2.2 then introduced and discussed the mathematical founda-
tion of the typical Friedmann-Lemaître-Robertson-Walker metric as well as its extension to
including a local point mass distortion for the standard ΛCDM cosmological model. The co-
moving formulation of this extended metric, known as the McVittie metric (McVittie, 1933),
is shown for the Newtonian limit to equal the cosmological implementations within the codes
in Section 2.3. The physical interpretation of this limit is discussed as local weak-field distor-
tions within a large-scale homogeneous and isotropic, expanding background. For the case
of a flat metric, the behavior of the scale factor was analyzed with differing cosmological
constants in Section 2.4, introducing a semi-analytic form to approximate the non-analytical
dependency of the scale factor on time. Bound structures within such an expanding flat
background are then found to be perturbed away from circular orbits in Section 2.5 using a
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typical perturbation theory approach from the literature (Cooperstock et al., 1998). It is found
to be possible instead to derive general analytical solutions for the behavior of orbits within
such point mass potentials in Section 2.6, finding that it is the density contrast of the bound
structure versus the critical density which solely dictates the impact of expansion. Orbits
enclosing higher densities are less influenced by the expanding background. This is adverse
to some of the typical interpretations in that it is not the absolute scale which is responsible
for the larger impact of expansion on systems such as galaxy clusters relative to galaxies,
but rather that they are less concentrated due to their later formation redshifts (Binney &
Tremaine, 2008). To check the validity of the cosmological implementations derived in
Section 2.3, Section 2.7 employs a specially made simulation reduced to just those parts of
the simulation code. Simulated orbits around a point mass potential were found to match
the theoretical expectations from Section 2.6, with the effective potential felt by the particles
flattening out towards later times. This results in more eccentric orbits at later times for equal
orbital energies. By comparing scaled variants of the system and finding equal behavior
it was demonstrated that it is indeed the density contrast and not the absolute scale which
defines the impact of expansion. Finally, a discrepancy in the evolution of orbits initialized at
different points within a single orbit at 𝑎 = 0.2 was discovered and subsequently interpreted
as an integrated Sachs-Wolfe (Sachs & Wolfe, 1967) or Rees-Sciama (Rees & Sciama, 1968)
like effect which arises from varying central potentials and also applies to orbiting particles.



Chapter 3

Does Extension Change Expansion?

One of the mentioned greatest strengths of cosmological simulations lies in their ability to an-
alyze highly non-linear processes of incredibly complex structures. This is of great use when
wanting to compare with observations, as structure within the Universe is typically extended
in nature, being comprised of many substructures as opposed to point like. Simulations of
extended mass distributions therefore allow important consistency checks for theoretically
models such as those presented in Chapter 2, as effects from N-body interactions can at times
be underestimated in their impact.

This chapter has as a goal to check the analyses and conclusions for orbits within point
mass potentials from Section 2.6 also for extended structures. Section 3.1 introduces some
of the most common density profiles which well match extended structure present in the
Universe and considers for them the evolution of orbits with time by examining the effective
potential for an expanding background. This will provide an indication whether or not the
findings from Section 2.6 are likely also to hold for extended structures. To also consider the
impact of N-body interactions, Section 3.2 then presents the evolution of both a Plummer-
and Hernquist-sphere in the same simulation framework from Section 2.7 for a Newtonian
and expanding metric. The findings are summarized in Section 3.3, with an outlook provided
for future research into processes where the impact of expansion could be significant.

3.1 Expansion with Extended Profiles

When considering the orbits of particles within a potential that itself lies within an expanding
background, to understand the core concepts it is useful to reduce the complexity of the
problem by beginning with a point mass potential as was done in Chapter 2. However, for
real physical systems the central mass 𝑀 need not be a point mass, but could also be modeled
as an extended mass distribution 𝑀 (< 𝑟). Here then different common density profiles and
their subsequent behavior when subjected to an expanding background are analyzed.

To start, it should be noted that of all terms appearing in Equation 2.45 – and so similarly
for Equation 2.42 – it is only the gravitational term which varies for an extended mass
distribution. The expanding term, 𝑟 · ( ¥𝑎/𝑎), is dependent only on the distance to the center
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and time, while the angular momentum can vary independently from the underlying mass
distribution as it is also dependent on the orbits and distance to the center. Fortunately, this
allows the introduction of mass profiles without significantly increasing the complexity of the
mathematics. Furthermore, as most common density profiles are spherically symmetric, it
follows from the shell theorem (Newton, 1687) that it is only the total mass contained within
the considered radius 𝑟,

𝑀 (≤ 𝑟) =
∫ 𝑟

0
d𝑟′4𝜋𝑟′𝜌(𝑟′), (3.1)

which is of relevance while that outside has no impact. Defining 𝑀 𝑓 (≤ 𝑏) ≡ 𝑀 (≤ 𝑟)/𝑀Δc

as the fraction of mass present within the radius 𝑟 = 𝑏 · 𝑟Δc relative to 𝑀Δc , such that
𝑀 𝑓 (≤ 1) = 𝑀 (≤ 𝑟Δc)/𝑀Δc = 1 by definition, it follows for an extended mass distribution
that the acceleration from Equation 2.44 takes the form:

¥𝑟 (𝑏, 𝑎)
𝐴Δc (𝑎)

= −
𝑀 𝑓 (𝑏)
𝑏2 − 𝑏

Δ𝑐/2
· Ω0,Λ −Ω0,m/(2𝑎3)

Ω0,Λ +Ω0,m/𝑎3 . (3.2)

Unfortunately, it is not quite as simple for the effective potential, as the integral over the
force in Equation 2.45 gains a dependency on 𝑟 in the mass for extended profiles. Instead, it is
sensible here to use Poisson’s equation ∇2Φ(𝑟) = 4𝜋𝐺𝜌(𝑟), where Φ(𝑟) is the gravitational
potential. For Equation 2.50 this means that the gravitational term as scaled there for a
general potential Φ(𝑟) takes the form:(

1
𝑏

)
point

=
𝑟Δc

𝐺𝑀Δc

· Φ(𝑟), (3.3)

such that the form for an extended mass profile of the effective potential is:

𝑉eff (𝑟, 𝑎)
𝑉Δc (𝑎)

= ·
[
𝑙2

2 · 𝑏2 −
𝑟Δc

𝐺𝑀Δc

· Φ(𝑟) − 𝑏
2

Δ𝑐
· Ω0,Λ −Ω0,m/(2𝑎3)

Ω0,Λ +Ω0,m/𝑎3

]
. (3.4)

The scaling of the effective potential then occurs according to the Newtonian effective
potential for a particle at rest 𝑉Δc (𝑎).

3.1.1 Mass Profiles

To plug the mass profiles into the equations for the expanding background, their enclosed
mass and potential must be determined as a function of radius. Here the chosen profiles are
introduced and their forms for 𝑀 𝑓 (< 𝑏) given. The first profile considered is the singular
isothermal sphere, which is one of the simplest models and describes structures with a density
slope of 𝑟−2. Such profiles are commonly used in applications such as gravitational lensing,
because they fit the observed projected profiles well and also have nice analytical properties
– see for example Brimioulle et al. (2013) – though they typically require an additional cutoff
radius to constrain their extent. This variant is not considered here. Instead, for the base
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singular isothermal sphere the density is defined as:

𝜌sis(𝑟) ≡
𝜎2

0
2𝜋𝐺𝑟2 (3.5)

where 𝜎2
0 is the central velocity dispersion. Equation 3.1 then gives:

𝑀sis(≤ 𝑟) =
2𝜎2

0
𝐺
· 𝑟. (3.6)

Here and for many subsequent profiles the relation 𝑀Δc = 𝑀 (< 𝑟Δc) allows the canceling
of one of the parameters of the profile. For the single isothermal sphere it follows that
𝜎2

0
!
= 𝐺𝑀Δc/(2 · 𝑟Δc), such that:

𝑀sis,f (≤ 𝑏) =
𝑀sis(< 𝑟)
𝑀Δc

=
𝑀Δc · 𝑟
𝑀Δc · 𝑟Δc

= 𝑏. (3.7)

Defining 𝐴sis ≡ 𝐺𝑀 (< 𝑟)/𝑟2 = (𝐺𝑀Δc/𝑟Δc)/𝑟 as the magnitude of the acceleration from a
SIS-profile, the potential is then:

Φsis(𝑟) =
∫

d𝑟 𝐴sis =
𝐺𝑀Δc

𝑟Δc

∫
d𝑟 𝑟 =

𝐺𝑀Δc

𝑟Δc

· ln(𝑟) + 𝑐𝑜𝑛𝑠𝑡. (3.8)

This shows that there are any number of potentials which reproduce the form of the density
and enclosed mass for the singular isothermal sphere (Binney & Tremaine, 2008). As such a
constant must be defined, which is chosen here to have Φsis = −Φpoint at 𝑟Δc . By then taking
𝑎𝑠 ≡ 𝑒 · 𝑟Δc , where 𝑒 is Euler’s constant, it follows for the gravitational term in Equation 3.4:

𝑟Δc

𝐺𝑀Δc

· Φsis(𝑏) = ln
(
𝑒−1 · 𝑏

)
. (3.9)

At 𝑟 = 𝑟Δc the term becomes equal to −1. Note that this choice is done to better compare the
behavior of the isothermal slope within the plots.

The second profile considered here is the Plummer density profile (Plummer, 1911),
which was originally introduced to described globular clusters. its profile is

𝜌p(𝑟) ≡
3𝑀0

4𝜋𝑎3
𝑝

(
1 + 𝑟

2

𝑎2
𝑝

)−5/2

(3.10)

with 𝑀0 the total mass and 𝑎𝑝 the so-called Plummer radius setting the size of a central core
where the potential flattens out. This dampened central region has the nice consequence of
avoiding diverging forces when simulating multiple particles, hence why a similar principle
is used in N-body simulations under the term “softening” – see Section 3.2 and Binney &
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Tremaine (2008). Defining then 𝑐𝑝 ≡ 𝑟200/𝑎𝑝 gives

𝑀p,f (≤ 𝑏) =
(

1 + 𝑐−2
𝑝

1 + 𝑐−2
𝑝 · 𝑏−2

)3/2

. (3.11)

𝑀Δc = 𝑀 (< 𝑟Δc) was used to define 𝑀0 = 𝑀Δc · (1 + 𝑐−2
𝑝 )3/2 For large radii this approaches

the finite mass 𝑀0. The gravitational term in the effective potential from Equation 3.4 is then:

𝑟Δc

𝐺𝑀Δc

· Φp(𝑏) =
𝑐𝑝

(
1 + 𝑐−2

𝑝

)3/2√︃
1 + 𝑐2

𝑝𝑏
2

. (3.12)

For the centers of elliptical galaxies, the Hernquist model (Hernquist, 1990) is found to
be a good match (Binney & Tremaine, 2008). The corresponding density profile is

𝜌h(𝑟) ≡
𝑀0
2𝜋

𝑎h
𝑟

1
(𝑟 + 𝑎h)3

, (3.13)

with 𝑀0 the total mass and 𝑎h the Hernquist scale radius such that when defining 𝑐h ≡ 𝑟200/𝑎h

it follows that:

𝑀h,f (≤ 𝑏) =
(

1 + 𝑐−1
h

1 + 𝑐−1
h · 𝑏−1

)2

, (3.14)

where again 𝑀Δc = 𝑀 (< 𝑟Δc) gives 𝑀0 = 𝑀Δc · (1 + 𝑐−1
h )

2. This gives the nice form:

𝑟Δc

𝐺𝑀Δc

· Φh(𝑏) =
𝑐 ·

(
1 + 𝑐−1

h
)2

(1 + 𝑐h𝑏)
. (3.15)

Finally, the density profiles of relaxed dark matter halos are found to match the Navarro-
Frenk-White (NFW) density profile (Navarro et al., 1996), albeit with discrepancies towards
the center. The profile is defined as:

𝜌NFW(𝑟) ≡
𝜌0

𝑐·𝑟
𝑟Δc

(
1 + 𝑐·𝑟

𝑟Δc

)2 (3.16)

and gives:

𝑀NFW,f (≤ 𝑏) =
ln (1 + 𝑐 · 𝑏) + (1 + 𝑐 · 𝑏)−1 − 1

ln(1 + 𝑐) − 𝑐
1+𝑐

(3.17)

where 𝑐 ≡ 𝑅s/𝑟Δc , with 𝑅s is the concentration of the mass distribution within 𝑟Δc . Note
that the profile does not have a form with 𝑀0, as it does not converge to a finite mass. The
resulting gravitational term in Equation 3.4 is:

𝑟Δc

𝐺𝑀Δc

· ΦNFW(𝑏) =
1
𝑏
· ln(1 + 𝑐𝑏)

ln(1 + 𝑐) − 𝑐
1+𝑐

. (3.18)



3.1 Expansion with Extended Profiles 39

Figure 3.1: Left: The enclosed mass for varying extended spherically symmetric density profiles as
a function of radius. Right: The resulting acceleration within a Newtonian frame.

3.1.2 The Resulting Forces and Potentials

These mass profiles are used to describe various different objects within the Universe. As
such, it is certainly not expected for them to behave equally. Note that throughout the
overdensity is set as Δ𝑐 = 200, and equal concentration parameters 𝑐i = 5, 15 are used,
where higher concentrations imply more point mass-like behavior. They are chosen to show
the general behavior between the profiles and their dependency on the scale radii 𝑎i. The
isothermal and point mass potentials do not depend on any 𝑐i.

To get an initial impression for their properties, the enclosed mass and acceleration are
depicted in Figure 3.1. The common scaling has ensured by definition that all profiles share
the same mass and acceleration at 𝑟 = 𝑟200. As can be seen on the left, for the point mass
any radius encloses the same mass while for the isothermal the mass rises linearly out to
infinity. Between the Plummer and Herquist profiles, the former is first flatter toward the
center, then rises more steeply before also flattening off more quickly. This is because of
the Plummer’s flat central density and steep outer slope ∝ 𝑟−5, hence why for large radii it
has a mass quite close to the point mass, quickly converging to its 𝑀0. In comparison, the
NFW profile has a generally more shallow slope in the center which persists to high radii,
resulting in the diverging total mass. As 𝐴 ∝ 𝑀f this directly translates into the acceleration
felt on the right, with the profiles that are steeper at higher radii having a stronger acceleration
there. However, at higher radii all profiles are generally similar to the point mass. This means
that expansion will impact them all similarly, as the differences at lower radii are where
the effects of expansion are comparably negligible anyway. Consequently the results from
Section 2.6 for the acceleration of a point mass within an expanding background also hold
for extended profiles, which can further be seen in Figure A.9 when plotting the full form of
the acceleration from Equation 3.2.

Turning then to possible resulting orbits, Figure 3.2 plots the effective potential of struc-
tures with overdensity Δ𝑐 = 200 at time times 𝑎 = 0.2 (left) and 𝑎 = 1 (right). The angular
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Figure 3.2: Left: The effective potential at 𝑎 = 0.2 scaled with 𝑉200(𝑎 = 0.2) resulting from a
point mass (black) and various extended profiles (colored) within an expanding frame as a function of
distance 𝑟 . Right: The same for 𝑎 = 1 scaled with 𝑉200(𝑎 = 1).

momentum 𝐿 is defined as the value for a point mass potential in a Newtonian frame at
𝑏 = 1, so 𝑙 = 1 in Equation 2.47. Aside from the isothermal density profile, the extended
distributions very closely mimic the shape of the point mass at both times. Note further that
the minimum of the effective potentials, i.e., the circular orbits, are all located at 𝑏 = 1 as
they should be for 𝑙 = 1. The largest difference is the depth of the potential, where it becomes
deeper the more mass is distributed farther out. This is because at the lower radii where the
point mass lies significantly above the extended profiles in mass (see Figure 3.1) the angular
momentum term dominates completely, masking the behavior of the gravitational potential
which would find deeper potentials for the Plummer and Hernquist profiles. The total mass
within 𝑟200 is the same by definition, but those two profiles which have it lie mostly near the
center consequently have less present at 𝑟 = 𝑟200 itself and thus have a more shallow potential
there, more closely matching the point mass.

It is of note that the larger radii start converging for all profiles, as expansion becomes
increasingly relevant until it completely dominates. This is visible also for the isothermal
profile as it begins to bend upwards on the left of Figure 3.2, which has the overall most shallow
density profile and therefore highest mass (see Figure 3.1). Nonetheless, lim inf Φsis(𝑟)/𝑟2 −→
0 and the expansion term therefore is still dominant at large radii.

But what about a fixed extended object, i.e., initializing an extended profile at some earlier
time and then keeping it fixed with time while the expanding background changes? With the
initial profile taken as the one on the left from Figure 3.2 at 𝑎 = 0.2 the resulting effective
potentials at 𝑎 = 1 and 𝑎 = 10 are depicted in Figure 3.3. As can be seen, within the fixed
size of the structure expansion flattens the effective potential in the outskirts, while the inner
regions are largely unaffected. All profiles still trace the form of the point mass, with the
minimum at 𝑏 = 1. Furthermore, at 𝑎 = 1 the expansion term is already nearly entirely
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Figure 3.3: Left: The effective potential at 𝑎 = 1 scaled with 𝑉200(𝑎 = 0.2) for a fixed structure
initialized at 𝑎 = 0.2 resulting from a point mass (black) and various extended profiles (colored) within
an expanding frame as a function of distance 𝑟 . Right: The same for 𝑎 = 10 scaled with𝑉200(𝑎 = 0.2).

dominated by dark energy, and as such does not change much to 𝑎 = 10 as can be seen on the
right. The analyses from Section 2.5 are therefore also applicable for extended profiles.

Having seen that the general behavior remains the same from the point mass to the
extended profiles, what about the theoretical behavior of the extent of orbits of constant total
energy? This was analytically solvable for the point mass as the solutions of Equation 2.53,
where 𝑉 ≡ 𝑉eff (𝑟, 𝑎0)/𝑉Δc (𝑎0) was defined as the fractional fixed total energy of a particle
relative to the total energy of a particle on a circular orbit at 𝑏 = 1. However, for an extended
profile the form becomes:

0 =
𝑏4

Δ𝑐
· Ω0,Λ +Ω0,m/𝑎3

Ω0,Λ −Ω0,m/(2𝑎3)
+ 𝑏2 ·

(
𝑉 +

𝑟Δc

𝐺𝑀Δc

· Φ(𝑏)
)
− 𝑙

2

2
. (3.19)

Taking for example the Hernquist profile, the substitution to 𝑢 = 1 + 𝑐i𝑏 allows the form of
Equation 3.19 to become a pure polynomial. However, this gives

𝑏2 𝑟Δc

𝐺𝑀Δc

· Φ(𝑏) ∝
(
𝑢 − 1
𝑐p

)2 1
𝑢
∝ 1
𝑢
− 2 · 𝑢 + 𝑢, (3.20)

such that when multiplying the entire Equation 3.19 by 𝑢 the final polynomial is now of fifth
order, not fourth. As known from the Abel-Ruffini theorem, no general solution to these
exists (see for example Tignol 2001), and as such would require numerical approximations.
Similarly, the forms for the other profiles are not even transformable into polynomials.
Consequently, this is not pursued here further.
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Figure 3.4: The gravitational potential along the x-direction for the Plummer (top row) and Hernquist
(bottom row) spheres for the Newtonian (blue dashed) and expanding cases (orange dash-dotted). The
region shows the extent of 68% of the mass. Best fits to the Newtonian case of the analytical profiles
given as Equation 3.10 and Equation 3.13 are plotted as a black solid line, with scale radii as given in
the legend. The left column is the start of the simulation, and the right the resulting distribution after
10 Gyr.

3.2 N-Body Orbits

N-body interactions of extended objects can have a significant impact on their evolution
through processes such as close passages leading to ejections. This motivates the need
to test the theoretical conclusions drawn for extended mass profiles in Section 3.1 against
simulations of such profiles. For the case of a Plummer and Hernquist sphere, this section
discusses the resulting evolution within a Newtonian and expanding frame by employing the
simulation from Section 2.7. As mentioned in Section 3.1.1, for N-body simulations it is
possible for close passages of particles to lead to diverging kicks that would completely eject
the particles. To avoid this these passages can be dampened by calculating the gravitational
force as that resulting from a Plummer potential Φp = −𝐺𝑀/

√︁
𝑟2 + 𝑎2

s with 𝑎s as a softening
length. For small 𝑎s this simply flattens the normally diverging central region, while for
longer distances becoming the correct point mass potential – see Figure 3.1 where a low 𝑎s

corresponds to a large 𝑐s.

There are 10 000 and 5000 particles with a total mass of 1×1012 M⊙ and 5.6×1012 M⊙ for
the Plummer and Hernquist sphere, respectively. The spheres are first simulated for around
2 Gyr within the Newtonian frame to allow the initial distributions to relax. Afterwards, the
particles are then run for 10 Gyr for the different frames, where the expanding one is initialized
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Figure 3.5: The same as Figure 3.4, but for the extent of 95% of the mass, with the dotted black line
representing the zero potential line.

at 𝑧 = 2. The softening length is chosen as 𝑎s = 0.022 kpc, where for the expanding case this
is transformed into the comoving frame by multiplying with the scale factor 𝑎(𝑡).

To see which impact expansion has on these extended spheres, a good overview can be
gained from considering the shape of the gravitational potential. This traces the overall
distribution of mass particles and thus allows insight into the broader changes between the
Newtonian and expanding cases. It is given as

Φ(𝒙) = −𝐺 ·
𝑛∑︁
i

𝑚i
|𝒙 − 𝒙i |

= −𝐺𝑀 ·
𝑛∑︁
i

1
|𝒙 − 𝒙i |

, (3.21)

as all point masses have equal mass. Figure 3.6 plots the resulting potential in x-direction
centered on the center-of-mass of the Plummer (top row) and Hernquist spheres (bottom
row) for the central 68% of the total mass. Note that the initial potentials are initialized as
identical for the Newtonian and expanding case. The Plummer sphere’s center ends up being
somewhat more peaked than the theoretical distribution. Nonetheless, the form after 10 Gyr
on the top right is seen to be practically identical between the Newtonian and expanding cases.
This shows as expected that the central regions are generally resilient against expansion. The
minor differences are most likely statistical in nature. For the Hernquist sphere, the same is
found with overall agreement between the expanding and Newtonian cases. Interestingly, the
best fit scale radius is similarly stable in time for both spheres.

Zooming out, Figure 3.5 shows that the same can be said at larger distances. For the extent
depicted, which includes 95% of the total mass, the curves are practically identical between
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Figure 3.6: Left: The orbit of a chosen particle in the Newtonian and Expanding simulations for a
duration of 0.8 Gyr. Right: The velocities as a function of time of the ten particles which escaped the
farthest for the Newtonian and Expanding simulations.

the Newtonian and expanding cases for both spheres. Would expansion severely remove
particles at the outskirts, where the gravitational potential is relatively shallow already at
initialization (left column), then the resulting potential should drop more off more steeply.
As it does not, the number of particles ejected is not strongly different between the Newtonian
and expanding frames. Another thing of note is that the Hernquist sphere’s scale radius is
found to be more slightly more stable with time, as can be seen from the fits.

These findings do not mean that expansion has no impact whatsoever, but rather that it is
relatively negligible in its overall impact on the large-scale distribution of the masses. For the
example of an orbit of one chosen particle between the expanding and Newtonian cases for
the Plummer sphere, as can be seen on the left in Figure 3.6 there do exist minor fluctuations
between the frames which alter the trajectory. The orbit depicted is from initialization to
around 0.8 Gyr, where initially the orbit stays exactly identical and then the minor deviations
lead to a slight divergence. This quickly grows due to the chaotic N-body interactions within
the central region such that the later times are not depicted as they do not correlate anymore.
There is however one region where the difference is strongly noticeable, and that is for the
particles which are ejected. The right panel in Figure 3.6 depicts the velocities of the ten
particles which are ejected most strongly as a function of time. For the Newtonian case they
are practically stable, decreasing very slightly with time due to the tiny gravitational attraction
remaining from the Plummer sphere, while for the expanding case contrarily they begin to
accelerate outwards. However, the number of particles ejected to this degree is minor, and
they are at distances of over 1500 kpc for both frames. As such they have no noticeable
impact on the mass distribution itself.

It must be noted here, however, that both the Plummer and Hernquist spheres, as seen in
Section 3.1.2, are very peaked in their distributions. As such, much of the mass is far in the
central regions which are least affected by expansion. Furthermore, the sphere is initialized
at 𝑧 = 2 in what is ostensibly a Newtonian form, because it was simulated to relaxation with a
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Newtonian background. It would be interesting to instead take a sphere that is relaxed as seen
at 𝑧 = 2 itself, i.e., with adding a frozen expansion term as done in Section 2.7. This would
more closely match the real impact from expansion, as there simply are no structures which
evolve in a purely Newtonian frame. Instead, comparisons should always take structures at
higher and lower 𝑧, though this then convolves with the changing critical density.

3.3 Looking Towards the Future

The question posed in the title of this chapter is central to interpreting the physical conse-
quences of expansion on extended structures within the Universe. Summarily, it is found here
that their extended nature does not impactfully alter the conclusions drawn for a point mass in
Chapter 2. Section 3.1 introduces the considered mass profiles and derives the form in which
they enter into the acceleration and the effective potential. Though there are differences for
the exact values, the overall shape of the acceleration with radius matches that for the point
mass, in particular for cases where the mass distribution is strongly concentrated such as
for the Plummer and Hernquist profiles. The NFW profile is found to exhibit the largest
difference of the two-parameter models, due to its generally more shallow distribution of
mass. For the singular isothermal sphere, the static slope ∝ 𝑟−2 leads to the largest mass for
high radii of all profiles, but is found not to grow rapidly enough to where it would overpower
the effects of expansion at large scales. Indeed, all profiles converge to the behavior dictated
by expansion at large radii, while being largely unaffected at lower radii. Furthermore, it
was shown that the potentials of extended mass distributions are pulled downwards at large
radii with increasing time due to expansion, again matching the behavior for the point mass.
Finally, Section 3.2 analyzed the simulation of both a Plummer and Hernquist sphere, finding
that the Newtonian and expanding evolution coincide. This echos the statements made in
Section 2.6 in that the evolution of the central regions of the potential itself do not change
strongly.

In the future, it would be interesting to consider more varied density profiles as well,
for example the common Einasto profile (Einasto, 1965), originally constructed to fit stellar
components of galaxies. This is found to also well describe various forms of dark matter
halos (Cimatti et al., 2019) and takes the form

𝜌(𝑟) = 𝜌−2 exp

(
−2𝑛

[(
𝑟

𝑟−2

)1/𝑛
− 1

])
. (3.22)

as given in Equation 4 from Retana-Montenegro et al. (2012). As it has a variable slope 𝑛,
the Einasto profile allows for a broader range of shapes that could be tested in an expanding
background. Additionally of great interest is the environment. Though the bound structures
themselves are found to be largely unaffected, the outskirts are not. This would potentially
have an impact on for example the inflow rate and velocity of mass onto the structure, as
well as for highly eccentric individual orbits. As all structure formation always occurs within
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an expanding frame, it is difficult to disentangle the impact of general changes, such as
later forming structures being less concentrated due to decreasing critical density, to the
local impact on individual structures. One could, for example, freeze a structure within the
expanding frame at an early redshift and compare its properties when evolving there versus
evolving with a changing expanding background. There is still much which remains to be
explored.



Chapter 4

The Elephants in the Room – Galaxy
Clusters

Attention is now turned to the second to fourth questions posed in Chapter 1. As remarked
there, recent studies have found discrepancies in the number, mass, concentration and distri-
bution of substructures in very massive galaxy clusters between observations and simulations
(Jauzac et al., 2016; Meneghetti et al., 2020). The particular focus will be placed on the ques-
tion of the number of very massive substructures, with their distribution naturally arising in
the process. Concentration in turn is discussed further in both Section 5.2.4 and Section 7.1.

Before one can understand the problem of massive substructures, however, one first
must understand the structures within which they are being found, namely galaxy clusters.
Section 4.1 provides an overview of the history of observations into galaxy clusters, how they
have caused new issues and corresponding physical insights to arise. It is based primarily on
the great summaries of galaxy clusters provided by Kravtsov & Borgani (2012) and Biviano
(2000) supplemented by some portions written by Cimatti et al. (2019), with more topically
focused reviews by Sarazin (1988) (X-rays) and recently by Contini (2021) (intracluster
light). As galaxy clusters are the largest collapsed structures, it is of utmost importance to
understand the current theory of structure formation within the concordance cosmology of
ΛCDM, which is discussed in Section 4.2 at great depth. This ensures greater understanding
of why substructure masses could provide challenges to ΛCDM because of their direct link
through structure formation. Section 4.3 then briefly covers the current understanding of
their composition, with a particular focus placed on processes affected substructures within
galaxy clusters. The findings are summarized in Section 4.4.

4.1 What is a Galaxy Cluster?

Galaxy clusters are, as the name implies, clusters of galaxies, and represent the largest bound
structures in the universe. They were first observed in a quantifiable manner during the
year 1901 by Max Wolf as, paraphrased from the German original, a gathering of numerous
small nebulaspots so tightly clustered that when observing the area one would practically
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startle at the odd appearance of this “Nebelhaufen”(Wolf, 1901), translated as cluster or heap
of nebulae. He found 108 of such spots clustering in what is now called the Coma Cluster,
something he noticed again with 148 nebulae for the Perseus Cluster in the year 1906. Though
these represent the first quantifiable measurements, as mentioned by Biviano (2000) general
observations of this clustering were noted much earlier also in the Coma Cluster by William
Herschel all the way back in the year 1785, when on pages 255 to 256 he mentions “the
appearance of that remarkable collection of many hundreds of nebulae which are to be seen
in what I have called the nebulous stratum of Coma Berenices” (Herschel, 1785), or the Coma
Cluster. He likened it to a collapsed gathering of stars, speculating further that “our system,
after numbers of ages, may very possibly become divided so as to give life to a stratum of
two or three hundred nebulae”. The Coma Cluster is continuously present in early important
observations, likely due to its ideal position in the north pole relative to the galactic plane.

4.1.1 First Measurements and the Curious “Non-Luminous Matter”

Galaxy clusters can contain hundreds of galaxies on spatial scales of megaparsecs, and
can reach masses exceeding 1 × 1014 M⊙ (Sarazin, 1988). Our current knowledge and
understanding of these extreme masses is not to be taken for granted – that they indeed are
this massive was shown first through measurements of the galaxy velocities and by assuming
the virial theorem for the Coma (Zwicky, 1933) and Virgo Clusters (Smith, 1936), during a
time when they were still called “extragalactic nebulae”. For the latter case, through simple
yet robust arguments Smith (1936) concludes a total mass for Virgo of 1 × 1014 M⊙. This
argument for a regular structure is central, as such high velocities could theoretically also
be explained by collapsing structures which would then not indicate such high masses (as
it would not be in virial equilibrium). The lack of clustering or the expected downwards
slope for a structure collapsing towards its center in Figure 4.1 indicates no such collapse is
taking place, whereby it can be concluded that the structure is at least somewhat stable and
subsequently that circular velocities can provide an estimate for the total mass.

Following this conclusion, however, Smith notes that with the (then common) assumption
of no internebular material this mass distributed over 500 assumed nebulae in Virgo would
mean an average nebula mass of 2 × 1011 M⊙ – a value around 2 orders of magnitude higher
than the average nebula mass estimate at the time of 6 × 108 M⊙ to 1 × 109 M⊙ from Hubble
(1934). This lent credence to the similar findings for Coma as made even earlier by Zwicky
(1933) – but what is then this “non-luminous” matter of which there is so much in galaxy
clusters? A first clue can be gleamed from the fact that Zwicky famously termed it “dunkle
materie”, or “dark matter”.

4.1.2 Were We Simply Using the Wrong Wavebands?

The presence of dark matter, however, was the subject of debates for many subsequent
decades – spurred for example by noticing an underestimation of stellar masses in early
studies (Kravtsov & Borgani, 2012). Many alternative explanations were discussed, for
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Figure 4.1: The distribution of velocities of assumed member galaxies of Virgo plotted as a function
of distance to the center of the cluster. Figure 2 from Smith (1936).

example the existence of some extremely elliptical galaxies within the galaxy clusters with
mass-to-light ratios ten times higher than typical values (Abell, 1965), the presence of
many interlopers on hyperbolic orbits or that the galaxy clusters themselves are actually not
dynamically stable, instead being in the process of disintegrating (Biviano, 2000). This was
further exacerbated by theoretical considerations when moving away from the assumption of
“transparent” internebular material (Smith, 1936), instead allowing for intracluster gas and
dust as done by Limber (1959). Though at the time not yet conclusively observed within
galaxy clusters themselves, presence of such gas in open star clusters (Drake, 1958) and the
theoretical understanding of the formations of galaxies as occurring within a larger parent
clustering of gas (Limber, 1959) both implied its existence – the former by assuming mergers
of galaxies within the cluster would fling out their gas and dust (Spitzer & Baade, 1951), the
latter by having the leftover gas from the initial formation of the galaxy persist in the cluster. It
was already at this point anticipated that the intracluster medium would not necessarily follow
the large-scale distribution of the galaxies, instead being prone to effects such as pressure,
turbulence and magnetic field strength (Limber, 1959). Though many of the assumptions and
conclusions made do not hold up to current scrutiny, say the age of the universe as 3× 109 yr
and the size of the Coma Cluster as 280 kpc leading to between 20 and 150 collisions for
a typical galaxy as given by Spitzer & Baade (1951), they laid important foundations for
later observations of the ICM. It is interesting here to note the consistent presence of like
argumentation for clusters of stars and clusters of galaxies, present both in the very early
writings (Herschel, 1785) as well as later (Spitzer & Baade, 1951).

It would then be in the year 1966 when X-ray emission was first detected as coming from
a source outside of the Milky Way galaxy (Sarazin, 1988), namely in the central region of
the Virgo Cluster around M87 (Byram et al., 1966). This was further strengthened by the
findings of Bradt et al. (1967), excluding with high probability (> 15/16) cases of background
fluctuations or of two distinct sources (the historic signal detected is depicted in Figure A.10),
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as well as with observations of X-ray signals originating from the center of the Coma Cluster
(Boldt et al., 1966). Similar observations in the following years lead Cavaliere et al. (1971) to
the conclusion that there exists a “class of intense X-ray sources correlated with associations
of galaxies”, arguing that the signals extend beyond singular galaxies. The sources rather
correlate with the densest regions of the clusters, though at the time this could not yet be
conclusively linked to some underlying physical process responsible for the X-ray signal
(Cavaliere et al., 1971). Many possible sources were considered such as an active nucleus,
a superposition of individual galaxies, or that there was extended thermal emission from
intracluster gas. The hot gas postulate, while initially tentative due to supposed time variations
observed in the Virgo Cluster’s emission (Cavaliere et al., 1971), would gain credence when
longer observations of the Coma Cluster done with the same instrument Ariel V (Sanford
& Ives, 1976) – as opposed to comparing multiple measurements of different experiments –
found remarkably constant temporal brightness behavior with less than 20% or less variance
on timescales between 6 d to 1 yr (Elvis, 1976). This would incredibly assist in the study
and understanding of the evolution of galaxy clusters, as the X-ray observations allowed the
detection of clusters at 𝑧 > 1 (Rosati et al., 2002; Kravtsov & Borgani, 2012).

4.1.3 Confirming Dark Matter and Consequences for Cosmology

The famous “missing mass” problem would come to a head through two key components
(Biviano, 2000). Firstly, the ever-increasing evidence, one argument of which is quite elegant
in its simplicity. The large galaxy cluster masses (and so their high mass-to-light ratios)
are found via the virial theorem (Zwicky, 1933; Smith, 1936), which requires the galaxy
clusters to be stable. So maybe they are not (Ambartsumian, 1958), but if that is true then
most galaxy clusters should, due to the large velocities and subsequent small timescales,
have already disintegrated. Consequently most field galaxies would then be original galaxy
cluster members, which they do not appear to be due to their clustering in space (Limber,
1962). It follows then that the large virial masses found for galaxy clusters are indeed a
solid measurement – so there is mass missing. Similarly, the newer radio measurements
allowed the observations of non-Keplerian rotation curves farther out, additionally indicating
the presence of more mass (Biviano, 2000).

Secondly, the release of two impactful papers by Einasto et al. (1974) and Ostriker et al.
(1974). The former employed rotation curves for 105 pairs of galaxies and found them
irreproducible with just the visible mass, instead requiring what they termed a “corona”
with an exponential density law. They found that the total mass contained in the coronas
was an order of magnitude higher than that from the stars. This was significant because it
had been suggested previously by Page (1952) that these pairs featured significantly lower
mass-to-light ratios than galaxy clusters did. Meanwhile, Ostriker et al. (1974) open with the
poignant sentence “There are reasons, increasing in number and quality, to believe that the
masses of ordinary galaxies may have been underestimated by a factor of 10 or more”. They
raise the excellent point that the presence of spherical shells of mass by virtue of the shell
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theorem (Newton, 1687) would not be measurable by rotation curves of the stars interior to
them, hence restricting the findings of Page (1952) to small central scales for the galaxy pairs.
Instead of converging, observations suggested that outside of those scales the mass of giant
spiral galaxies depends on radius as 𝑀 (𝑟) ∝ 𝑟 . The measurements for the gas portion of
the mass were still the result primarily of radio observations of the 21 cm-line from neutral
hydrogen, emphasizing the value of the rise of X-ray observations. It would finally be the
advent of gravitational lensing which set in stone the presence of dark matter (Fort & Mellier,
1994), as predicted by Zwicky (1937) many decades prior.

