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1 Introduction

1 Introduction

Massive stars and their evolution are a highly discussed topic, relevant for many

astrophysical fields. Characterised by strong radiation and stellar winds, they

play a key role in the evolution of the interstellar medium. As a consequence of

the recombination approximately 400, 000 years after the big bang, the universe

was opaque in a wide wavelength regime due to neutral hydrogen and helium.

Very massive stars may have contributed to the re-ionisation of these elements

some 100 Myr later, making it as transparent as it is today (Bromm, Kudritzki,

and Loeb 2001, Tumlinson, Shull, and Venkatesan 2002). In addition, they are

responsible for the enrichment with heavy elements. Elements up to iron are

produced in their cores by nuclear reactions, brought up by mixing processes, and

lost by their strong winds. Even heavier elements are produced and lost in the

energetic supernova explosions at the end of their lifetimes. Only these elements

allowed life on earth to come into existence. Finally, they can also trigger further

star formation in their stellar neighbourhood (e.g., Esquivel and Raga 2007).

After the comparatively short time with pressure due to burning processes as

a stabilizing agent, and the subsequent core collapse, only compact remnants

are left over. As up to approximately 70% of the massive stars are located in

binary systems (Sana et al. 2012), they may still cause further energetic events.

In combination with a second, less evolved star, nova or supernova explosions can

occur.

Different observational methods can be used to characterise the different

evolutionary stages. As massive stars are very bright, their optical detection is

possible even in other galaxies in our Local Group neighbourhood. Spectroscopy

can reveal their surface properties and characteristics of their winds. Applying

astroseismology, an insight into their inner structure is possible (Aerts 2019).

Their supernova explosions are so bright, that a detection in very far galaxies

is possible. A new path for observations is gravitational wave analysis, which
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might be used for a detection in even further galaxies. If two compact remnants

are located closely together, they spiral inwards, merge together, and produce

energetic gravitational waves. Recent observations have been able to reveal

mergers of black holes (Abbott et al. 2016) and neutron stars (Abbott et al. 2017).

Finally, these compact remnants can lead to microlensing events, and thus

are relevant in corresponding observations (Wambsganss 2006, Riffeser et al.

2006). For interpreting the number of observed events, reliable statistics of the

compact final remnants is essential. Constraints on the initial mass function can

be gained, when a trustworthy relation between initial and final masses is known.

Such a formalism, though based on simplifying assumptions, has been provided

by Renzini and Ciotti (1993). A more advanced description based on stellar

evolution models was found by Heger and Woosley (2002) and Woosley, Heger,

and Weaver (2002) for different metallicities.

Another path towards an improved understanding of massive stars, their

structure, and evolution is to utilize theoretical models.

However, the physics of massive stars is affected by a variety of complex

processes, which, until to date, are only partly understood. This includes internal

processes, such as the treatment of convection, rotational instabilities, and angular

momentum transport. Also the role of magnetic fields and the required precision

of adopted mass loss rates (Puls, Vink, and Najarro 2008) is still unclear.

In mathematical terms, several coupled, linear and non linear differential

equations have to be solved. Only a few estimates for typical variables have been

found, but no complete solutions.

There exists a multitude of different stellar evolution codes aimed at solving

structural processes and computing end states. As it is necessary to reduce

computational costs, different simplifications have to be adopted, the most salient

one being that the calculations are performed in one dimension.

For massive stars, the most commonly used stellar evolution codes are STERN

(Brott et al. 2011), GENEC (Ekström et al. 2012), and MESA (Modules for

Experiments in Stellar Astrophysics). The latter has been developed by Paxton

et al. (2011, 2013, 2015, 2018, 2019). It is mainly designed to calculate stellar

evolution for a wide range of masses, from very low up to very high mass stars, and

through all evolutionary stages, from the pre main-sequence up to white dwarfs or

to phases just before core collapse. However, it can also be used for a wide range

of other problems such as stellar pulsations or the evolution of (irradiated) gas
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planets.

A computation in three dimensions would require less approximations.

Nevertheless, this is very time consuming, and there are only few multi-

dimensional codes that only cover the short last phases or the explosion of stars

(Fields and Couch 2020, Chen, Heger, and Almgren 2013, Chatzopoulos and

Wheeler 2012). A currently used alternative is the 2d ESTER code (Gagnier

et al. 2019)1. It is intrinsically designed as a stellar structure code, but can mimic

the evolution on the main sequence by consecutively increasing the central helium

content. The second dimension is advantageous for the treatment of effects such

as gravity darkening or rotation. However, turbulent motions still cannot be

treated correctly. Due to the limited ability of following the evolution with this

code, no study of the later phases is possible.

The aim of this thesis is to provide a relation for the end products in dependence

of initial mass and metallicity, based on state-of-the-art physical assumptions and

stellar models. As already described, such a relation can be utilized to interpret

microlensing observations.