However, given that a majority of the now-found mass would be in the form of this dark
matter, the question becomes what this mass actually is. The aforementioned observations
of the hot intracluster gas however could not account for all of the missing mass that now
was clearly established as real. This would go a step further to rule out baryons generally
as a dark matter candidate through the theory of primordial nucleosynthesis (see Olive
et al. 1981 and Cavaliere et al. 1998). Instead, the component is distributed relatively less
condensed than the stellar mass is, indicating it to be collisionless (Bond et al., 1982). For
lower energy candidates, termed “cold dark matter”, with an initially linear power spectrum
|𝛿k |2 ∝ 𝑘𝑛 = 𝑘1, the resulting density perturbations for would lead to collapse first of
overdensities on the galaxy scale, with larger scales collapsing soon after. This is then
a scenario of hierarchical clustering of galaxies (Bond et al., 1982). Interestingly, already
Cavaliere et al. (1998) find good fits for a CDM cosmogony in a flat geometry withΩ0,m = 0.3.

4.1.4 Consequences for Cosmology

As presented for the case of dark matter, galaxy clusters offer one of the most unique
observatories for insights into the Universe itself. Their identity as the largest collapsed
structures offers the ability to use them as “cosmographic buoys” for the peaks in the large-
scale matter density (Allen et al., 2011). They fortunately offer additionally a wide array of
wavelengths with which they can be probed: X-ray from the hot intracluster medium (Sarazin,
1988; Rosati et al., 2002), optical from the galaxies and intracluster light (Contini, 2021),
millimeter wavelengths from the distortions in the cosmic microwave background due to the
Sunyaev-Zeldovich effect (Sunyaev & Zeldovich, 1972) and finally even radio wavelengths
due to synchrotron emission from relativistic electrons (Allen et al., 2011). At their core,
they have in no small part enabled the establishment of the ΛCDM reference cosmology
(Voit, 2005). The discovery of dark matter by Zwicky (1933) represented just the first step
to uncovering all the potential they contained in understanding the Universe.

To provide further an idea as to how such general properties can be derived through
galaxies clusters, one can measure their masses and extent and therefore mass density. This
density when averaged over many measurements can be concluded to provide an upper bound
to the total mean matter density in the Universe. This follows from the assumption that the
areas between galaxy clusters are less dense than the clusters themselves (Abell, 1965).
Conversely, a lower bound can then be made by assuming all mass to be contained in galaxy
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clusters. The upper bound can further be lowered by instead considering superclusters. This
was for example the method employed by (Abell, 1965), arriving at 𝜌𝑚 ≈ 1 × 10−30 g cm−3.
Given Equation 2.18 for 𝐻0 = 70.4 km s−1 Mpc−1 this results in Ω0,m ≈ 0.11, while for the
common value of 𝐻0 = 50 km s−1 Mpc−1 at the time this gave instead Ω0,m ≈ 0.21. This
latter value was found also by Ostriker et al. (1974) and Einasto et al. (1974) during the
transitionary period towards solving the missing mass problem.

Furthermore, structure formation can be constrained through comparison of the cluster
mass distribution today versus at earlier times (Voit, 2005). Additionally, galaxy clusters
posses the astounding property of containing a baryonic fraction nearly identical to the mean
one in the Universe, indicating that unlike galaxies galaxy clusters are very efficient at keeping
their baryons during infall (Cimatti et al., 2019). This results in a sort of “closed-box” nature,
enabling the study of baryonic processes relevant for the formation of galaxies (Kravtsov &
Borgani, 2012).

4.2 Structure Formation

For all these incredible properties and the usefulness of galaxy clusters to understanding the
Universe itself, the question of how they actually formed was similarly a debate of many
decades. Given that galaxies are somewhat unsurprisingly constituents of galaxy clusters
this begs the question of the chicken and the egg: do galaxy clusters form from subsequent
captures of galaxies, are field galaxies the result of the dissipation of galaxy clusters? Or,
rather, a third option: neither. Captures were found to simply take too long to remove energy
and were thus ruled out (Holmberg, 1941; Biviano, 2000), while galaxy clusters themselves
were found to be stable (see Section 4.1.3). So how do they form?

4.2.1 Why Does Structure Exist At All?

To understand the formation of structure within the universe, it is necessary first to under-
stand the cosmology. This is especially important as observation of the cosmic microwave
background initially showed the Universe to be isotropic and homogeneous on large scales
(Mather et al., 1990), which is also the starting point for the underlying Friedmann-Lemaître-
Robertson-Walker metric – see Section 2.2. So where then do the departures from homo-
geneity, i.e., all structures, come from?

For the concordance cosmology of ΛCDM, the picture in brief is this: An initial phase of
extremely rapid expansion freezes initial density perturbations as the Hubble length decreases,
severing the regions’ causal link (Liddle, 1999; Kinney, 2003). The concordance paradigm
sees an inflaton scalar field responsible for this expansionary phase so rapid that the initial
perturbations are originally the result of quantum fluctuations (for an excellent review see
Kamionkowski & Kovetz 2016). These fluctuations produce approximately a Gaussian
random field (Mukhanov, 2005). After this initial phase of extremely rapid expansion, the
ensuing slower expansion and subsequent cooling allows the formation of atoms during a brief
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phase termed primordial nucleosynthesis, where the plasma is dense enough to initiate nuclear
fusion but not too dense to immediately destroy any formed atoms (Wagoner et al., 1967). It
is further dense enough such that electromagnetism tightly binds photons to charged particles,
which in turn are tightly bound to the atoms and dark matter through gravity thus resulting
in a singular fluid. This persisted until the fluid had sufficiently cooled to where photons can
begin streaming freely. This results in a surface of last scatter where-after it became possible
for photons to travel long enough undisturbed to where they could be observed today as a
homogeneous, isotropic blackbody radiation at 𝑇 = 2.725 K, which has been redshifted to
a lower temperature during time (Planck Collaboration, 2020). This is due to the curious
property that a blackbody spectrum when redshifted reproduces a blackbody spectrum of
lower temperature (see for example page 397 from Kutner 2003). The observation of this
cosmic microwave background is one of the foundations of the concordance cosmology, and
the rigidity with which is has been measured has come a long way from its historical initial
observation by Penzias & Wilson (1965) where the “taping test” was still necessary. Though
indeed largely homogeneous, the discovery of minuscule temperature anisotropies within the
CMB subsequently allowed insight into the power of the density fluctuations seeded at all
scales at the time of recombination (Smoot et al., 1992).

It is these density fluctuations which then with time collapse into the structures present
within the Universe. The greatest amount of the mass which drives this collapse through
gravity is contained in dissipationless dark matter and as such greatly reduces the complexity
of the modeling. This allows a direct link between the observed initial conditions and resulting
collapsed structures (Kravtsov & Borgani, 2012).

4.2.2 Collapse and Merging – Theory

It is the simultaneous fixation of both the cosmological background (the metric) as well
as the initial conditions (which constituents are present in which amounts as well as in
which distributions) that together result in the evolution of structure. Conversely through
the observation and modeling of this evolution it is possible for statements to be made about
the former. The mathematics as to how a spectrum of initial quantum fluctuations produces
density perturbations and their evolution with time in a full general relativistic context of an
expanding background Friedmann-Lemaître-Robertson-Walker metric is incredibly complex
and far beyond this thesis. A good overview is given in chapters 7 and 8 from Mukhanov
(2005). Instead, jumping ahead, recombination marks the transition when the photon-baryon
fluid decouples and the governing equations for the evolution of over- and underdensities
become dissipationless (Press & Schechter, 1974; Peebles, 1993). Note that before this the
initial quantum fluctuations are also evolving, through the balance of gravity and pressure,
but the end result can still largely be linearly linked to the intput spectrum (Press & Schechter,
1974). This spectrum at recombination is the farthest back where information can be directly
observed, and forms the starting point of structure formation analyses. Note further that in the
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Figure 4.2: Schematic of multiple over- and underdensities layed on top of each other, constructing
the general density field. The dashed line indicates the characteristic overdensity 𝛿c beyond which at
time 𝑡 overdensities have collapsed to dark matter halos. Figure 1 from lecture 9 of van den Bosch
(2022).

following primarily overdensities are mentioned as this is often easier to picture. However,
for the linear regime both over- and underdensities grow in the same way (Mo et al., 2010).

The temperature anisotropies observed within the cosmic microwave background can be
directly linked to density fluctuations because they probe the time directly after decoupling.
To quantify the shape of this initial density field, one typically uses the power spectrum
𝑃(𝑘) ∝ 𝑘𝑛, corresponding to the Fourier transform of the mass density field. It describes the
relative variance from the mean (and therefore presence of over- and underdensities) based
on the inverse spatial scale 𝑘 = 2𝜋/_. The exact formalism has 𝑘 arise from a multipole
expansion, such that 𝑘 only implicitly represents a length and instead more correctly a surface
on a sphere (Carroll, 2001). 𝑘 = 2 corresponds to a dipole sampling of the spherical surface
representing the CMB, with the variance determined by comparing the smoothed values
over either pole. An initial density distribution produced by a pure Gaussian random field
corresponds to an equal overlaying of powers of all scales (as a random field prefers no
spatial scale over another), which then gives 𝑃(𝑘) ∝ 𝑘1. This is the case of 𝑛 = 1, which
is a Harrison-Zel’Dovich spectrum (Harrison, 1970; Zeldovich, 1972; Peebles & Yu, 1970).
Indeed, the most current measurements find 𝑛 = 0.9665 (Planck Collaboration, 2020), a slight
departure from the pure Gaussian random field. This departure is however consistent with
current models for inflation (Mukhanov, 2005). Note that how these initial angular scales
appear to observers today is dictated by the angular diameter distance, and is thus further
convolved with the cosmology (Carroll, 2001).

The starting point is thus a spectrum of powers for deviations from the mean density on
all spatial scales. However, unlike star formation which can be observed in various stages,
it is quite difficult to view the early structure formation which results from the collapse
of these overdensities. In the linear regime it is found that the density field evolves as
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𝛿(𝑥, 𝑡) = 𝐷 (𝑡)𝛿0(𝑥), with 𝐷 (𝑡) a growth function and 𝛿0(𝑥) the extrapolated density field at a
time 𝑡 = 𝑡0 (Mo et al., 2010). This means that for this regime all overdensities grow at the same
rate independent of scale. If one pictures then the overlaying of all density perturbations into
a lower-dimensional representation as in Figure 4.2, at a given time all overdensities above
the critical value 𝛿c (dashed line) are expected to have collapsed. With time, this line moves
downwards, thus finding overdensities (and underdensities) on larger scales at later times.
This is the “bottom-up” hierarchical structure formation, as the overlaying leads to smaller
overdensities collapsing first – see the left-most smaller scale halo which collapses, before
the larger overdensity collapses at a later time when the dashed line moves down. A notable
consequence is that galaxies form first, with galaxy clusters forming around them, and as such
do not form within galaxy clusters themselves, answering the question posed at the beginning.
The characteristic overdensity 𝛿c is typically derived via the spherical tophat, giving a value
of around 168 when overdensity growth goes nonlinear (Mo et al., 2010).

This, however, is the linear picture. It does not describe how long it takes for those
overdensities which break the threshold to collapse. A leap forward in the understanding of
the nonlinear evolution came with the mechanisms described by Press & Schechter (1974),
whereby the nonlinear interactions of smaller masses produce larger-mass objects – bottom-
up, as described above. Though crude in its assumptions, it has proven itself with time to fit
generally the results from CDM simulations (Jenkins et al., 2001), with an alternative mass
functions given for example by Sheth & Tormen (1999). The core result found by Press
& Schechter (1974) is, when assuming an initial gas at 𝑡 = 𝑡0 made of points with some
characteristic seeding masses, that in a Newtonian limit the condensations of these points to
larger mass structures will subsequently result in a new time 𝑡1, where on sampling on larger
scales has the gas appear again as a distribution of point particles of some characteristic mass.
That is to say, structures collapse self-similarly, and bottom up, even within the non-linear
regime. Note that the initial assumptions deviate from the picture in Figure 4.2, as there
exists just one initial characteristic seeding mass as opposed to an overlaying of overdensities
on all scales. The original derivation also requires a “fudge-factor” of 2 in addition to the
deviating initial assumptions. A more correct and exhaustive approach is provided by the
excursion set theory as presented by Bond et al. (1991), also known under the name “Extended
Press-Schechter”, which finds the same functional form from Press & Schechter (1974) for a
specific choice of filtering function (a sharp k-space filter, corresponding to a spherical tophat
in Fourier space van den Bosch 2022) though now with the factor 2 arising naturally.

Note that the resulting structure formation is strongly dependent not only on the choice
cosmology, but also on the initial power spectrum. For example, when assuming a flat cold
dark matter cosmology (which thus fixes many properties of the Universe), the change of the
initial conditions of the power spectrum can still result in either smaller galaxy-scale or larger
galaxy cluster-scale overdensities collapsing first as well as at the same time, with the former
for a power spectrum slope (see Section 4.2.1) of 𝑛 = 1, the second for 𝑛 = −1 and the third
for 𝑛 = 0 (Bond et al., 1982).
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Figure 4.3: Comparison of the simulated halo mass function in red, versus in dashed gray the spherical
(Press & Schechter, 1974) and in solid blue the ellipsoidal (Sheth et al., 2001) collapse Extended Press-
Schechter formalisms. Figure 2 from the Max-Planck-Institute for Astrophysics research highlight of
year 2004 by Springel (2004) for halos from the Millenium Simulation (Springel et al., 2005).

4.2.3 Collapse and Merging – The Numerical Findings

The number of crude assumptions made in the derivation of the Press-Schechter formalism
result in a necessary caution towards the results. Indeed, as described by Sheth & Tormen
(1999) the basic form for spherical collapse of the Press-Schechter formalism (over-) under-
predicted the number of collapsed halos with masses (smaller) larger than the characteristic
scale 𝑀∗, defined through the condition 𝜎(𝑀∗) = 𝛿c(𝑡), see Jenkins et al. (2001) or van den
Bosch (2022). Much better matching to halos from dark matter-only simulations was found
for the mass function resulting from the ellipsoidal collapse model by Sheth et al. (2001),
because the non-zero tidal field deviates collapse away from a spherical form (van den Bosch,
2022). This can be seen clearly in the halo mass function from the Millenium Simulation
(Springel et al., 2005) as depicted as red lines in Figure 4.3, with the above noted behavior
for the spherical collapse Press-Schechter formalism (dashed gray) while the variant with
ellipsoidal collapse depicted in blue matches significantly better.

The great potential for cosmological simulations to assist in the understanding of structure
formation can be found in the work by Bond et al. (1996), where filaments are shown to
potentially result from the bridging of large-scale overdensities when they constructively
interfere – something which is difficult to quantify analytically due to the strongly elongated
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nature of the filaments (see Figures 1 and 2 therein). Another example is the direct analysis
of merger events via merger trees in the Millenium Simulation (Springel et al., 2005)
conducted by Fakhouri & Ma (2008). They find that the number of progenitors increases
with the mass of the final halo, with much fewer single-progenitor galaxy clusters than
galaxies (Figure 4 therein). Furthermore, Fakhouri & Ma (2008) determine that minor
mergers (with large differences in mass between the merging objects, 𝑀2/𝑀1 < 0.03) are
significantly more likely than major mergers (𝑀2/𝑀1 ≥ 0.1) for all mass ranges as can be
seen in Figure 6, something which Fakhouri et al. (2010) found to hold again for the larger
Millennium-II Simulation (Boylan-Kolchin et al., 2009). The resulting merger rates
depend only weakly on the halo mass and more strongly on the mass ratios (Fakhouri &
Ma, 2008) and environment (Fakhouri & Ma, 2009), with denser environments leading to a
general enhancement of merger rates by factor 2 to 2.5 for all mass ratios relative to voids.

These enhanced merger rates would conversely imply halos of like total masses to have
formed more recently in dense environments were their mass mostly dictated by mergers
(Fakhouri & Ma, 2009). This is exactly converse to other findings (for example Wang et al.
2007), which demonstrates that it is not mergers which dictate the main source of mass
for halos but rather smooth accretion from the field (Fakhouri & Ma, 2010). This smooth
accretion is then decreased in denser environments relative to voids, as the deep potential
wells lead to much higher relative velocities and thus suppress smooth accretion (Fakhouri &
Ma, 2010), even far outside of the virial radii of the centers of the wells (Hahn et al., 2009;
Behroozi et al., 2014). To give a comparison to alternative cosmologies, this behavior is
further enhanced for warm dark matter models due to the lack of small scale halos, where
mass growth is then dominated by diffuse accretion at all redshifts (Dhoke & Paranjape,
2021).

The overall effects of the denser environments are summarized under the term “assembly
bias” (Gao & White, 2007). It is found that halos with earlier formation times 𝑧form lie in
denser environments (Wang et al., 2007; Hahn et al., 2007; Wetzel et al., 2007; Maulbetsch
et al., 2007; Li et al., 2008; Hahn et al., 2009), with the formation redshift of a halo typically
defined as the moment when it reaches half of its mass at 𝑧 = 0. This stands against the typical
Extended Press-Schechter formalism and its presumption of environmental independence,
which has been attempted to be remedied by using the ellipsoidal collapse (Sheth et al.,
2001) and amending the collapse condition from being purely overdensity dependent to
including the shape of the initial density field (Sandvik et al., 2007). Nonetheless, this is
found to be insufficient to cover the discrepancy to simulations (Hahn et al., 2009). Recent
findings indicate that the assembly bias may originate overall from multiple physical processes
(Han et al., 2019) and be primarily dictated by the environmental tidal field anisotropy
(Ramakrishnan et al., 2019).

It can then be seen how cosmological simulations allow a more precise treatment of
the non-linear regimes, accounting for more varied effects than possible analytically. The
merger rate enhancement in denser environments Fakhouri & Ma (2009) as well as the
major and minor merger rates generally (Fakhouri & Ma, 2008) provide a challenge to the
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Figure 4.4: The evolution of a choice baryonic (dashed purple) and dark matter (solid pink) overdensity
as a function of log(𝑎) in a ΛCDM Universe. Overview-figure from van den Bosch (2022).

Extended Press-Schechter formalism and its statistical nature (no differentiation between
spatial regions). This discrepancy to simulations exists also for higher redshifts for the halo
mass function itself (Gao et al., 2004), with much subsequent work done to improve analytical
modeling (Bond et al., 1991; Lacey & Cole, 1993, 1994; Giocoli et al., 2008) and calibrating
it with numerical simulations (Jenkins et al., 2001; Reed et al., 2003; Yahagi et al., 2004;
Gao et al., 2004). However, there exists on the side of the simulations the difficulty of how
to identify halos and subhalos – see Section 5.3. As such, it is through combined analysis
of a theoretical framework and then the actual simulations that this insight into hierarchical
structure formation has been gained. Nonetheless, the crude assumptions must always be
kept in mind, and predictions of the ellipsoidal collapse extended Press-Schechter formalism
taken only in a statistical sense and always with a grain of salt.

4.2.4 Collapse and Merging – What About Baryons?

The derivations of the analytical formalisms from Section 4.2.2 and Section 4.2.3 are done for
the dissipationless portion of the mass (dark matter) only, as no hydrodynamical processes
were considered (Press & Schechter, 1974; Bond et al., 1991; Sheth & Tormen, 1999).
Considering that most of the mass in the Universe is dark matter (Planck Collaboration,
2020) this should not deviate too strongly from the real final resulting structure. However,
that is not to say that baryonic processes are of no impact. During infall, the gas is heated up
and reaches extreme temperatures in the range of 1×107 K to 1×108 K (Cimatti et al., 2019),
resulting in shocks before settling into a hydrostatic equilibrium (Kravtsov & Borgani, 2012).
Because the baryons can more efficiently remove angular momentum through pressure, they
can “cool” into more dense cores than the dissipationless dark matter can. This inclusion of
baryonic physics can perhaps even alter the slope of the dark matter profile of a galaxy cluster
towards the denser central regions (Rosati et al., 2014).



4.3 Substructures And Galaxy Cluster Composition 59

A summary of the overall evolution of an overdensity is given in Figure 4.4. Taking a
dark matter and baryonic overdensity in the same region and considering first the former, its
growth stagnates during radiation domination (known as the Meszaros 1974 effect) before
beginning after 𝑡eq to grow linearly during matter domination (van den Bosch, 2022; Mo et al.,
2010). In contrast, the baryonic matter is tightly coupled to the photons as a plasma before
recombination and thus instead begins oscillating. This persists also during the transition to
matter domination, with fluctuations on small scales damped out as the radiation begins to
decouple at 𝑡dec via Silk (1968) dampening. The baryonic matter, now freed from the plasma,
then rapidly grows in overdensity as it falls into the already-existant dark matter overdensity.
Both grow linearly until they reach the critical overdensity, after which they collapse non-
linearly. Here the virialization shock in the baryons is visible, leading to a much larger spike
in density than present for the dissipationless dark matter which then drops before cooling
again into a high density central region. Note that the presence of baryons has also been
argued by Brooks et al. (2013) to lead to a flattened central dark matter density slope due to
supernova feedback.

Understanding the changes to the structure formation paradigm when introducing baryonic
physics is one of the core questions currently being researched today, with exciting results
expected for the differences in protoclusters for dark matter only simulations (Chiang et al.,
2013) to fully hydrodynamical ones (Remus et al. 2022, to be submitted) as well as for the
accretion behavior through cosmic filaments onto structures from galaxies to galaxy clusters
(Seidel et al. 2022, in preparation). Much is still to be learned about the interplay of the
complex physics, with the closed-box nature of galaxy clusters providing a great potential for
these future studies.

4.3 Substructures And Galaxy Cluster Composition

Through the combined work described in the previous section, and the concordance cos-
mological model of ΛCDM, an incredibly deep understanding of galaxy clusters has been
achieved. They are now known to be comprised only to the smallest part of the matter upon
which initial observations were founded, namely the stars. These make up only 1% to 5% of
the total mass, while the total baryonic mass fraction is 10% to 16%, increasing with total
galaxy cluster mass (Cimatti et al., 2019). Most of these baryons are then instead contained
within the hot intracluster medium, while most of the total mass, around 84% to 90%, is
contained in dark matter (Cimatti et al., 2019).

Given the paradigm of hierarchical structure formation as described in Section 4.2,
the question of the chicken and egg is also clear. Galaxies form first, with galaxy clusters
representing the latest structures to collapse. Note that the presence of such a large overdensity
necessarily enhances any smaller, galaxy-scale overdensities, thus allowing many galaxies
to preferentially cluster in the region. There result three main modes of mass accretion for
galaxy clusters. The steady mass infall along the surrounding filaments, accretion of discrete
groups or the significantly more rare event of a cluster-cluster merger (Owers et al., 2011).
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It should be noted at this point that the delineation between a galaxy cluster and what
is referred to as a group of galaxies is by no means rigid. Chosen borders between the
two are often either a mass or number of members cutoff, typically 1 × 1014 M⊙ or at
least 50 members (Cimatti et al., 2019). These classifications are made primarily to quantify
differences between lower and higher mass environments, where for example there is an
observed deviation between scaling laws for X-ray luminsities of groups and clusters (Vajgel
et al., 2014; Lovisari et al., 2015; Schmidt et al., 2021). Another consequence is that the
lower velocity dispersions in groups of galaxies allow for a high frequency of galaxy-galaxy
interactions, enabling the formation of so-called “evolved” groups (Cimatti et al., 2019).
Conversely, the rapid velocities due to the deep potential wells of galaxy clusters largely
prevent such interactions, although note again that there exists no clear border but rather
increasing relevance of different physical processes with central potential mass. Generally
substructure within galaxy clusters undergoes a different type of evolution compared to those
in the field, caused primarily by the interactions with the deep potential well itself. In which
ways is it affected, and what sort of properties with time can one expect from a substructure
within a galaxy cluster?

4.3.1 What Is Substructure and How Does It Evolve?

Substructure is a collapsed local overdensity within a large scale collapsed overdensity. For
galaxy clusters, it can take the form of infalling galaxies or groups of galaxies. Based on
hierarchical structure formation it must then either have been present during formation or have
fallen in afterwards – it does not form within the galaxy cluster after formation. However,
by no means does this mean that the substructures within galaxy clusters do not evolve with
time – quite the opposite. After infall, they experience a variety of processes that are unique
to (or enhanced within) the deep potential wells, and that thus are not (rarely) experienced by
comparable objects in the field.

Even well before the substructure has fallen within the virial radius of the larger object
it begins feeling the effects of the larger potential. Both mergers and smooth accretion are
ceased as local dynamics become dominated by the galaxy cluster (Behroozi et al., 2014).
This could potentially be explained by the increase in environmental velocities which then
exceed the smaller halo’s virial velocity (Wang et al., 2007; Dalal et al., 2008). Sandvik
et al. (2007) however find the environmental mass insufficient for this picture, prompting
alternatives such as the influence of the tidal field. There instead importance is placed on
the angular momentum which arises in the hierarchical structure formation, known under
the moniker of “tidal-torque theory” (Hoyle, 1949; Doroshkevich, 1970; White, 1984). The
smaller halos streaming within filaments would then experience an ordered shear flow which
suppresses the accretion and merger rates (Hahn et al., 2009). The impact is felt particularly
early for the rate of major mergers 𝑀2/𝑀1 > 0.3 which typically cease at more than four
virial radii away from the galaxy cluster due to the tidal forces, where smooth accretion ceases
comparatively closer to the galaxy cluster (Behroozi et al., 2014).
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Once the substructure falls in far enough, the tidal effects become strong enough to not
just prohibit further accretion but instead begin stripping material, in particular from the
more diffuse dark matter halo. The extended halo feels strongly differing forces between
its points most far in and out and thus has matter stripped away (Richstone, 1976; Wetzel
& White, 2010). Furthermore, as the galaxies sink towards the center due to dynamical
friction (Chandrasekhar, 1943) they can eventually merge with the brightest cluster galaxy
(see Section 4.3.2) sitting at the center – then termed “galactic cannibalism” (Mo et al., 2010;
Cimatti et al., 2019).

Another typical feature observed for galaxies within galaxy clusters is their increasing
fraction of spheroidals (S0 and ellipticals) relative to spiral galaxies compared to the field
(Dressler, 1980), known also as the morphology-density relation (Cimatti et al., 2019).
This means that passive galaxies cluster more strongly than those which are star-forming
(Wilkinson et al., 2017; Cowley et al., 2019). This is due to the additional quenching
mechanisms present in the high density environments. These include starvation (Larson
et al., 1980), where the lack of additional gas accretion mentioned above leads to star
formation using up all the cold gas present, strangulation (Larson et al., 1980), where left-
over gas from star formation would normally settle back down onto the galaxy but is instead
stripped away in the dense environment, thermal evaporation (Cowie & Songaila, 1977),
whereby the hot ambient gas in the ICM interacts with the colder, star-forming gas from
the galaxy primarily by evaporation, galaxy harassment (Moore et al., 1996), where close
galaxy-galaxy encounters (not mergers) lead to a loss of angular momentum and heating of
the stellar distribution, and ram-pressure stripping (Gunn & Gott, 1972), where the galaxy
feels a pressure ∝ 𝜌cluster𝑣

2 against it during infall that strips less strongly bound portions of
its gas. Ram-pressure stripping in particular quenches both by stripping directly the cold,
star-forming gas as well as by stripping the more diffuse atomic gas, resulting in starvation
occurring earlier, and is also found to be present within groups of galaxies, though with
comparatively lesser strength (Roberts et al., 2021).

This can be seen also from post-starburst galaxies (PSB), which represent a transitional
phase between star-formation and quiescence, one finds them to be more clustered at lower
redshifts, with low-mass PSBs predominantly found in high density environments (Wilkinson
et al., 2021). Thus, while for higher redshifts it tends to be feedback processes which quench
star-formation in galaxies (for example via stellar feedback after major mergers – see Trayford
et al. 2016), for lower redshifts (𝑧 < 1) it is the above quenching mechanisms which are
responsible for the rapid quenching (Wilkinson et al., 2021). In particular, this has been
suggested as due to ram-pressure stripping by various authors including Owers et al. (2019)
and Vulcani et al. (2020), which would correlate to the findings by Lotz et al. (2021) where in
the Magneticum Pathfinder simulation (Dolag, 2022) the fraction of PSBs peaks jumps
towards the center. Furthermore, Lotz et al. (2019) argue that already single passage through
the galaxy cluster is sufficient to quench star formation.

Some additional nuance arises when considering infalling groups of galaxies. The group
environment is already enhanced in density relative to the field, and as such the galaxies
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already begin experiencing the higher-density quenching processes. This has been seen both
in simulations (Vijayaraghavan & Ricker, 2013; Han et al., 2018b) as well as observations
(Bianconi et al., 2018) and thus adds another layer of complexity when considering galaxy
evolution within galaxy clusters. This “preprocessing” has also been linked to cluster mem-
bers which appear particularly visually disturbed, and allows the high fraction of red galaxies
to be present far outside of a galaxy clusters center (Han et al., 2018b). There are many
additional properties that can be considered, some which can be linked to a decreasing dis-
tance of substructures to the center such as the Butcher & Oemler (1978) effect (increasingly
bluer galaxies) or the increasing stellar ages seen in Figure 10 by Saro et al. 2006, which
are however to numerous to cover here. For general introductions to galaxy clusters, see the
reviews by Sarazin (1988), Biviano (2000), Kravtsov & Borgani (2012) and Contini (2021)
mentioned above.

One final characteristic which is of great importance is the total mass contained in
substructures as a fraction of the total galaxy cluster mass 𝑓sub. The quenching and stripping
processes described above serve to continually remove mass from substructures which have
fallen into the galaxy cluster, lowering 𝑓sub with time. On the other hand, the infall of new
material serves to counter the downwards trend (McBride et al., 2009). At 𝑧 0, however,
the mass-loss outpaces the mass accretion rates and so 𝑓sub generally decreases with time.
Conversely, higher 𝑓sub are indicative of either an earlier formation time or recent merger
events (Jiang & van den Bosch, 2016), and has thus can be used as a tracer for relaxedness
(Shaw et al., 2006; Ludlow et al., 2013; Biffi et al., 2016; Jiang & van den Bosch, 2017).
Studying substructure thus can provide insight into the dynamical state of a galaxy cluster,
into structure formation generally and thus also in tests between different potential dark matter
variants (Bhattacharyya et al., 2021).

4.3.2 The Brightest Cluster Galaxy and Intracluster Light

Aside from the member galaxies, the over optically visible portions consist of the intracluster
light (ICL) and the brightest cluster galaxy (BCG). The latter typically sit at the center of the
galaxy cluster and are, as their name implies, the most luminous galaxies. They can reach
luminosities up to 1 × 1012 L⊙ and masses up to 1 × 1013 M⊙, though distinguishing to the
galaxy cluster mass is not easily accomplished due to their location (Cimatti et al., 2019).
Unlike normal growth modes, BCGs grow primarily through mergers (Mo et al., 2010; Remus
et al., 2017a) with their stellar masses typically growing by a factor 2 after 𝑧 = 2 (Laporte
et al., 2013). Consequently, BCGs are invariably giant ellipticals and often exhibit multiple
nuclei (Cimatti et al., 2019), and are furthermore found to be inconsistent with the global
luminosity function of galaxies (Tremaine & Richstone, 1977; Ragone-Figueroa et al., 2018).
These mergers typically imply that the stellar mass is formed early in other galaxies and then
merged into the BCG at later times, though there exists a subset of particularly overdense
protoclusters which assemble the stellar mass onto the BCG much earlier (Rennehan et al.,
2020).
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The ICL, meanwhile, is primarily comprised of the stars which are stripped out from
member galaxies as well as released during mergers with the BCG, and it contains a significant
fraction of the total stellar mass within the cluster (Remus et al., 2017a). It can be difficult
to spatially distinguish the delineation between BCG and ICL (as well as the extended halos
of other bright ellipticals), yet in terms of kinematics Dolag et al. (2010) show through
use of a hydrodynamical simulation that they can be fit by two superimposed Maxwellian
distributions. Furthermore, Marini et al. (2021) find an offset in the velocity dispersions of
stellar particles associated with the ICL versus BCG via the Maxwellian split from Dolag
et al. (2010).

4.4 Summary

Section 4.1 has provided an overview of the history of galaxy cluster study, showing how
the field blossomed into an extensive marvelous consortium involving such plentiful physical
processes rarely matched in their diversity. Galaxy clusters are found to provide unique lab-
oratories, both for cosmological models due to their status as the largest collapsed structures
and baryonic physics due to their much higher retention of baryons during formation com-
pared to galaxies. The current hierarchical structure formation paradigm resulting from the
concordance cosmology of ΛCDM was discussed in Section 4.2, illuminating how analytical
models such as the Extended Press-Schechter formalism must make strongly simplifying
assumptions. This necessitates the need for comparisons to cosmological simulations, with
many features found from these simulations, such as the environmental assembly bias, being
difficult to reconcile with the theories. Section 4.3 has discussed the composition of galaxy
clusters, with a particular focus on substructures within and the impact of processes such
as tidal stripping and quenching. From Section 4.3.1 in particular follows that the mass
contained in substructures within galaxy clusters is tightly linked to structure formation as
a whole. Larger masses could imply weaker tidal fields and less stripping, or earlier forma-
tion times which allow for more accretion by the substructures before infall. Understanding
substructure masses thus enables a more nuanced analysis of structure formation.
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Chapter 5

Measuring with Two Measures

Before seeking new theories to replace ΛCDM, it is necessary to ensure the comparability
between the methods employed.

In the following, an overview of the general methods employed for observations are
described in Section 5.1. A particular focus is placed on gravitational lensing in Section 5.2,
describing the typical lensing approaches and the observation of Abell 2744 which finds the
mass discrepancy. Section 5.3 provides an overview of some of the current state-of-the-art
simulations with emphasis placed on their method of determining substructures. The findings
are summarized in Section 5.4.

5.1 Measuring Galaxy Clusters, Ground- and Space-based
Observations

This section will provide a brief overview of typical observational methods employed to
study galaxy clusters and how they have been used to determine their masses. In particular,
Section 5.1.1 focuses on the signals from the hot intracluster medium, typically observed
in X-ray or via the Sunyaev-Zeldovich (Sunyaev & Zeldovich, 1972) effect’s distortions in
the CMB. Section 5.1.2 then looks at the method originally used by Zwicky (1933) to first
determine the “missing mass” problem as in Section 4.1.1, namely by use of dynamical
modeling.

5.1.1 X-Ray and the SZ-Effect

Since its first observations in the late 1970’s described in Section 4.1.2, the hot diffuse
intracluster medium has provided invaluable insights into many facets of galaxy clusters,
such as their dynamical state and mass. The X-ray emission resulting from the ICM is
incredibly high, reaching luminosities of 1 × 1043 erg s−1 to 1 × 1045 erg s−1 (Cimatti et al.,
2019). The following provides a brief overview of the theoretical foundations upon which
observational methods are built.



66 Chapter 5 – Measuring with Two Measures

Initially, the source of this X-ray emission was not clear. It could for example be the
result of compact sources, or of a diffuse hot intracluster gas (Sarazin, 1988). In the latter
case it would follow that the resulting thermal velocities of the protons are then comparable
to the velocities of the galaxies within the cluster due to sharing the same gravitational
potential, and further that the gas would be heated sufficiently to become a plasma. The
charged particles within the plasma would then emit in X-ray as thermal bremsstrahlung,
where passing by an ion the electron emits radiation because its velocity changes due to the
deflection (Cimatti et al., 2019), and one should thus observe a continuum, in addition to any
emission lines of heavier elements should these be contaminating the gas (Sarazin, 1988). It
is this case of thermal bremsstrahlung emitted from a hot intracluster plasma which would be
found consistent with observations (Davidsen et al., 1975). In the framework of hierarchical
structure formation it is then the baryonic mass which collapsed together with the cluster’s
dark matter halo, being shock-heated in the process before settling into equilibrium (Biffi
et al., 2016).

It is through the assumption of hydrostatic equilibrium from which then galaxy cluster
masses can be measured by modeling the gas with a spherically symmetric mass distribution,
resulting in:

𝑀 (𝑟) = 𝑘b · 𝑇
𝐺`𝑚p

(
d log 𝜌
d log 𝑟

+ d log𝑇
d log 𝑟

)
, (5.1)

with 𝑚p the proton mass, 𝑘b the Boltzmann constant and 𝐺 Newton’s gravitational constant
(Pellegrini & Ciotti, 2006; Biffi et al., 2016). Knowledge of the radial temperature 𝑇 and
density 𝜌 profiles as well as the mean molecular weight ` thus allow direct inference into the
total mass.

One can also derive the form for the electron temperature 𝑇e as:

𝑘b · 𝑇e ≈
𝐺𝑀𝑚p

2𝑅eff
≈ 7 keV · 𝑀

3 × 1014 M⊙

(
𝑟eff

Mpc

)−1
(5.2)

with 𝑅eff as the effective gravitational radius (Birkinshaw, 1999). As can be seen from
Equation 5.2, a particularly important feature within the X-ray spectrum is then the 7 keV
iron line complex, though it also includes many lower-energy lines from lighter highly-ionized
elements (Cimatti et al., 2019).

One of the great advantages of X-ray observations is that they reduce the chance of
projection effects. A high X-ray signal indicates a potential well with a depth found only in
galaxy clusters, such that for example projected galaxies add nothing to the signal. However,
in rare cases it is possible to enhance the signal when instead two galaxy clusters are found
in projection, as seen for example by Böhringer et al. (2010). Note that there exists a further
differentiation between galaxy clusters depending on their central temperature profile. If the
temperature decreases towards the center, this indicates that the cooling time is shorter there
than the cluster age and they are thus called “cool-core” clusters, with those not exhibiting this
feature correspondingly as “non-cool-core clusters” (Cimatti et al., 2019). This can have an
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impact on a number of properties, such as for example the relation between the concentration
(see Chapter 3) and mass of the galaxy cluster (Ragagnin et al., 2019).

Furthermore, as suggested first by Sunyaev & Zeldovich (1972), the free electrons within
the plasma are able to scatter radio emission passing through it via Thomson scattering, which
occurs as the low-energy limit of Compton scattering when the wavelength of the photons is
much larger than the Compton wavelength of the scattering electrons (Thomson, 1906). The
cross section is

𝜎T =
8𝜋
3
·
(
𝑒2

𝑚e𝑐2

)2

(5.3)

with 𝑒 and 𝑚e the electron charge and mass, respectively, such that for an electron number
density of 𝑛e ≈ 1 × 10−2 cm−3 persisting through a galaxy cluster of size 𝑅eff ≈ 1 Mpc
the chance of scattering is 𝜏e ≈ 𝑛e𝜎T𝑅eff ≈ 1% (Cimatti et al., 2019). This is particularly
interesting as there is a general radio background, namely the CMB. Because the electrons
are at significantly higher energies than the CMB photons the scattering shifts the CMB
spectrum to higher energies. The net result is a reduction in the CMB intensity at typically
measured wavelengths (a < 218 GHz) referred to as “microwave diminution” (Sarazin, 1988;
Birkinshaw, 1999; Cimatti et al., 2019). This SZ-effect on the CMB is significantly more
intense than other local perturbations, for example of galaxy clusters acting as gravitational
lenses, and furthermore has the advantage of being independent of the redshift thus allowing
the detection of galaxy clusters at very high redshifts (Birkinshaw, 1999). Note that in
addition to the SZ-effect described here resulting from the thermal motions of the electrons
(thermal SZ), there arises also a signal from the bulk peculiar motions of the electrons (i.e.,
of the galaxy cluster itself) called the “kinetic SZ”, which is typically around an order of
magnitude weaker (Cimatti et al., 2019).

It is through the combined use of X-ray and SZ images that statements about the thermal
and density structure can be derived, as they depend on (𝑛e, 𝑇e) in different ways (Birkinshaw,
1999). To this end, a model for the gas distribution 𝑛e is integrated across the depth of the
cluster with the requirement of reproducing both the X-ray

(
∝ 𝑛2

e · 𝑇
1/2
e

)
and SZ (∝ 𝑛e · 𝑇e)

signatures (Myers et al., 1997). Additionally, knowledge of the thermal profile allows the
SZE to provide information on the surface baryonic mass density (Myers et al., 1997), which
allows direct comparison to other projected mass density measurements such as gravitational
lensing (Birkinshaw, 1999) – see Section 5.2. One of the most interesting uses is achieved by
comparing the expected SZ effect from X-ray measurements providing the thermal structure
(𝑛e, 𝑇e), where the measurements are dependent on the angular diameter distance, to those of
the actual measured SZ which are redshift independent. This allows a measure of the Hubble
constant 𝐻0 as described in Section 4.1 of Birkinshaw (1999).

However, important corrections are necessary for the amount of non-thermal pressure
present in the galaxy cluster (Biffi et al., 2016). This can originate from merging and
accretion events, resulting also in a scatter of galaxy cluster sizes for equal masses depending
on the accretion history. As the observations of X-ray and the SZ-effect commonly rely on
the thermal portion of the pressure, this can lead to biases resulting from the dynamical state
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(Rosati et al., 2014; Walker et al., 2019). One example would be attributing all pressure
support to the thermal portion measured by an X-ray observation and then assuming the ICM
to be in hydrostatic equilibrium, resulting in a higher mass estimate due to the neglect of
pressure support from bulk and turbulent motions of the gas (Shi et al., 2016). Furthermore,
a disturbed galaxy cluster’s gas profile, or even just a departure from spherical symmetry, is
likely not reproduced well by typical models such as the isothermal sphere and can induce
uncertainty up to a factor of 2 (Myers et al., 1997). Nonetheless, many properties of the ICM
are found to be quite resilient against disruptive processes including accretion, such as the
entropy slope Z (from 𝐾 ≡ 𝑃/𝜌𝛾 ∝ 𝑀−Zgas), and thus provide an overall excellent tool (Voit
et al., 2005; Shi, 2016).

5.1.2 Dynamics

Dynamical modeling can also be used to determine the masses of galaxy clusters, so long as
they are assumed to be bound, self-gravitating structures. It is with this assumption and the
virial theorem that Zwicky (1933) first demonstrated most of their mass to be present in dark
matter, and the assumption of their bound nature has since held firm – see also Section 4.1.3.
The derivation of masses via observed dynamics is relatively straightforward. With 𝑇 and
𝑊 the total kinetic and potential energies, the condition to be bound is 𝑇 +𝑊 < 0. When
additionally they are assumed to have reached some degree of equilibrium, their distribution
fulfills then the virial theorem as 2 · 𝑇 +𝑊 = 0, which following Sarazin (1988) gives:
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where the last step defines the mass-weighted velocity dispersion as

⟨𝑣2⟩ ≡
∑

i 𝑚i𝑣
2
i

𝑀tot
(5.5)

and the gravitational radius as

𝑅G ≡ 2𝑀2
tot ·

(
𝑚i𝑚j

𝑟ij

)−1
. (5.6)

This may at first seem an odd transformation, yet the new values are easier to deal with.
When assuming spherical symmetry, ⟨𝑣2⟩ has the advantage of being able to be related
to projected line-of-sight velocities instead of the full three-dimensional ones, and further
then instead simply to the radial velocity dispersion ⟨𝑣2⟩ = 3𝜎2

r as described by Limber
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& Mathews (1960). Similarly, 𝑅G can be related to a similar variable 𝑏G which however
takes the projected distances as well, giving 𝑅G = (2/𝜋)𝑏G. When observing a statistically
representative sample of the galaxies within the galaxy cluster, then measurements of these
values gives an estimate of the total mass present (Sarazin, 1988).

Difficulties can arise for dynamical masses due to substructure and velocity anisotropy
(Rosati et al., 2014). These can locally alter the dynamical properties, such as the velocity
dispersion, and thus lead to biases in the determined masses (Sarazin, 1988).

5.2 Gravitational Lensing

Foreseen already in the year 1937 as crucially viable for the case of galaxies (and by extension
galaxy clusters), due to their larger distortion and greater apparent size, Zwicky 1937 had
already realized the potential power of a tool such as gravitational lensing. Not only could
its observation serve as another test on the calculations from general relativity, but it would
provide the final definitive proof to the “missing mass” problem discussed in Section 4.1
(Zwicky, 1937). Though gravitational arcs could already have been seen in many astronomical
images before then (Fort & Mellier, 1994), it would be the advent of more sensitive CCDs that
allowed in the later years of the 90’s a row of observations of these arcs (Lynds & Petrosian,
1986; Soucail et al., 1987). Initially associated to the galaxy clusters themselves, for example
as the result of powerful explosions or galactic cannibalism resulting in a tidally stripped
galaxy, it would be Paczynski (1987) who proposed the arcs to be the result of gravitational
lensing. He further provided a simple test of the hypothesis, in that if they resulted from the
cluster, they should have approximately the same redshift, while if the result of gravitational
lensing their redshift should be higher. And indeed, spectroscopic measurements by Soucail
et al. (1988) found the arc at 𝑧 = 0.724 and therefore behind the galaxy cluster Abell 370 at
𝑧 = 0.374. This would enable, for the first time, direct probing of the dark matter distribution
in galaxy clusters through their distortions on background galaxies (Fort & Mellier, 1994).
Furthermore, given sufficient knowledge of the mass distribution of a gravitational lens would
allow statements about the redshift of a background source based on the distortion, without the
need for spectroscopic measurements (Fort & Mellier, 1994). Indeed, gravitational lensing
would prove to be such a powerful tool that within the decade after these first confirmations
it would enable the measurement of the Hubble constant 𝐻0, constrain the cosmological
constant Ω and, as mentioned, the mass distribution in the centers of galaxy clusters (Seitz
et al., 2022).

Recent observations from gravitational lensing have, however, found discrepancies in
the mass distributions relative to those from simulations. To understand what these imply,
Section 5.2.1 first provides an overview of the basic principles of gravitational lensing. Armed
with these basics, the specific procedures and models commonly employed for current lensing
observations are described in Section 5.2.2, before describing two current observations finding
more mass (Section 5.2.3) and more compact (Section 5.2.4) substructures compared to those
from simulations.
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5.2.1 Caustics and Critical Lines

The following brief overview of the principle of gravitational lensing is done on the basis
of Fort & Mellier (1994), Narayan & Bartelmann (1996) and Seitz et al. (2022). Of central
importance is the angular diameter distance typically assigned the letter 𝐷 when used in
gravitational lensing (where more general books on cosmology may define it instead as 𝑑A).
𝐷 describes the relation between the angular extent 𝑑\ as observed to the proper extent 𝑑b
of the object itself as 𝐷 = 𝑑b/𝑑\ and is defined for example in Equation 2.8a of Seitz et al.
(2022). Assuming the size of the lensing mass to be small relative to the total distance
between observer and source, it can be approximated as a thin lens (Fort & Mellier, 1994).
The picture is then that light from the source travels unperturbed through a flat spacetime
described by the Friedmann-Lemaître-Robertson-Walker metric given in Section 2.2, which
is then deflected in the lens plane by an angle 𝛼 given entirely by the project mass distribution
Σ, and finally continues again unperturbed to the observer. This is illustrated in Figure 5.1.
As seen therein for point sources this alters their apparent position in the source plane from
[ to b.

Generally the deflection angle is calculated assuming a weak perturbation of a Minkwoskian
spacetime through the lensing mass and its resulting gravitational potential (Narayan & Bartel-
mann, 1996). This also requires the peculiar motion of the lensing mass to be non-relativistic,
which is the case for practically all cases of interest. The local perturbation from the grav-
itational potential causes the light to travel slower (its effective speed is reduced) akin to a
prism – see Figure 2 from Narayan & Bartelmann (1996) – which results in the deflection.
In theory this leads to a line integral over the path of the light which is continuously bent
by the potential, while in practice when the assumptions above hold the deflection angle is
relatively small and as such the line integral can be evaluated for a straight path of the light,
also known as the Born approximation from scattering theory (Narayan & Bartelmann, 1996;
Seitz et al., 2022). It follows that:

�̂� =
2
𝑐2

∫
𝑙

d𝑙 Δ⊥Φ =
4𝐺
𝑐2

∫
R2

d2b′
Σ(𝝃′) (𝝃 − 𝝃′)
|𝝃 − 𝝃′|2

, (5.7)

given as Equations 2.11 and 2.12 in (Seitz et al., 2022) and where the second equality
follows from the thin lens approximation. Note that it is only the transverse gradient of the
gravitational potential relative to the lights travel path which causes the deflection (left of
Equation 5.7), while parallel gradients (for example from sheets of mass perpendicular to the
travel path) cause no deflection. Consequently it is only the change in projected surface mass
density which impacts the lensing signal.

When defining Z as the apparent position of the source in the source plane, from Figure 5.1
it can be concluded that

\ =
b

𝐷d
=
Z

𝐷s
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Figure 5.1: The geometric relations between the observed position b in the lens plane versus the
actual position [ in the source plane, and their link through the deflection angle �̂�. Note that due to
the nature of the expanding background metric in general 𝐷s ≠ 𝐷ds + 𝐷d. Figure 1 taken from Seitz
et al. (2022).
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−→ �̂� =
Z − [
𝐷ds

=

𝐷s
𝐷d
· b − [
𝐷ds

←→ [ =
𝐷s
𝐷d
· b − 𝐷ds · �̂�(b) (5.8)

which is the form of the lens equation given as Equation 2.13a from Seitz et al. 2022 and is
often also given in forms of angles as

𝛽 = \ − 𝛼(\), (5.9)

with 𝛼(\) = (𝐷ds/𝐷s)�̂�(\) the reduced deflection angle (Equations 13 and 14 from Narayan
& Bartelmann 1996) where the dependency on b in Equation 5.7 has been replaced by the
equivalent angle \. There is a beautiful relationship in the behavior of the reduced deflection
angle. It can be shown that 𝛼 can be related to an underlying “deflection potential” 𝜓 which
fulfills the condition 𝛼(\) ≡ ∇𝜓(\) by transforming b = 𝐷d · \:

∇𝜓(\) !
= 𝛼(\) = 𝐷ds
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· �̂�(\) (5.7)
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where in two steps first the critical surface mass density

Σcrit ≡
𝑐2

4𝜋𝐺
· 𝐷s
𝐷s𝐷ds

(5.11)

and then the dimensionless surface mass density

^(𝜽′) ≡ Σ(𝜽′)
Σcrit

(5.12)

were defined. This is then exactly akin to how the electric field is given as a gradient of the
electric potential, where here instead the reduced deflection angle is given as a gradient of a
deflection potential (Seitz et al., 2022). It can be shown that the lens equation in Equation 5.9
for small angles linearises to a Jacobian matrix as

A =

(
1 − ^ − 𝛾1 −𝛾2

−𝛾2 1 − ^ + 𝛾1

)
= (1 − ^) · I − 𝛾 ·

(
cos(2𝜙) sin(𝜙)
sin(𝜙) − cos(2𝜙)

)
(5.13)

as shown for example by Narayan & Bartelmann (1996). ^ is known from the above definition
and describes the convergence (Ricci focusing), commonly also defined in the form as the
the Laplacian of the deflection potential, 2 · ^(𝜽) = Δ𝜓(𝜽) (from Equation 5.10). The second
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term 𝛾 is the complex shear (Weyl focusing) and can be determined as

𝛾2 =
1
4

(
𝛿xx𝜓 − 𝛿yy𝜓

)2 +
(
𝛿xy𝜓

)2
, (5.14)

as given by Equations 6 and 7 from Fort & Mellier (1994). ^ then describes the isotropic
focusing of a bundle of light, while 𝛾 results in an anisotropic distortion (Seitz et al., 2022).
If the latter is non-zero this will result in extra ellipticity induced in the images, causing
the formation of arclets or weak distortion of background galaxies (Fort & Mellier, 1994).
Depending on how strong the combined distortion through the deflection potential is, this
results in different lensing regimes. If it is strong enough to bundle multiple rays into a single
point this is the strong lensing regime resulting in multiple strongly distorted images, while
for weaker regimes one sees arclets or just weakly distorted images – see for example Figure 4
from (Fort & Mellier, 1994).

The points in the lens plane \ where the determinant of the JacobianA becomes singular
describe a so-called “critical curve”, which can be related directly via Equation 5.9 to points
𝛽 in the source plane forming “caustic” (Seitz et al., 2022). As a source crosses a caustic
towards the optical axis two additional images are produced within the corresponding critical
curve in the lens plane. Note that the number of such critical lines is defined by the mass
distribution of the lens, with great examples found in Figures 2 and 3 from Seitz et al. (2022).

For a circularly symmetric lens, it follows from Equation 5.9 and Equation 5.7 that for a
source placed at 𝛽 the resulting image within the lens plane is that of a ring �̂� = \ if the lens
is supercritical Σ > Σcrit with a radius given by the “Einstein radius”:

\E =

√︄
4𝐺𝑀 (\E)

𝑐2 · 𝐷ds
𝐷d𝐷s

(5.15)

as given by Equation 20 from Narayan & Bartelmann (1996). This provides a nice scale
for the lensed images, with sources closer than \E to the optical axes typically experiencing
strong lensing. This means that galaxy clusters with a larger Einstein radius are expected to
exhibit more multiply imaged systems (Limousin et al., 2007). Furthermore, multiple images
are generally separated by about 2 · \E (Narayan & Bartelmann, 1996). However, it should be
noted that one “can never (EVER!) safely neglect the angular structure of the gravitational
potential” (Kochanek, 2004), and as such this should merely be taken as a worthwhile scale,
while actual lensing models strive instead to account for significantly disturbed profiles. This
therefore leads to the need of finding projected variants of typical density distributions that
are commonly defined as spherically symmetric in three-dimensions – see for example those
introduced in Chapter 3. For the particular case of the common Navarro-Frenk-White profile
an example derivation of its projected surface mass distribution is given in Appendix A.2,
providing an insight into the difficulties that arrive when projecting. More complete analyses
including variables such as the resulting shear are given by Takada & Jain (2003) and Lima
et al. (2010).
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5.2.2 Lensing in Observations

As seen in Section 5.2.1, there exists a direct relationship between the distribution of mass and
the resulting images from gravitational lensing. Conversely, it is possible through knowledge
of all other variables in Equation 5.9 and Equation 5.10 to deduce the mass distribution
Σ(\) itself. For the case of weak-lensing a thorough statistical analysis must be conducted
which then allows a relation of the mean ellipticity of the background galaxies and the mass
distribution of the lensing galaxy cluster (Seitz et al., 2022) as proposed by Kaiser & Squires
(1993). Meanwhile the multiple images resulting from strong lensing allow for the direct
fitting of a mass model, though they require first identifying which images belong to the same
objects. To this end, one must construct a mass model for the lens and vary the parameters
of the model until the resulting lensed images match those observed, where it is typical the
measure the goodness of the fit with the root-mean-square with lower values indicating better
fits – see for example the definitions as Equations 1 and 2 from Elíasdóttir et al. (2007) or
Jullo et al. (2007). The following outlines the general procedure.

Firstly the final mass distribution is comprised generally of mass models of two separate
classes, with one or more large-scale halos and numerous small-scale halos. The former
therefore typically has masses of order 1 × 1014 M⊙ and is associated with the galaxy cluster
itself (dark matter and ICL) while the latter is associated with members (dark matter and
stars), typically large ellipticals (Jauzac et al., 2015). A typical model used for the surface
mass density distributions is the Pseudo Isothermal Elliptical Mass Distribution (PIEMD)
introduced by Kassiola & Kovner (1993), which they found to feature greater variability
with elongated masses than the restricted Pseudo Isothermal Elliptical Potential (PIEP). The
general condition for such a distribution takes the form:

^PIEMD ∝
(
𝑐0 + 𝑐2

1 · 𝑥
2 + 𝑐2

2 · 𝑦
2
)−1/2

, (5.16)

with ^ the convergence as defined in Equation 5.12 and where 𝑐0 is generally ≠ 0 and thus
allows non-singular (i.e., analytic) behavior at the center. The corresponding density profile
takes the form (Kassiola & Kovner, 1993; Limousin et al., 2007)

𝜌(𝑟) = 𝜌0(
1 + 𝑟2/𝑟2

c
) (

1 + 𝑟2/𝑟2
cut

) . (5.17)

Defining the ellipticity 𝜖 ≡ (𝑎 − 𝑏)/(𝑎 + 𝑏) and using two PIEMDs allows for a smoothly
truncated elliptical mass distribution, commonly referred to as a dual Pseudo Isothermal
Elliptical Mass Distribution, or dPIE in short, to be defined as:

Σ(𝑥, 𝑦) ≡ Σ0
𝑟cut · 𝑟c
𝑟cut − 𝑟c

©«
1√︁
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ª®®¬ , (5.18)
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where
𝜌2 ≡ 𝑥2

(1 + 𝜖)2
+ 𝑦2

(1 − 𝜖)2
, (5.19)

given here in the form by Kneib et al. (1996) (compared to Equation 8.10 from Kassiola &
Kovner 1993). 𝑟cut is the cut radius beyond which the surface mass density converges to a
slope as ∝ 𝑟−3 allowing for finite total masses. Meanwhile for radii with 𝑟 < 𝑟c there is
a cored central region with density 𝜌0, while for the transition region the density slope is
isothermal 𝜌 ∝ 𝑟−2 (Limousin et al., 2007). As it is typically the larger ellipticals which are
modeled by the small-scale PIEMDs this slope matches the slopes found for the inner parts
by Koopmans et al. (2006). Note that it is common to transform the central surface mass
density to the central velocity dispersion as Σ0 = 𝜎2

0 /(2𝐺 · 𝑟c). The final parameters for each
dPIE are thus seven in number, namely the central position (two, one for RA one for DEC), the
ellipticity 𝜖 , the position angle and finally the parameters for the density profile 𝜎0, 𝑟cut and
, 𝑟c (Limousin et al., 2007).

Some reductions to the necessary parameters can be made. It is typical to fix the center,
ellipticity and angle by those observed for the associated light distribution (cf. Kneib et al.
1996; Limousin et al. 2007). This still leaves a large number of free parameters as there
are three free ones per galaxy-scale dPIE, though they tend to be less than when instead
reconstructing the mass distribution via the fit of a grid of pixels (Jullo et al., 2007). To
reduce further the total number of free parameters, it is typical to scale the two of the free
parameters of the density profile according to the observed galaxy luminosity (Brainerd et al.,
1996) as:

𝜎0 = 𝜎0,∗ ·
(
𝐿

𝐿∗

)𝑎
𝑟cut = 𝑟cut,∗ ·

(
𝐿

𝐿∗

)𝑏
(5.20)

as done for example by Meneghetti et al. (2020). If one further assumes a mass-to-light ratio,
which can be argued through the Faber & Jackson (1976) relation and is done for example
by Limousin et al. (2007), this further reduces the variables by linking the slopes 𝑎 and 𝑏.
Note that the core radius can further be scaled as the cut radius is, by assuming some fixed
initial value relating to a luminosity (Limousin et al., 2007). or instead can be assumed to be
negligible (Meneghetti et al., 2020).

Note that there is a significant nuance in the exact application of such lensing models. For
example, prescriptions must enable the model to differentiate the case of merging images,
where two images overlap into one if the resolution is not sufficient (Kassiola & Kovner,
1993). Furthermore, as lensing is sensible only to the projected mass – see Section 5.2.2
– this can lead to problems with structure along the line of sight being included (Rosati
et al., 2014). The degeneracy between the mass of the lens and the source redshift –
see Equation 5.10 – requires high accuracy of the distance measurements, which typically
necessitates spectroscopy. Common use of the Faber & Jackson (1976) relation additionally
constrains the 𝜎0 − 𝑀 relation by definition, which may however not accurately reproduce
the real behavior of the galaxy members. This can be seen by comparing lensing models
of the same galaxy cluster once using the Faber & Jackson (1976) relation versus using
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the fundamental plane (Dressler et al., 1987), as plotted in Figure 4 from Granata et al.
(2022) which leads to an improvement relative to Bergamini et al. (2019). Furthermore, the
assumption that the central positions, ellipticity and orientation of the visible mass traces the
dark mass as found by Koopmans et al. (2006) was conducted specifically for elliptical field
galaxies, and may not hold as well for those within galaxy cluster environments.

Finally, using weak-lensing to construct the large-scale mass distribution relies on the
random distribution of orientations (Heavens et al., 2000). However, the presence of shape
and spin alignments is found for both observations (Pen et al., 2000; Brown et al., 2002)
and simulations (Heavens et al., 2000), with greater alignment across larger scales (Smargon
et al., 2012). This can be caused by the tidal fields from local large-scale overdensities (Hoyle,
1949; Doroshkevich, 1970; White, 1984), and can hamper the weak-lensing reconstructions
(Porciani et al., 2002).

5.2.3 The Missing Mass and Abell 2744

Gravitational lensing has been very successful in pushing the boundaries of the mass dis-
tributions which can be observed. Especially strong lensing has allowed insight into the
centralmost regions of galaxy clusters. It is now however in the region of the substructures,
modeled by the galaxy-scale dPIEs, where discrepancies are being found to those observed
in simulations. In particular, the case of the galaxy cluster Abell 2744 is of utmost interest,
finding in the observations performed by Jauzac et al. (2016) extreme substructure masses in
excess of an order of magnitude different than those from equivalent simulations (Schwinn
et al., 2017).

Abell 2744 is a dynamically disturbed galaxy cluster located at 𝑧 = 0.308, and is one of
the current most massive ones known with a mass as 𝑀 (< 1.3 Mpc) = (2.3± 0.1) × 1015 M⊙
(Jauzac et al., 2016). its disturbed nature has been observed also in X-ray through the
presence of a shock front in the South, an X-ray emission peak without corresponding galaxy
overdensity, most likely resulting from stripped atmospheres, and finally an offset of the X-ray
peak to the main mass peak as noted by Owers et al. (2011) and via dynamical studies through
finding of a bimodal velocity distribution by Braglia et al. (2009). A particularly striking
example of this is its powerful and extended radio halo (Giovannini et al., 1999; Merten et al.,
2011).

The observations by Jauzac et al. (2016) are imaged via the Hubble Space Telescope
twice, with the latter as part of the Hubble Frontier Fields (Lotz et al., 2017) for the central
regions, and probed on the larger scales with the Canada-France-Hawaii Telescope. They
supplement photometric redshifts from the Wide Field Imager with spectroscopic redshifts
of the Anglo-Australian Telescope (Saunders et al., 2004) produced by Owers et al. (2011),
accounting for a total of 343 members within 3 Mpc (Jauzac et al., 2016). In particular for the
weak-lensing analysis, the selection of galaxy cluster members via redshift is crucial (Seitz
et al., 2022). The criterion defined by Jauzac et al. (2016) is 0.308− 0.01 < 𝑧 < 0.308+ 0.01
for the member galaxies’ spectroscopic redshift, with color-color selections additionally
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applied. They also extended the latter color selections to the main bulk of galaxies for which
no photometric redshift was determined (around 70%).

The resulting mass distribution as determined by Jauzac et al. (2016) consists of two
cluster-scale PIEMDs and 733 galaxy-scale dPIEs, with an additional grid for the weak-
lensing region consisting of radial basis functions (dPIEs of fixed size and position). Within
the mass distribution, they identify eight substructures which have masses in excess of
5 × 1013 M⊙ and lie within 1 Mpc. These, according to Jauzac et al. (2016), are in excess of
any comparable galaxy clusters’ substructure masses found in simulations. Given the direct
link between structure formation and the cosmological model – see Section 4.2 – is this then
a new iteration of the “missing mass” problem? A comparison of these observational results
to those determined within this thesis is found in Section 8.6 to answer the question.

5.2.4 Concentration and Velocity

The question of observed cluster substructure compactness warrants a brief consideration. As
discussed in Section 5.2.2, it is common to model a galaxy cluster as one or two large-scale
mass distributions with an addition of numerous galaxy-scale models. One typically expects
the multiple images to be a result of the large-scale distributions critical lines – however, it is
possible in rare cases to have substructures within the cluster produce strong lensing events
if they are sufficiently massive and compact, termed galaxy-galaxy strong lensing (GGSL)
events by Meneghetti et al. (2020). The resulting scales are much smaller and thus require
much higher resolution to observe, but this has become possible in recent years due to projects
such as the Hubble Frontier Fields (Lotz et al., 2017) and CLASH (Postman et al., 2012)
surveys.

Through use of these newer catalogues, Meneghetti et al. (2020) find a significant increase
in the number of GGSL from observations compared to the hydrodynamical simulations by
Planelles et al. (2014). This would imply observed substructure to be noticeably more
compact than their simulated equivalents. To see this it is commonly the maximum circular
velocity which is actually determined. In lensing observations this is achieved through fitting
of galaxy-scale dPIE lens models as in Equation 5.18 (Kassiola & Kovner, 1993; Kneib
et al., 1996) with core radii tending towards zero (Meneghetti et al., 2020), which then have
a density slope of 𝜌 ∝ 𝑟−2 for central radii out to the cut radius – see the descriptions in
Section 5.2.2. This in turn is the slope of a singular isothermal density profile as defined in
Equation 3.5 and thus translates directly into a circular velocity as:
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As the outer slopes of the dPIE model fall of more steeply 𝜌 ∝ 𝑟−4 it is only the region within
the cut radius that determines the maximum circular velocity and as such by extension the
concentration: a halo with equal total mass but higher 𝜎0 will have a small cut radius and is
thus more concentrated. Similar behavior between a halo’s maximum circular velocity and
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concentration are found for the Einasto and Navarro-Frenk-White density profiles, as can be
seen in Section 7.1.

It follows that the measurements of high central velocity dispersions by Meneghetti et al.
(2020) then directly imply high concentrations. Consequently, observed substructures appear
to be more compact than their simulated equivalents. This is discussed further in Section 7.1.

5.3 Simulated Equivalents?

Assuming our understanding of the Universe as given by ΛCDM is correct – see Chapter 2 –
and that most relevant physics are implemented into the code, cosmological simulations can
be used as a direct comparison to the observations described in Section 5.1. Discrepancies
then can be used to refine either the physics employed by the simulations or the observational
methods, or both, thus enabling a fruitful cross-checking process.

The simulation used throughout this thesis is the Magneticum Pathfinder simulation
suite (Dolag, 2022; Hirschmann et al., 2014; Teklu et al., 2015), performed with a fully
hydrodynamic smoothed-particle hydrodynamics (Lucy, 1977; Gingold & Monaghan, 1977)
code, also known as “SPH”, on the basis of GADGET-2 (Springel, 2005). This type of code
relies on the discrete version of the Lagrangian description of fluid flow, where tracer particles
mimic the density field. To recover the true density field is “then equivalent to recovering
a probability distribution from a sample” (Gingold & Monaghan, 1977), where to avoid the
cost of multiple integrals for each particle instead a smoothing kernel method is employed
(Bartlett, 1963). As described in Section 2.1, the fundamental equations for the gravitational
force calculations are given entirely by the chosen spacetime metric. Due to the common use
of the Friedmann-Lemaître-Robertson-Walker metric (Springel, 2005; Vogelsberger et al.,
2014; Springel, 2010), this implies that deviations in the observed properties of objects from
simulations are given through differences in the chosen cosmology, in the baryonic physics
employed (e.g., star formation, cooling, metals, black holes, feedback, magnetic fields) and
finally in the way the output is calculated or a mixture of those. Information with respect
to the former two are given for Magneticum Pathfinder by Hirschmann et al. (2014) and
Teklu et al. (2015) and also at www.magneticum.org. The final point raises the question of
how a given set of particles from a simulation can be grouped together to identify structures.
These structures are of utmost importance, at they are the starting point for the definition of
global halo properties, and as such the following will provide a brief insight into the concept
of structure finders.

5.3.1 Identifying Structure in Structure

The basic foundation of such linking is the idea of a friends-of-friends (FoF) algorithm,
whereby particles are linked together if their separation is smaller than some defined linking
length (Davis et al., 1985), which is commonly given in terms of the mean interparticle
separation and on the order of 0.2. A group of such linked particles is then for simple
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implementations a “halo”. This method however poses the problem of how to define a
subhalo within another halo, where this difficulty is further exacerbated for lower-resolved
early simulation codes that would suffer from “overmerging” – seeing infalling halos entirely
disrupted and amalgamated (Frenk et al., 1996). Initial solutions were varied in their goals,
where for example to ensure the survival of subhalos entirely one method relied on replacing
a halo once it has been identified instead by a more massive second type of particle as
described by van Kampen et al. (1999), which however runs into the difficulty of entirely
preventing natural stripping or merging of the particles. Another solution was by instead
setting a sequence of discrete steps of linking lengths and assigning a hierarchy based on
which particles link on the smallest steps as employed by hierarchical friends-of-friends
(HFOF) algorithms (Klypin et al., 1999), enabling a hierarchy of halos but in turn making the
halo definitions entirely dependent on the chosen steps. A third alternative is given through
specifically bestowing the most-bound-particle of a dark matter halo with the identity of a
galaxy as done by Kauffmann et al. (1999), with the latter two variants more flexibly allowing
parts of the dark matter halo to be stripped away during infall while still retaining the subhalo
as a galaxy within the larger halo. Building on the last variant, Springel et al. (2001) developed
an algorithm they called SUBFIND. While explained in great detail therein, a supplementary
overview is given here as the difference between bound and projected structures lies at the
heart of the following analyses.

Given an initial set of particles, which in theory could encompass the whole simulation
but in practice typically a subset is chosen in form of a FoF group as a starting point, their
densities are calculated according to the typical SPH smoothing kernel formalism. They are
then sorted according to density, starting the iteration from high to low – this is the first
panel in Figure 5.2. The highest density particle is the center of the FoF halo. Going a
step in density up, all corresponding particles have their nearest neighbors calculated. Then
all neighbors with equal or lesser density are removed and finally the closest two particles
fulfilling these conditions kept. This is illustrated in the second panel of Figure 5.2, where
the case occurs that the closest two higher density neighboring particles are in fact a single
particle, and all three particles of density 𝜌1 are assigned to the group that the particle with
density 𝜌0 belongs to. Going another step down in the third panel, the same occurs, with
the particles in the center finding one or two higher density neighbors all belonging to the
halo originating from the particle at density 𝜌0 – except for the particle on the far left. This
particle finds no neighbors of higher density, and thus begins growing its own subgroup. This
is not a subhalo yet, but rather a group. In the final panel, a particle of a density another step
down is illustrated in red, which has the third possible situation occur: its closest neighbors of
higher density belong to two different subgroups, so it is considered to be a saddle point and
both groups it borders are now considered subhalo candidates. Subsequently, the subgroups
are joined to one, the red particle is added, and the procedure carries farther down the list.
After all subhalo candidates are then cleaned of any particles not actually bound to them, if
the remaining grouping is of sufficient number or mass it is identified as a subhalo (Springel
et al., 2001).
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Figure 5.2: Schematic of the SUBFIND structure identification algorithm as given by Springel et al.
(2001), illustrating the detection of a potential subhalo.

SUBFINDwas subsequently improved upon by Dolag et al. (2009). Firstly, by considering a
cosmology-dependent linking length FoF groups will better reproduce expected overdensities
from the spherical collapse model. Secondly and importantly, in its original conception
SUBFIND was optimized for identifying specifically dark matter halos, while the differing,
more compact distributions of the baryons should not be treated in the same way. While this
is fine for the initial FoF halo, Dolag et al. (2009) modify the subsequent steps by considering
each species separately, using the closest three higher density neighbors and also disregarding
gas particles when applying the minimum number limit.

This method allows the definition of halos and subhalos, and subsequently of their prop-
erties. Some of the main ones considered throughout this thesis are 𝑀FoF, the total mass of
the friends-of-friends group, GPOS, the position (in code units) of the most-bound-particle
which constitutes the center of the halo, 𝑀vir and correspondingly 𝑟vir as the virial mass and
radius as defined through the virial overdensity relative to the critical density. Note that the
latter two assume spherical symmetry and thus may not directly correspond to the true extent
or mass of a particularly irregular object. Similarly for subhalos the total linked particle
mass is called 𝑀sub, with the position of the most-bound-particle considered the center of the
subhalo as SPOS.

Given the importance of a sophisticated structure finder in simulations, many differing
variants have been developed with time. A comprehensive overview is performed by Knebe
et al. (2011), finding general behavior to be overall similar between most common structure
finders. Larger variations are found for subhalos in halos, with phase-space based structure
finder performing slightly better. Therefore, although the findings by Knebe et al. (2011)
provide confidence for the identifications of halos, caution must be kept when dealing with
more complex and disturbed structures. This is especially the case during major mergers as
shown by Behroozi et al. (2015).

5.3.2 The Magneticum Pathfinder Simulation Suite

As mentioned previously, the simulation used throughout this thesis is the fully hydrody-
namical cosmological simulation Magneticum Pathfinder (Dolag, 2022). A comparison
of different state-of-the-art simulations can be found in Figure 5.3. The particular box used
for most of the following analyses is box 2b (hr), which forms a middle ground between the
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larger volume and higher resolution of box 0 (mr) and box 4 (uhr), respectively. This provides
a unique opportunity to explore objects of similar mass to those discussed in Section 5.1,
something that is practically impossible for boxes of smaller size due to the extremely high
masses on the order of 1 × 1015 M⊙ while still having enough resolution to resolve internal
structures. In particular, the inclusion of baryonic physics allows a more direct comparison
to the observations. The chosen snapshot is number 31 at a redshift of 𝑧 = 0.252.

Figure 5.3: A comparison of some of the highest resolution hydrodynamical simulation boxes as of
2022. Simulation parameters are taken from Dolag (2022), Nelson et al. (2018), Schaye et al. (2015),
Dubois et al. (2014) and Khandai et al. (2015) for Magneticum Pathfinder, IllustrisTNG, Eagle,
Horizon-AGN and MassiveBlack-II, respectively.