One major aspect of this study is to evaluate the impact of the above mentioned

uncertainties, with respect to both evolution and progenitor structure. Following

this philosophy, we want to investigate the possible range of remnant properties.

While single stars potentially undergo interactions with companions at earlier

stages in their lives, the accompanying binary evolution entails even more

parameters and considerations. To this end, we will focus on the evolution of

single stars that evolve without any external influence and interaction. In the

parallel thesis of Ferraro (2020), a more detailed analysis of the earlier evolution

of binary stars on the main sequence (MS) is performed.

To obtain evolutionary paths and progenitor properties, we calculate stellar

evolution models using MESA, because of several reasons discussed in the

following.

As MESA is open source2, and has a large number of contributors, there exists a

wide range of state-of-the art routines for numerics and physics. It provides a fully

coupled solution of the set of differential equations calculated by the module star.

Depending on the problem, different solvers are used, as described in Paxton et al.

(2011). These are mainly Runge-Kutta integrators for differential equations and

1Available online under http://ester-project.github.io/ester/
2Source-code online under http://mesa.sourceforge.net/

http://ester-project.github.io/ester/
http://mesa.sourceforge.net/
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a Newton-Raphson solver for finding roots. A variety of settings can be used to

adjust the numerical methods.

As for the numerics, also the assumptions about physics can be varied. Since

MESA is open source, we can deduce all assumptions made directly from the code.

Concluding, MESA is well suited for our study analysing the uncertainties.

We use MESA version 12115, together with the MESA software development

kit (SDK) version 20190830, and calculate the evolution of massive stars in

the range of 10 . . . 60M� with three different metallicities until central carbon

exhaustion. From this point, the timescales are short, and the remnant properties

can be concluded from the progenitor that has been calculated. We vary different

parameters, in order to study the resulting uncertainties.

1.1 Outline

In Chpt. 2, we start with a summary of the most important physical processes

within massive stars, the corresponding equations, and the uncertainties.

Subsequently, we present the main features of stellar evolution in Chpt. 3.

Together with the physical theory, we discuss the impact of specific physical

and numerical parameters in more detail. In addition, we compare the

calculations carried out with different stellar evolution codes with analogous MESA

calculations. Finally, the most important physical aspects of the explosions and

remnants are summarised. Especially, two formalisms are provided that can be

used to link the progenitor properties to the remnant.

In Chpt. 4, we discuss our grid of models in more detail. We present the

relevant physical parameters chosen. The key technical aspects, such as runtime

and required memory to run MESA simulations are provided.

The results of these calculations are analysed in Chpts. 5 and 6. In the former,

we analyse the evolutionary tracks and core and final masses of the progenitor. The

impact of various parameters is studied. In the latter, we discuss the corresponding

remnant masses. We provide diagrams displaying the remnant and explosion type

in dependence of initial mass and metallicity. Finally, specific diagrams required

for the analysis of microlensing events are presented.

A summary of our main findings, and an outlook for possible future work are

given in Chpt. 7.

In Apps. A and B we describe some of the MESA routines, our settings, and

our analysis routines in more detail.



5 Physics of Massive Single Stars

2 Physics of Massive Single Stars

A star is a massive, self-luminous, gravitationally bound object of ionised gas that

emits radiation derived from internal fusion processes.

Already from this short description one can see that there are different processes

that need to be understood to describe stars. This includes gravity, fusion

processes, (magneto-)hydrodynamics, an equation of state as well as different

transport processes.

As many stars are not separated objects but are located closely together in

clusters or binary systems, even an interaction should be considered. However,

dealing with these systems is beyond the scope of this thesis. We will focus on the

physics and evolution of single stars. A more detailed discussion on binary stars

with MESA has been provided by, e.g., Ferraro (2020).

In the following we want to give a short overview about the different

physics required to describe stars. As argued in the previous chapter, different

simplifications need to be applied to keep the computational effort in a reasonable

range.

We start with a description of non-rotating stars. In a first order approximation,

non-rotating stars can be assumed to have spherical shape and symmetry. In

addition, we can assume that they are in a static situation. This is valid during

all their life except some rapid phases of expansion or some unstable phases where

dynamical terms have to be included.

2.1 Stellar Structure Equations

The most important physics can be condensed in five stellar structure equations.

All these equations can be written in two different ways, depending on the

independent variables chosen. In the Eulerian description, variables depend on

the radius r, whereas they depend on the mass coordinate m in the Lagrangian
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description. Conversion between these two forms can be obtained via

∂m =4πr2ρ∂r, (2.1)

∂

∂t

∣∣∣∣
m

=
∂

∂r

∂r

∂t

∣∣∣∣
m

+
∂

∂t

∣∣∣∣
r

, (2.2)

where ρ is the density and t the time.

The two basic equations for any fluid are the equation of continuity and the

Navier-Stokes equation. A derivation of the equation of continuity can be found

in Landau and Lifshitz (1987). It describes the mass conservation and can be

written as

∂ρ

∂t
+∇ · (ρv) =0 (2.3)

with velocity v.