The cosmology employed is that of WMAP-7 (Komatsu et al., 2011) with Hubble constant
𝐻0 = 70.4 km s−1 Mpc−1, matter and dark energy density fraction at present day of Ωm =

0.272 and ΩΛ = 0.728, an index of the primordial power spectrum of 𝑛 = 0.963 and an
overall variance at 8 Mpc of 𝜎8 = 0.809. The baryonic physics included cover all relevant
subgrid physics from star formation recipes to AGN feedback models, metal enrichment and
cooling. Details of these physics are presented by Hirschmann et al. (2014), Teklu et al.
(2015) and Dolag et al. (2017). The simulations well capture many global galaxy properties
(like angular momentum – see Teklu et al. 2015 and Schulze et al. 2018, density distributions
– see Remus et al. 2017b and Remus & Forbes 2021), of galaxies in cluster environments
(Lotz et al. 2019 and Lotz et al. 2021) as well as general properties of X-ray emission from
galaxy clusters (Biffi et al., 2018). Therefore the simulation is well suited for the analysis
presented in this thesis.
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5.3.3 Comparing Apples to Oranges

An astute reader will have noticed a glaring difference between the output from the ob-
servations and the simulations: SUBFIND uses and outputs the full phase-space description
of the objects, while observations are (initially) limited to two-dimensional spatial and one-
dimensional velocity data, the latter of which is further degenerate for purely photometric data
with the recession velocity. While the inclusion of spectroscopic data for the observations
enables an increase to approximate three dimensional spatial data, the final mass distribution
responsible for the observed lensing signal is still 2-dimensional - that is to say, it is projected.
This can also be seen immediately by noting that the mass distributions fitted for lensing are
2-dimensional surface densities, and is mentioned also by Jauzac et al. (2016) as a potential
source of the discrepancy. However, both they and Schwinn et al. (2017) find only marginal
differences from projection when comparing with dark matter-only simulations.

Similarly, the topic of structure finders perhaps cutting too much matter away from
massive subhalos far towards the center has been discussed as a possible reason for the
discrepancies by Han et al. (2018a). However, though differences still exist for the different
structure finders, recent studies find good overall agreement for general properties of subhalos
(Gómez et al., 2022). Furthermore, the assumption that the high substructure masses found
from lensing are entirely carried by a single bound subhalo within its host galaxy cluster in
projection can lead to requiring more mass in the subhalos than is present in the overall halo,
as was found by Schwinn et al. (2017) for the particularly extreme case of Abell 2744. There,
extrapolating the projected masses within a 150 kpc aperture from lensing (Jauzac et al.,
2016) finds a total subhalo mass of Σ1−8𝑀sub = 7 × 1015 M⊙, compared to the main halo
with 𝑀200 = 3.3× 1015 M⊙ (Schwinn et al., 2017). This result already provides an indication
that the found substructure masses are most likely not singular bound subhalos within the
larger halo, but rather include a significant amount of mass from other subhalos and the main
halo within the projected aperture. It is important here to note the distinction between a
real, bound subhalo identified by a structure finder within a cosmological simulation to a
substructure, which here is defined to mean a “structure within a single aperture” – these
need not be actual, self-bound structures!

5.4 The State of Affairs and the Future

At this point then all necessary groundwork for the following analysis is laid. First, the
observational methods and their findings are discussed in Section 5.1, with a special emphasis
placed on gravitational lensing which is discussed in detail in Section 5.2. The same is done
for simulations in Section 5.3. The arising discrepancies are topicalized in Section 5.3.3,
where the difference between a “substructure” and a “subhalo” is defined. The exact nature of
singular projected halos is discussed further in Appendix A.2, where in the following chapters
instead the impact of a total projection of a galaxy cluster on its perceived substructure masses
is explored. Using the projected simulation output from the method which is described in
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detail in the following Chapter 6, the relationship between projected masses within an aperture
and bound masses is explored in Chapter 8.
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Chapter 6

Finding the Building Blocks

The following chapter will then present a more thorough step-by-step consideration for the
construction of a method similar in its behavior to what an observer would have, with the
final goal of determining properties of the substructures – in particular their mass – through
two-dimensional images instead of the full three-dimensional information.

To provide a brief overview, first the galaxy clusters will be projected into two-dimensional sur-
face density maps and centered on their two-dimensional center-of-mass in Section 6.1. Then
present substructures are identified in Section 6.2 and masked such that only the main re-
mains. Afterwards in Section 6.3, a two-dimensional radial density profile is fit to the main
halo, based on which its contributions in mass to each substructure are subtracted to finally
arrive at their masses.

Four mass bins of 29 galaxy clusters will be considered. The largest, henceforth “giants”,
is comprised of the most massive galaxy clusters based on their friends-of-friends mass as
given by SUBFIND with each reaching 1 × 1015 M⊙ and above. The three smaller mass bins
are chosen instead based on their virial mass (again from SUBFIND), as for the purpose
of scaling some degree of spherical symmetry must be assumed (see Section 6.4 for more
details) and the friends-of-friends mass can often be significantly elongated in its distribution,
to the point where in extreme cases upwards of 15% of the friends-of-friends mass can lie
wholly outside of the assigned virial radius (as is for example the case for cluster 3 of the
giants). The mass bins used are summarized in Table 6.1.

As the method described in the following relies on projected maps, it is necessary to first
specify the gridding employed. For the sake of comparability among the different galaxy
clusters of a mass bin, each bin has a fixed pixel size, with the giants having pixels of area
2kpc × 2kpc and the other bins being scaled as described in Section 6.4. Galaxy clusters of
different sizes can then have different numbers of pixels per image, though aside from the
giants the galaxy clusters in the mass bins should vary only slightly in size among each other.
Particles used for the map are then gridded into each pixel based on their positions, and their
masses are summed into a surface mass density – this is then the “value” of each pixel.

Furthermore, to avoid depicted maps from appearing exceedingly diffuse due to the
gridding, any plotted versions of the maps in the following are smoothed via a Gaussion
kernel as implemented in the “imshow” function from matplotlib (Hunter, 2007). Due
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to the large differences in pixel values, plots are displayed with logarithmic surface mass
densities. This in turn leads to problems where empty pixels with value “0” become “−∞” in
logarithmic space and then when smoothed overwhelm the values of any other nearby pixels.
These pixels are instead set to the surface mass density that would result from the mean mass
density so as to allow the smoothing kernel to function correctly. This fix is however purely
aesthetic in nature to better visualize the plots and is never applied to any values given as
results here.

Finally, random orientations are achieved via a distribution of rotation angles resulting in
a rotation matrix applied to the data, after which then the projection is done along the third
axis. This axis then represents a random projection, and the specifics of the applied rotations
are discussed more in Appendix A.3. An example of the resulting projected map via the
method employed here as compared to the mock image creation code by Martin et al. (2022) is
depicted in Figure A.11 for a galaxy cluster from box 4 (uhr) of Magneticum Pathfinder.

Table 6.1: Summary of the mass bins used. Each contains the first 29 galaxy clusters within the
specified mass range, as sorted by their friend-of-friends mass. The ranges for “medium” to “tiny” are
chosen such that their mean virial mass is tightly distributed around 5, 2 and 1e14 M⊙ respectively.

Mass Bin Mass Range Mean Virial Mass in Bin
Giants 𝑀fof > 1 × 1015 M⊙ �̄�vir ≈ 1.313 × 1015 M⊙

Medium 5.15 × 1014 M⊙ > 𝑀vir > 4.85 × 1014 M⊙ �̄�vir ≈ 5.002 × 1014 M⊙
Small 2.01 × 1014 M⊙ > 𝑀vir > 1.99 × 1014 M⊙ �̄�vir ≈ 2.000 × 1014 M⊙
Tiny 1.002 × 1014 M⊙ > 𝑀vir > 0.998 × 1014 M⊙ �̄�vir ≈ 1.000 × 1014 M⊙

6.1 Beginning at the Start

To construct a projected density map of a selected galaxy cluster, a position to center it on
and a size for the projected volume considered around this point are required.

First, the volume is considered. The extent in the plane perpendicular to the line-of-sight
is chosen as 𝑟2D = 𝑟vir, with 𝑟vir as given by SUBFIND. This ensures that the largest part
of the cluster’s mass is considered, while not being too large. For the projection depth,
a result derived from Chapter 2 is applied: assuming the virial mass of the cluster were
distributed perfectly spherically, then a test particle at rest at 𝑟turn would feel an exactly
equal acceleration between the expanding background and the cluster – see Section 2.6.1 –
and would thus remain at the same physical distance to the galaxy cluster. This is then a
reasonable approximation of the sphere of influence of the cluster and comes out to be around
𝑟turn ≈ 5 · 𝑟vir for 𝑧 = 0.252.

The final volume considered for the projected surface density map is then a cylinder of
radius 𝑟vir and height 𝑍 = 2 · 𝑟turn, with the factor 2 arising from the consideration that both
matter before and behind the cluster is projected. Given the volume, it is then necessary to
determine the central point of this cylinder.
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Figure 6.1: The total (left) and stellar (right) surface density map of galaxy cluster 20 of the “giants”
in projection centered on its most bound particle. Depicted is a region of boxsize 2 ·𝑟vir ≈ 2 ·2.47 Mpc,
with the direction of the line-of-sight in code coordinates along [0.03; 0.99;−0.17]. It is apparent
that an observer would not place the center of mass where the most bound particle resides, but rather
on the order of 500 kpc to the left – a shift of around 0.2 · 𝑟vir!

6.1.1 An Initial Position

A good initial position is provided by the location of the cluster’s most-bound-particle as
given by the SUBFIND output “GPOS”. Figure 6.1 depicts the resulting map for an example
cluster. This projection is chosen to highlight an arising difficulty when simply using the
simulation output without further consideration. Though SUBFIND has determined the three-
dimensional position of the minimum of the gravitational potential and is then correctly
projected into two dimensions, this most-bound-particle is not necessarily the actual two-
dimensional center-of-mass.

6.1.2 And a Better One

As the lensing fits are sensitive to the lensing signal, which in turn are dependent on the
total mass (not only the stellar mass) and normally the center of the large-scale cluster mass
distribution is left variable, the total mass is used here to determine the center of mass. The
method employed is the “shrinking-sphere algorithm”, or rather as the particle distribution
is projected to 2 dimensions a shrinking-circle method. For this algorithm, provided a
sufficiently large initial region, the resulting barycenters are quite independent of the initial
parameters (Power et al., 2003). It should be noted that the direct particle data is used for this
calculation before any binning into a map is done.

Given an initial set of particle positions 𝒙i and masses 𝑚i, an initial barycenter �̄�0 is
calculated as

�̄�0 =

∑
i 𝑚i · 𝒙i∑

i 𝑚i
. (6.1)

To further refine the center, a fixed shrinking factor 𝑓shrink < 1 as well as a radius 𝑟1 are
chosen for the next step, and the particles are reduced to only those 𝑗 with |𝒙 𝑗 − �̄�0 | < 𝑟1.
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Then the barycenter of these particles is calculated once again via Equation 6.1 as �̄�1. The
iteration then proceeds for each step 𝑛 as follows: shrink the radius to 𝑟n = 𝑓shrink · 𝑟n−1,
reduce the particles to only those 𝑘 within |𝒙𝑘 − �̄�n−1 | < 𝑟n and then from these calculate �̄�n.
Here, a shrinking factor of 𝑓shrink = 0.975 as given by Power et al. (2003) is chosen.

To determine when a stable center-of-mass is found, break-off conditions are applied.
An important such condition is to ensure sufficient particles within the final circle (to avoid
statistical fluctuations) where here a minimum particle number of 1000 is chosen (akin to the
limit chosen by Power et al. 2003). If the number of particles were to drop below this value,
the algorithm breaks and returns the prior center-of-mass found. Considering, however, that
the smallest clusters of the sample still contain on the order of 1 × 106 particles within their
initial cylinder, the iteration is very unlikely to break due to this limit.

Instead, there is a further secondary break-off condition: if the center-of-mass varies very
little between steps, it can be assumed to be sufficiently stable. As box 2B has a softening
length for dark matter of 3.75 kpc ℎ−1 at 𝑧 = 0 (Dolag, 2022) – or equivalently 𝑧 = 0.252
𝑥soft = 2.6 kpc – 𝑟min = 8 kpc is chosen as a sufficiently small length for the breaking point.
If the center-of-mass shifts on this order or less, so |�̄�n+1 − �̄�n | ≤ 𝑟min, this shift is negligible
compared to the general resolution itself (less than 4·) and thus we break the iteration and
output the final two-dimensional center-of-mass.

The final parameters then are an read-in radius of 𝑟vir which shrinks with each iteration
by a factor of 𝑓shrink = 0.975, initially centered on the most-bound-particle but then shifting
with each step, breaking off if the found center-of-mass is moving very slightly or if too few
particles remain. After this new two-dimensional center-of-mass �̄� is found, the particles
are read out once more but this time within the same cylinder as described above centered
instead on �̄�. Taking the example cluster from Figure 6.1, the resulting surface density map
is depicted in Figure 6.2. It should be kept in mind that this step alone can already result
in very large differences when considering how close substructures are to the center of the
cluster, where in three-dimensional they could be quite far from this center but in projection
appear much closer – in the case between Figure 6.1 and Figure 6.2, the shift is on the order
of 20% of 𝑟vir.

6.2 From Large to Small Structures

We then turn to the primary focus of this thesis: the substructures of the galaxy cluster. It is
very important to note here again that “substructures” here means “structures within a single
aperture” – these need not be actual, self-bound structures. As these are projected structures
the data used transitions from the direct particle data to instead using the gridded maps.
Visually speaking, in particular the stellar map allows a relatively straightforward identifying
of clear massive substructures due to its more peaked distribution. In comparison, the total
mass map is dominated by dark matter, and the flatter density profile of the main halo results
in a more diffuse image as can be seen in Figure 6.2. Either map could be used to identify
the substructures but for the purpose of this work the stellar mass map is chosen, due to the



6.2 From Large to Small Structures 89

Figure 6.2: The total (left) and stellar (right) surface density map of galaxy cluster 20 of the “giants”
in projection centered on its two-dimensional center-of-mass determined from the total mass. As in
Figure 6.1, a region of boxsize 2 · 𝑟vir ≈ 2 · 2.47 Mpc is depicted with the direction of the line-of-sight
in code coordinates along [0.03; 0.99;−0.17].

fact that when placing the smaller galaxy-scale over-densities for their lensing models, by
necessity observers use images to determine the locations, and these images trace the stellar
mass – see for example Jauzac et al. (2016), .

6.2.1 Using a Simple Cutoff

An initial simple method to determine these over-densities is to set a cutoff value for the surface
mass density of the pixels, and select any that lie above this cutoff. Once a substructure is
found, we then assign a surrounding area to it, that is to say an aperture of radius 𝑟aperture. This
area should be large enough to ensure that most of the massive central area of the substructure
is captured, so as to avoid oversampling a single structure with multiple apertures, while not
being too large to where it covers multiple distinct substructures. Distinct is taken here to
mean separated sufficiently in the plane perpendicular to the line-of-sight, as by the nature
of projections it is unavoidable that multiple self-bound structures can and will end up in
a single aperture if they are projected on top of each other along the line-of-sight. This is
also the case for the results obtained from lensing observations. For sake of simplicity and
consistency, a fixed aperture size for each mass bin of the galaxy clusters is chosen.

A further condition is that these apertures should not be overlapping too strongly, as then
the same mass contributes multiple times to what should be different structures. However,
setting a hard border, that is to say any aperture may not have any overlap with former
ones, can easily lead to the blocking of what should be two substructures that happen to be
separated by a distance that is only marginally less than 2 · 𝑟ap. An observer may in this
case simply choose a smaller aperture for their object, as they could differentiate the two
structures, but as a large range of clusters and projections are considered here it is not feasible
to manually decide on aperture sizes for each orientation. Furthermore, varying aperture
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Figure 6.3: The total (left) and stellar (right) surface density map of galaxy cluster 20 of the “giants”
in projection centered on its two-dimensional center-of-mass determined from the total mass as in
Figure 6.2. Circles denote the apertures placed determined via a simple cutoff based on the total (blue)
and stellar (white) surface density map, with numbers indicating the order in which the apertures are
placed.

sizes would prohibit consistent comparisons between the projections, and as such a marginal
overlap of the apertures is allowed to ensure a degree of flexibility in their placements. The
hard minimum distance of a new aperture to all former ones is chosen as 𝑑min = 2 ·

√
3/2 · 𝑟ap,

ensuring that while two apertures can overlap there will be no point that is simultaneously
overlapped by three of them - see Appendix A.4 for a further explanation of the details.

As for the order of placing these apertures, it is then sensible to go from the most massive
to least massive pixel, such that the apertures which are placed first are also more massive
and therefore of greater importance for the overall mass distribution. The resulting apertures
can be seen in Figure 6.3.

6.2.2 SUBFINDMotivated

An alternative method would be to begin with the subhalos identified from SUBFIND, first
cutting them based on which subhalos fall into the read-in volume of the cylinder and then
utilizing a stellar mass cut to leave only the more massive subhalos, referred to here as the
“subhalo” method. The aperture is then placed at the location of the most-bound-particle
of each respective subhalo, again in order of their surface mass density values, with higher
densities placed first. The subhalo method has the advantage of being able to guarantee that
each aperture contains a real, bound subhalo of at least some stellar mass cutoff. This also
allows for a consistent number of initial possible aperture positions for each cluster, avoiding
a strong dependence on the explicit projections. If a cluster has 𝑛 subhalos fulfilling the
stellar mass cutoff, every projection will start with these 𝑛 possible initial aperture positions,
where in contrast a cutoff may produce any number more or less pixels above the chosen
pixel surface mass density cutoff than another, though the final number of apertures placed
can still vary for the subhalo method based on how many subhalos are projected sufficiently
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Figure 6.4: The stellar surface density map of galaxy cluster 20 of the “giants”, with the apertures
placed on the left as determined via the subhalo method as well as a convergence radius as described
in Section 6.2.2 while on the right as in Figure 6.3 via a simple cutoff. Numbers indicate the order
in which the apertures are placed. Up until aperture 6 the same apertures are found, where-after for
aperture 7 of the simple cutoff (right), the most-bound-particle of the subhalo is apparently not the
most massive pixel and thus is placed after other structures, such that a difference in ordering arises.
This occurs again for aperture 11 on the right, where the simple cutoff finds a denser pixel in the
upper structure (aperture 11 on the right) that must differ from the position of the structures most-
bound-particle, such that instead the aperture is placed farther down for the subhalo method. This
in turn allows for the subhalo method the placement of aperture 12 around the obvious substructure
missed by the simple cutoff. Without an allowed overlap of the apertures, however, this substructure
would once again be missed, illustrating both the difficulties arising from using single pixel values to
sort the aperture placements (with this large substructure lacking a single very dense pixel and thus
being missed) as well those that would arise when using hard borders for the apertures. Aside from
the problem for the simple cutoff in identifying the obvious substructure found as aperture 12 for the
subhalo method, the coverage of the most obvious substructures is comparable. It is noticeable that
the chosen simple cutoff one the right does not produce the same number of apertures here as for the
stellar subhalo mass cutoff on the left, as it is difficult to exactly compare a projected surface mass
density with a bound absolute stellar mass.

close to where an aperture is not placed for one of them anymore. A comparison between this
method and the previous simple cutoff for an example projection is illustrated in Figure 6.4.

It should be noted, however, that the subhalo method runs into the same trouble as with
the center-of-mass in Section 6.1, where projection of the subhalo can create orientations
with a noticeable distance between the subhalo’s two-dimensional center-of-mass (where the
aperture should be placed) and its point of least potential (where the most-bound-particle lies).
To remedy this offset, instead a combination of both variants is employed. The initial selection
of potential pixels is determined by the positions of the most-bound-particles of the SUBFIND
subhalos which fulfill a stellar mass cutoff, but is then allowed to move in a second step onto
the most massive pixel within a certain radius – more akin to how the simple cutoff finds
aperture centers. This radius should be small so as to ensure the selection is still of the same
substructure found by SUBFIND, but will be more robust against shifting centers-of-mass
from projection effects. This “convergence radius” is chosen as 𝑟conv = 22 kpc.
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Figure 6.5: The stellar surface density map of galaxy cluster 20 of the “giants”, with the apertures
placed on the left as determined via the subhalo method as well as a convergence radius as described
in Section 6.2.2 while on the right as in Figure 6.3 via a simple cutoff. Numbers indicate the order
in which the apertures are placed. It can be seen that allowing the aperture centers to converge onto
the nearby most dense pixel for this projection then leads to exact consistency between the simple
cutoff and subhalo method. On one hand this is good as aperture 11 is now placed on a larger object
compared to aperture 11 of the subhalo method in Figure 6.4, but on the other hand this aperture
blocks the placement of the even larger substructure found there as aperture 12.

Nonetheless, the subhalo method also suffers from the possibility of finding a single very
dense pixel of what is actually a less massive substructure and placing it first, which then
blocks the placement of a more massive substructure that may by virtue of the projection
lack such a singularly dense pixel – as happens when applying the convergence radius for
the galaxy cluster depicted in Figure 6.5. To counteract this, instead of placing apertures in
the order from most to least dense selected pixel, the summed values of the pixels and their
surrounding pixels are sorted. The area selected for this summation is chosen as a 9×9 square
with the initial pixel at its center. This ensures that even if a smaller substructure happens to
have such a single very dense pixel, the larger substructure’s selected pixel will have a higher
surface mass density over the larger area and thus will be placed first. This summed ordering
can be applied both to the simple cutoff and subhalo methods, with the resulting apertures of
the example orientation depicted in Figure 6.6.

The final variant employed for the following parts of this thesis is the subhalo method
with a convergence radius of 𝑟conv = 22 kpc and apertures placed according to their summed
surface mass densities in an area of 9 × 9 pixels.

6.3 The Main Halo

At this point, the center of the galaxy cluster has been found, the volume projected into
a surface density map and apertures representing the substructures placed. It is possible
with this to determine “aperture masses” by simply summing up all particles within each
aperture, where the direct particle data instead of the pixel values are used to both ensure
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Figure 6.6: The stellar surface density map of galaxy cluster 20 of the “giants”, with apertures from
the subhalo method on the left and the simple cutoff on the right. The subhalo method further has a
convergence radius applied to each apertures central position, and both methods’ apertures are placed
in order according to their summed surface mass density values as opposed to those of just their
central pixel, as described in Section 6.2.2. Numbers indicate this order, with large differences visible
compared to Figure 6.5 especially for the first few apertures. Most noticeable is the placement of
aperture 3 for both, where indeed the previous difficulties of this massive substructure lacking a single
strongly peaked pixel are now avoided. Generally, the ordering now better matches the visual size of
the substructures, with both methods finding the same 12 apertures (although interestingly not in the
same order).

more accurate masses as well as to avoid difficulties from fitting square pixels into spherical
apertures. These “aperture masses”, however, are not “substructure masses”, as they contain
all mass within the full cylinder – including contributions from the galaxy cluster’s large dark
matter halo as well as intracluster gas. It is therefore necessary to fit a density profile for the
galaxy cluster itself and then subtract its contributions to each aperture mass.

As discussed in Section 5.3, many different profiles can be fit to the main halo which is
dominated primarily by dark matter, with some of the more typical ones being the NFW-
(Navarro et al., 1996) and Einasto-profiles (Einasto 1965 – see Equation 3.22). However,
these fits are most commonly done with full three-dimensional data where instead lensing
models apply to two-dimensional density profiles (see Section 5.2). As such, for better
comparability here the particles are binned based on their two-dimensional, so projected,
distance 𝑟2D to the center-of-mass determined from Section 6.1.2, and additionally for the
NFW profile a projected version considered (see Appendix A.2).

To determine which particles belong to the main halo, all particles within the cylinder
are assigned an identifier. Then all particles within any apertures not overlapping the center
are removed from the list based on their identifiers, and the remaining array of particles
comprises the main halo. Apertures overlapping the center are treated as part of the main
halo and subsequently not subtracted to avoid holes at the center-of-mass. This does not
guarantee that the resulting aperture will also be the most massive substructure which is
later considered the main – see Chapter 8. The remaining particles are then sorted based on
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Figure 6.7: Left: The total surface density map of galaxy cluster 20 of the “giants”, with apertures
from the subhalo method including a convergence radius and summed pixel values. The blue shaded
area illustrates an exaggerated radial bin for the main-fit binning where the surface density within
equals the total mass divided by the total area, excluding any apertures. The same is depicted on the
right with apertures blacked out – any remaining mass/area is attributed to the main halo.

their 2-dimensional distances and binned into equal mass bins, that is to say starting from the
center the masses of the particles are summed to the each bin until a threshold mass is reached
where then the next bin is started. This threshold mass can alternatively also constitute a
threshold number of particles, or for both mass or number could be based purely on one of
the particle species – i.e., only on dark matter, gas or stellar particles. The bins could also
instead be defined purely by radii such that an unequal number of particles falls into each
bin. Some of these considerations are further discussed in Section 7.3, where here instead
the focus lies on the density profile chosen to be fitted to the output of the binning.

For the chosen case of equal-mass bins the selection criterion is mass based, but to
determine densities it is necessary for each bin to know their radial extent. Further, subsequent
bins should touch to be volume-filling but their natural borders defined by the particles within
them do not unless particles from neighboring bins have the same radii. That is to say, there
is initially some “empty space” between the maximum radius 𝑟′n−1,max = max( | |𝒙n−1 | |2D) of
the particles within a bin 𝑛−1 and the minimum radius 𝑟′n,min = min( | |𝒙n | |2D) of the particles
within the next bin 𝑛. To remedy this, bin borders are placed in the middle of these two
bordering particles,

𝑟n−1,max = 𝑟n,min = (𝑟′n−1,max + 𝑟
′
n,min)/2.

For each bin 𝑛 then a mass-weighted mean radius 𝑟2D,n can be determined via Equation 6.1,
which is then the first necessary part for the fitting to a main halo density profile. Using
further the bin borders as well as the summed mass 𝑀n =

∑
i 𝑚i in the bin and considering

that each bin represents cylinder shells with volume𝑉cyl,shell = 𝑉cyl,rmax −𝑉cyl,rmin , these values
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can be converted into a density profile via

𝜌(𝑟n) =
𝑀n

𝑉cyl,rmax −𝑉cyl,rmin

=
𝑀n

𝑧 · 𝜋 · (𝑟2
max − 𝑟2min)

, (6.2)

with 𝑧 the total depth of the cylinder. As this depth is constant for every radius this simply
adds a scaling factor to the density, which is to say the density and surface density profiles
𝜌(𝑟) · 𝑧 are identical in their form.

A further consideration must be made for this main halo density profile. Given that
each aperture cuts out the particles, which are then not considered for the main halo density
profile, the corresponding area should also not be considered when calculating the density
as is illustrated in Figure 6.7. The exact calculation of this corrected area in each ring
(or equivalently the volume of each cylinder shell) ascribed to each mass bin is given by
Appendix A.4.

Figure 6.8 depicts the resulting radial density profile for two example clusters from the
“giants” chosen to illustrate two extremes of the types of projected profiles that arise, with
galaxy cluster 20 (on the top) going from a very flat profile into a steep drop-off while galaxy
cluster 5 (on the bottom) transitions at a noticeably smaller projected radius into a more
shallow outer slope. As can be seen from the two plots on the left, for galaxy cluster 20 the
discrepancy between the total and main halo density profiles is significantly more noticeable
than for galaxy cluster 5, indicating that the apertures mask noticeable overdensities for
the former case while the latter contains most of its mass in a smoothly distributed large
dark matter halo such that the density within the masked apertures is comparable to the
density outside. The uncorrected masked density profile indicates the clear need of correctly
accounting for both the masked mass as well as area, with up to half an order of magnitude
in difference.

The two plots on the right of Figure 6.8 illustrate possible fitting functions to the corrected
masked density profile, i.e., to the main halo profile. As can be seen, the Einasto-profile
performs the best overall – though the projected NFW-profile fit is of comparable quality
for the case of galaxy cluster 5 – which is attributable to its three free parameters allowing
for a greater flexibility including a varying of the slope, something which both the three-
dimensional and projected NFW-profiles cannot. The form of the projected NFW-profiles
are given by Takada & Jain (2003) for a projection depth of 𝑟vir and further discussed in
Appendix A.2. It can also be seen that the fit projected NFW-profiles can result in strongly
different concentrations to those determined through the concentration-halo mass relation
given by Ragagnin et al. (2019), though they still lie within the possible scatter (in figure 2
therein). The same cannot be said for the concentrations for the three-dimensional NFW-
profile fit of 1 and 0.7 for galaxy cluster 20 and 5, respectively, which simply demonstrates
the projected nature of the main profile.

Given the Einasto fit for the main halo, the contribution in mass is calculated from the
projected distance 𝑑l between the center-of-mass to the center of each aperture 𝑙 with a radius
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Figure 6.8: Left: The total (black) as well as masked (red) and corrected (blue) main halo two-
dimensional density profiles for galaxy cluster 20 (top) and 5 (bottom) of the “giants” with the
orientation as depicted in Figure 6.7 and Figure A.12, respectively. Right: Einasto (gray), three-
dimensional (cyan) and projected (orange) NFW-density profiles fit to the corrected main halo density
profile, as well as the projected NFW-density profile (red) expected from the concentration-halo mass
relation (Ragagnin et al., 2019).

𝑟ap as
𝑀main,l = 𝜌Ein,fit(𝑑𝑙) · 𝜋𝑟2

ap · 𝑧. (6.3)

Additionally, the contribution from the mean density within the box to each aperture is
subtracted, such that the final mass of an aperture is given as:

𝑀ap,l = 𝑀𝑙 − [𝜌Ein,fit(𝑑𝑙) + 𝜌mean] · 𝜋𝑟2
ap · 𝑧, (6.4)

where 𝑀𝑙 is the summed mass of all particles within the aperture. Further considerations
accounting for the extended nature of the apertures – i.e., determining the contribution from
the main halo according to the area-weighted mean radius of the aperture as opposed to
simply its center – are discussed in Section 7.3.
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6.4 Values and Scaling With Mass

As mentioned in the beginning of Chapter 6 for the purpose of this thesis four mass bins are
considered, each containing 29 galaxy clusters. To ensure consistent behavior within each
bin, constant values for the necessary parameters of the method are used. These parameters
are the aperture radius 𝑟ap, the convergence radius 𝑟conv, the pixel size of the maps 𝑟pix and
the stellar mass cutoff of the subhalos used for the subhalo method 𝑀∗,sub,cut. Furthermore, to
compare the individual aperture masses to a projected total mass of the halo, as the aperture
radii are also fixed per mass bin, a fixed radius 𝑟tot is chosen centered on the projected center-
of-mass where all mass within it is summed up as a measure of the projected galaxy clusters
total mass 𝑀tot.

For scaling between the different mass bins, given the choice in cylinder radius of 𝑟vir all
other parameters should scale in a similar fashion, where then 𝑀vir is used as the basis for
this scaling factor. As the giants constitute the highest mass range of the box they have a
significant unavoidable scatter in mass. For the other mass bins, however, there are sufficient
galaxy clusters within the mass ranges such that it is possible to tightly constrain the virial
masses to ensure that using a single set of parameters for the medium, small and tiny mass
bins, respectively, is reasonable. Finally, given the mass dependence of the turnaround radius
𝑟turn as defined by Equation 2.43, the depth of the projection is already intrinsically scaled.

Then the set of parameters used as the basis for scaling are those of the giants, with mass
parameters scaling for the medium, small and tiny mass bins proportional to

𝑓m,scale = �̄�vir,i/�̄�vir,giants, (6.5)

while the length-scale parameters then scale as

𝑓r,scale =
3
√︁
𝑓m,scale. (6.6)

The resulting parameters are listed in Table 6.2, with the only exception being the scaling of
the stellar mass cutoff for the mass bin “tiny” as here the correctly scaled mass, 𝑀sub,cut,tiny ≈
3 × 109 M⊙ is near the box resolution of box 2b. This can be seen from considering the
mean stellar mass given by Dolag (2022), accounting for the fact that each gas particle can
spawn up to four stellar particles, such that �̄�∗ = 1.4 × 108 M⊙ ℎ−1/4 = 4.97 × 107 M⊙. To
constitute a reliable halo, at least 100 stellar particles should be contained within as can be
seen in Figure 7.3, and consequently a hard lower cutoff of 𝑀∗,sub,cut,tiny = 5 × 109 M⊙ is
chosen.

6.5 Taking Inventory

This chapter has extensively developed a method to determine properties of substructure
within galaxy clusters while accounting for projection effects. To this end, Section 6.1 has
discussed how the projections are made, finding a significant difference between the projected



98 Chapter 6 – Finding the Building Blocks

Table 6.2: Overview of the relevant parameters for each mass bins used. Each mass bin is scaled
relative to the “giants” according to their relative mean virial mass. The stellar mass cut used
throughout is 𝑀∗,sub,cut, with the alternative cut discussed more in Section 7.2. Note that the hard
minimum for distances between aperture centers, 𝑑min = 2 ·

√
3/2 · 𝑟ap as discussed in Section 6.2.1,

scales automatically with 𝑟ap.

Giants Medium Small Tiny
𝑓m,scale 1 0.381 0.152 0.076

𝑟tot [Mpc] 1.3 0.942 0.694 0.551
𝑟ap [kpc] 150.0 109 80.1 63.6
𝑟conv[kpc] 25.0 18.1 13.4 10.6
𝑟pix [kpc] 2.0 1.45 1.07 0.848

𝑀∗,sub,cut [1010M⊙] 4.0 1.524 0.609 0.5
𝑀∗,sub,altcut [1010M⊙] 11.233 5.663 2.636 0.593

and three-dimensional centers-of-mass. Using the projected maps, Section 6.2 defines the
method of substructure identification via initial positions from the structure finder SUBFIND
(Dolag et al., 2009), which are then locally varied to maxima in the projected stellar mass
map. Substructures found like this are then masked, and the remaining mass in projection is
found in Section 6.3 to best fit an Einasto density profile (Einasto, 1965). The subtraction of
the main halo mass contributions then results in the final substructure masses. As multiple
galaxy cluster bins across a magnitude of mass are considered, Section 6.4 summarizes the
scaling of the method and the chosen input parameters.



Chapter 7

To Build a Castle, a Crane Has To Lift

Since this study strongly relies on identifying substructures a more thorough study of the
identification process is necessary. This quantification is of great importance to understand
the impact of the choices made on the final resulting properties. Therefore, this chapter
will quantify some of the questions arising in Chapter 6 by illustrating finer details, with
important sanity checks for the employed method. First, Section 7.1 will focus on the
property of halos known as the maximum circular velocity, which on one hand comprises an
alternative tracer for the subhalos that form the foundation of the subhalo method as described
in Section 6.2. On the other hand, it is of particular interest as well for the discrepancy found
in subhalo concentration Chapter 5. The latter is discussed in Section 7.1.1 and the former in
Section 7.1.2. Section 7.2 will then further quantify the chosen tracer of stellar subhalo mass
for the final method through consideration of two differing scalings, with a curious finding in
the slopes of the cumulative subhalo abundances discussed in more detail in Section 7.2.1.
Finally, the impact of different binning methods on the main halo fits, as well as the difference
between bound and projected mass are discussed in Section 7.3.

7.1 The Maximum Circular Velocity

The natural choice of the stellar mass as a tracer for the substructures, due to it also coinciding
with the placement of galaxy-scale lensing models – see Section 5.2 – may not actually be
the best tracer of the total mass due to the large scatter in the stellar-mass halo-mass relation.
Thus, it is interesting to consider the maximum circular velocity 𝑣max of subhalos with two-
fold purpose: first, to compare the values in the Magneticum Pathfinder simulation to
those from observations, in particular from lensing, as there seems to exists a discrepancy
as mentioned in Section 5.2.4. Second, for the sake of determining the initial positions of
apertures, instead of using a stellar mass cutoff as described in Section 6.2.2, it is possible to
use other tracers for the subhalo masses, one of which is 𝑣max. This is especially interesting
as 𝑣max is found to trace the mass at infall, as opposed to the current mass of the halo (Boylan-
Kolchin et al., 2012; Moliné et al., 2017), with the relation between the retained halo mass
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versus retained maximum circular velocity found by Peñarrubia et al. (2010) being slightly
more shallow than the 𝑣max ∝ 𝑀1/3 advocated for by Hayashi & Navarro (2003).

It is relevant for both cases to see how the substructure density profile relates to the circular
velocity, as for the former the actual measurements made are of central velocity dispersions,
not maximum circular velocities, while for the latter it is this correlation between the circular
velocity and density profiles that gives insight into the overall compactness of the initial
infalling halo. As shown by Klypin et al. (2016), both the Einasto and NFW profiles find
a direct correlation between the concentration of a halo and its maximum circular velocity.
In the simpler case for an NFW, the relation becomes, as per equation 20 from Klypin et al.
(2016):

|𝑣circ |max ≈
√

0.2162 · 𝑣vir ·
√︂

𝑐

ln(1 + 𝑐) − 𝑐
1+𝑐

. (7.1)

This means that the maximum circular velocity of an NFW halo of fixed 𝑀vir has a minimum
for a concentration of 𝑐 = 2.163, and increases towards both higher and lower concentrations.
As per the concentration-mass relation (Comerford & Natarajan, 2007; Ragagnin et al., 2019),
this is equivalent to 𝑣max increasing with concentration as very few halos have concentrations
below 2. Given that Remus et al. (2013) find a total density slope of 𝜌 ∝ 𝑟−2 to be a
stable attractor, this behavior is expected to hold more generally. However, it is important
to emphasize that the relationship between 𝑣max, 𝑐 and 𝑀vir is of a three-parameter form,
such that generally with increasing halo mass the concentration decreases yet overall 𝑣max

increases. This is further complicated by the formation time of the halo, with earlier formation
times generally corresponding to higher initial concentrations, as shown in Equations 6 and
7 by Jiang & van den Bosch (2016).

7.1.1 Comparing Compactness

As discussed in Section 5.2.4, recent lensing observations of substructure within massive
galaxy clusters have found higher circular velocities, and thus higher concentrations, than
those found in simulations (Meneghetti et al., 2020). One of the possible explanations could
be the presence (or lack) of baryons. The inclusion of baryonic physics can lead to strong
spikes in the central density due to a problem known as “overcooling”, whereby cold gas
accumulates towards the centers of halos leading to extreme stellar masses (Teyssier et al.,
2011; Dubois et al., 2010). This leads to steeper slopes of the density profile even for the dark
matter, as found for example by Remus et al. (2013) when comparing a set of 39 galaxies from
Oser et al. (2010) between dark-matter only and hydrodynamic simulations, which in turn
can then become steeper than those from observations. This can be regulated by including
in particular AGN feedback (Teyssier et al., 2011), which lowers the central total density
slope substantially to better align again to observations. This can be seen for massive early-
type galaxies in Figures 2 to 4 by Peirani et al. (2019), where in particular the gas density
flattens noticeably towards the center. As noted by Peirani et al. (2019), the inclusion of
AGN feedback can however significantly extend the halo sizes, that is to say it is possible to
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overquench the central cold gas and then produce too shallow density slopes. Similarly, even
with AGN feedback depending on the implementation, it can occur in very gas-rich mergers
that the baryonic density slopes will still strongly peak towards the center, as seen in Figure 7
of Remus et al. (2013).

For the case of subhalos in Magneticum Pathfinder the 𝑣max values are given by the
SUBFIND implementation by Dolag et al. (2009). Of note here is that 𝑣max is determined
purely from the dark matter particles, and does not correspond to an actual particle’s velocity.
Rather, in spherical shells originating from the most-bound-particle of each subhalo, the
circular velocity is determined and finally its maximum stored as 𝑣max (private corroboration).
This therefore avoids any of the possible strong dependencies of 𝑣max on the included baryonic
physics (Dubois et al., 2010). On the other hand, as the baryons dominate the central mass
distribution, they are responsible for higher 𝑣max even when including AGN feedback (Bahé,
2021; Peirani et al., 2019). It is thus expected that the maximum circular velocities will lie
under the observed values when determining them purely by the dark matter.

To test this, boxes 2b (hr), 3 (hr) and 4 (uhr) of the Magneticum Pathfinder simulation
are used (Dolag, 2022). The chosen snapshot for boxes 3 and 4 is number 128 at 𝑧 = 0.137,
which is at a lower redshift than the galaxy clusters observed by Meneghetti et al. (2020),
though considering that halos become more concentrated with time (Ragagnin et al., 2019)
this should at most overestimate the maximum circular velocities in comparison. For box 2b,
the latest available snapshot is number 31 at 𝑧 = 0.252. The minimum mass 𝑀sub for each
box is chosen to be at least equal to 100 dark matter particles.

Figure 7.1: Left: The dependence of the maximum circular velocity on the total subhalo masses for
boxes 2b (hr), 3 (hr) and 4 (uhr) of the Magneticum Pathfinder simulation. Right: The same, but
with main halos removed. The vertical line in both represents the mass of 100 dark matter particles
for boxes of resolution “hr”. The higher resolution box 4 has a limit to the left of the borders of the
depicted 𝑀sub range. For both, the subhalos are binned and colored according to the mean distance to
the host halo center.

As can be seen in Figure 7.1, 𝑣max lies noticeably below the values of the observations,
instead matching the distribution of the clusters from the Planelles et al. (2014) simulations
analyzed by Meneghetti et al. (2020) as in Figure 4 therein. They are further comparable
with values found in dark matter-only zoom simulations by De Lucia et al. (2004), as shown
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in Figure A.13. The general behavior with radius is comparable to that found by Meneghetti
et al. (2020), in that subhalos generally exhibit larger maximum circular velocities towards the
center of their host halo, or alternatively that subhalos of equal 𝑣max generally have less mass
the closer they are to the center. Given that the main halos also lie where the subhalos with
large radii are, this indicates that halos which fall into a larger halo experience stripping of
their masses through processes such as tidal and ram pressure stripping (Hester, 2006), while
at the same time largely keeping their 𝑣max, mirroring the findings of Angulo et al. (2009).
Subhalos farther out have yet to experience significant stripping, and lie in the relation akin
to where a field galaxy would lie: on the purple lower track of the mains (Peñarrubia et al.,
2008; Springel et al., 2008; Moliné et al., 2021). This is also the expected result from analytic
models which, when considering just tidal stripping, find a decreasing subhalo mass with
halo-centric distance (Han et al., 2016), and also from dark matter-only simulations, which
find increased subhalo concentrations towards the center of the main halo (Diemand et al.,
2007). However, Cautun et al. (2014) find that SUBFIND generally identifies less high 𝑣max

galactic-mass subhalos than the full phase-space structure finder ROCKSTAR (Behroozi et al.,
2013), as per Figure B1 therein on the order of 10%. This clearly shows the need for a more
thorough analysis of the impact of the structure finder on the properties determined for the
substructures, to test the origin of the 𝑣max tension between simulations and observations –
be it physical or methodological.

7.1.2 Baryons and The Mass at Infall

The advantage of the chosen 𝑣max definition lies in the ability to compare the dark matter-only
and fully hydrodynamic simulation runs central dark matter density slopes, providing a more
rigid tracer of the overall infall mass of a subhalo that is not as strongly dependent on the
chosen baryonic feedback processes (Boylan-Kolchin et al., 2012). Furthermore, Muldrew
et al. (2011) find that structure finding codes such as SUBFIND can struggle in recovering the
full number of particles of a subhalo passing through or near the center of its main halo. It
is by construction that density-based halo finders are strongly dependent on the local density,
and subsequently will have more and more difficulty in identifying subhalos the closer these
are to the center of their host halo. Conversely, 𝑣max is found to be better conserved due to
the fact that this velocity is reached at sufficiently small radii – at around 1.4 · 𝑅1/2 as found
for Magneticum Pathfinder at 𝑧 = 0 by Teklu et al. (2018) and a significant amount of
matter must be lost before it is affected (Muldrew et al., 2011; Peñarrubia et al., 2008).

In the following, the boxes 1a (mr), 3 (hr) and 4 (uhr) are analyzed, chosen to have a
representative box for each resolution level commonly used by Magneticum Pathfinder.
Snapshot number 128 at 𝑧 = 0.137 is chosen for the comparison as this is a late snapshot
where all boxes and their dark matter-only counterparts have data. To be able to then compare
the fully hydrodynamical boxes to their dark matter counterparts, a halo matching algorithm
is run.
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Figure 7.2: The maximum circular velocities of main halos for boxes of differing resolutions and sizes
of the Magneticum Pathfinder simulation, plotted against the halo’s stellar (left) or virial masses
(right). Dark matter velocities are binned according to their virial mass matched hydrodynamical
equivalents.

The algorithm reads every main halo’s virial mass 𝑀vir as well as its first subhalo’s – its
BCG’s – maximum circular velocity. For the boxes containing baryons, the total stellar mass
of the main halo is also read. The halos from the dark matter-only runs are then matched
according to their virial mass to the halo with the nearest virial mass from the hydrodynamical
simulation. Finally, the halos are binned according to either the stellar or virial mass of the
matched halo into equal number bins of 100 halos each. The resulting distribution is plotted
for all halos in Figure 7.2, with the maximum circular velocity on the y-axis and the stellar
or virial mass on the x-axis with a logarithmic scale. The vertical lines denote the respective
mass cutoffs for each resolution level, which are 100 gas or dark matter particles for the
stellar or virial mass, respectively. As stellar particles do not have the same mass as gas
particles, because a single gas particle can spawn up to 4 stellar particles, the vertical lines
here then denote up to 400 stellar particles. It is best to mainly rely on the values above
these cutoffs to ensure a statistically sound number of particles. There are a total number
of 176 000 (319 900), 18 400 (46 100) and 8000 (18 300) halos which fulfill the stellar (dark
matter) resolution-based mass cutoffs for Box 1a mr, Box 3 hr and Box4 uhr respectively.

The first observation of note is the overall good convergence between the boxes for
the dependence on the virial mass on the right. There is no noticeable resolution-based
effect taking place for the 𝑣max measurements. A similar behavior is found for the relation
between the dark matter-only and hydrodynamical simulations, although there does appear
a trend towards higher 𝑣max for the dark matter-only halos with increasing halo mass. More
precisely, the relation 𝑣max − 𝑀vir has a steeper slope for the dark matter-only boxes. It is
unclear whether this is a real trend due to minor variations in the dark matter density slopes
from the baryonic mass distribution, but it is found systematically for all boxes, i.e., also over
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all resolutions. Given that the halos considered are all main halos, this minor discrepancy
cannot be explained by differences in the amount of stripped matter.

Figure 7.3: The relation between the stellar and halo mass for the main halos of boxes of differing
resolution, with the left plotting each individual halo to better visualize the overall scatter while the
right shows the binned number density.

This is found similarly for the 𝑣max − 𝑀∗ relation, as expected as the matching occurs
through the virial masses. Here, however, a discrepancy between the boxes themselves is
noticeable, with the higher mass end of the relation being steeper with decreasing resolution.
Given the behavior of the virial mass, it stands to reason that this is entirely due to a change
in the stellar-to-halo mass relation. To test this, the virial mass is plotted against the stellar
mass for the hydrodynamical simulations in Figure 7.3. Indeed, there appears a discrepancy
between the resolutions, with slight differences in the slope of the distribution beyond the
vertical lines denoting the 400 stellar particle limit. Particularly striking is the almost vertical
distribution for box 1a just beyond the blue line, as well as the angle of the break decreasing
with increasing resolution. This demonstrates that subhalos containing less than 400 stellar
particles are not resolved well enough to be included in any further analysis.

Overall, it can be seen that the 𝑣max values in the hydrodynamical boxes in Magneticum
Pathfinder are comparable to their dark matter-only counterparts, and furthermore that by
considering only the dark matter component in their calculation, in case of fully hydrody-
namical simulations, baryonic effects leave a negligible impact on them. They therefore can
be used as a tracer for the total subhalo mass at infall as described by Peñarrubia et al. (2008)
and Springel et al. (2008), and will be discussed in this context relative to the other possible
tracer of the subhalo stellar mass 𝑀∗,sub in the following Section 7.2.

7.2 Cutting the Subhalos at the Right Point

The number of subhalos that are expected in a cluster from a given stellar mass cut is of
great importance, as these halos are to serve as the origin for the placement of the apertures.
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Undersampling of the subhalos would lead to overestimation of the main halo mass and
subsequent reduction in the real subhalo masses, while noticeable oversampling would have
the opposite effect. The number of massive subhalos relative to the main halo mass is plotted
in Figure 7.4 for the chosen box 2b (hr), as well as for the most massive clusters of the higher
resolution box 4 (uhr) for comparison. It can be seen that the number of massive subhalos
steadily increases with virial mass from 1× 1013 M⊙ to 2× 1014 M⊙. Interestingly, this trend
begins to flatten out approximately beyond 2× 1014 M⊙, beginning a marginal decrease after
around 3 × 1014 M⊙. The upper right portion of the distribution is rectangular in nature,
which perhaps indicates that a larger box would find the trend continue towards the upper
right unabated. Curiously, the highest number of subhalos that are massive relative to their
host halo is found between 2 × 1014 M⊙ to 5 × 1014 M⊙.

Figure 7.4: The number of subhalos with a mass above 1% of the main halo mass plottet against the
virial mass of the galaxy cluster. The chosen box 2b (hr) is plotted in light blue and box 4 (uhr) is
plotted in magenta. The black line denotes the running mean number, and shaded areas indicate the
mass ranges of the four galaxy cluster mass bins chosen for the study. Plot courtesy of Rhea-Silvia
Remus.

The chosen four mass bins for the galaxy clusters are depicted through the shaded areas.
One can see that the expected variation in total number of massive subhalos is smaller
compared to the overall scatter among each mass bin itself, with the more massive bins
finding anything between 5 to 80 subhalos. The scatter in 𝑀sat is slightly lessened for the
smallest bin of the “tinies”, which also have a slightly lower number of subhalos on average.
The most massive bin, in turn, sees the most noticeable scatter in virial masses, owing to the
fact that it comprises the 29 most massive objects in the box.
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Another property to consider is the self-similarity of the subhalo tracers in the four mass
bins. The possible tracers in question to identify apertures are the stellar mass 𝑀∗,sub as
per Section 6.2 and the maximum circular velocity 𝑣max,sub as discussed in Section 7.1.
In Figure 7.5 the cumulative number of subhalos per cluster is plotted against the relative
fraction of either tracer property to the main halo for the four mass bins. It is apparent that
the cumulative subhalo abundance dependence on stellar mass fraction is very self similar
between around 2% to 30% of the main halo stellar mass, with the lower mass bins bending
off the self-similar line at earlier mass fractions. This is due to the resolution limit of the
box, as can be seen in the stellar-mass halo-mass relation in Figure 7.3 – for box 3 with the
same resolution (hr) the relation bends below around 2 × 1010 M⊙. For the “tiny” mass bin
𝑀∗ ≈ 2.4 × 1012 M⊙, such that 1%𝑀∗ ≈ 2.4 × 1010 M⊙, hence the bend. The higher mass
bins subsequently bend off at a similar absolute stellar mass, ergo at a smaller stellar mass
fraction.

Figure 7.5: The cumulative subhalo abundance per main halo depending on the squared subhalo
maximum velocity (left) or stellar mass (right) fraction of the main halo. The different lines represent
the four mass bins. Plots courtesy of Rhea-Silvia Remus.

The maximum circular velocity on the left of Figure 7.5 behaves similarly, with the lower
mass bins hitting the bend at higher fractions relative to the main halo 𝑣max. As 𝑣max traces
the mass of the infalling halo (Peñarrubia et al., 2008; Springel et al., 2008), this flattening
indicates a minimum halo mass below which there are no halos present in the simulation. The
overall shape and values of the cumulative subhalo abundances for the “tinies” and “smalls”
as a function of 𝑣max are comparable to the ones found in dark matter-only simulations for
a similar mass range by Jiang & van den Bosch (2016), with around 101.7 = 50 subhalos
per main halo for 𝑣max,sub/𝑣max,main ≥ 0.1. Of note here is that the slope is initially steeper
and then more shallow when going from high to low 𝑣max, due to the presence of a bend in
the distribution prior to the complete flattening. This appears also not to be present in other
cumulative subhalo distributions of the maximum circular velocity, see for example Figure 10
from Springel et al. (2008). Consequently, these findings warrant a deeper look into the exact
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composition of these halos at the low 𝑣max end, which is done in Section 7.2.1, while here
for now it can then be concluded that both 𝑀∗,sub and 𝑣max,sub are adequate tracers for all
mass bins. To better mirror the procedures employed for lensing analyses, for the further
analysis the subhalo stellar masses will be used as a tracer for overdensities on which to
place the apertures, as described in Section 6.2. This is because the locations of galaxy-scale
overdensities in the lensing models are usually placed according to the visual positions (see
Section 5.2), that is to say due to luminosity and color of the galaxies as done for example by
Jauzac et al. (2016).

Given the choice of tracer, to better understand the direct number of halos fulfilling the
stellar mass cut as defined in Section 6.4, the cumulative subhalo abundance is depicted in
Figure 7.6 as a function of stellar mass. A noteworthy property is that for a given stellar mass
the more massive galaxy clusters have a higher number of subhalos equal to or exceeding it,
as can be expected. The left depicts as vertical lines the subhalo stellar mass cutoff for each
mass bin scaled according to the virial mass of the objects in the bin following Equation 6.5.
Due to the bend in the distribution caused by the resolution limit, this type of scaling leads to
an unequal number of subhalos between the mass bins, with approximately 90, 80, 45 and 27
expected subhalos for the “giants” to “tinies”, respectively.

The vertical lines in the right plot of Figure 7.6 in turn denote an alternative scaling for
the subhalo stellar mass cut which will result in an approximately equal number of apertures
for the galaxy clusters between each mass bin. Given a horizontal cut as 𝑁cum(𝑀∗)/𝑁cluster =

101.4 ≈ 25, the resulting stellar mass cuts are summarized in Table 6.2 as 𝑀∗,sub,altcut. These
stellar masses are generally higher than those scaled with the virial mass, the highest difference
being for the “giants”.

Figure 7.6: The logarithm with base 10 of the cumulative subhalo abundance per main halo in
dependence of the subhalo stellar mass. Different colored lines represent the four mass bins. Left:
Vertical lines denote the chosen stellar mass cuts scaled with the main halo virial mass between the
four mass bins via Equation 6.5. Right: Here an alternative scaling for the stellar mass cuts is depicted
by the vertical lines, scaled to guarantee an equal number of subhalos (around 25, as given by the
black dotted horizontal line) between the mass bins on average. Plots courtesy of Rhea-Silvia Remus.
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The actual resulting number of apertures must not, however, directly correlate to the
number of initial positions. Due to the nature of the projection, should two subhalos fulfilling
the stellar mass cut be close enough to have their apertures overlap, only one will be placed.
The number of resulting apertures would thus on average be smaller than or equal to the
number of subhalos fulfilling the stellar mass cut. This is complicated by the possibility of
other massive halos being projected into the cylinders. The resulting number of apertures
for either subhalo stellar mass cut are pictured in Figure 7.7, with the left depicting those
scaled with the virial mass and the right depicting the alternative cut. A total of 200 random
projections are run for each cluster, resulting in 5800 total orientations per mass bin.

Figure 7.7: Left: The resulting number of orientations as a function of the number of apertures
for each mass bin when applying the virial mass scaled subhalo stellar mass cut. Right: The same
when using the alternative subhalo stellar mass cuts, scaled to find an equal number of initial aperture
positions.

The number of apertures mirror the behavior in Figure 7.6, with the average number
increasing towards the higher mass bins for the standard cut. Furthermore, the “giants” mass
bin exhibits a noticeable second peak at around 70 apertures in a single projection which
is absent for the other mass bins. This is caused by the two most massive clusters in the
box, which for all 200 of their random orientations never finds less than 60 apertures. The
next highest numbers of orientations with at least 60 apertures are found for “giants” galaxy
clusters 9 and 5, with 43 and 14 such orientations, respectively. For the alternative mass cut
the number of apertures found for the mass bins is rather similar from “giants” to “tinies”,
albeit it that the former once again exhibit a second peak at around 40 mostly comprised by
clusters number 1 and 2. The resulting mean, minimum and maximum number of apertures
are summarized in Table 7.1 for each mass bin and the differing subhalo stellar mass cuts.

As seen in Figure 7.7, the number of apertures per orientation is distributed approximately
normal around the means for both cuts, with the maximum and minimum numbers of apertures
for the virial mass scaled cuts being around double and half the mean, respectively. It is
further apparent that the alternative cut succeeds in having an approximately equal number
of apertures for each mass bin, though the fluctuations upwards can reach up to three times
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Table 7.1: The number of resulting apertures per random orientation for the different subhalo stellar
mass cuts, rounded to whole numbers.

Giants Medium Small Tiny
𝑁ap 𝑀vir scaled

Mean 46 44 31 21
Minimum 19 28 16 10
Maximum 99 104 76 50

𝑁ap 𝑁sub scaled
Mean 18 19 19 20

Minimum 8 10 9 10
Maximum 43 65 61 45

the average number as given in Table 7.1. Matching expectations, the overall number of
apertures (19) is lower than the number of subhalos fulfilling the cut (25 by design) due to
overlapping apertures. It is however doubtful if ensuring an equal number of apertures is
even sensible, as by their nature more massive halos have a higher number of subhalos (van
den Bosch et al., 2005).

7.2.1 What Halos Are These?

The curious double slope transition seen in the cumulative maximum circular velocity for
each mass bin in Figure 7.5, where the 𝑣max slope transitions into a more shallow slope
first before entirely flattening out towards the lower 𝑣max end can potentially have a simple
explanation. As 𝑣max is calculated from purely the dark matter, but the definition of a halo
in SUBFIND requires a minimum summed number of dark matter and stellar particles (Dolag
et al., 2009), it could be the result of a transition from sufficiently dark matter rich toward
more stellar mass dominated halos. While there is a lower limit on the necessary number
of dark matter particles to calculate a value for 𝑣max above 0, namely at least 7, this is
sufficiently small to where the potential well can be strongly influenced by the presence of
baryons. Figure 7.8 shows on the left the mean number of dark matter (bold) and stellar
(dashed) particles for the halos in each mass bin as a function of 𝑣max, where this minimum
number of dark matter particles to calculate 𝑣max can be seen as the lower border. Above
approximately 𝑣max,sub = 100 km s−1 the number of dark matter particles present in a subhalo
scales according to a powerlaw, which transitions into a more shallow slope once it falls below
and then fluctuates strongly due to low number statistics at the lowest end. Interestingly, it is
also around this point where the number of stellar particles begins to decline with increasing
maximum circular velocity.

The right panel of Figure 7.8 clearly highlights that below 100 dark matter particles
(𝑣max,sub = 100 km s−1) the number of substructures rapidly declines, indicating that stripping
but also dynamical friction and harassment processes (see Section 4.3.1) can easily destroy
subhalos with less particles. Thus such low particle-number subhalos cannot be considered
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Figure 7.8: Left: The mean number of dark matter (bold) or stellar (dashed) particles in a halo as a
function of the absolute maximum velocity of the subhalo for each of the four mass bins. The stellar
particle numbers are determined from the stellar mass and as such to be treated with caution, as the
actual numbers should be higher due to the mass loss with time of the stellar particles. Right: The
absolute number of subhalos in dependence of the same. Both distributions are binned into 50 bins
equally spaced in log-space.

complete number-wise in numerical simulations. The reliability of those which remain is
questionable.

To see this impact resulting in the double transition of the slopes immediately in the
cumulative subhalo abundance, Figure 7.9 plots the behavior for the “smalls” also split
up into three types of subhalos: those with less dark matter particles than the minimum
number 20 of particles required for a halo (i.e., halos that cannot be purely dark matter), those
with at least 20 but below 100 dark matter particles which is the transition point into the
steeper slope, and those with above 100 dark matter particles. As can be seen on the left, the
high 𝑣max end is completely dominated by the third subhalo type and their number of subhalos
flattens out at a relative squared maximum circular velocity around 3% to 4%, which is exactly
where the total subhalo slope transitions to the intermediate steepness. This intermediate
slope is caused by the second group of subhalos which fall of less strongly in number with
increasing 𝑣max than the third group. The first group interestingly never reaches the same
number of subhalos as the second, and all groups then flatten out towards the resolution limit
on the far left, causing the flattening of the total subhalo slope and thus the second bend. As
can be seen on the right of Figure 7.9, the behavior for the cumulative subhalo abundance
based on the stellar mass is quite comparable, albeit it also becomes apparent that for the first
and second subhalo type many subhalos at the low mass end are completely dominated by
stars as their numbers do not flatten out as quickly as the total subhalo slope.

7.3 Alternative Main Halo Fits

Given the importance of a correct main halo mass distribution, this section will briefly analyze
the impact of different binning methods on the projected main halo density profile, as well
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Figure 7.9: The cumulative subhalo abundance per main halo depending on the squared subhalo
maximum velocity (left) or stellar mass (right) fraction of the main halo. Additionally, the subhalos
are split into three groups based on their number of dark matter particles, and it can be seen that the
overall behavior of the groups is similar between either tracer. Plots courtesy of Rhea-Silvia Remus.

as compare it with the profile determined purely from particles classified as part of the main
halo by SUBFIND. Beginning with the binning methods, there are three variants which will
be considered. The first is that of “equal-number” bins, where the radii and masses of the
particles are sorted, typically from lowest radius to highest, and then grouped into bins by
subsequently filling every bin with 𝑛 particles before starting the next. Here the final bin can
have a differing number of particles if the total number is not evenly divided by 𝑛. The second
option, “equal-radius” bins, instead sets the bin borders at equidistant radii from the center,
and sums up any particles within the borders of each bin. This can result in large fluctuations
in the number of particles within each bin, with the center typically having a much higher
number for density profiles such as the NFW-profile. The final option considered here are
“equal-mass” bins, similar to the equal number bins except summing up the masses until a
certain threshold mass is reached, instead of the particle numbers. For particles with equal
mass, the methods are equivalent, but as there are gas, dark matter and stellar particles present
this is not the case and the number of particles can vary per bin. Regions with more stellar
particles will then have a higher number of particles, while regions with more dark matter
have less.

For the cluster number 20 of the “giants”, the three binning methods are plotted on the
left in Figure 7.10 for the main halo surface density profile, with all being corrected for the
masked area. The equal mass bins for the top left are the same as the blue profile shown in
the top plots of Figure 6.8, plotted here in surface mass density to emphasize the point that
the shape of the profile does not vary between density and surface density due to the fixed
cylinder depth as mentioned in Section 6.3. It can be seen that these equal-mass bins in blue
scatter the least overall for this case, with comparable scatter for all binning types between
log(𝑟2d) = 2.6− 3.2. The equal-radius bins in red scatter the most at low and high radii, most
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likely due to the large variances in number of particles in the bins there, while equal-number
bins are generally comparable to the equal-mass bins. For a lower number of bins, that is to
say a higher number of particles per bin for all methods, these statistical fluctuations become
negligible and the binning methods converge.

Figure 7.10: Top: The radial profile of the main halo surface density for different binning methods
for 3000 bins, and the resulting best Einasto fits. The methods show very minor fluctuations for the
surface density profile, with the fits being barely distinguishable except for the central region for the
equal-radius bins. Bottom: The same, but for 100 bins. This removes the statistical fluctuations,
showing practically no difference between the methods. The aperture radius of 150 kpc is denoted as
a dashed black line.

As can be seen from the Einasto fits to the bins on the right panel of Figure 7.10, the
global behavior is similar for all binning methods for both the 3000 and 100 bins, with the
equal-radius bin lying marginally below the others toward the center. The main halo profile
however only has a real impact for the “giants” beyond 𝑟2d > 150 kpc, as any aperture lying
within this range will be classified as the main and have no mass subtracted, and the minor
differences in the binning methods become even smaller beyond this radius. The chosen
binning method is then that of equal mass bins, though it is apparent that any of the methods
would suffice.

It is then interesting to consider the impact that projection has on the number of additional
particles being projected into the bin. To this end a projection is done once out to the usual
depth of 𝑟turn, as well as only out to 𝑟vir. Additionally, this raises the question on the difference
between the density calculated from the projected particles assigned to the main halo after
the masking of the apertures and those actually bound to it. As such, for comparison, the
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bound particles of the main halo as given by SUBFIND are also projected and binned into
a surface density, once centered around the most-bound-particle and once centered on the
projected barycenter. The resulting distributions and Einasto fits are plotted in Figure 7.11.

The profile of the bound particles centered on the most-bound-particle is found to be
noticeably steeper towards the center than all the profiles centered on the projected barycen-
ter. This shows that the choice of center is very significant to the shape of the resulting
profile. More interesting is the profile of the bound particles centered on the same barycen-
ter as the profiles determined via the method described in Chapter 6. Here, overall good
agreement of the shape of the profiles is found, with the hump of increased surface den-
sity at log10(𝑟2d [kpc]) = 2.5 being correctly masked by the method. In turn, the region at
log10(𝑟2d [kpc]) = 2.8 finds the masks also removing a portion of particles which SUBFIND
assigns to the main halo. The largest difference, however, is in the outermost regions where
the profiles of the bound particles have a stark drop-off which is not present in the projected
profiles from the method from Chapter 6. This also results in the much more strongly curved
Einasto fits on the right. This clearly shows that the choice of projected depth and subhalo
masking as presented in Chapter 6 and used in the following analysis is reliable and therefore
the results do not depend on the implemented binning and fitting method.

Figure 7.11: Top: The radial profile of the main halo surface density as determined once via the
method as described in Chapter 6 and once for those assigned to the halo via SUBFIND. The latter are
binned radially relative to the most-bound-particle as opposed to the projected barycenter. Bottom:
The same but with the SUBFIND-assigned particles binned relative to the projected barycenter instead.
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7.4 Tying up Loose Ends

This chapter has finalized the method as given in Chapter 6, discussing the maximum circular
velocity 𝑣max as an alternative tracer for the subhalo mass in Section 7.1. The radial behavior
of 𝑣max was found in Section 7.1.1 to agree with that found by Peñarrubia et al. (2008) and
Springel et al. (2008), although the discrepancy in subhalo compactness noted by (Meneghetti
et al., 2020) remains. Good convergence between the dark-matter only and hydrodynamical
simulations was found in Section 7.1.2, confirming the usability of 𝑣max as a stable mass
tracer as found for dark matter only simulations by (Muldrew et al., 2011). Building on this,
the behavior of both of the possible tracers 𝑀∗,sub and 𝑣max within the galaxy clusters chosen
was discussed in Section 7.2, finding both to be self-similar across the mass bins. 𝑀∗,sub

was then chosen as the final tracer as this is found to be reliable and closer to observations
(see Section 5.2), and the resulting number of apertures analyzed. The curious appearance of
the double slope transitions found in the cumulative subhalo abundances in 𝑣max was given a
deeper look in Section 7.2.1, finding it to be due to a breaking point in the dependence of 𝑣max

on the number of dark matter particles present in a subhalo. Finally, Section 7.3 finds that
the largest impact on the shape of the main profile is the choice of the center, with negligible
differences between binning methods and only a marginal dependence of the profile on the
projection depth. Furthermore, the masking of substructures leads to comparable fits for the
Einasto profiles in the central regions to those determined by purely bound particles from
SUBFIND, with the largest differences appearing due to the outermost regions beyond 1 Mpc.



Chapter 8

A Tale of Two Cities – Projected and
Bound Masses

The recent observational findings by Jauzac et al. (2016) for the massive galaxy cluster
Abell 2744 and the subsequent analysis by Schwinn et al. (2018) indicate that there exists
a disconnect between substructure mass definitions from gravitational lensing to those of
structure finders commonly used in cosmological simulations. For the sake of future joint
investigations into substructures, which can provide insights into the dynamical state (Neto
et al., 2007) and accretion history (Jiang & van den Bosch, 2016) of galaxy clusters as well
as enabling tests for different potential dark matter variants (Bhattacharyya et al., 2021), it is
therefore necessary to understand the relationship between three-dimensional and projected
substructure masses.

After having laid the groundwork in Chapter 6 and Chapter 7, this chapter will cover the
resulting differences using the cosmological simulation Magneticum Pathfinder. First,
the language employed is defined in Section 8.1. Section 8.2 then provides an overview
of subhalos’ mass and radial distribution. These are compared to the projected behavior in
Section 8.3 with an additional discussion on the impact of varying projection depths. Typical
measures of the dynamical state of galaxy clusters are explored in Section 8.4. Section 8.5
then analyzes the behavior of individual substructures and their underlying bound subhalos.
Using the findings as a basis, a conversion function between the two is derived and potential
degeneracies with other parameters debated. Section 8.6 discusses reproducing Abell 2744
with Section 8.7 providing future outlooks concerning mass accretion and filaments. Finally,
the findings are summarized in Section 8.8.

8.1 Defining A Language

For the sake of clarity, this section will cover commonly used terms. First, the output values
are split into two groups: those originating from calculations based on the method in Chapter 6
and those originating directly from the structure finding algorithm SUBFIND (for details see
Section 5.3). Common parameters from the latter are for the galaxy clusters themselves
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the virial radius and mass, denoted as 𝑟vir and 𝑀vir, as well as the total friends-of-friends
mass 𝑀FoF and the particle at the deepest potential, the most-bound-particle, “MBP”, that
represents the center of the galaxy cluster. The primary subhalo property of interest is its
mass, referred to throughout as 𝑀sub, with indexes 𝑖 indicating the subhalo number by mass
defined in the following. A subhalo’s position is given by its most-bound-particle through
the SUBFIND parameter “SPOS”, and is representative for the entire halo.

Properties for the overall galaxy cluster determined via the method in Chapter 6 are the
projected barycenter denoted as “CoM”, as well as the total mass within the large scale
cylinder 𝑀tot. Note that this is not the friends-of-friends mass from SUBFIND, which is often
also assigned this designation. The masses of individual substructures, i.e., the masses in
the apertures, are denoted either as 𝑀cyl, 𝑀cylinder or 𝑀ap, again with indexes 𝑖 indicating the
subhalo number by mass. Finally, 𝑀subfind in cyl is the mass of the most massive subhalo as
found by SUBFIND whose “SPOS” in projection falls within the area of the aperture. Every
aperture thus has a well-defined value𝑀subfind in cyl > 0, as the SUBFIND positions of subhalos
fulfilling the stellar mass cut discussed in Section 7.2 are used as the origins of the apertures
(see Section 6.2). The value is also sometimes defined as 𝑀subfind wherever greater brevity is
necessary. Distances given are projected, 2-dimensional distances unless otherwise stated.

As a final note on the naming convention, halos or substructures within a galaxy cluster
are numbered according to their mass to enable direct comparisons between the bound and
projected masses. By this definition, for the SUBFIND masses the main halo is considered
number 1 and the most massive subhalo is then number 2. Note that when plotted, for
convenience the main halo is at the position “Subhalo #1”. Similarly for apertures, the
substructure with the highest mass is considered the “main halo” and subsequently the total
subhalo mass fraction for both cases, 𝑓sub or 𝑓cyl respectively, is then the sum of all masses
excluding the structure with number 1. A case can be made that for the projected masses
instead the substructure at the center-of-mass should be considered the main, or alternatively
the substructure which includes the most-bound-particle (i.e., which is overlapping the main
halo as defined by SUBFIND). Both of these definitions can and also can not be equivalent
to the most massive substructure. The chosen definition is used to enable a consistent
differentiation of sub- versus main halos between the two methods, so that a subhalo mass
content can be compared, even though the fixed size of the apertures by nature lead to more
rigid definitions of mass compared to the variable extents of bound mass from SUBFIND.

8.2 A SUBFIND Consideration

To get an understanding of the clusters in each mass bin, a first impression of their substructure
mass content can be gained by working with the SUBFIND output. Summing all subhalo
masses as provided by the SUBFIND value MSUB and dividing by the total mass, the resulting
distribution gives a measure of the mass contained in bound substructures versus that in
the main halo. This is shown in Figure 8.2 for subhalos within one virial radius from the
center of the cluster, defined by the most-bound-particle. There exists no clear trend between
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Figure 8.1: The positions of the 29 giants in the volume of box 2b. Plot courtesy Rhea-Silvia Remus.

the main halo mass and the summed subhalo masses for any of the mass bins. Though the
outliers with very high subhalo mass fractions increase toward the smaller mass bins, most
galaxy clusters of each mass bin have a summed subhalo mass between 5% to 10% of 𝑀vir,
somewhat lower than the values of 10% to 16% found by Jiang & van den Bosch (2017) for
the dark matter-only simulations Bolshoi (Klypin et al., 2011) and MultiDark (Prada et al.,
2012).

Instead, as seen from the left four plots in Figure 8.3, for all mass bins except the “giants”,
the total subhalo mass within 𝑟vir is strongly dominated by that of the most massive subhalo,
with extreme cases – galaxy clusters number 2, 2 and 4 of the “medium”, “small” and “tiny”
mass bins, respectively – having half of their total subhalo mass contained in this single
subhalo. The case is not as clear for the “giants”, where the distribution is more cloud-like
in nature, that is to say the total subhalo mass is not carried as strongly by one subhalo for
the most massive clusters in the box. This can also be seen from the median mass fraction
of the subhalos by subhalo number on the right of Figure 8.3. The most massive subhalo for
the “tiny” and “small” mass bins comprises a higher fraction of the total mass than for the
“medium” and “giant” mass bins, a trend which holds true until the fourth subhalo. As can
be seen on the right of Figure A.14, for higher subhalo numbers the mass bins converge to
very similar subhalo mass fractions.

Taking a closer look at the subhalo mass fractions for galaxy clusters in the “giants” bin,
the subhalos within the total friends-of-friends group are compared to those within a sphere
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Figure 8.2: Relation between the fractional summed mass of all subhalos 𝑓sub within one virial radius
and the host galaxy cluster’s virial mass for the four mass bins.

of radius 𝑟vir in Figure 8.4. Subhalo mass fractions are quoted against the relevant mass of the
galaxy cluster, either 𝑀FoF for the former or 𝑀vir for the latter. A stark contrast can be found
between the two, with a splitting up of the total subhalo distribution on the left into galaxy
clusters dominated by either one or two halos. On the right-hand side, all subhalos within 𝑟vir

have a mass of no more than 5% · 𝑀vir. This implies that for the extreme cases highlighted
on the left, the massive subhalo is linked to the galaxy cluster’s main halo through a bridge
of sufficient density to be considered a single object by the friends-of-friends linking length
discussed in Section 5.3, while being far enough away to where very little of its dark matter
halo is stripped or misattributed to the main halo as can commonly occur (Muldrew et al.,
2011). For example, the most massive subhalo of galaxy cluster number 3 with a mass of
𝑀2,sub = 16.4% · 𝑀FoF lies at a distance of 𝑟2,sub = 2.1 · 𝑟vir.