However, stars change only on long timescales. We can assume that they are in

a static situation (see above). In combination with spherical symmetry, Eqn. (2.3)

reduces to

dm

dr
= 4πr2ρ, (2.4a)

dr

dm
=

1

4πr2ρ
. (2.4b)

The momentum equation for a fluid was first formulated by Euler (1757).1 The

general form is

∂v

∂t
+ (v · ∇) v =− 1

ρ
∇P + g (2.5)

where the fist term on the rhs is the acceleration due to the gradient of the pressure

P , and the second term g includes other accelerations, such as gravity. Again

neglecting time dependencies, we obtain the condition for hydrostatic equilibrium

∂P

∂r
= −Gm

r2
ρ, (2.6a)

∂P

∂m
= − Gm

4πr4
, (2.6b)

with gravitational constant G. The pressure P includes all individual contributions

such as gas and radiation pressure and also for instance neutrinos. For phases of

rapid changes deviations from hydrostatic equilibrium can be considered, including

1An alternative including viscous terms is the Navier-Stokes equation. As these can be
neglected in stars, we only provide the simpler Euler equation.
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an additional term for the acceleration a

∂P

∂r
= −Gm

r2
ρ− a, (2.7a)

∂P

∂m
= − Gm

4πr4
− a

4πr2
. (2.7b)

In addition to the mass also the energy has to be conserved. Different processes

i with a power produced per gram εi combine to the total power l such that the

energy conservation requires

∂l

∂r
= 4πr2ρ

∑
i

εi, (2.8a)
∂l

∂m
=
∑
i

εi. (2.8b)

There can be sources (ε > 0) such as nuclear fusion reactions (εn) as well as sinks

(ε < 0) like neutrino losses (εν). Gravitational work can act both as a source or

sink depending on the situation.

Finally, there are different possibilities how the energy is transported. One

alternative is that the energy is purely transported by photons. This is discussed

further by Kippenhahn, Weigert, and Weiss (2012). Writing the transport equation

as a diffusive process results in the flux

F =− 4ac

3

T 3

κρ

∂T

∂r
(2.9)

where a is the radiation constant, c the speed of light, T the temperature and κ

the local Rosseland mass absorption coefficient. The flux can also be written using

the local luminosity l = 4πr2F . We can thus solve for the temperature gradient

∂T

∂r
= − 3

16πac

κρ

r2T 3
l (2.10a)

∂T

∂m
=

3

64π2ac

κ

r4T 3
l. (2.10b)

The transport via convection and the condition(s) for when it needs to be

considered will be discussed further in the next section. Anyhow, the temperature

distribution can be found in a similar way

∂T

∂r
= −T

P

Gmρ

πr2
∇ad, (2.11a)

∂T

∂m
= −T

P

Gm

4πr4
∇ad, (2.11b)

where ∇ad = ∂ lnT
∂ lnP

∣∣∣
ad

is the adiabatic temperature gradient. Actually, this is only

an approximation as we will explain in the next section.
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2.2 Convection

When boiling water in a water heater or on a hotplate, bubbles start to rise at

some point. This effect is known as convection. But under which conditions does

it occur?

Every part of the fluid undergoes small random displacements. As it immedi-

ately adjusts to the ambient pressure, the density changes. If the density of the

rising bubble is larger than that of the surrounding medium, it sinks back. This

situation is stable against convection. However, for a steeper ambient gradient,

the bubble can have a lower density and thus continues to rise even faster.

For a quantitative analysis we have to compare the temperature gradient

∇ =
∂ lnT

∂ lnP
(2.12)

of the ambient medium to that of the perturbed bubble ∇int. For chemically

homogeneous situations this condition can be described by the Schwarzschild

criterion

∇ <∇int (2.13)

for stability.

If the medium has an inherent composition gradient, this can have a stabilising2

effect. The condition for stability can be written as

∇ <∇L = ∇int +
φ

δ
∇µ (2.14)

2For an ideal gas, pgas ∼ ρT/µ, such that δ > 0, φ > 0, only from the equation of state
(EOS)! However, the total pressure includes radiation pressure, and a general EOS is more
complicated. Looking at the composition term, this is indeed stabilising as for stars in most
situations ρ, T , µ and P decrease outwards, such that φ

δ∇µ > 0
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which is known as the Ledoux criterion. δ and φ are thermodynamic derivatives

and ∇µ the composition gradient

δ =−
(
∂ ln ρ

∂ lnT

)
P,µ

(2.15)

φ =

(
∂ ln ρ

∂ lnµ

)
P,T

(2.16)

∇µ =

(
∂ lnµ

∂ lnP

)
(2.17)

An alternative approach for deriving a stability criterion is by calculating the

Brunt-Väisälä frequency N ,

N2 =
g

ρ
(∇T −∇) , (2.18)

the frequency of oscillations of a perturbed element being exposed to a

gravitational acceleration g. If this is imaginary, the situation is unstable against

convection. ∇T is either ∇int (Schwarzschild) or ∇L = ∇int + φ
δ
∇µ (Ledoux).

Both, the Ledoux and the Schwarzschild criterion, are used in various codes

and calculations. In general we would prefer including the composition gradient.

However, as both criteria are just approximations, it is unclear, which is the

better description. The question could be answered only by full 3d hydrodynamic

simulations.

If the medium is optically thick, no radiative losses are present, and the

convection is called “efficient”. In this case, the internal gradient ∇int of the

bubble becomes the adiabatic one

∇ad =
Pδ

CPρT
, (2.19)

where CP is the specific heat at constant pressure, as stated, e.g., in Maeder (2009).

The treatment of radiative losses will be discussed further in the next section.

In case efficient convection occurs, also the ambient gradient adjusts to the

adiabatic one, ∇ → ∇ad.

2.2.1 Mixing Length Theory

The mixing-length theory (MLT) was first formulated by Prandtl (1925). He

suggests a simplified method to calculate convective mixing and energy transport.
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A good summary of the assumptions is given by Mihalas (1978) and Salaris and

Cassisi (2017).

Each convective bubble moves a typical distance λ before it releases its energy

excess. This distance is expressed in terms of the local pressure scale height HP

as

λ =αMLT ·HP , (2.20)

HP =P

/
dP

dr
. (2.21)

Typical values for αMLT are on the order O (1)3. The MLT-Parameter has a huge

impact on the evolution. In our calculations we use the calibrated value by Brott

et al. (2011) of 1.5.

The convective flux can be calculated from the average velocity vconv and the

temperature excess ∆T

Fconv =CP∆Tρvconv (2.22)

=ρCPT

(
gHP

32

)1/2

(∇−∇int)
3/2 α2

MLT . (2.23)

As the numerical factors (here 32−1/2) depend on the shape of the convective

bubble, and specific averaging procedures applied in the calculation, they can be

different from derivation to derivation.

The process of convection can be reformulated as a diffusion equation with

diffusion coefficient

Dconv =
λ

3
· vconv (2.24)

=
αMLTHP

3
· vconv (2.25)

As the timescale of convection τ = λ
vconv

is very short compared to the evolutionary

timescales of the star4, convective mixing can be considered as instantaneous. The

standard description MESA uses was formulated by Böhm-Vitense (1958)5. We

choose a more recent alternative based on Mihalas (1978) including radiative losses.

These are important in outer stellar layers where the convective bubbles are not

3Calibrations using observations and stellar evolution codes range from αMLT ≈ 1 . . . 2.
4λ ≈ 0.1R�, vconv ≈ 4 · 102 cm/s during the main sequence, such that τconv ≈ 0.5 yr. This is

short compared to the main sequence lifetime τMS ≈ 106 yr
5MESA parameter MLT option = ‘ML1’
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optically thick.6 They loose some amount of their internal energy excess before

dissolving into the ambient medium. The efficiency of convection is given by

γ =
Etransport
Elost

(2.26)

=
Kconv

2Krad

(2.27)

where the convective and radiative conductivity are

Kconv =
4

9
CPρvconvλ (2.28)

Krad =
4acT 3

3κρ
. (2.29)

The implementation of inefficient convection in MESA is described in Paxton et al.

(2013).

2.2.2 Semiconvection

During the main sequence, only the core becomes enriched by the produced helium

such that the composition gradient ∇µ > 0. In this case, every Schwarzschild

stable region is also Ledoux stable. If a region is stable according to the Ledoux

criterion but unstable according to Schwarzschild

∇int <∇ < ∇int +
φ

δ
∇µ, (2.30)

semiconvection occurs.

The process of semiconvection can be understood in the following way: An

upwards perturbed cell is denser (Ledoux stable) and sinks down again. In addition

it is hotter (Schwarzschild unstable) and thus cools down due to radiative losses. It

becomes denser and sinks down even further, oscillating around the initial position

with increasing amplitude. The corresponding mixing efficiency is determined by

the timescale of radiative cooling and less efficient than convection.

In MESA, semiconvection is implemented as a diffusive process as formulated

by Langer, Fricke, and Sugimoto (1983) and Langer, El Eid, and Fricke (1985),

6Massive stars do not have a convective envelope on the main sequence. However, during
later evolutionary phases, such an envelope can be present.
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with diffusion coefficient

Dsemi =αsemi ·
Krad

6Cpρ
· ∇ −∇ad

∇L −∇
. (2.31)

The coefficient αsemi is usually chosen as O (0.1− 1)7. In the limit αsemi = 0

semiconvection recovers the pure Ledoux case. For very high values αsemi � 0 we

retain the Schwarzschild case.