Interestingly, there is a slight difference between which galaxy clusters have the highest
summed subhalo mass for the two ranges. Though there is general agreement, with the
galaxy clusters 4, 10 and 14 having one of the highest four subhalo mass fractions for either
case, the ordering is not the same as well as the fourth galaxy cluster being different, clearly
demonstrating that the surrounding structure can be indicative of though not directly linked
to the dynamical state.
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Figure 8.3: Left: The dependence of the total subhalo mass fraction on the mass fraction of the
most massive subhalo for all four mass bins. Right: The median mass fractions of the most massive
subhalos within 𝑟vir as a function of their subhalo number as defined in the beginning of the chapter.

8.2.1 The Radial Trends

To further investigate the behavior of the subhalo masses, one important parameter to consider
is a subhalo’s distance to the main halo center. Due to dynamical friction (Chandrasekhar,
1943), more massive subhalos sink more quickly towards the center, where in turn, as already
discussed in Section 7.1.1, processes such as tidal stripping more rapidly reduce the subhalo
masses. This can be derived when considering both analytic models of tidal stripping (Han
et al., 2016) as well as when analyzing directly the output of dark matter-only simulations
(Peñarrubia et al., 2008; Springel et al., 2008). The result is that more massive subhalos more
quickly lose mass, as found for example by Diemand et al. (2007) and Giocoli et al. (2008),
with models of the mass loss given for example by Jiang & van den Bosch (2016) – though
the mass loss also strongly depends on the orbit of the subhalo (Peñarrubia et al., 2010).

For all galaxy clusters in each mass bin, the subhalo total (top row) and stellar masses
(bottom row) are plotted against their distance to the most-bound-particle in Figure 8.5 for
all subhalos within 𝑟vir. The thick black line of the top row denotes the best-fit line of the
total subhalo mass as a function of subhalo barycentric distance to all subhalos, excluding
the mains, and shows that the mass increases on average towards the outskirts. Furthermore,
a plateau can be seen, becoming more prominent towards the outskirts. This plateau lies
at a mass equivalent to 20 dark matter particles, and thus forms the lower bound below
which the required 20 stellar or dark matter particles are increasingly provided by the stellar
particles. The number of these halos increases towards the center as the dark matter of
the subhalo is more easily stripped than the more dense stellar core. Surprisingly, when
excluding these halos with less than 20 dark matter particles, the curve instead flattens out to
find approximately equal subhalo masses at all radii, shown by the dashed line.

To further demonstrate that the stellar portion of the subhalo is less prone to being tidally
stripped, the bottom row of Figure 8.5 depicts the stellar mass of the subhalos. The thick
black line denotes the best-fit line for all subhalos and finds a much flatter behavior with
radius than for the total subhalo mass, even slightly decreasing toward the outside. For halos
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Figure 8.4: The mass fractions of the most massive subhalos within the FoF group (left) and within
𝑟vir in three dimensions (right) as a function of their subhalo number for the 29 galaxy clusters of
the “giants” bin. Mass fractions are relative to the friends-of-friends and virial masses, respectively.
Highlighted clusters are in descending order the four with the highest total subhalo mass fraction, and
the main halo is plotted as #1.

with at least 100 stellar particles, which is motivated as a lower bound for reasonably resolved
halos from the findings in Section 7.1.2 and Section 7.2, the subhalo stellar mass stays almost
constant with subhalo radius, seen from the dashed line. This further indicates that 𝑀∗,sub

can be used as a reasonably consistent mass tracer for the subhalos at any radii (Niemiec
et al., 2017) in addition to the arguments raised in Section 7.2.

The discrepancy between the behavior for the total matter on the top, which is usually
dominated by dark matter, versus the purely stellar mass on the bottom, is indicative of the
fact that the stellar mass is stripped significantly less than the dark matter, with the result that
subhalos have an increased stellar mass toward the center relative to their halo mass. This can
also be seen explicitly in Figure 8.6, where the ratio between the two is plotted for all galaxy
clusters in each mass bin. Noteworthy is the relatively flat behavior from 1 to 0.5 · 𝑟vir with a
subhalo stellar- to halo-mass ratio of around 10%, comparable to the 10% to 20% found for
the general stellar mass-halo mass relation of galaxies with 𝑀tot = 1×1011 M⊙ to 1×1012 M⊙
in lensing observations (Hudson et al., 2015), while for the central regions stripping begins
to have a severe impact – see also Figure A.13.

8.3 The Projection Section

Here, the results from the projected method are presented and compared to those obtained
from SUBFIND. For every galaxy cluster, 200 orientations are done, for a total of 5800
orientations per mass bin. The statistics on the amount of substructures identified on average
per orientation are summarized in Table 7.1. First, for every galaxy cluster, the substructure
masses are ordered from large to small and the most massive substructure then classified
as the main. Then, the masses of all substructures within the projected radius of the large



8.3 The Projection Section 121

Figure 8.5: Subhalo total (top) and stellar mass (bottom) for all subhalos within 𝑟vir in three dimensions
for the 29 galaxy clusters of each mass bin. The thin dotted lines denote the equivalent mass of 20 dark
matter (top) and 400 (bottom) stellar mass particles. It can be seen that the stellar component more
closely resembles the radial behavior of the maximum circular velocity as depicted in Figure A.15
than the subhalo mass does.

Figure 8.6: The subhalo stellar-mass to halo-mass ratio for all subhalos within 𝑟vir in three dimensions
for the 29 galaxy clusters of each mass bin. Note the decreasing number of purely stellar halos (𝑦 = 1)
toward the outskirts, while the converse can be seen for dark matter only halos (𝑦 = 0) which are
noticeably less present toward the centers of the galaxy clusters.

cylinder 𝑟tot are summed and the resulting substructure mass fraction 𝑓cyl ≡ Σ𝑁2 𝑀i,cyl/𝑀tot

plotted against the total projected mass within the large cylinder, 𝑀tot, in Figure 8.7. Though
𝑟tot is smaller than 𝑟vir – on the order of half – if anything this would normally decrease the
subhalo mass fraction as shown by Jiang & van den Bosch (2017) in Figure 4 therein, even in
projection. Nonetheless, most likely due to the use of the projected particle distribution (see
Chapter 6) as opposed to using the SUBFIND output in projection, the fractional substructure
mass 𝑓cyl is noticeably higher than the fractional subhalo mass 𝑓sub in Figure 8.2. This is
particularly extreme for the “giants”, where the lowest substructure mass fraction in projection
is a factor 1.7 times higher than the highest for the SUBFIND case.

This discrepancy between the projected and three-dimensional values is of significant
physical importance when classifying the dynamical state of a galaxy cluster between obser-
vations and simulations: As time passes, the subhalos within a host halo slowly lose mass
due to tidal stripping, slowly being amalgamated. This is in contest with the accretion of
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Figure 8.7: Relation between the relative summed mass of all substructures 𝑓cyl excluding the main
within 𝑟tot of the 2-dimensional center-of-mass to the total projected mass in the larger cylinder 𝑀tot.

additional mass into the halo, where at present times there is a net loss of mass due to the
longer timescales of the accretion processes as discussed in Section 4.3.1. Subsequently, a
higher subhalo mass fraction implies that there were many recent accretions onto the main
halo (Jiang & van den Bosch, 2016), which in turn means that it is more dynamically active
and therefore 𝑓sub is commonly used as a tracer to relaxedness (Neto et al., 2007; Biffi et al.,
2016; Jiang & van den Bosch, 2017). Thus knowing the effect of projection on this fraction
is of high importance when interpreting observational results.

A further trend found in Figure 8.7 is that 𝑓cyl tends toward higher values with higher total
mass, both marginally within the mass bins themselves as well as more noticeably between
them, in line with findings for dark matter-only simulations in Figure 2 of Jiang & van den
Bosch (2017). Additionally, for the mass bins with tight SUBFIND virial masses the overall
scatter of the total mass in projection 𝑀tot is of comparable size in log-space, something
which can be seen more clearly also on the right in Figure 8.8.

The dependency of the substructure mass fraction 𝑓cyl on the most massive substructure
(excluding the main) is plotted on the left in Figure 8.8 to test whether it behaves similarly
to 𝑓sub. While there may be a marginal correlation for the “medium” and “small” mass bins,
it is not nearly as noticeable as it was for 𝑓sub in Figure 8.3. That is to say, the projected
substructure mass fractions are less dependent on a single massive subhalo and rather have
more mass spread over multiple apertures. Furthermore, there are no cases of extreme
outliers, with the mass fractions 𝑀2,cyl all lying in a more compact range of 1.5% to 5.5%.
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Figure 8.8: Left: The total substructure mass fraction 𝑓cyl as a function of the mass fraction of the
most massive substructure for all four mass bins. Right: The relation between the median projected
mass 𝑀tot versus 𝑀vir for every galaxy cluster. The outlier upwards for the “tinies” is galaxy cluster
number 19, while the four noticeable outliers of the “giants” are from bottom to top on the left
numbers 14 and 10 and on the right 2 and 1.

To get a better idea of the mass distribution of individual substructures, the median mass
fraction of the eight most massive substructures, 𝑀i,cyl/𝑀tot is plotted in Figure 8.9, with a
column for each mass bin, respectively. The median is determined for an individual galaxy
cluster from the obtained substructure masses sorted by mass over the 200 orientations.
Highlighted substructure mass functions are for the galaxy clusters with the highest (blue)
and lowest (red) substructure mass fraction. This is determined once in the top row via the
median value for the orientations, 𝑓cyl, and once on the bottom row via the SUBFIND values.
It is apparent that while individual clusters with a high/low 𝑓sub can also have a high/low 𝑓cyl,
for example galaxy cluster number 5 of the “giants” having the lowest for both cases, this is
not the expectation. Rather, the ordering among each mass bin is remarkably uncorrelated
between the two methods, with matches being the exception instead of the norm. This can
also be seen when comparing individual clusters between Figure 8.2 and Figure 8.7.

Additionally, although the overall mass fraction 𝑓cyl has increased as noted earlier, this
increase is not as extreme as the increase in fractional mass for the individual substructures
here. That is to say, while 𝑓cyl has on average doubled to tripled relative to 𝑓sub, the substructure
fractional mass 𝑀i,cyl/𝑀tot is around an order of magnitude higher than 𝑀i,sub/𝑀vir for the
first eight substructures. The result is that in projection more mass in substructures overall is
further distributed across a smaller number of structures. The converse is true for the main,
where instead due to the localized nature of the aperture in projection it is assigned noticeably
less mass than the main halo in SUBFIND, which is depicted clearly in Figure A.16. Further
interesting is the difference in slopes of the substructure fractional mass distribution between
galaxy clusters of a given mass bin. As can be seen from the top row of Figure 8.9, those
with overall higher substructure mass also have more shallow slopes and less massive mains,
while those with a very dominant first mass have curves which fall off steeply and continue
relatively flat afterwards, more reminiscent of those found for the “giants” in Figure 8.4 on
the right. Furthermore, having a high second substructure mass is not sufficient to have the
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Figure 8.9: The median mass fractions for the eight most massive substructures within 𝑟tot as a
function of their substructure number. Columns are for each of the mass bins. Highlighted galaxy
clusters are those with the highest (blue) and lowest (red) three 𝑓cyl (top row) or 𝑓sub (bottom row),
with bold to dash-dotted going from most to least extreme.

highest total substructure mass, as can be seen from multiple gray lines lying above blue ones
at low substructure numbers 2 to 3 in the top row of Figure 8.9.

This also raises the question of whether or not there is a correlation between the mass
fractions of individual substructures and 𝑓cyl at a higher substructure number, as the corre-
lation was not very clear for the most massive substructure as shown in Figure 8.8. To this
point, the dependence of 𝑓cyl on the substructure mass fractions of substructures number 1
(the main), 2, 4 and 8 is plotted in Figure 8.10 for every orientation in each mass bin. Here
the point made for Figure 8.9 is further demonstrated, with orientations of high 𝑓cyl having
generally lower first and higher second to eighth substructure masses. The trend is not as
clear for the second or fourth substructure mass as it is for the eighth, which is to say there
exist orientations with up to two or four massive substructures that do not have an overall
high substructure mass fraction, while this occurs noticeably less frequently for those with a
high eighth mass. It appears that the eighth substructure has a lower overall mass fraction for
the lower mass bins, though the trend is not very strong.

To summarize this behavior in the slopes of the substructure mass with number it is
useful to consider the parameter 𝑑8, defined as the difference between the mass fraction of
the first (main) to the eighth substructure, 𝑑8 ≡ (𝑀1,cyl − 𝑀8,cyl)/𝑀tot. This then defines
the shallowness of the slope, with lower/higher 𝑑8 having a flatter/steeper substructure mass
distribution. Considering again the importance of the total substructure mass for insight into
a galaxy cluster’s dynamical state (Neto et al., 2007; Jiang & van den Bosch, 2017), it can be
seen that 𝑑8 clearly correlates with 𝑓cyl in Figure 8.11.

There exists a general downwards trend, further confirming that a more shallow slope in
Figure 8.9 corresponds to an overall higher substructure mass fraction. Curiously, the slope
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Figure 8.10: The total substructure mass fraction 𝑓cyl as a function of the fractional mass of substruc-
ture 1, 2, 4 and 8 in the columns from left to right. Rows each represent a mass bin, going from the
“giants” to the “tinies” from top to bottom.

of the best fit line for the relation varies relatively little between the mass bins, while generally
the lower mass bins tend towards a larger 𝑑8, indicating steeper slopes of the substructure
mass fractions with decreasing main halo mass.

8.3.1 How Far Does Projection Go?

In Figure 8.12, for two different projection depths, two galaxy clusters, number 5 (left)
and 20 (right) of the “giants” mass bin, are then chosen for a deeper look, as they represent
the steepest and one of the flattest slopes in the mass bin, respectively. Their fractional
substructure mass for their eight most massive ones is depicted through a violin plot, with
the blue error bars denoting the overall spread in the 200 projections while the frequency
of mass fractions for each substructure number is represented through the blue shaded area.
The black line denotes the mean mass over all orientations. First the top row with the typical
projection depth 𝑍 = 2 · 𝑟turn is considered.

Galaxy cluster 5 exhibits a noticeably more peaked distribution, with orientations being
quite similar in their substructure mass fractions especially for the higher numbers, while in
contrast number 20 has a generally flatter slope and a larger variance in the mass fractions
of higher number substructures. This can also be seen with regards to the black dotted line
representing a value slightly above 2% of the total mass, which for galaxy cluster 5 is only
achieved very rarely for substructure number 5 and is common only for substructure 2, while
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Figure 8.11: The total substructure mass fraction 𝑓cyl as a function of the first to eighth mass difference
𝑑8. Dashed black lines are the median values binned into sets of 200 orientations. The blue line denotes
the best line fit, and contours contain the fraction of orientations as written.

galaxy cluster 20 has this occur even more frequently for substructure numbers as high as 8
and regularly makes this threshold for substructures up to number 5. It is interesting to
note the bi-modal behavior in the frequencies of mass fractions which appears for galaxy
cluster 20 especially noticeably in the first and third substructure. Here, two distinct peaks
are visible, indicating that there exists two classes of orientations for this galaxy cluster:
one more commonly with a lower first substructure mass and another more rarely with a
nearly 1.5 times as high first mass. Even for the seventh and eighth substructures, there is still
a significant spread possible between the masses, unlike for galaxy cluster 5. This distinct
behavior will be of central importance later in Section 8.6.

The bottom row of Figure 8.12 depicts the same for a projection depth of 𝑍 = 2 · 𝑟vir to
test how relevant fore-/ background structures are. Little difference overall is found to the
usual projection depth depicted in the top row. The first substructure mass for both clusters
rises marginally, with the most noticeable difference being the absence of orientations with
a small value for galaxy cluster 5. This implies that there exists in some projections a fore-
or background structure which shifts the center-of-mass, thus reducing the first apertures
mass in some cases, while the cluster itself is entirely dominated by its BCG. However,
this does not strongly impact the distribution of the higher substructure masses except for
reducing the overall maxima marginally. This can be seen also for galaxy cluster 20, where
the number of orientations lying above the black line is 3 and 1 for the top and bottom row,
respectively. It follows that a deeper projection depth (i.e., less resolved redshift space) does
marginally allow for larger peak masses of substructures in the cases where some additional
objects are projected into the image, but the overall effect of projection of the galaxy cluster
is significantly larger than the impact from these additional structures.
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Figure 8.12: The distribution of the mass fractions for the eight most massive substructures within
𝑟tot as a function of their substructure number for galaxy clusters 5 (left) and 20 (right) of the “giants”
mass bin for all 200 orientations out to the typical projection depth 𝑟turn (top row) and out to 𝑟vir
(bottom row). Blue error bars denote the overall spread while the blue shaded area represents the
percent number of orientations at each mass fraction, with a larger bulge meaning a larger percentage.
Dashed black line equals a mass fraction of around 2.2%.

8.3.2 The Radial Trends in Projection

As discussed in Section 8.2.1, there exist some general trends for the subhalo masses with
three-dimensional radius. Here the projected radial behavior of the substructures is discussed.
Taking the “giants” mass bin as a representative, the substructure masses and the masses of
the most massive subhalos within each aperture are plotted on the left and right in Figure 8.13
as a function of the respective aperture’s distance to the center-of-mass.

It can be seen that the substructure masses generally decrease with increasing projected
distance to the center-of-mass, in stark contrast to the behavior found for the bound subhalos
identified by SUBFIND in Figure 8.5. Immediately visible is also the outcropping of higher
substructure masses below the vertical dashed black line, denoting the size of an aperture
𝑟ap = 150 kpc. This is because any substructure lying closer than that radius overlaps the
center-of-mass, thus does not have part of its mass subtracted as belonging to the main halo
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Figure 8.13: The projected radial dependence of the mass of substructures 𝑀cyl (left) and the most
massive subhalos within each aperture 𝑀subfind in cyl (right) for the “giants” mass bin. For each
orientation, the most massive substructure is plotted in purple. Bold black lines denote the best-fit
lines to all data, with red lines representing the best-fit for all apertures not overlapping the center-of-
mass (left) or all SUBFIND masses below 1 × 1014 M⊙ (right). The vertical dashed line on the left is
𝑟ap = 150 kpc.

(see Section 6.3). A good portion of these central apertures (around 55% for the “giants”,
see Figure 8.21) also end up being the most massive ones – the mains which are colored in
purple. However, the presence of these more massive central apertures does not noticeably
alter the slope of the best-fit line (black versus red), indicating that not subtracting any mass
has a negligible impact on the overall distribution of substructure masses.

For the masses from SUBFIND of the most massive subhalos lying within apertures a
downwards trend is also found when fitting to all present. However, when excluding those
with 𝑀sub > 1 × 1014 M⊙, which are predominantly the masses of the SUBFIND main halos
– and in turn correspond overwhelmingly to the apertures which are the most massive
substructures colored in purple, see Figure 8.21 – the trend instead becomes very slightly
increasing with radius which is then more comparable to the behavior found in Figure 8.5,
though not nearly as strong. The difference is not unexpected, as the radial projected
distribution of the most massive subhalo masses within exclusive apertures does not need
to correspond to the general distribution in three dimensions of those subhalo masses. The
visible strings of equal values for 𝑀subfind in cyl appear due to the same subhalo 𝑀sub being
found within apertures for multiple orientations.

Narrowing the scope of the radial behavior to that of the mass of a single substructure,
Figure 8.14 depicts the mass fraction of the eighth substructure as a function of its distance to
the center-of-mass. There exists overall very little dependence, with the strongest trend found
for the “giants” while for the “tinies” there exists practically no radial trend at all. This is
indicative of the fact that the substructure number is a fluid variable: if an aperture lies farther
in, it will have more mass on average and is thus more likely to have a lower substructure
number.

To better illustrate this point, Figure 8.15 plots the distribution of radii for the first eight
substructures. There exists a clear trend toward lower radii for higher substructure numbers,
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Figure 8.14: The mass fraction of the eighth substructure as a function of the logarithm of the
separation between the center of the substructure and the projected center-of-mass for every mass bin.
Bold blue lines denote the best-fit line with slopes given in the legend, while the contours contain the
fraction of total orientations as written.

as argued. Furthermore, the radial distribution of the sixth to eighth substructure becomes
flatter for the lower mass bins, with especially those in the “tiny” mass bin lying noticeably
farther out on average. It is also the mass bin where the main most dominantly lies within
0.1 · 𝑟vir, interestingly with a second very shallow peak forming around 0.8 · 𝑟vir. All bins
find the most significant radial offset between two sequential substructures for the first to
second ones, with the average separation being larger than 0.1 · 𝑟vir. Though it follows that
the predominant number of orientations have the most and second-most massive substructure
at the nearest radii to the center-of-mass, there still exist a noteable portion of orientations
where any of the first eight substructures can fall within 0.1 · 𝑟vir, with decreasing probability
for higher substructure numbers but even for the eighth staying above zero.

Given the importance of the total substructure mass fraction in determining a galaxy
clusters dynamical state (Neto et al., 2007), the radial behavior of this parameter is analyzed
next. Here, 𝑓cyl is defined to be the fraction of mass contained within substructures relative to
only the main halo mass, as opposed to its usual definition relative to all mass. The Einasto
profile determined for the main as in Section 6.3 is integrated numerically up to radius 𝑥,
and the masses of all substructures with a projected distance to the center-of-mass that is
less than or equal to that, 𝑟cyl−CoM ≤ 𝑥, are added together (excluding the main) and divided
by the main halo mass. This total substructure mass fraction as a function of radius is then
plotted in Figure 8.16 and compared to the curve for 𝑧 = 0.2 obtained for a projected model
as given by Jiang & van den Bosch (2017), comparable to the redshift 𝑧 = 0.252 used here.
There, subhalos are positioned according to the semi-analytical model and then summed up
by their projected radius as a fraction of the integrated mass of the main halo, approximated
by an NFW-profile. Note that the distribution of the subhalos is isotropic, and further that
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Figure 8.15: The radial distribution of substructures. Dashed lines at the top indicate the median
radii, with colors denoting the substructure number by mass. The top left plot displays the distribution
for the “giants” mass bin.

the rescaled higher main halo mass (dotted black line in Figure 8.16) is scaled according to
𝑓sub ∝ 𝑀0.12

0 as given therein, converting their mass given in units of ℎ−1 M⊙ with the Hubble
parameter used for the Magneticum Pathfinder simulations, ℎ = 0.704 (Dolag, 2022), in
accordance with WMAP-7 (Komatsu et al., 2011).

The black vertical lines represent 𝑟ap (dashed) and 𝑟tot (dash-dotted). At large radii the
behavior found for Magneticum Pathfinder is similar to the model by Jiang & van den
Bosch (2017), while towards small radii the results diverge. The lack of substructure mass
within 𝑟 < 𝑟ap results from the fact that when an aperture exists which overlaps the center-
of-mass, 𝑟cyl−CoM < 𝑟ap, this is also commonly the main (see Figure 8.21). Consequently, on
average there is no aperture overlapping the center which is not a main, and as apertures have a
minimum separation of 𝑑min = 2 ·

√
3/2 ·𝑟ap between each other (see Section 6.2.1) this means

that the first radius with substructure mass on average is larger than the aperture radius, 𝑟ap.
This is why the steep initial jump is observed farther out than the one just outside the extent
of the BCG for the model from Jiang & van den Bosch (2017). As can be seen from the 1𝜎
ranges depicted in Figure A.17, there do exist orientations with substructures found quite far
toward the center, hence the increasing substructure mass fraction at 𝑥 = 𝑟ap/𝑟vir for the upper
bounds for those cases where no aperture is placed within 𝑟ap. Nonetheless, the 1𝜎 upper
bound of the substructure mass fraction drops to zero once the aperture actually overlaps the
center. Curiously, the “tiny” mass bin does not exhibit this increase. Additionally, it can be
seen that the crosses, indicating the median total subhalo mass as a fraction of the total mass
within 𝑟tot, lie lower than the curves for the fraction relative to the integrated main halo mass.
This is as expected, as a portion of the total mass lies within the substructures themselves.

Albeit the small number of observations on this matter, two substructure mass fractions
from lensing observations are shown for comparison: The purple diamond is from a weak-
lensing measurement of the Coma cluster at 𝑧 = 0.0236 for the substructure mass as a
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Figure 8.16: The median running substructure mass fraction of the integrated main halo mass as a
function of projected distance to the center-of-mass for the four mass bins with colored solid lines, as
well as in the dotted and solid black lines (for differing main halo masses as given) the dark matter-only
model from Jiang & van den Bosch (2017) which well match the re-scaled results from the BOLSHOI
simulation (Klypin et al., 2011). Vertical lines denote the approximate relative aperture size 𝑟ap/𝑟vir
(dashed) and large cylinder size 𝑟tot/𝑟vir (dash-dotted). The colored crosses represent the substructure
mass fraction of the total mass at that radius 𝑀tot, not just the main halo. Similarly, the purple diamond
denotes the substructure mass as a fraction of the total mass within the virial radius 𝑟vir for the Coma
cluster performed by Okabe et al. (2014), with the quoted total mass stemming from their tangential
fit. The cyan diamond is from extrapolations of the substructure mass data for Abell 2744 as given by
Jauzac et al. (2016).

fraction of the total mass within 𝑟vir as performed by Okabe et al. (2014), with the total
mass quoted as determined from their tangential fit. With a final value of 𝑓sub = 0.226,
the measurement agrees well with the curves of the “giants” and “mediums”, the former of
which have comparable masses to the Coma cluster but less well with the model from Jiang
& van den Bosch (2017). Meanwhile, the strong- and weak-lensing combined analysis for
Abell 2744 at 𝑧 = 0.308 as done by Jauzac et al. (2016) finds eight massive substructures
within 1 Mpc of the galaxy cluster center. Assuming the substructure labeled as “core”
to be the main and as such excluding it from the sum, the total substructure mass is then
4.16×1014 M⊙, which compared to the total mass within 1.3 Mpc, 𝑀tot = 2.3×1015 M⊙, then
gives 𝑓sub = 0.181. 𝑥2d is determined by assuming the virial radius to be approximately at
𝑟200, and then using the value of 2.4 Mpc given by Boschin et al. (2006) to get 𝑥2d = 1.3/2.4.
This point lies somewhat below the most comparable mass bin of the “giants”, but generally
agrees well with the results found for the Magneticum Pathfinder clusters, especially
given that the value for the total substructure mass fraction calculated should be understood
as a lower bound, as the eighth substructures as determined by Jauzac et al. (2016) do not
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necessarily constitute all substructure mass, especially considering that all lie within 1 Mpc
while the total mass is measured within 1.3 Mpc.

Figure 8.17: For every galaxy cluster individually the median substructure mass fraction 𝑓cyl as a
function of the subhalo mass fraction 𝑓sub for the primary scaling method with virial mass (left) and
the alternative with fixed subhalo numbers (right), colored by mass bins (see Section 7.2). 𝑓cyl is
determined from all substructures within 𝑟tot. Vertical colored lines denote 50% bounds, while the
dotted, dash-dotted and dashed black curves give factors 1, 2 and 3 between the projected and bound
mass fractions.

Figure 8.17 depicts the relationship of the measured substructure mass fractions between
projected and bound values for the individual galaxy clusters of all mass bins for both the
main scaling method considered throughout (∝ 𝑀vir of the galaxy cluster, left) as well as
the alternative given in Section 7.2 (constant 𝑁sub, right), with general values for the bins
summarized in Table 8.1. There is unsurprisingly a trend towards larger substructure mass
fractions for a higher number of apertures placed, with this effect being stronger for galaxy
clusters which start out with little bound subhalo mass – see for example number 5 and 11
of the “giants”, or number 1 and 20 of the “mediums”. Even for the low number of total
apertures placed on the right (around 19 on average, see Section 7.2) the mean increase is still
around 𝑓cyl/ 𝑓sub ≈ 1.75, with very few clusters ending up with 1-to-1 relations. Interestingly,
these do not occur only for high values of 𝑓sub but rather are spread across all mass bins and
bound subhalo mass fractions. Furthermore, even with just 19 apertures, there exist some
galaxy clusters which in projection exhibit consistently higher substructure mass fractions
between 2 to 3 times larger.

8.4 Other Measures of Dynamical State

Another important parameter for a galaxy cluster is that of the centershift, which is the distance
between the point of least potential and the center-of-mass, the latter of which is typically
defined in three dimensions for all particles within the virial radius. Together with the total
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Table 8.1: The relation between projected and bound substructure mass 𝑓cyl/ 𝑓sub for the different
mass bins and scaling methods (see Section 7.2).

Giants Medium Small Tiny
𝑓cyl/ 𝑓sub 𝑀vir scaled

Mean 2.94 2.77 2.27 1.93
Minimum 1.81 1.43 1.29 1.00
Maximum 3.97 4.92 3.59 4.31
𝑓cyl/ 𝑓sub 𝑁sub scaled

Mean 1.74 1.75 1.75 1.88
Minimum 1.14 1.00 0.96 0.93
Maximum 2.35 2.60 2.44 4.31

subhalo mass fraction 𝑓sub, these parameters can be used as a tracer for the relaxedness of the
galaxy cluster itself (Neto et al., 2007; Biffi et al., 2016).

Figure 8.18: 𝑑8 as a function of the centershift. Dashed black lines denote the running median, and
best-fit lines are given in solid blue. Contour lines enclose the fraction of orientations as given.

First, given the behavior observed for the slopes of the substructure mass distribution
in Figure 8.9, the question arises whether it can be linked to the centershift. Using again
the 𝑑8 parameter for comparison, the resulting relation is depicted in 8.18. Indeed, there
is a general trend towards more shallow slopes (smaller 𝑑8) with increasing centershift, so
more massive substructures are found for orientations where the point of deepest potential
is not the center-of-mass. These are then dynamically active galaxy clusters, with sufficient
infalling mass – identified as many substructures – which shifts the center-of-mass away from
the main halo center. It is interesting to note that the slopes for the relations are generally
comparable between the mass bins. Furthermore, it is apparent that most orientations exhibit



134 Chapter 8 – A Tale of Two Cities – Projected and Bound Masses

decently large centershifts, with the median values from the most to least massive mass
bins being 209.55, 154.25, 107.71 and 65.95 kpc, which means that for all bins on average
𝑟CoM−MBP > 𝑟ap.

Figure 8.19: The dependence of the eighth substructure mass on the orientations centershift. Dashed
black lines denote the running median, and best-fit lines are given in solid blue. Contour lines enclose
the fraction of orientations as given.

But what impact does the centershift have on single substructure masses? Recalling that
little correlation is found between the mass of the eighth substructure with projected distance
to the center-of-mass in Figure 8.14, which there is due to the fluidity of the definition of an
eighth substructure mass, this implies that to have a more massive eighth substructure requires
all substructures of higher number to equally rise in mass (as a consequence of the relatively
shallow substructure mass slopes of all galaxy clusters in Figure 8.9 for numbers beyond 3).
Plotting the eight mass fraction against the centershift in Figure 8.19, there appears little
correlation for log10(𝑟CoM−MBP/𝑟vir) < −0.1, which can be seen from the flat course of the
median. However, at sufficiently high centershifts of around 𝑟CoM−MBP ≈ 0.3𝑟vir there is a
distinct rise in frequency of high 𝑀8,cyl values. Especially for the “giants” and “tinies”, it is
noticeable that the strongest outliers are not present for lower centershifts. These then are
unique orientations with numerous very massive substructures, where for some of the most
extreme examples found for the “giants” the first seven non-main substructures account for at
least 7 · 3% = 21% of the total mass within 𝑟tot. As is discussed further in Section 8.6, these
are the orientations which give rise to the extreme projected substructure masses found from
lensing observations, or example by Jauzac et al. (2016).

Finally, to tie together both of the here considered parameters indicative of the dynamical
state of a galaxy cluster, Figure 8.20 plots both the total substructure mass fraction and
centershift against their values determined in 3 dimensions. The dashed black lines represent
typical limits for both parameters, namely 𝑓sub = 0.1 and 𝑠shift = 0.07, where higher values
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Figure 8.20: Top row: The median projected substructure mass fraction within 𝑟tot as a function of
the bound value determined from SUBFIND. Bottom row: The median projected centershift versus the
value in three dimensions. Dashed black lines denote typical bounds between relaxed and dynamically
active galaxy cluster, with lower values indicative of the former (Neto et al., 2007; Biffi et al., 2016).
Explicit galaxy cluster numbers within the mass bins are given in Figure A.18.

indicate a galaxy cluster which is dynamically active (Neto et al., 2007). As is already shown
in Figure 8.17, there is a significant discrepancy between the substructure mass fractions 𝑓cyl

and 𝑓sub, with the former falling in the range of “dynamically active” for nearly all galaxy
clusters of all mass bins. Contrarily, very few galaxy clusters have sufficient 𝑓sub. This implies
that determining the dynamical state via the substructure mass fractions will strongly depend
on considerations of projection, with potentially significant discrepancies in classification.

The converse is true for the centershift, which exhibits a very tight correlation between
the projected and 3-dimensional methods. Sufficient mass to disturb the center-of-mass away
from the point of deepest potential therefore does so similarly in projection, while the mass
being assigned to these substructures is not as comparable. This is most likely due to the
centershift being a more global parameter, determined from the large-scale mass distribution
as opposed to from individual smaller-scale overdensities. Interestingly, similar stability in
projection is found for the centershift 𝑤 as determined by X-ray emission in simulations
performed by Böhringer et al. (2010), there given as the distance between the X-ray peak
and centroids of increasing radius. Note, however, that their 𝑤 is measured within 𝑟500 (not
𝑟vir) and the border between dynamically disturbed to regular is much lower as well, being at
𝑤 = 0.01.
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8.5 It is Bound to be Projected

Given the differences found between projected and bound masses in the preceding sections,
it is sensible to seek a method of converting one into the other. This section will develop
such a model to construct expected masses in projection 𝑀cyl as a function of the underlying
subhalo mass 𝑀subfind in cyl and projected distance to the two-dimensional center-of-mass
𝑟cyl−CoM for the four mass bins. The great benefit lies in the ability to, for a given observed
mass in projection, be able to take a sample of galaxy clusters from simulations and then
predict confidence bounds with which an orientation exists that can reproduce it. As a
great deal of the following analysis will focus on the dependence of substructure masses on
𝑀subfind in cyl and 𝑟cyl−CoM, for brevity’s sake, the two parameters will be shortened to 𝑀s and
𝑟c throughout. The final form of the model is that of a Gaussian probability distribution,
where the probability for a given projected substructure mass of 𝑀cyl resulting from a bound
subhalo of mass 𝑀s at projected distance 𝑟𝑐 within a galaxy cluster of comparable mass to
one of the mass bins is given by:

𝑝bin
(
𝑥 = 𝑀cyl;𝜎(𝑀𝑠, 𝑟𝑐), `(𝑀𝑠, 𝑟𝑐)

)
=

1
√

2𝜋𝜎2
exp

(
− (𝑥 − `)

2

2𝜎2

)
. (8.1)

8.5.1 The General Behavior of Individual Apertures

To get an initial impression for the relationship between the apertures and bound subhalos
as determined in three dimensions via SUBFIND, two choice correlations are plotted in
Figure 8.21. On the left, for the orientations that have an aperture overlapping the projected
center-of-mass, the frequency of this central aperture ending up as the first to eighth most
massive substructure is shown. For the cluster mass bins from “giants” to “tiny”, this central
aperture exists in around 55.5%, 59.4%, 58.2%, and 58.7% of all orientations, which end up
being comparable frequencies, and for those where it does the most massive substructure is
in over half. Given the large amount of mass at the original center of the galaxy clusters, the
most-bound-particle, to fail placing an aperture on the center-of-mass for nearly half of all
orientations requires on average centershifts that are larger than the aperture size, which is
exactly what is found in Section 8.4.

In turn, the right of Figure 8.21 depicts the correlation between the order of substructure
masses to the order of the bound subhalo masses within, where for example if 𝑥 = 3, the most
massive three substructures also contain the most massive three subhalos in the same order.
As can be seen, an aperture containing the first/second most massive bound subhalo has very
high/good chances of also being the first/second most massive substructure, while already
for the third most massive subhalo the correlation to the substructure number of the aperture
containing it is on average between the bins only 10%. This is because a significant portion
of the projected mass contained in the apertures comes from the main halo, such that only
overwhelmingly massive subhalos can guarantee high final aperture masses.
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Figure 8.21: Left: The fraction of orientations where the center-of-mass lies within the “x”-th
most massive aperture. Note that this considers only orientations which have an aperture containing
the center-of-mass, which represent approximately 33, 44, 55 and 41% for the “giants” to “tinies”,
respectively. Right: The fraction of orientations where the first “x” substructures also contain the first
“x” subhalos in order, as sorted by mass. The frequency for 𝑥 = 1 is equivalent to the frequency of
the most massive aperture containing in projection the most-bound-particle, as it is the center of the
most massive halo.

The correlation for 𝑥 = 1 is of particular interest, as it describes the correlations between
the point of deepest potential which forms the center of the galaxy clusters in three dimensions,
so the most-bound-particle, and the most massive substructure (i.e., the main in projection).
It demonstrates that the aperture containing the SUBFIND main is also subsequently the main
in over 90% of the orientations. As an example, cases where this does not happen for the
“giants” mass bin occur more than 20 times (i.e., in at least 10% of the total orientations)
only for four clusters: numbers 20, 10, 1 and 18 have 152, 68, 58 and 25 orientations where
the most massive substructure does not contain the most-bound-particle. It is apparent then
that most galaxy clusters in projection directly correlate the most massive substructure to the
most-bound-particle, and that there are only few exceptions to the rule. Interestingly, these
extreme cases correspond somewhat to the galaxy clusters with those of high centershift,
which is discussed more in Figure A.19.