2.2.3 Thermohaline Mixing

In more evolved stars shell burning can lead to an increase of heavier elements in

outer regions and thus to a negative µ gradient. Another situation where negative

µ gradients can occur are accreting binaries where processed material is deposited

at the surface.

This µ gradient has a stabilising effect in the Ledoux case. The situation can be

stable according to the Ledoux criterion but unstable according to Schwarzschild

∇int >∇ > ∇int +
φ

δ
∇µ. (2.32)

Let us consider a downwards perturbed bubble. This should rise up again as

it has a lower density. However, it is hotter and can sink down while cooling.

The efficiency is again given by the cooling timescale. MESA uses the diffusion

coefficient from Kippenhahn, Ruschenplatt, and Thomas (1980)

Dthermo =αthermo
3Krad

2ρCp

φ
δ
∇µ

∇−∇ad

. (2.33)

2.2.4 Overshooting

A convective bubble does not stop immediately when reaching a stable region, but

it still has a finite velocity. This phenomenon is known as overshooting.

A simple implementation is the “step overshooting”, expanding the convective

region by a given fraction αover of a pressure scale height. In this region the same

diffusion coefficient as at the boundary of the convective zone is applied8.

7αsemi = 0.1 from Higgins and Vink (2020) αsemi = 1 for Brott et al. (2011)
8As the diffusion coefficient Dconv → 0 at the boundary of the convective zone, we cannot

choose the coefficient at exactly this position. Instead, the value inside the convective zone,
offset by a small amount f0HP , has to be chosen. f0 is typically on the order of O (0.01). The
specific choice has no strong impact on the model.
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An alternative and probably more physical approach is to apply an exponential

decay of the diffusion coefficient D0 at the boundary9

D =D0 exp

(
− 2∆r

foverHP

)
. (2.34)

These two schemes give very similar results for f
(exp)
over = α

(step)
over /10. However, for

rotational effects included, there can be deviations between these two schemes.

The values for fover or αover have to be calibrated to match observations.

Depending on the mass range and the calibration method, different authors find

different values. In table 2.1 we give a summary of some values.

αover fover Mi/M�(usage) author

0 < 1.25 Ekström et al. (2012)
0.05 1.25 . . . 1.5
0.1 1.7 . . . 120
0.1 20 . . . 60 Higgins and Vink (2020)

0.1 . . . 0.2 7 . . . 60 Martins and Palacios (2013)
0.0175 . . . 0.02 6.15 . . . 6.27 Wu and Li (2019)

0.01/0.03 9 . . . 40 Yoshida et al. (2019)
0/0.002#

0.15* 30 Li, Chen, and Chen (2019)
0.2 0.8 . . . 120 Schaller et al. (1992)

0.2* 0.016+ 0.1 . . . 300 Choi et al. (2016)
0.02 . . . 0.05 13 Wagle et al. (2019)

0.2 . . . 0.35 9 . . . 100 Schootemeijer et al. (2019)
0.335 5 . . . 60 Brott et al. (2011)

* Equivalent step value, exponential scheme applied.
+ Envelope overshooting included with fover = 0.0174.
# Later evolutionary phases.

Table 2.1: Summary of different overshooting values

Claret and Torres (2019) and Castro et al. (2014) show that the overshooting

value depends on the initial mass for low mass stars and high mass stars,

respectively.

For us, particularly the result for high mass stars is important. While we

adopt a value of αover = 0.335 for all stars, Castro et al. (2014) suggest, that

the overshooting value should be even higher than that for stars more massive

than 15M�.

9Again the value D0 is taken at an offset f0 inside the convective zone.
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As most values are calibrated to fit the main sequence, there is only vague

information for shell overshooting or later burning phases. In general, overshooting

should be included in all regions, as shown by Li, Chen, and Chen (2019).

Implementation in MESA

MESA allows to set different overshooting parameters for different regions. The

first distinction is made between core-overshooting, shell-overshooting, and shell-

undershooting, meaning the extent of a convective shell below it in the same way as

overshooting is calculated. A second subdivision is based on the burning process

dominating inside these regions. Which type of burning a convective region is

referred to is purely decided from the corresponding temperature range. Since

the burning also depends on the density, this can only be understood as a first

estimate.

As described above, overshooting should be present both in the core and the

shell(s). As we will show in Sec. 3.3.2, MESA has difficulties when using all

overshooting parameters with a value of 0.335 (Brott et al. 2011).

2.2.5 MLT++

As argued in Sec. 2.2.1, radiative losses are able to decrease the convection

efficiency. In this case, the energy transport becomes mostly radiative. The star

can get very close to the classical Eddington limit as Γe ∼ Lrad.
10 The proximity

to the Eddington limit leads to an inflated envelope and density inversions for

massive stars that evolve to a WR phase or a pseudo-WR phase (Poniatowski

et al. 2012). However, since this process enforces very small timesteps, the model

cannot converge within reasonable time.

The MESA module MLT++ allows to artificially reduce the superadiabaticity

of the convective zone, thus increasing the convective efficiency. It thus decreases

the energy transported by radiation, reduces the Eddington factor and avoids

inflation. In this case, only the compact core of the WR star is calculated. As

discussed by Paxton et al. (2013), and also obvious from our tests, MLT++ does

not change the final results for the stellar structure.

An alternative to using MLT++ is either to calculate the full WR structure

including the wind, which would be very time-consuming, or to use a consistent

10As discussed by Sundqvist (2020, priv. comm.) , this becomes important at the iron opacity
bump at T ≈ 200 kK.
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hydrodynamic boundary condition instead of the hydrostatic one implemented in

MESA.

2.3 Atmospheric Boundary Condition

The pressure at the atmospheric boundary does not vanish but has a finite value.

As we will show in Sec. 3.3.3, the specific choice of this boundary condition can

drastically affect the evolution. In the following, we want to give a short overview

about the theory it is based on.

The atmospheric pressure in MESA is calculated using the approximations

described in Cox and Giuli (1968), their Sec. 20.1. Unfortunately, there are two

errors in their original calculation. Pavlovskii (2014)11 was the first to identify

these errors, and implemented a corrected formulation in MESA. In the following,

we want to give a brief overview about the involved approximations and the

corrected result.

In general, we can write the radiative pressure prad at optical depth τ as

prad(τ) =
F

c
τ + prad(τ = 0) (2.35)

where the flux F and prad are calculated using the intensity I,

F
flux conservation

= F (0) =2π

∫ 1

0

I(0)µ dµ = πI(0), (2.36)

prad(0) =
2π

c

∫ 1

0

I(0)µ2 dµ =
2π

3c
I(0). (2.37)

Substituting these into Eqn. (2.35) yields

prad =
F

c
τ +

2

3

F

c
. (2.38)

In addition, the integrated hydrostatic equilibrium yields, within their approxi-

mations

P =τ
g

κ
. (2.39)

11MESA mailing-list archive, online under https://lists.mesastar.org/pipermail/

mesa-users/2014-May/003663.html

https://lists.mesastar.org/pipermail/mesa-users/2014-May/003663.html
https://lists.mesastar.org/pipermail/mesa-users/2014-May/003663.html
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Nevertheless, as Cox and Giuli (1968) already argue, this expression is missing the

boundary contribution prad(τ = 0). Including the boundary contribution results

in the total pressure in the outer stellar layers

P =
τg

κ

(
1 +

κ

τg

2

3

F

c

)
(2.40)

=
τg

κ

(
1 +

κ

τ

L

6πcGM

)
. (2.41)

At this point, Cox and Giuli (1968) obtained a different result, by evaluating only

at τ = 2
3
.12 The second term inside the brackets corresponds to the radiation

pressure at the boundary τ = 0, which if often neglected.

In MESA, Eqn. (2.41) is implemented with an additional forefactor13. This

can account for the uncertainty due to the approximations used, especially the

assumption that the radiation field is isotropic even at τ = 0.

In principle, a second correction term should be included, taking into account

the pressure contribution of the wind. This can be neglected in almost all phases

except if the wind is very thick.

2.4 Rotation

Rotation plays an important role in stellar evolution and corresponding

calculations (Heger, Langer, and Woosley 2000, Maeder 2009, Meynet and Maeder

2017, Ekström et al. 2020). Stars do not need to rotate as a solid body, but

show differential rotation and their rotation pattern can be quite complex. A

reasonable assumption is the so-called “shellular rotation”: the angular frequency

Ω is constant on isobars. This is ensured by strong horizontal turbulence (Zahn

1992).

There are various effects of rotation. At first, it changes the shape of the star

and its symmetry. The assumption of spherical symmetry has to be replaced by a

more advanced description. How this effects the stellar structure equations from

12In addition, their numerical expression in their footnote on p. 591 includes a wrong numerical
factor. The correct expression is

P =
τg

κ

(
1 + 7.64 · 10−5κ[cgs]

τ

2

3

L/L�

M/M�

)
. (2.42)

13MESA parameter Pextra factor, for Pextra factor< 0 the old, erroneous result is used.
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Sec. 2.1 is discussed in Sec. 2.4.1. Moreover, it can drive several instabilities that

are described in Sec. 2.4.2.

2.4.1 Changes of Structure Equations

The equations of stellar structure have to be adjusted, as first done by Meynet

and Maeder (1997) based on the method of Kippenhahn and Thomas (1970). In

the following we will provide this correction only in the Lagrangian formulation.

Rotation changes the shape of massive stars. The radius has to be replaced by

rP = 3

√
3

4π
VP , where VP is the volume inside an isobar. Scalar values are replaced

by mean values on an isobar, i.e. ρ̄. The independent variable mP is the mass

enclosed by an isobar.