Similarly, it can be considered whether having a high initial projected mass within an
aperture is a guarantee for a resultingly high final mass after subtracting the contribution
of the main halo or not. Generally, some halos may gain significant mass initially from
the main halo by lying far towards the center, but then correspondingly have an equally
significant fraction subtracted. Nonetheless, as seen in Figure A.20, having a high initial
mass is correlated significantly more strongly with the final projected substructure mass than
containing one of the most massive bound subhalos.

Figure 8.22 exactly depicts the relationship between the projected substructure mass to
the most massive bound SUBFIND mass within the corresponding aperture. All mass bins
exhibit the same triangular form, with a large scatter in 𝑀cyl at lower values of 𝑀s reducing to
very little scatter at higher values, although the overall distribution exhibits the general trend
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Figure 8.22: The aperture mass as a function of the most massive bound subhalo within it given
by SUBFIND. The curved solid gray line denotes the projected mass within 𝑟ap at constant depth 𝑟turn
as given in the legends for a given bound subhalo mass 𝑀s assuming the subhalo to approximate an
NFW-profile (such that Equation A.8 can be used) with concentration given by the 𝑐 − 𝑀 relation
from Ragagnin et al. (2019). Horizontal dashed gray lines denote this projected mass for the most
massive 𝑀s, with histograms depicting the number density 𝑛 distribution of either 𝑀s (top) or 𝑀cyl
(right). Contour lines contain the fraction of total orientations as written.

of higher substructure masses with higher bound masses, as can be seen from the contours
nonetheless. Furthermore, the histograms show that the SUBFIND masses exhibit a second
peak where the mains lie, which the aperture masses do not have (except very slightly for the
“tiny” mass bin).

The solid gray line represents what the projected mass of a single isolated NFW-halo
with the corresponding 𝑀s would have when projected out to the depth of 𝑟turn, as given by
Equation A.8. Consequently, the fact that the main bulk of substructure masses lie on or
above this line implies that the projected mass is in general not carried by a single subhalo!
Instead, portions of the main halo mass as well as other subhalos are projected within the
aperture. These effects become less relevant for increasing mass of 𝑀s, where at the highest
values the substructure masses lie rather close to what would result from a single halo in
projection.

To disentangle the effects which lead to this scatter of 𝑀cyl − 𝑀s, when assuming that a
portion of this increased mass is due to the main halo, it follows that those apertures closer to
the center-of-mass should experience stronger increases. Also of interest is a follow-up on the
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Figure 8.23: The ratio between a substructure’s mass and its most massive bound subhalo 𝑀cyl/𝑀s as
a function of the centershift (left) and distance to the center-of-mass (right). Black solid lines are the
linear best fits for all apertures with ratios above 0.2, to avoid the effects of the main halos depicted
in purple. Contours contain the fraction of total orientations as written. The vertical lines of points
appearing on the left are due to multiple substructures of one orientation having the same centershift,
as it is a global property.

findings of Figure 8.19. Given that most extreme masses of the eighth substructure are found
at high centershifts, are these masses being more strongly increased relative to their bound
masses than those at lower centershifts? To this point, Figure 8.23 depicts the ratio between
the substructure and maximal SUBFINDmass within apertures as a function of the centershift
(left) and distance of the aperture to the center-of-mass (right) for the “giants” mass bin.
This finds little dependence on the centershift, with contours exhibiting no distinct shape.
Consequently, it can be concluded that a larger centershift does not imply that substructure
masses will be increased more relative to their contained bound masses than is the case for
lower centershifts. Conversely, for the apertures’ distance to the center-of-mass a dependence
is found. Apertures closer to it tend to have more substructure mass compared to the bound
subhalo mass within them – aside from the mains lying at the bottom, which due to the
localized extent of apertures lose a substantial amount of mass relative to what is assigned to
them by SUBFIND.

Given the findings in Figure 8.23, the distance of substructures to the center-of-mass is
of further interest as it impacts the ratio 𝑀cyl/𝑀s. To better understand the general behavior,
Figure 8.24 plots the relation from Figure 8.22 colored by the distance, where the trend from
Figure 8.23 is found to persist for all mass bins. Those apertures farther in lie at overall
higher projected masses, relatively independent from the actual underlying bound subhalo
mass. The mains from SUBFIND also lie close to the center, as expected from Figure 8.21.
Interestingly, the “arm” connecting the mains to the overall bulk of the substructures is
made up primarily of apertures lying farther out, mirroring the findings in Figure 8.4 that
very massive bound subhalos generally lie at larger distances from the galaxy cluster center.
Though some projections can exist where these massive subhalos will appear close to the
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Figure 8.24: The aperture mass as a function of the most massive bound subhalo within it given by
SUBFIND, binned and colored by the projected distance of the aperture to the center-of-mass. Binning
is done via hexbin from Hunter (2007).

center, as shown in Appendix A.3, on average larger distances in three dimensions also result
in larger distances in projection, explaining the trend towards larger radii. Overall, it is found
that slopes of equal radii become more/less steep and thus 𝑀cyl is more/less dependent on 𝑀s

for higher/lower projected distances.

8.5.2 Modeling the Masses

Figure 8.25: The distribution of substructure masses 𝑀cyl for 10 different ranges of 𝑀s as written in
the legend, going from lowest to highest mass as left to right, then top to bottom. Orange lines are the
best-fit single Gaussian models performed using the Julia “Distributions.jl” package by Besançon
et al. (2021), with mean and variance as given in the legend.

Figure 8.25 depicts the initial step towards the model, where the range of 𝑀s is split
into 10 bins containing an equal number of orientations for the “giants”. The distributions of
substructure masses 𝑀cyl take the form of an approximate single Gaussian, though especially
for the bins at the high mass end of 12.2 ≤ log10(𝑀s [𝑀⊙]) there is significant deviation
in the distributions from the best-fit single Gaussian models shown in orange. Given the
overall shape however, the model 𝑀cyl(𝑀s, 𝑟c) will take the form of a single Gaussian, with
the radial dependence from Figure 8.24 used to further disentangle the distribution. Taking
for example the 9th mass bin, 12.4 ≤ log10(𝑀s [𝑀⊙]) < 12.8, and splitting it further into 10
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radial distance bins, the single Guassian fits better match the resulting distributions – see
Figure 8.26. Nonetheless, there are still deviations present with some apparent double peaks;
these will be discussed later in Section 8.5.3.

Figure 8.26: The distribution of substructure masses 𝑀cyl of the second most massive 𝑀s bin from
Figure 8.25 for different ranges of 𝑟c as written in the legend going from lowest to highest mass as left
to right, then top to bottom. Orange lines are the best-fit single Gaussian models performed using the
Julia “Distributions.jl” package by Besançon et al. (2021), with mean and variance as given in the
legend.

The total range of apertures is split into 50 bins each for the two parameters, being the
maximum SUBFINDmass in the cylinder 𝑀s and the projected distance to the center-of-mass
𝑟c, and single Gaussians are fit. This gives a set of 2500 pairs of (`, 𝜎). To construct the
model 𝑀cyl(𝑀s, 𝑟c), functional forms for ` and 𝜎 in dependence of the two parameters are
required.

First, the variances 𝜎 of the Gaussian fits turn out to be dependent primarily on the
SUBFIND mass, and not on the radial distance of the aperture to the center-of-mass. This can
be see from Figure 8.27, where on the left 𝜎 goes noticeably from higher to lower values with
increasing 𝑀s, but stays approximately constant with varying 𝑟c. The explicit dependence on
𝑀s is plotted on the right, with the best-fit line for all bins in solid blue chosen as the model
form of the variance, i.e.,

𝜎(𝑀s, 𝑟𝑐) = 𝜎(𝑀s) = 𝛾0 · log10(𝑀s [𝑀⊙]) + 𝜎0. (8.2)

This is the same functional form used for 𝜎 for every individual mass bin.
The behavior of the means `fit of the single Gaussians, however, exhibits a dependence

on both 𝑟c and 𝑀s. This can be seen again for the representative mass bin of the “giants”
in Figure 8.28, with the left depicting each of the 50 radial bins as a colored solid line in
the `fit − 𝑀s plane. Overall, there is a tendency for all radial bins towards higher mean
substructure masses of the fits `fit with increasing 𝑀s, where the values of 𝑟c for the bins
impacts both the slope and y-intercept of the relation – apertures farther in lie at higher
values of 𝑀cyl and subsequently `fit, and also make the slope more shallow as also seen in
Figure 8.24. On the right in turn the same is depicted for the 50 𝑀s bins in the `fit − 𝑟c
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Figure 8.27: Left: The dependence of the variances 𝜎 of the Gaussian fits to the “giants”. Right: 𝜎
from the single Gaussian fits as a function of 𝑀subfind. The best-fit line for all points is given in solid
blue, while that for all except the last mass bin (i.e., except the main halos) is solid orange, with slope
𝛾0 and y-intercept 𝜎0 for both as in the legend.

plane with the same behavior found. Noticeably, the highest 𝑀s bin (the top cyan curve)
has no orientations where the apertures containing these subhalo masses lie farther out than
35% · 𝑟vir.

For the curves both on the left and right generally good agreement is found with a simple
line-fit, but the overall best fit was found for a parabolic functional form:

`fit(𝑎, 𝑏) = 𝛼𝑏 · 𝑎2 + 𝛽𝑏 · 𝑎 + `0,b, (8.3)

with (𝑎, 𝑏) ∈ {(𝑀s, 𝑟c), (𝑟c, 𝑀s)} for the fits on the left/right sides of Figure 8.28.

Figure 8.28: The dependence of the means `fit of the Gaussian fits to the “giants” for the different
radial/subfind mass bins as a function of the subfind mass/radius on the left/right are plotted as colored
solid lines, with the best fit parabolas of the form in Equation 8.3 as dashed black lines.

Continuing with the fits on the left of Figure 8.28, the behavior of the fit-parameters
𝛼rc , 𝛽rc , `0,rc if plotted as a function of the mean aperture distance 𝑟𝑐 of each of the 50 radial
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Figure 8.29: The behavior of the fit parameters of the parabolas from the `fit − 𝑀s plane on the left
in Figure 8.28 as a function of the mean aperture distances 𝑟𝑐 of each radial bin. From left to right in
order are 𝛼rc , 𝛽rc and `0,rc . The orange solid lines represent the best-fit parabolas, with fitparameters
A,B,M as written in the order of their lower-case occurrence in Equation 8.3. Note that these final
nine parameters are constants for the entire mass bin, i.e., carry no further dependence as for example
𝛼rc has.

bins in Figure 8.29. Interestingly, 𝛼rc and `0,rc follow very similar curves, while 𝛽rc does
so with an inverted sign. The common behavior could indicate that the parabolic fits to
the radial bins are constrained by a further, third parameter which gives a dependence as
𝛼, 𝛽, `0 ∝ 𝑓 (𝑟𝑐, 𝑝), though this goes beyond the scope considered here.

Figure 8.30: The predicted distribution of substructure masses 𝑀cyl in black solid lines against the
real values in blue, for 10 different ranges of 𝑀s as written in the legend, going from lowest to highest
mass as left to right, then top to bottom. Orange dashed lines are the best-fit single Gaussian models
performed using the Julia “Distributions.jl” package by Besançon et al. (2021), with mean and
variance as given in the legend.

Fitting the curves found in Figure 8.29 also with a parabolic function as in Equation 8.3
then gives the final functional form for the mean `fit of the predicted Gaussians when starting
from the `fit − 𝑀s relation as:

`fit(𝑀𝑠, 𝑟𝑐) = (A𝛼 · (𝑟𝑐/𝑟vir)2 + B𝛼 · (𝑟𝑐/𝑟vir) +M𝛼) · log10(𝑀s [𝑀⊙])2
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+(A𝛽 · (𝑟𝑐/𝑟vir)2 + B𝛽 · (𝑟𝑐/𝑟vir) +M𝛽) · log10(𝑀s [𝑀⊙])
+(A`0 · (𝑟𝑐/𝑟vir)2 + B`0 · (𝑟𝑐/𝑟vir) +M`0), (8.4)

where A,B,M are the parabola fit parameters for the orange solid lines from Figure 8.29 for
the parameter in their subscript, and are constants for each mass bin. Figure A.21 then shows
how well the so-calculated means `fit agree with all aperture values, though this does not yet
account for the variance. The total prediction then depends on 11 fixed parameters, nine for
`fit and the two (𝛾0, 𝜎0) from the line-fit as in Equation 8.2.

The resulting predictions for the 10 initial 𝑀s bins in Figure 8.25 are depicted with the
model’s predicted distribution as solid black lines in Figure 8.30. The values fed to the model
are the mean 𝑟𝑐 and median 𝑀𝑠 for each bin, where for 𝑀𝑠 the median is chosen due to
the greater range of possible values where the jump to the values of the mains can lead to
overestimation of the general behavior of the bin. Generally, the predicted distributions are
found to match well to the actual ones. On the lower mass end the variance is predicted to
be somewhat smaller than it actually is, as the 𝑀𝑠 values within the bin scatter over a large
range such that a single value for 𝑀𝑠 is not sufficiently representative. The highest mass bin
experiences similar problems which are exacerbated by the fact that it is clearly not comprised
of a single Gaussian. Furthermore, the information contained in 𝑟𝑐 is largely lost here for all
bins as splitting the distribution only by 𝑀𝑠 finds all possible values for 𝑟𝑐 and the mean is
then consequently ≈ 0.5 · 𝑟vir, as can be seen from Figure 8.24.

Figure 8.31: The predicted distribution of substructure masses 𝑀cyl in black solid lines against the
real values in blue, for the second most massive 𝑀s bin from Figure 8.25 for different ranges of 𝑟c as
written in the legend going from lowest to highest mass as left to right, then top to bottom. Orange
dashed lines are the best-fit single Gaussian models performed using the Julia “Distributions.jl”
package by Besançon et al. (2021), with mean and variance as given in the legend.

Including the information contained in 𝑟𝑐 strongly refines the model’s performance, as
can be seen when taking again the ninth 𝑀𝑠 bin and splitting it into 10 𝑟𝑐 bins. The resulting
distributions are plotted in Figure 8.31, where the predicted distribution in black very tightly
matches the underlying real values of 𝑀cyl. In particular the mean values of the predicted
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versus explicitly fit Gaussians (black to orange dashed) match very closely, while the 𝜎 is
comparable for most even though it is calculated only from the median value of 𝑀𝑠 of the
total bin.

Table 8.2: The fit parameters for 𝜎 and `fit in Equation 8.2 and Equation 8.4, providing the basis for
the model in Equation 8.1.

Giants Medium
(𝛾0, 𝜎0) -0.06430 1.004 -0.06274 0.9643

A𝛼,B𝛼,M𝛼 -0.2308 0.3790 -0.04376 -0.1726 0.2820 -0.02980
A𝛽,B𝛽,M𝛽 5.443 -8.866 1.233 3.922 -6.341 0.8907

A`0 ,B`0 ,M`0 -31.21 49.87 4.913 -21.492 33.88 6.607
Small Tiny

(𝛾0, 𝜎0) -0.05690 0.8481 -0.05179 0.7549
A𝛼,B𝛼,M𝛼 -0.2910 0.2967 -0.01105 -0.1730 0.1307 0.02490
A𝛽,B𝛽,M𝛽 6.642 -6.537 0.4500 3.673 -2.419 -0.4200

A`0 ,B`0 ,M`0 -37.14 34.32 8.873 -18.54 9.010 13.87

Some general trends between the fits of the different mass bins can be found. For example,
both parameters of the variance fits (𝛾0, 𝜎0) decrease toward the lower mass bins, meaning
that the variance becomes lower and more shallow in its dependence on 𝑀s. Conversely, all y-
intercepts of the parabola fits 𝑀x increase toward the lower mass bins. In the future, possible
trends of the model with the mass of the bins could perhaps allow for a more generalized
form, 𝑝(𝑀cyl, 𝑀𝑠, 𝑟𝑐;𝑀gc), incorporating the mass of the galaxy cluster itself as the third
parameter.

8.5.3 Subhalos: What do the Numbers Mean?

As found in Figure 8.26, even after the split-up according to 𝑀s and 𝑟c bins there exist
some deviations from singular Gaussians. Though it is possible that these may be further
reduced by choosing more fine bins, here the alternative is considered that further parameters
play a role. Given the usage of the maximum bound subhalo mass 𝑀s throughout, it is not
unreasonable to assume that the total number of subhalos within the aperture has an impact
on the final projected mass. For the high mass end of 𝑀s, this is unlikely to make much of
a difference as minor additional subhalos carry comparatively little mass, but this may not
be the case for other less massive subhalos. To this end, the relation 𝑀s − 𝑀cyl is plotted for
apertures with 1, 2, 3 and 4 or more in Figure 8.32.

Apertures with higher numbers of bound subhalos tend up and to the right in the 𝑀cyl−𝑀s

relation. The trend of the lower bound going to increasingly higher 𝑀cyl with increasing sub-
halo numbers interestingly implies that higher numbers of subhalos within a single aperture
are found predominantly at lower distances from the center-of-mass, as they lie at similar
positions in the 𝑀cyl − 𝑀s relation (see Figure 8.24). It is unclear here if the masses of the
subhalos themselves push the projected masses upwards, or if conversely other properties of
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Figure 8.32: The aperture mass as a function of the most massive bound subhalo within it 𝑀𝑠, with
apertures with increasing numbers of bound subhalos plotted over each other. Note that apertures
with just one bound subhalo are by far the most numerous, such that to see the placement of those
with higher numbers they are plotted on top. This does not imply that no halos are found within the
overplotted regions with lower numbers.

the more massive projected apertures lead to increased numbers of bound subhalos within
them. Given that little difference is found between the general form of 𝑀cyl − 𝑀s relation
between 𝑀𝑠 being the single most massive subhalo in Figure 8.22 versus being the total
summed subhalo mass within the apertures in Figure A.22, the latter reasoning seems more
likely.

The second trend to higher 𝑀s with increasing subhalo numbers is curious, as it implies
that to find multiple subhalos in the same aperture one of them must be of an increasing mass.
This may, however, be simply statistical in nature, where for a random sample of a higher
number of subhalos it is more likely to find one having a higher mass.

Figure 8.33: The aperture mass as a function of the most massive bound subhalo within it 𝑀𝑠, with
apertures with increasing numbers of bound subhalos plotted over each other. Note that apertures
with just one bound subhalo are by far the most numerous, such that to see the placement of those
with higher numbers they are plotted on top. This does not imply that no halos are found within the
overplotted regions with lower numbers.

Nonetheless, when splitting all substructures by their number of bound subhalos and then
taking only those with exactly one, Figure 8.33 shows that the split up into 10 bins according
to 𝑀s finds behavior in the distribution of substructure masses 𝑀cyl closer to single Gaussians
than when not pre-selecting apertures as in Figure 8.25. Especially the most massive 𝑀s
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bin becomes noticeably more regular, losing its second peak. To emphasize this point,
mixture models of two overlayed Gaussians are also fitted to the distribution as a blue line to
compare to the orange line fitted for a single Gaussian, and little difference between the two
is found, indicating little presence of secondary peaks. The mixture models are fitted via the
GaussianMixtures.jl package (van Leeuwen, 2022). Given the findings here, as well as
the correlated behavior of the fit parameters found in Figure 8.29, it is then of great interest in
the future to further explore potential additional parameters and their impact on the projected
masses of substructures in relation to the underlying bound subhalo masses. For example, in
addition to the number of subhalos discussed here, one could consider separating apertures
into bins based on the curvature of the main-halo fit from Section 6.3, or instead based on the
large-scale dynamical state of the galaxy cluster, for example via the centershift discussed in
Section 8.4.

8.6 Reproducing Abell 2744

This section will answer the fourth question posed in Chapter 1: Can the extreme substructure
masses found in observations be explained in the paradigm of ΛCDM when also including
baryonic physics? In particular, the focus is placed on the eight massive substructures found
by Jauzac et al. (2016) within galaxy cluster Abell 2744 through the use of weak- and strong-
lensing, discussed in more detail in Section 5.1. First, the specific orientation found to best
reproduce the masses in Abell 2744 is discussed, before moving on to more generally quantify
when orientations become host to such large masses, identifying one parameter in particular
to correlate strongly to such cases.

Figure 8.34 depicts the projection of galaxy cluster number 20 of the “giants” mass bin,
with the method from Chapter 6 summarized in four steps. Depicted in order from top to
bottom and left to right are the initial read-in with subsequent center-of-mass determined as
a blue cross (Section 6.1), the second read-in around this center (Section 6.2), the main halo
fit after masking the apertures (Section 6.3) and finally the resulting first eight substructure
masses. It is important to note that the orientation exhibits a noticeable centershift (top left)
and that the resulting substructures are all quite close to the center-of-mass, which can be
seen also more clearly in Figure 8.35, similar to Abell 2744 where all eight substructures are
within 1 Mpc of the most massive substructure (Jauzac et al., 2016).

Most interesting, however, are the resulting mass fractions of the eight substructures
relative to the total mass within 1.3 Mpc plotted in the bottom right as orange crosses. Aside
from the less massive first, the remaining substructure mass fractions match those found by
Jauzac et al. (2016) for Abell 2744 remarkably well, in stark contrast to the mass fractions
for subhalos from SUBFIND plotted as cyan stars. This provides strong evidence that such
masses are the result of projection effects, and that they are reproducible for the WMAP-7
cosmology (Komatsu et al., 2011) used by Magneticum Pathfinder. The substructure
masses and mass fractions are summarized in Table 8.3.
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Figure 8.34: Top left: The initial 1 · 𝑟vir read-in centered on the most-bound-particle in projection
used to determine the center-of-mass, indicated by the blue cross. The blue circle represents 1.3 Mpc
around the center-of-mass, and colors are the smoothed surface mass density as described in Chapter 6.
Bottom left: Final projected area of 1 · 𝑟vir localized on the center-of-mass, with while circles denoting
the positions of the eight massive substructures identified. Top right: The main halo surface density
profile after masking (blue dots) and the chosen Einasto fit (solid orange line) as well as a fit to an
NFW-profile for comparison (solid cyan line). Bottom right: Aperture masses before (blue dots) and
after (orange crosses) subtracting the mass contribution from the main halo, given as a fraction of the
total mass within 1.3 Mpc 𝑀tot. Red diamonds denote the substructure mass fractions as listed by
Jauzac et al. (2016). The masses of the eight most massive subhalos (cyan stars) within 𝑟vir are plotted
for comparison as a fraction of 𝑀vir, which is comparable in mass to 𝑀tot.

It should be noted here however that the total mass present within 1.3 Mpc for the
projection of galaxy cluster 20 of the “giants” is around a factor of 2 smaller than that
of Abell 2744, namely 1.03 × 1015 M⊙ versus 2.3 × 1015 M⊙ (Jauzac et al., 2016). This

Table 8.3: The 8 substructure masses determined within 150 kpc apertures for galaxy cluster 20 of
the “giants” as well as Abell 2744, with values for the latter as determined by Jauzac et al. (2016).

1 2 3 4 5 6 7 8
Abell 2744 identifiers Core NW S3 N S4 S2 Wbis S1

MA2744/M<1.3 Mpc [%] 5.9 3.4 2.8 2.7 2.4 2.3 2.3 2.2
MCl20,cyl/M<1.3 Mpc [%] 3.6 3.5 2.6 2.6 2.6 2.3 2.2 2.2

MA2744 [1013M⊙] 13.55 7.9 6.5 6.1 5.5 5.4 5.2 5.0
MCl20 [1013M⊙] 3.7 3.7 2.7 2.7 2.7 2.4 2.3 2.3
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Figure 8.35: The total (left) and stellar (right) surface mass density maps of the central 1 Mpc2 region
in the bottom left of Figure 8.34. White circles on the right denote the 150 kpc apertures enclosing
the eight substructures, with numbers denoting their order by mass. Red curves denote isodensity
contours, increasing by factor 2 between each.

subsequently is also the case for the absolute masses of the substructures, as seen in Table 8.3.
However, as can be seen in Section 8.3 and in particular Figure 8.9, the mass fractions scale
self-similarly between different mass ranges for the employed projection method, such that it
can be assumed with some certainty that Abell 2744 can be reproduced also in absolute terms
when using a larger simulation box volume. This is thus in agreement with the findings by
Schwinn et al. (2018) in that a significant portion of the mass in projection is contributed by
the main halo.

Given that the substructures of Abell 2744 can be reproduced, the question then becomes
under which conditions this can occur. Beginning with the example of the substructure masses
for galaxy clusters number 5 and 20 of the “giants”, Figure 8.12 is updated to include the
eight most massive subhalo mass fractions within 𝑟vir as given by SUBFIND in Figure 8.36.
The horizontal dashed black line represents the mass fraction of the eighth most massive
substructure of Abell 2744 as given in Table 8.3.

As seen on the left of Figure 8.36, galaxy cluster 5 never manages to produce even a sixth
substructure with the mass of the eighth of Abell 2744, instead falling below it by a factor
of 2. The overall distribution falls off steeply, with especially the subhalo mass fractions
from SUBFIND reaching negligible values very rapidly. On the other hand, although the mean
substructure mass fraction of galaxy cluster 20 lies below the values for Abell 2744, they lie
within the bounds, with up to the sixth also occurring with relative frequency. The extreme
values for the seventh and eighth are, however, rare overall. Nonetheless, this provides clear
rationale for the difference between galaxy clusters which can and which cannot reproduce
orientations with high substructure masses, namely the dynamical state. Galaxy cluster 5 is
one of the most relaxed clusters of the “giants” while the converse holds for 20, as can be
seen in Figure 8.20. In particular there is a noticeable difference in the centershift. This is
consistent with the findings in Figure 8.19, where it is observed that to achieve high numbers
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Figure 8.36: The distribution of the mass fractions for the eight most massive substructures within
𝑟tot as a function of their substructure number for galaxy clusters 5 (left) and 20 (right) of the “giants”
mass bin for all 200 orientations. Blue error bars denote the overall spread while the blue shaded
area represents the percent number of orientations at each mass fraction, with a larger bulge meaning
a larger percentage. Red diamonds denote the substructure mass fractions as listed by Jauzac et al.
(2016), with the black dashed line equal to the mass fraction of the eighth. The masses of the eight
most massive subhalos (cyan stars) within 𝑟vir are plotted for comparison as a fraction of 𝑀vir.

of substructure with the highest apertures masses, the projection considered must exhibit a
high centershift.

Figure 8.37: The mass fractions of substructures as a function of the mass of the most massive bound
subhalo within them, split into four bins going from the orientations with the highest (left) to lowest
(right) centershifts. Substructures are colored according to their position within the orientation based
on mass, where the most massive substructure of a given orientation is colored in blue and the second
most massive in cyan. This continues until the eighth in the sequence of: green, olive, drab olive,
orange, red, pink, with all remaining apertures colored in silver.

Figure 8.37 demonstrates this point even more clearly, where all substructures of the
“giants” are split into four bins based on the centershift of the orientation from which they
stem. Furthermore, substructures are colored according to their ordering by mass for a given
orientation, with the most massive apertures in blue and the eighth most massive apertures
in pink. The solid black line denotes the mass of the eight substructure of Abell 2744, such
that any pink point lying above this line is part of an orientation with eight similarly massive
substructures to Abell 2744. There are 58 such orientations out of 5800 total, so 1%, of
which 57 lie in the left most bin – at the highest orientations with highest centershift. The
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Figure 8.38: As in Figure 8.37, but done for the alternative stellar mass cut based on equal numbers
of apertures (see Section 7.2).

one exception lies in the second centershift bin from the left, with none in the right two. It
can be concluded then that to reproduce such high substructure masses, a large centershift is
a necessary condition. As for the general behavior, it is found that for decreasing centershift,
the mass fractions contained within the mains in blue steadily increases, while simultaneously
the mass fractions of higher substructure numbers decrease, where for the lowest centershifts
on the right even the fourth substructure (olive dots) rarely manages values above 2%.

Figure 8.39: As in Figure 8.37, but for the “medium” mass bin with the default stellar mass cut scaled
with virial mass (see Section 7.2).

This is also found to be the case for the other scaling method from Section 7.2, as shown
in Figure 8.38 for the same “giants” mass bin. The lower number of apertures placed for the
method (around 19 on average, see Table 7.1) still allows for orientations where the eighth
substructure reaches a mass fraction equal to or above that for Abell 2744, namely 39 of 5800
total. All of these lie in the bin on the far left for the highest centershift. Furthermore, the
behavior is also consistent with that found for other cluster mass bins, with the substructures
from galaxy clusters of the “medium” mass bin depicted in Figure 8.39. Here 46 such
orientations are found, with a broader spread than for the “giants”. From left to right, there
are 30, 4, 9 and 3 cases per centershift bin. Nonetheless, the overall majority are again within
the bin of highest centershift. An overview of all such cases for the different mass bins is
given in Table 8.4.

This constitutes the first reproduction of these extreme substructure masses with a hy-
drodynamical simulation, and is consistent with the findings by Schwinn et al. (2018) who
employed the dark matter-only simulation Millenium-XXL (Angulo et al., 2012). It is of
note that similar
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Table 8.4: The number of orientations with eighth substructure mass fractions relative to𝑀tot in excess
of 2.17% split up for each of the four mass bins based on the centershift into four bins containing a
quarter each of the total 5800 orientations.

Giants Medium Small Tiny
centershift 𝑀vir scaled

Top 25% 57 30 30 10
Third quartile 1 4 5 0

Second quartile 0 9 3 0
Lowest 25% 0 3 2 0

centershift 𝑁sub scaled
Top 25% 39 12 19 10

Third quartile 0 4 0 1
Second quartile 0 3 0 0

Lowest 25% 0 0 0 0

In summary, galaxy clusters with comparable substructure masses to Abell 2744 in
projection are found within box 2b of the Magneticum Pathfinder simulation (Dolag,
2022). For the largest 29 galaxy clusters, such orientations occur for around 1% of all cases,
making them rare but not impossible. The parameter found to correlate most strongly to
a very high eighth substructure mass is the centershift, with higher values being generally
necessary for the most extreme masses. It is exceedingly rare to simultaneously have an eighth
substructure mass fraction in excess of 2.17% and centershift in the range of the lowest 25%
overall, occurring for only 0.02% of all projections. Note, however, that Jauzac et al. (2016)
themselves stipulate 𝑊bis to be a background structure, such that it is not impossible for the
projection to be one such rare case.

It should be noted further that the mass-to-light ratios, determined through the method
from Jauzac et al. (2015), of the four least massive substructures, 𝑆1, 𝑆2, 𝑆4 and 𝑊bis are in
excess of 100, which for the close projected proximity to the cluster center, in particular of
𝑆1, appears curious. These could perhaps be indicative of significant mass from the main
halo being included, which would coincide with the present findings. It can be concluded
that at any rate accounting for projection effects is of utmost importance.

8.7 Filaments and Accretion

Though the preceding sections have provided in-depth analyses of the projected and three-
dimensional properties of simulated galaxy clusters over a broad mass range, these objects
are much too complex to consider every interesting aspect they posses. There are numerous
further avenues to consider for future research with too many to list here, but this section
will provide at least a brief outlook on two such considerations: the large-scale structure as
well as the usage of the accretion history as potential tracers for the dynamical state of a
galaxy cluster. Furthermore, as one of the key findings of this thesis is that the way objects
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are observed has a large impact on their determined properties, some alternatives to the
conditions for the placement of apertures are discussed at the end.

Figure 8.40: The large scale structure surrounding galaxy cluster 5, projected out to a depth of 𝑟turn
once for the total mass (top row) and for the stellar mass (bottom row). Columns depict the projection
along the 𝑧-, 𝑦- and 𝑥-axis, respectively, and the cutout shows an area of 8 · 𝑟vir. The central white
circles denote 1 · 𝑟vir centered on the galalxy clusters most-bound-particle.

Beginning with the large-scale structure, it can be argued that the surroundings of galaxy
clusters have yet to fall in, and structures which have fallen in are not in the surroundings
anymore. Therefore, the large-scale structure should only provide information about the
future evolution of galaxy clusters, as opposed to making statements about its current or
past state. It should be noted that even in this case, the surrounding large-scale structure
will still have an impact on some of the typical observational measures such as for lensing
(see Section 5.2) and Compton-distortion because these have little line-of-sight resolution
(White et al., 2010). Thus, when comparing properties determined from observations and
simulations this impact must be taken into account – as demonstrated throughout this thesis
for the case of substructure masses. Furthermore, as shown by White et al. (2010), in the case
of the large-scale filaments feeding galaxy clusters the velocities of galaxies within the cluster
do generally trace the large scale anisotropy. The large-scale properties are further interesting
as they can provide insight into the “missing baryons” problem (Cen & Ostriker, 1999),
where for the specific case of Abell 2744 Eckert et al. (2015) find a substantial amount of gas
present as a warm hot intergalactic medium (WHIM). Similar analyses could be conducted
in the simulations, and perhaps even linked to the dynamical state of the galaxy clusters –
compare Figure 8.41 to Figure 1 from Eckert et al. (2015). The large-scale structure for
galaxy cluster 1 of the other three mass bins is found in Appendix A.6.



154 Chapter 8 – A Tale of Two Cities – Projected and Bound Masses

Figure 8.41: The large scale structure as in Figure 8.40, but for galaxy cluster 20 of the “giants”.

Turning then to the second parameter, the accretion history, first recall that as discussed
in Section 4.3.1 and Section 8.3 one of the typical tracers for the dynamical activity is that of
the total subhalo mass fraction. This is as the balance between accreted subhalos and tidal
stripping for later times tips in favor of the latter, meaning that the presence of large amounts
of substructure is indication of recent merging events as were they farther back stripping
would have removed significant portions (Neto et al., 2007; Jiang & van den Bosch, 2017).
One of the great advantages of simulations, however, is that the accretion history is known
and can be traced. For eight galaxy clusters from the “giants” mass bin the main halo mass
𝑀200 is depicted as a function of redshift on the right of Figure 8.42, while the left shows the
correlation between the amount of accreted mass and the eighth substructure mass fraction
at 𝑧 = 0.252.

Solid lines mark the accretion history of the highly relaxed cluster according to the
centershift and 𝑑8, especially galaxy cluster 5. Dashed lines mark the same for dynamically
active galaxy clusters, in particular of number 20. As can clearly be seen, the latter half
just recently accumulated large fractions of their mass, especially 20 and 10, while the
former have accreted most of their mass already at higher redshifts. This clearly supports
the previous conclusion that galaxy clusters with multiple substructures have only recently
accreted significant amounts of their present-day mass.

Finally, some alternative to determining the placements of apertures are considered.
Recall that for the placement of apertures, as described in Section 6.2, the centers of subhalos
from SUBFIND fulfilling a stellar mass cut are used as potential origins. Around these origins,
using the stellar mass map, the nearby most massive pixels are searched out within 𝑟conv and
then sorted based on the total stellar mass within a 9× 9 grid of pixels, which means this grid
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Figure 8.42: Left: The eighth substructure mass fraction determined at 𝑧 = 0.252 for the four galaxy
clusters of the “giants” with the highest and lowest 𝑑8 as a function of the amount of accreted mass
over five previous snapshots relative to 𝑀200, i.e., 𝑥 = 1 − 𝑀200(𝑧 = 0.252)/𝑀200(𝑧 = 0.47). The
best-fit line is depicted in solid blue, where 𝜎 is the standard deviation of the fit as given in the legend.
Right: The mass accretion history for the same eight clusters.

of pixels includes the central pixel and extends a distance of 𝑠pix = 4 out in each direction.
Apertures are then placed from going from high to low masses.

Figure 8.43: The substructure mass for ten random orientations of galaxy cluster 20 of the “giants” as
determined for six different methods of aperture placement. Dashed lines are for usage of a stellar map
with a simple cutoff for pixel values, sorted by the single pixel masses (orange) or by their summed
mass in a 9×9 grid (red). Solid lines are for beginning with the centers of subhalos above a stellar mass
cut, again sorting either by single pixel masses (light blue) or by the summed grid mass surrounding
the highest mass pixel within 𝑟conv (blue). The latter is the method used throughout. Finally, dotted
lines correspond to using the total mass map, sorting by the masses of single pixels either determined
through a cutoff (dark gray) or by subhalo positions (light gray).

As the first alternative, the initial positions from SUBFIND could be used immediately,
sorted purely by the mass value of the pixel in which they lie. Secondly, instead of beginning
with subhalo positions the stellar mass map itself can be used directly, where the potential
origins for apertures are then simply all pixels with a mass above some cutoff. The origins
from this cutoff can then be sorted directly or by the summed grid with 𝑠pix = 4. Finally,
instead of the stellar mass map, the total mass map can be used, with initial positions given
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either by the cutoff or by SUBFIND subhalo positions. These variants are applied to ten random
orientations of galaxy cluster 20 of the “giants”, with the resulting first ten substructure masses
plotted in Figure 8.43.