With these definitions, the equation of continuity becomes

∂rP
∂mP

=
1

4πr2
P ρ̄
. (2.43)

To replace the equation of hydrostatic equilibrium, we have to calculate averages

over the surface of an isobar SP

〈q〉 =
1

SP

∫
Ψ=const

q dσ. (2.44)

The gravitational acceleration has to be replaced by the effective gravity geff .

Rotation manifests itself in a pressure distortion fP

∂P

∂mP

=− GmP

4πr4
P

fP , (2.45)

fP =
4πr4

P

GmPSP

1

〈g−1
eff〉

. (2.46)

As an approximation, the energy conservation can be written as

dlP
dmP

=
∑
i

εi. (2.47)

Finally, the energy transport includes either the pressure distortion or another

correction factor fT for the temperature distortion, depending on the transport
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process

∂ lnT

∂mP

=− GmP

4πr4
P

fP min

{
∇ad,∇rad

fT
fP

}
(2.48)

fT =

(
4πr2

P

SP

)2
1

〈geff〉〈g−1
eff〉

(2.49)

2.4.2 Rotationally Induced Mixing

In a differentially rotating star, a variety of instabilities can occur. These can

cause mixing as well as angular momentum transport (in the following denoted by

the subscript “am”). As convection and the other mixing processes described in

Sec. 2.2, also all rotational instabilities, and the angular momentum transport are

treated as diffusive processes. In MESA, the total diffusion coefficient resulting

from all processes X is calculated via

Dmix,rot =f · αmix
∑
X

βmix,X ·DX (2.50)

Dam,rot =αam
∑
X

βam,X ·DX . (2.51)

Each individual contribution can be scaled by βX
14. The prefactor for chemical

mixing is typically set to αmix = 1/30,15 based on theoretical considerations by

Chaboyer and Zahn (1992). The angular momentum transport is calculated using

the full influence of all contributions, αam = 1.16 In MESA, it is treated as fully

diffusive process. However, there can be advective contributions in other codes,

as we will discuss later.

For all instabilities, first the corresponding instability criterion is calculated. If

the region is unstable, the diffusion coefficient is calculated, otherwise it is set to

zero.

In the following, we will give a short overview about the physics behind the

processes as well as the relevant relations. A more comprehensive summary is

given by Maeder (2009) and Heger, Langer, and Woosley (2000).

14MESA parameter D X factor
15MESA parameter am D mix factor
16 MESA parameter am nu factor
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Dynamical Shear Instability

This instability was derived by Chandrasekhar (1961). An illustrative analysis

was also performed by Hirschi, Maeder, and Meynet (2004).

Let us consider two cells at z, z + δz with velocities V , V + δV . If these two

cells are exchanged, work has to be done against gravity. The energy available

is the kinetic one. As the cells are assumed to have the same (average) velocity

after the exchange, the criterion for stability (Richardson criterion) follows from

the Richardson number Ri as

Ri =
N2(

∂V/∂z
)2 >

1

4
= Ricrit. (2.52)

Already for Ri < 1 instabilities can occur, however the instability becomes more

important for lower numbers. The Brunt-Väisälä frequency is split into the

different contributions

N2 =N2
T +N2

µ, (2.53)

N2
T =

g

ρ
(∇ad −∇) , (2.54)

N2
µ =− g

ρ

φ

δ
fµ∇µ. (2.55)

Heger, Langer, and Woosley (2000) suggest that the influence of the composition

term ∇µ should be reduced by a factor fµ
17 for all instabilities, since the µ-

gradients do not fully enter the rotational instabilities. From calibrations of

nitrogen surface enrichment, Heger, Langer, and Woosley find fµ = 0.05.

The diffusion coefficient follows as

DDSI =
1

3
vl =

1

3
r∆Ω∆r. (2.56)

However, as discussed by Maeder (2009) and Kippenhahn, Weigert, and Weiss

(2012), this effect only occurs in late pre-SN phases.

Secular Shear Instability

Thermal losses can weaken the stability predicted by the Richardson

criterion (2.52), resulting in a secular instability. The stability is described

17MESA parameter am gradmu factor
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by two Richardson-criteria,

Ri1 =
1

8
RecritPRiT> 0 (2.57)

and Ri2 =Riµ > 0, (2.58)

splitting the effect of temperature and composition gradients

RiT,µ =
N2
T,µ(

∂V/∂z
)2 . (2.59)

The Prandtl number P is given by the ratio of the thermal diffusion timescale to

the timescale of angular momentum diffusion, and the critical Reynolds number

Recrit is set to 2500 in MESA.