Generally, the methods find substructure masses that are more comparable among them-
selves for a single orientation than to the same method applied to other orientations of the
galaxy cluster, demonstrating that all methods trace the overdensities in a similar fashion.
The largest difference overall is found for the stellar mass map with a simple cutoff, both
when sorting by single pixel as well as by summed pixel masses, where the resulting sub-
structures tend to lie at lower masses. Furthermore, often not more than six apertures are
identified. This could, however, imply that the cutoff should be placed lower for the stellar
map. An interesting conclusion is that the usage of the total mass map versus the stellar mass
map makes little difference, implying that within galaxy clusters stars trace mass. This is
consistent with the findings by Bahcall & Kulier (2014) for weak-lensing observations, where
the mass-to-light profile remains practically constant for radii beyond the BCG.

8.8 The Lessons Learned

Section 8.2 has discussed subhalo mass fractions when using SUBFIND in Magneticum
Pathfinder, finding generally 𝑓sub ≈5% to 10% for all four mass bins. 𝑓sub is shown to
strongly correlate especially for the lower mass bins with the second subhalo mass, which
usually contains between 1.2% to 1.8% of the galaxy cluster virial mass by itself. Stellar
subhalo masses are seen to be relatively constant across all radii, contrasted to the total
subhalo mass which increases outwards. This indicates that the dark matter component
of subhalos is more prone to stripping (see Section 4.3.1) than the stars. In Section 8.3,
the projected substructures mass fraction is shown to be noticeably higher than its three-
dimensional counterpart, reaching 𝑓cyl ≈10% to 27% with increasing values for the more
massive galaxy clusters. The dependency on the second substructure mass is considerably less
stringent than for the subhalos, instead finding the mass fractions of substructures number 4
and above to be better indicators for high substructure mass fractions. Furthermore, there
appear systematic differences between galaxy cluster substructure mass distributions, with
some having significantly more shallow slopes compared to others with more strongly falling
distributions. This behavior can be characterized by the slope between substructures number 1
and 8, defined as 𝑑8, and is found to correlate with 𝑓cyl. Section 8.3.1 illustrates for the example
of two strongly differing galaxy clusters from the “giants” that the projection depth beyond 𝑟vir

has only a marginal impact on the resulting substructure masses. For the case of individual
bound versus projected masses, Section 8.3.2 finds the projected distance to the center-of-
mass to strongly determine the increase of the latter from the former and demonstrates that the
resulting substructure mass fraction is consistent with lensing observations. Generally, the
total mass contained within substructures increases substantially in projection by a factor of 2
to 3. Section 8.4 then analyzes the centershift 𝑠 as another typical tracer for the dynamical
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state of the galaxy cluster and finds it to be significantly more stable between projection and
three dimensions than the total substructure mass fraction.

On the basis of these findings, Section 8.5 developed a conversion function from bound
to projected masses. It was first seen that the lower limit of the possible projected masses
𝑀cyl is approximately given by a simple projection of the bound mass 𝑀s when assuming an
NFW profile. Similarly, the general behavior finds a direct correlation between bound and
projected masses, while the upper limit is largely independent of bound mass. The responsible
degenerate parameter was found to be the projected distance 𝑟c, such that when an aperture
lies closer to the center-of-mass it can gain significant amounts of mass irrespective of the
actual bound mass present within it. Consequently, the apertures were binned according to
𝑀s and 𝑟c and the resulting distributions of 𝑀cyl identified as Gaussian in nature. The analysis
of the fit parameters of the Gaussians found a parabolic dependency of the mean `fit on 𝑀s

and 𝑟c, while the variance 𝜎fit is given only by 𝑀s. This can be understood as smaller bound
masses being able to exhibit a greater range of potential projected masses, while larger bound
masses have an increased lower boundary without a significantly increased upper limit and
thus a lower overall spread. The derived conversion function is shown to well reproduce the
actual projected masses.

Section 8.6 has shown Abell 2744 to be reproducible within Magneticum Pathfinder,
and identified the necessary condition of particularly extreme substructure masses to be the
centershift 𝑠 – only when a large 𝑠 occurs for a given projection can the masses reach the
extreme fractions present in Abell 2744. This is found to be true across all mass ranges. Even
then, Abell 2744 represents a particularly rare case overall. Finally, Section 8.7 discussed
potential future research avenues, with the accretion history shown to correlate with the mass
fractions of projected substructures. Those galaxy clusters which accreted more mass more
recently also find larger substructure masses, consistent with the usage of 𝑓cyl as indicators
for dynamical activity.
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Chapter 9

Gazing from the Towers

This work has shed light on physical processes influencing the largest scales within the
Universe. It is the evolution of structure which provides insights into yet unresolved questions
such as the nature of dark matter or the impact. This evolution, however, occurs on timescales
so large that they are unfortunately impossible to directly observe. Furthermore, many of
the relevant processes are already difficult to analyze in isolation with analytical models and
quickly become highly non-linear once the scope considered is extended. Consequently,
cosmological simulations which allow insight into the full phase-space evolution with time
have quickly become irreplaceable.

Based on the current understanding of the concordance cosmology ofΛCDM, the Universe
is expanding and comprised of baryons, dark matter and dark energy. This expansion does
not occur at a constant rate but rather is accelerating. As a consequence, a force term arises
in the equation of motion, which is consistently implemented in all major cosmological
simulations. This work has studied the consequences of this additional force term on the
orbits of bound objects for aΛCDM cosmology with Ωm = 0.272 and ΩΛ = 0.728. It extends
the findings in the literature for circular orbits around a point mass to the behavior of general
orbits, demonstrating that the resulting perturbation from expansion is dependent only on
the enclosed density contrast relative to the critical density. Orbits enclosing higher density
are perturbed less, irregardless of the absolute scales as some of the typical interpretations
suggest. Differences between the impact of expansion on galaxy clusters and galaxies thus
arises entirely through differences in the distribution of mass, as galaxies are more centrally
concentrated than clusters. Furthermore, it is shown that the expanding force is highest
during the matter-dominated phase of expansion when it points inwards, disappears briefly at
redshift 𝑧 = 0.751 and then points outwards during dark energy-domination. Consequently,
the effective potential felt by an orbiting particle is found to go from a steep slope pointing
inwards at high 𝑧 to a flat and then decreasing slope at lower 𝑧. It is derived that this
results in a particle at fixed total energy being able to make more eccentric orbits at later
times. Noticeably, though the minimum of the effective potential and consequently potential
circular orbits exist for all times, the corresponding total energies vary with time. Thus, before
complete dark energy-domination, there can exist no fixed circular orbits within an expanding
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Universe – though corrections become smaller the higher the mean density contained within
the orbit.

Using a reduced code based on Gadget 2 (Springel, 2005) with a symplectic KDK
integrator (Binney & Tremaine, 2008), simulated orbits are compared to the analytically
derived extent of the orbits. Good agreement is found when particles are initialized at the
pericenter of their orbits. Curiously, a discrepancy is found when instead initializing at the
apocenter for particles which are at far distances to the central mass. This is interpreted as
being due to the changing nature of the expanding force term: those particles starting farther
out have their total energy reduced as the potential they are lying on is lowered by expansion
with time, while those starting at the center experience the opposite, briefly gaining energy
as they move outwards. This results from the non-zero orbital period, such that those far
out cannot actualize the potential to kinetic energy quickly enough before expansion has
transitioned to dark energy-domination, lowering the potential. It follows that, for a particle
initially at rest, ¤𝒓 = 0, separated by a fixed physical distance 𝑟 to a central mass 𝑀 , different
orbits arise when initialized at different redshifts 𝑧.

The analysis was then further expanded to extended density profiles, which more accu-
rately represent real objects. This was found overall not to have a large impact, with the same
general behavior as seen before for the point masses. To ensure that N-body interactions do
not alter the analytical results for the extended profiles, spheres following a Plummer (1911)
and Hernquist (1990) density profile were simulated with a reduced code. The simulation
was run once with a Newtonian and once with an expanding background. Practically no
quantifiable difference is found, consistent with the previous findings, as the density profiles
of the spheres are strongly centrally peaked and thus should find little impact from expansion.

The results mentioned so far all arise from the specific choice of ΛCDM cosmology.
Recent observations, however, have found difficulties in reconciling the properties of sub-
structures within galaxy clusters with those from simulations. In particular, they appear too
concentrated (Meneghetti et al., 2020) as well as too massive (Schwinn et al., 2017). Using
the fully hydrodynamical cosmological simulation Magneticum Pathfinder (Hirschmann
et al., 2014; Teklu et al., 2015; Dolag, 2022) both questions are explored. For the first
one, the boxes 2b (hr), 3 (hr) and 4 (uhr) are used. For all subhalos within the mass range
1010 < 𝑀sub [𝑀⊙] < 1013 the maximum circular velocities, as a tracer for compactness, were
compared to those from observations, finding the reported discrepancy present as well. To
analyze whether baryonic effects significantly altered the dark matter density slopes – and
thus maximum circular velocities – the halos within boxes 1a (mr), 3 (hr) and 4 (uhr) were
matched to those within the dark matter-only counterparts to the boxes. Consistent values
were found across the varying resolutions between the baryonic and dark matter only boxes.

To explore the second question of absolute masses, a method for constructing projected
masses of substructures was developed. Subsequently, it was shown that the large values from
the gravitational lensing observation of Abell 2744 by Jauzac et al. (2016) can be reproduced
within Magneticum Pathfinder, and that they are the result of projection effects with
significant contributions in mass from the main halo. This constitutes the first reproduction
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of these extreme substructure masses with a hydrodynamical simulation and is consistent
with the findings by Schwinn et al. (2018) who employed the dark matter-only simulation
Millenium-XXL (Angulo et al., 2012). It is of note that Magneticum Pathfinder’s mass
resolution for the dark matter is over an order of magnitude higher, which is made use of
by finer gridding and by not smoothing. Additionally, the redshift for the snapshot used
here is slightly closer to that of Abell 2744, and an Einasto density profile is fit to the main
halo which closer resembles the projected form of an NFW while also better accounting
for shifts of the center-of-mass away from the potential minimum. This demonstrates the
power of Magneticum Pathfinder when tackling the largest scales and correspondingly
rarest objects within the Universe, while also including baryonic physics with a high mass
resolution.

The impact of projection on galaxy cluster and substructure properties were then further
explored across four cluster mass bins covering a magnitude in mass, from 1 × 1014 M⊙
to 1 × 1015 M⊙. It was found that the total mass contained within substructures increases
substantially in projection by a factor of 2 to 3. This mass is further distributed over a smaller
number of substructures compared to those in three-dimensions, thus resulting in the largest
exhibiting increases in mass of up to an order of magnitude. Furthermore, the increase is
more severe the closer the substructure lies to the galaxy cluster center in projection. The
dynamical state of the galaxy cluster is shown to play a vital role in these increases, with the
most extreme masses occurring only when there is a significant difference between the most-
bound-particle and projected center-of-mass, i.e., when the centershift is large. It is shown
that for the two typical tracers of the dynamical state, the centershift and total substructure
mass fraction, the former stays approximately constant in projection while the latter finds a
large discrepancy.

To quantify the differences of substructure masses in projection and three dimensions,
a conversion function is developed. The projected aperture masses were first extensively
compared to the masses of the subhalos as identified in three dimensions via SUBFIND that
were lying within the same aperture. Interestingly, most apertures are found to be dominated
by a single subhalo in mass. Furthermore, while the most massive aperture also hosts the
most-bound-particle in nearly all cases, the second most massive aperture contains the second
most massive subhalo in only less than half the cases. The projected masses were then binned
according to their projected distance as well as the most massive subhalo mass within them,
and the resulting distribution found to be approximately Gaussian. While the mean of the
Gaussians was found to be dependent on both the distance and subhalo mass, the variance
was interestingly only dependent on the latter. These fit parameters were then shown to follow
a parabolic form. Finally, the conversion function, which takes as parameters the projected
distance and subhalo mass, was shown to well reproduce the resulting projected masses of
the apertures. This will allow in the future a direct conversion to the expected distribution of
projected masses from typical simulation output.

As understanding of the Universe continues to grow, many more new questions arise in
the process. This is also the case for the present work, where the behavior of the orbits in
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the expanding frame has raised interesting future prospects. One could consider significantly
downscaled systems to masses far below those of galaxies or galaxy clusters. This would
result in an orbital period for a particle which is sufficiently small to complete during matter-
domination when the expanding force is largest, even when initialized far outside of 𝑟200.
Based on the present findings, it is expected that one could then observe the orbit of the
particle varying with time as the expanding force changes. Furthermore, analyses of particles
initially at rest could provide insight on whether the inflowing velocities change with time,
perhaps leading to increasingly slower infall velocities. These findings can in the future lead
to a more thorough understanding of the early phases of structure formation, allowing more
refined approaches to models of the earliest objects while accounting for expansion effects.
This coincides with exciting new opportunities in direct deep observations of these early
structures by the new James Webb telescope (Glazebrook et al., 2021).

Similarly, the conversion function between bound to projected masses could be further
explored. One could extend the formalism to account for any range of main halo masses, or
perhaps even consider if a generalized scaled form exists. Considering the findings that the
most extreme masses occur for dynamically disturbed galaxy clusters, it would be interesting
to consider if including a dependency on the dynamical state of the cluster could assist in more
tightly constraining the distributions. Furthermore, possible correlations of the relaxedness
to the accretion history and large scale structure could offer insight into a broader picture of
structure formation.

Finally, while the masses of substructures are shown here not to be in tension withΛCDM
even when including baryonic physics, the tension with their concentrations still remains
between simulations and observations. As shown just now by (Ragagnin et al., 2022) a
greatly reduced AGN energy feedback can in principle lead to more efficient star formation
and consequently a strongly peaked central stellar core with a concentration matching that
from observations. This, however, comes at the cost of increased stellar masses, which then
in turn do not match the observations anymore, exchanging one problem for another. The
consequences are far-reaching, not just for galaxies within galaxy clusters but also down to
galaxies of Milky Way masses and below. More refined star formation and feedback models
together with potential alternatives to ΛCDM are all feasible candidates to solve this issue
from a combined approach of simulations and observations, with many fascinating insights
and much deeper understanding to be gained into the complex puzzles and mysteries of
structure formation within the Universe.
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A.1 Expansion and Fun with Taylor

Our current understanding of the Universe provides an image of an expanding background
metric within which bound objects reside. However, to understand the impact of expansion
on orbits of bound particles, as discussed in Section 2.4, it is necessary to understand the
form of the term 𝑎/ ¥𝑎. The general flat ΛCDM cosmology, which is used in simulation codes
such as Magneticum Pathfinder (Dolag, 2022), finds that 𝑎(𝑡) has no finite series form,
instead resulting in a hypergeometric function. To nonetheless see if it is feasible to construct
a functional form, here the left side integrand of Equation 2.20 is expanded as a Taylor series
around 𝑎0 = 1 for 𝑡0 = 0 up to order three, resulting in:
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where 𝑏 ≡ 𝑎 − 1 was defined and the terms are summarized in the sequence 𝑓𝑖 for easier use.
This is then integrated such that Equation 2.20 becomes:
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This provides a pretty good approximation around 𝑎0 = 1 for the form of 𝑡 (𝑎), however, to get
the form for 𝑎(𝑡) it must be inverted. Taking the terms up to order O(𝑏3) allows a rephrasing
of the problem into a cubic:

𝑏 𝑓1 +
𝑏2

2
𝑓2 +

𝑏3

3
𝑓3 − 𝐻0 · (𝑡 − 𝑡0) = 0, (A.3)
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which can be solved analytically. Either three real or one real and two complex roots are
found depending on the values of (Ω𝑚,ΩΛ, 𝑡). For the case of Ω𝑚 = 0.272 and ΩΛ = 0.728,
in accordance with the WMAP-7 parameters (Komatsu et al., 2011), the root which provides
the best overall form to the numerical solution (taking 𝑎0 = 1 and 𝑡0=0) is found to have the
functional form:

𝐿 (𝑡) ≡
(√︁
(0.02905 + 0.001981 · 𝐻0𝑡)2 − 0.0009496 + 0.02905 + 0.001981 · 𝐻0𝑡

)3
,

𝑏(𝑡) = (−15.444 + 26.750𝑖) · 𝐿 (𝑡) − 1.518 + 2.629𝑖
𝐿 (𝑡) + 11.519,

𝑎(𝑡) = (−15.444 + 26.750𝑖) · 𝐿 (𝑡) − 1.518 + 2.629𝑖
𝐿 (𝑡) + 12.519. (A.4)

This approximates the form of 𝑎(𝑡) quite well between −0.45 < 𝐻0𝑡 < 0.5, as can be seen
in Figure 2.2. It is then feasible to derive analytical approximations of 𝑎/ ¥𝑎 for this range,
however, the derivative ¥𝑎 quickly becomes unreasonably cumbersome and as such is beyond
the scope of this thesis.

A.2 “For it all depends on how we look at things”

Though the quote would continue with “and not how they are in themselves.” (Jung, 1933),
for the case of galaxy clusters both are important! The latter, as it dictates what the former
becomes, and the former as it is used to make statements about the latter. As such, under-
standing how typical density profiles of galaxy clusters behave in projection is of utmost
importance to understand what is actually being observed – because observation is always in
projection. Unfortunately, most density profiles are most commonly defined in three dimen-
sions, which makes sense given their assumed spherical symmetry. Given that projection
treats the line-of-sight axis differently, instead it is sensible to convert those profiles here to
a cylindrical coordinate system.

The density profile used for the fit to the projected main halo density profile is the Einasto
profile – see Section 6.3. As much as it would be insightful to go through the effects of
projection on it here, this turns out to be tedious enough to warrant a paper all by itself
due to the integration being non-analytical in nature. Consequently, the general form of the
approximated projected mass can be found in Equation 23 of one such paper written by Dhar
(2021). Nonetheless, the simpler analytical properties of another typical profile, namely the
NFW-density profile, allow for such integration. As such, a brief derivation of the projected
mass is given here to illustrate some of the finer nuances between projected and spherical
properties, as well as to allow for a varying cylinder projection depth 𝑧, as typically a fixed
variant of either 𝑧 = 𝑟vir (Takada & Jain, 2003) or 𝑧− > ∞ is chosen for the integration.
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Taking (𝑥, 𝜙, 𝑧) as the variable of the cylindrical coordinate system, the mass in a cylinder
of depth 2 · 𝑧l and radius 𝑥A for an NFW-profile is equal to:
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The final step utilizes a simple substitution for both variables to simplify the form of the
equation. Given the integrals in Equation A.5, we must choose which to integrate over first.
It proves to be significantly easier if we integrate first over d𝑥′, as the 𝑥′ up top appears
naturally from the derivative of the bottom terms ∝
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One can then further use some properties of the NFW-profile to simplify the final result.
If additionally assuming a concentration-mass relation 𝑐 − 𝑀 , the input parameters can be
reduced because the scaling radius is then given by (assuming the virialized overdensity to
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be around 200):
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The full final form of the projected mass within an aperture of radius 𝑥A for depth out to 𝑧l

of a single dark matter halo of virial mass 𝑀vir, with a mean mass density of 𝜌𝑚, is then:
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A deeper look at all relevant properties for lensing of the NFW profile (for example the
resulting shear – see Section 5.2.1) is given for the case 𝑧 = 𝑟vir by (Takada & Jain, 2003).

A.3 Considering all Angles

This section provides a brief overview of the way random orientations are made, as well as
some comparisons between different sampling methods. To create the orientations, a rotation
matrix R𝛼,𝛽 is used to rotate all data points into a random direction as
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where

R𝛼,𝛽 =
©«

cos(𝛽) sin(𝛼) · sin(𝛽) sin(𝛼) · sin(𝛽)
0 cos(𝛼) − sin(𝛼)

− sin(𝛽) sin(𝛼) · cos(𝛽) cos(𝛼) · cos(𝛽)
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and then 𝑧′ is used as the projected random direction, with distances being determined in the
𝑥′ − 𝑦′ plane.

Generally, to achieve random orientations isotropically distributed across the surface of a
sphere one can sample uniformly distributed random variables 𝑢, 𝑣 on (0, 1), where then

\ = 2𝜋𝑢

𝜙 = arccos(2𝑣 − 1) (A.11)

are the spherical coordinates – see Weisstein (2022b). However, assuming the simulation
boxes to have no favored direction, it is also possible to uniformly sample directly (\, 𝜙) on
[0, 2𝜋) as any sampling bias would then preferentially sample what corresponds to a random
direction. From these random angles, the average relation between the projected and 3d
distances can be determined by integrating the projected radius 𝑟2d =

√︁
𝑥′2 + 𝑦′2 = 𝑟3d · sin(𝜙)
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over the surface of the sphere by transforming to the coordinates (𝑢, 𝑣):
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The mean projected radii resulting from the different samplings and the analytical version

Figure A.1: The mean projected radius over 10 000 random orientations as a function of the 3d-
distance for different samplings – the uniform sampling in (\, 𝜙) used throughout (blue dashed) and
the isotropic sampling on the spherical surface from Weisstein (2022b) (red dashed) – compared to
the analytical solution (black dashed). Additionally, the impact of a strong directional bias (here in
𝑥-direction) of the projected distribution on the samplings is shown by the dotted lines.

in Equation A.12 for comparison are plotted in Figure A.1 for 10 000 random orientations.
There, the projection is performed on a sample of 200 points evenly distributed between radii
of 0 and 1 in three dimensions, once for isotropic placements where �̄� = [1, 1, 1]/

√
3 and once

with a strong bias in the 𝑥-direction, i.e., with points lying along that axis more commonly as
�̄� ≈ [0.99, 0.099, 0.099]. For the isotropic points, either sampling method (colored dashed
lines) reproduces the analytical line (black dashed) as the isotropy is already guaranteed from
the point distribution and sampling biases in the projection directions do not matter. The
case is different should there be a bias in the point distribution itself, as then the projection
must occur isotropically. If instead then a preferred sampling direction exists, the alignment
between the preferred axis of the points and of the sampling dictates the slope of the resulting
projected radii – parallel alignment leads to overall lower projected radii (as is the case for
the implementation here), while perpendicular alignment will find higher projected radii.
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A.4 Overlap of Apertures

As all throughout the thesis apertures around substructures play a central role, perhaps
unsurprisingly when working with projected maps, one of the central questions is if and to
what degree apertures should be allowed to overlap. This section provides an overview both
of the typical overlap of apertures, as well as the prescription used to correct for the missing
area when masking apertures (see Section 6.3). While the latter may not initially appear to
have much to do with overlapping circles, the connection will be clear by the end.

Starting then with the first question, some overlap is allowed to avoid undersampling of
dense central regions of the galaxy clusters (as argued in Section 6.2.2), but a minimum
hard border is necessary. The chosen minimum distance of two apertures is defined as
𝑑min = 2 ·

√
3/2 · 𝑟ap, as this avoids a triple overlap, which can be seen when considering

the case in Figure A.2. From the image depicting the closes overlap possible without triple
overlap, the minimum separation of apertures must then be 𝑑min = 2 · 𝑥. Considering that by
symmetry the black central triangle has angles of 2 · 𝛼 = 60° it follows as posited that

𝑑min = 2 · 𝑥 = 2 · cos(30°) · 𝑟ap = 2 ·
√

3
2
· 𝑟ap, (A.13)

Figure A.2: The geometric reasoning for the choice of 𝑑min, as it allows no overlap of three apertures
at any point.

Having set a minimum distance that is smaller than twice the aperture radius, it follows
logically that apertures can overlap. To quantify how much they do this, the cumulative
fraction of all apertures with minimum overlap 𝑥min is shown in Figure A.3 for all mass
bins and both considered stellar mass cuts (see Section 7.2). Note that the “giants” bin
apparently extends beyond the hard minimum 𝑑min, which is due to the large differences in
𝑟vir of the mass bin, where for the most extreme cases there (galaxy clusters number 1 and 2)
𝑑min,giants/𝑟vir = 130 kpc/𝑟vir ≈ 0.08. Due to the tighter mass ranges, the other bins share
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a correspondingly tight relative minimum aperture separation 𝑥min. Overlapping halos are
those which have a minimum separation below 2 · 𝑟ap, which aside from the “giants” then lies
between the two vertical black lines.

Figure A.3: The cumulative fraction of apertures with minimum aperture separation 𝑟min, given in
units of 𝑟vir. Solid colored lines are for the virial mass scaled cut used throughout, with dashed colored
lines for the subhalo number scaled cut. Vertical black lines denote 𝑑min (dotted) and 2 · 𝑟ap (dash
dotted) respectively.

It can be seen that the fraction of overlapping halos increases with the raw number of
apertures placed, where consequently the equal subhalo number scaled cuts (dashed colored
lines) lead to overall very comparable aperture separations (and hence also overlap fractions)
between all mass bins. The most extreme overlap occurs for the “giants” with the virial mass
scaled cut, where about 5% of the apertures overlap as much as allowed, though the value
is not exact due to the variance in 𝑟vir. Generally, however, the great majority of 70% and
above experience no overlap whatsoever. In future work an estimation of the substructure
mass overestimated as a result is of interest, by for example approximating the substructures
based on their mass as NFW-profiles and integrating the overlapping area.

Turning then to the corrected area of the main halo fits, the first thing to consider is that
the area being cut out by the apertures is that of a circle. Similarly, the density profile in
projection extends spherically outwards, with a given bin between two radii [𝑟1, 𝑟2] potentially
overlapping a portion of one or more apertures. Defining 𝐴ap,bin as the overlapping area and
𝑀ap,bin as the shared mass, the surface density of the main halo in the bin would then be:

𝜌bin =
𝑀bin − 𝑀ap,bin

𝜋 · (𝑟2
2 − 𝑟

2
1) − 𝐴ap,bin

. (A.14)
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Masking the mass is simple, as it is given by particles in the simulation and therefore can be
done simply removing all particles which lie within apertures from consideration. The area,
however, must be considered separately. This situation is shown in Figure A.4 on the left,
with the two radii of the main halo density bin in dark blue and an example aperture in black.
The area which is masked and must be subtracted from the density calculation, 𝐴ap,bin, is
shaded in dark blue. It can be seen that this area is simply equal to the intersected area for
the outer radius of the ring, 𝐴ap,r2 in the middle in blue, minus the intersected area for the
inner radius, 𝐴ap,r1 on the right in light blue. That is to say, 𝐴ap,bin = 𝐴ap,r2 − 𝐴ap,r1 . These
other two areas are much easier to calculate, as they are simply the area intersected by two
circles, for which elegant considerations exist – see for example Equation 14 from Weisstein
(2022a). Note that there are three additional limiting cases:

1. 𝑟2 overlaps the area of the aperture but not 𝑟1, then 𝐴ap,bin = 𝐴ap,r2

2. 𝑟1 overlaps the area of the aperture but not 𝑟2, then 𝐴ap,bin = 𝜋 · 𝑟2
ap − 𝐴ap,r1

3. Neither overlap, so 𝐴ap,bin = 0
A more complex limiting case, where two apertures overlap each other as well as the radial
bin, is not considered here as the overall corrections to the area in each ring should be minor.

Figure A.4: The geometric argumentation to calculate the masked area due to the presence of apertures
in the rings extending outwards for the main halo surface density calculations. From left to right, the
masked area, the circle-circle intersect between the outer ring radius and the aperture, and the same
for the inner radius.
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A.5 Expanding the Image Library

Figure A.5: Left: The effective potential at varying times scaled with 𝑉Δc (𝑎) resulting from a point
mass for the purely Newtonian (black) versus expanding (colored) cases as a function of distance
𝑟 . Right: A zoomed in region around the minima of the effective potentials, demonstrating how
the equivalent radii of circular orbits increase with time due to expansion, passing by the Newtonian
values at 𝑎 = 𝑎NT.

Figure A.6: Left: The effective potential scaled with a fixed 𝑉100(𝑎 = 0.2) resulting from a point
mass for the expanding case at two times, 𝑎 = 0.2 and 𝑎 = 1, as a function of distance 𝑟 . Horizontal
colored lines indicate each chosen particle’s energy. Center: The theoretical evolution (solid lines) of
the inner and outer radii of an orbit with total energy as given for the same color on the left. Dashed
lines are the minimum and maximum radii of the simulated equivalent orbits around a central mass
𝑀 = 1 × 1015 M⊙, with the initial rise occurring as the particle makes it’s first orbit outwards. Right:
The theoretical evolution (solid lines) of the eccentricity of the orbits as a function of scalefactor,
given as a ratio to the original eccentricity. Crosses denote the eccentricity of the last full orbit at
𝑎 = 1 of the simulated equivalents.
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Figure A.7: Left: The effective potential scaled with a fixed𝑉100(𝑎 = 0.2) resulting from a point mass
for the expanding case at two times, 𝑎 = 0.2 and 𝑎 = 1, as a function of distance 𝑟/𝑟100. Horizontal
colored lines indicate each chosen particle’s energy. Center: The theoretical evolution (solid lines) of
the inner and outer radii of an orbit with total energy as given for the same color on the left. Dashed
lines are the minimum and maximum radii of the simulated equivalent orbits around a central mass
𝑀 = 1 × 1012 M⊙, with the initial rise occurring as the particle makes it’s first orbit outwards. Right:
The theoretical evolution (solid lines) of the eccentricity of the orbits as a function of scalefactor,
given as a ratio to the original eccentricity. Crosses denote the eccentricity of the last full orbit at
𝑎 = 1 of the simulated equivalents.
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Figure A.8: Radii as a function of time of orbits with equal angular momentum 𝑙 = 1 (as defined
in Section 2.6) for varying total peculiar energies. The top row is initialized at the periapsis and the
bottom row at the apoasis. The left depicts the “Newtonian” potential, where simply an additional
force term is added to mimic the effective potential during expansion at 𝑎 = 0.2 but no comoving frame
used, while the right is for the fully comoving implementation. There the corresponding scalefactor
is given for the latter, with 𝑎NT highlighted as a thin vertical black line. Crucially, the pink and brown
line are initialized at only slightly different energies where pink successfully crosses the threshold,
becoming unbound, while brown manages to stay on a bound orbit.
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Figure A.9: The acceleration scaled according by 𝐴Δc resulting from a point mass for varying extended
density profiles (colored) versus a point mass (black) as a function of distance 𝑟. The overdensity is
chosen as Δ𝑐, with the left shown for 𝑎 = 0.2 and the right for 𝑎 = 1. All extended profiles are found
to behave generally as the point mass does, in particular for large radii. It follows that the results for
the acceleration from Section 2.6 can be translated to extended spherically symmetric profiles.

Figure A.10: The X-ray signal measured by Bradt et al. (1967) originating from the M87 at the center
of the Virgo cluster.
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Figure A.11: The mock image created with the code by Martin et al. (2022) (left) versus the stellar
surface density map created via the method in Chapter 6 (right) of a galaxy cluster from box 4 (uhr)
for two projections (top and bottom) centered on its most bound particle. Depicted is a region of
boxsize 5 Mpc. The mock image depicts the r-band surface brightness down to 32 mag.

Figure A.12: The total (left) and stellar (right) surface density map of galaxy cluster 5 of the “giants”,
with apertures from the subhalo method including a convergence radius and summed pixel values.
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Figure A.13: The subhalo mass as a function of the cubed maximum circular velocity of subhalos
within the “giants” mass bin (see Section 6.4). For all fields the dashed horizontal line represents the
mass of 20 dark matter particles as a lower resolution bound. The top left depicts all subhalos within
𝑟vir of all “giants” galaxy clusters, colored according to the stellar mass fraction. Generally, at equal
𝑣max (which traces the infalling mass, see Section 7.1) halos with higher total mass tend to have lower
stellar mass fractions than those with lower 𝑀sub. Plotted in the top right for comparison in black
are the values found in the dark matter-only zoom simulation by De Lucia et al. (2004), performed
on select galaxy clusters from two parent simulations, the GIF-ΛCDM model (Jenkins et al., 2001)
and Very Large Simulation (Kauffmann et al., 1999). It can be seen that there is general agreement
between the two, though for lower values of 𝑣max the subhalos of the “giants” appear to have more total
mass than those from De Lucia et al. (2004). The high 𝑣max, in turn, is hard to judge due to the lower
number statistics. The bottom left depicts all subhalos farther out, with the bottom right depicting
those close to the center. For equal 𝑣max, subhalos closer to the center have somewhat lower masses,
though the trend is not very clear. Interestingly, for equal 𝑣max subhalos on the left subhalos of lower
𝑀sub tend to have higher 𝑀∗,sub/𝑀sub, while for the right the trend is revered, with the highest stellar
mass fractions being found also at the highest total masses with constant 𝑣max. Furthermore, farther
toward the center subhalos with high dark matter mass fractions are increasingly unlikely.
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Figure A.14: The median mass fractions of the most massive subhalos within the FoF group (left)
and within 𝑟vir (right) as a function of their subhalo number as defined in the beginning of Chapter 8.

Figure A.15: The median mass fractions of the most massive subhalos within the FoF group (left)
and within 𝑟vir (right) as a function of their subhalo number as defined in the beginning of Chapter 8.
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Figure A.16: The substructure mass fraction of the first 29 substructures for all mass bins, once from
the SUBFIND output and once from projection. Generally, the mass of the main (1) is significantly
higher in SUBFIND, with the converse being true for any higher substructure numbers. The median
values break off to 0 where on average no more apertures are found, as can be seen for the “tinies” and
somewhat for the “smalls”. Overall, the mass bins find similar curves among themselves for either
method, aside from the slight offset downward for the projected masses of the “tiny” mass bin which
may simply be the result of having an overall lower number of apertures than the other bins.

Figure A.17: The median running substructure mass fraction of the integrated main halo mass as a
function of projected distance to the center-of-mass for the four mass bins with colored solid lines, with
1 − 𝜎 bounds indicated with colored dotted lines, as well as in a solid black line the dark matter-only
model from Jiang & van den Bosch (2017) which well match the results from the BOLSHOI simulation
(Klypin et al., 2011). Vertical lines denote the approximate relative aperture size 𝑟ap/𝑟vir (dashed) and
large cylinder size 𝑟tot/𝑟vir (dash-dotted). The colored crosses denote the substructure mass fraction
of the total mass at that radius 𝑀tot, not just the main halo.
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Figure A.18: The same as Figure 8.17 but numbered to allow for explicit comparisons between the
centershift and total substructure mass of individual galaxy clusters.

Figure A.19: . This is especially true for the “giants”, where the three galaxy clusters with highest
centershift also have the highest number of most massive substructure which do not include the most-
bound-particle.
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Figure A.20: The substructure mass fraction of the first 29 substructures for all mass bins, once from
the SUBFIND output and once from projection. Generally, the mass of the main (1) is significantly
higher in SUBFIND, with the converse being true for any higher substructure numbers. The median
values break off to 0 where on average no more apertures are found, as can be seen for the “tinies” and
somewhat for the “smalls”. Overall, the mass bins find similar curves among themselves for either
method, aside from the slight offset downward for the projected masses of the “tiny” mass bin which
may simply be the result of having an overall lower number of apertures than the other bins.
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Figure A.21: The ratio between the predicted means `fit calculated from the individual aperture’s
properties (subhalo mass contained 𝑀𝑠 and distance of the aperture to the center-of-mass 𝑟𝑐) and
the actual aperture’s mass as a function of 𝑀𝑠 (left) and 𝑟𝑐 (right) for the “giants”, colored by the
number of apertures. Blue solid lines denote the 1 − 𝜎 range, indicating that 68.2% of all apertures
lie within a factor 2 of the predicted means. For the most massive subhalos, their projected masses
are generally well estimated with a mild tendency toward lower values, while for the smaller subhalo
masses the scatter both towards over- and underestimation are comparable, ranging up to factor 10
in a few extreme cases. This does not account for the variance of the Gaussians, and doing so finds
better agreement with the found distribution of aperture masses – see Figure 8.31.



182 Appendix A – Appendix

Figure A.22: The aperture mass as a function of the sum of all bound subhalos within it given by
SUBFIND. The curved solid gray line denotes the projected mass within 𝑟ap at depth 𝑟turnaround for
a given bound subhalo mass 𝑀s assuming the subhalo to approximate an NFW-profile (such that
Equation A.8 can be used) with concentration given by the 𝑐−𝑀 relation from Ragagnin et al. (2019).
Horizontal dashed gray lines denote this projected mass for the most massive 𝑀s.
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A.6 Examples of Other Mass Bins

Figure A.23: The large scale structure surrounding galaxy cluster 1 of the “mediums”, projected out
to a depth of 𝑟turn once for the total mass (top row) and for the stellar mass (bottom row). Columns
depict the projection along the 𝑧-, 𝑦- and 𝑥-axis, respectively, and the cutout shows an area of 8 · 𝑟vir.
The central white circles denote 1 · 𝑟vir centered on the galalxy clusters most-bound-particle.
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Figure A.24: The large scale structure surrounding galaxy cluster 1 of the “smalls”, projected out to
a depth of 𝑟turn once for the total mass (top row) and for the stellar mass (bottom row). Columns depict
the projection along the 𝑧-, 𝑦- and 𝑥-axis, respectively, and the cutout shows an area of 8 · 𝑟vir. The
central white circles denote 1 · 𝑟vir centered on the galalxy clusters most-bound-particle.

Figure A.25: The large scale structure surrounding galaxy cluster 1 of the “tinies”, projected out to a
depth of 𝑟turn once for the total mass (top row) and for the stellar mass (bottom row). Columns depict
the projection along the 𝑧-, 𝑦- and 𝑥-axis, respectively, and the cutout shows an area of 8 · 𝑟vir. The
central white circles denote 1 · 𝑟vir centered on the galalxy clusters most-bound-particle.
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