The diffusion coefficient follows from the velocity

vSSI =

√
ν

Recrit

dΩ

dln r
(2.60)

DSSI = min {HSSI , HP}min {vSSI , cs}
(

1− max {Ri1,Ri2}
Ricrit

)
, (2.61)

where ν is the kinematic viscosity, cs the sound speed, and the typical length scale

HSSI =
∣∣∣ dr

dln vSSI

∣∣∣.
Solberg-Hoiland Instability

For rotating stars, the Ledoux criterion of stability from Eqn. (2.18) can be

generalised including an additional term NΩ

N2 =N2
ad +N2

µ +N2
Ω sin θ > 0, (2.62)

N2
Ω =

1

ω̄3

d
(
Ω2ω̄4

)
dω̄

(2.63)

where ω̄ and θ are the cylindrical coordinates. Rotation can make a region stable

against convection. The diffusion coefficient is given by

D =
g

ρ

(
dρ

dr

∣∣∣∣
ad

− dρ

dr

)
+

d
(
r2Ω
)2

dr

1

r3
(2.64)

DSH =

(
min {HSH , HP}D

r

gHP

)2

/τdyn, (2.65)
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where HSH is the extend of the unstable region and τdyn =
√
r3/(Gm) the

dynamical timescale.

Eddington-Sweet Circulation

The Eddington-Sweet or meridional circulation and its treatment is still under

discussion. It was fist studied by Eddington (1926), and a more quantitative

analysis was performed by Sweet (1950). Zahn (1992) found an improved solution,

taking into account momentum conservation.

The general idea is based on the van Zeipel theorem

F ∼ geff . (2.66)

The flux along the polar axis is larger than in other locations, especially at the

equator. A resulting thermal imbalance drives global circulations.

In general, this is an advective transport effect. As argued by Maeder (2009),

however, in combination with horizontal turbulence Dh, it might behave the

same as a diffusive process for chemical transport. This is not true for angular

momentum transport, where, even in combination with horizontal turbulence,

there remains an advective term. Some stellar evolution codes, such as GENEC,

include the advective treatment for angular momentum transport, while other

codes, such as MESA or STERN, treat it as a diffusive effect. This can lead to

huge differences, as we will see in Sec. 3.4.1.

An expression for the circulation velocity was found by Kippenhahn (1974)

ve =
∇ad

δ (∇ad −∇)

Ω2r3l

(Gm)2

(
2 (εn + εν) r

2

l
− 2r2

m
− 3

4πρr

)
. (2.67)

Composition gradients can have a stabilising effect

vES =|ve| −
∣∣vµ∣∣ , (2.68)

vµ =
Hp

τ ∗KH

ρ∇µ

δ (∇−∇ad)
, (2.69)

where the Kelvin-Helmholtz timescale is

τ ∗KH =
Gm2

r (l −mεν)
. (2.70)
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The situation is unstable if v > 0. In this case the diffusion coefficient is calculated

from the circulation velocity

D = min {HES, HP}min {vES, cs} . (2.71)

The typical length scale of this instability is HES =
∣∣∣ dr

dln vES

∣∣∣.
Goldreich-Schubert-Fricke Instability

This secular instability was described by Goldreich and Schubert (1967) and Fricke

(1968).

First Goldreich and Schubert only analysed the destabilisation by highly

negative N2
Ω < 0, later Fricke included a finite viscosity ν and thermal diffusivity

Ktherm such that the condition for instability becomes

ν

Ktherm

N2
ad +N2

Ω <0 (2.72)

or
ν

Ktherm

N2
ad −

∣∣∣∣∣ω̄ ∂Ω2

∂z

∣∣∣∣∣ <0. (2.73)

The diffusion coefficient depends on the characteristic velocity

vGSF =

∣∣∣∣∣ve2HT r

H2
j

1

1 + 2Ωdln r
dΩ

∣∣∣∣∣−∣∣vµ∣∣ , (2.74)

DGSF = min {HGSF , HP}min {vGSF , cs} , (2.75)

where HT/j =

∣∣∣∣ dr

dln(T/j)

∣∣∣∣ is the scale height of the temperature/angular momentum

distribution, and HGSF is the minimum of the extent of the unstable region and

the typical length scale
∣∣∣ dr

dln vGSF

∣∣∣.
Viscosity

Small scale motions of atoms or ions can transport angular momentum. We

follow the description of Kippenhahn, Weigert, and Weiss (2012). The viscosity

coefficient due to this microscopic motion is given by

η =ρlvtherm, (2.76)
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where l is the mean free path. Using the Navier-Stokes equation including viscosity,

the timescale follows as

τvisc ≈
d2ρ

η
(2.77)

where d is the typical length-scale of changes in the rotation Ω. As η is typically

O (1) in cgs units, d is O (R�) and ρ is O (1) in cgs units, the typical timescale is

τvisc ≈ 1022s≈ 3 · 105 Gyr which is much larger then the lifetime of stars and even

than the universe. Thus the influence of viscosity can be neglected.

2.5 Magnetic Fields

Magnetic fields in the sun have already been measured by Hale (1908). Further

evidence for the presence of magnetic fields in massive stars was the observation

of strongly magnetic neutron stars (magnetars). Duncan and Thompson (1992)

and Thompson and Duncan (1995) developed the theory of magnetic neutron stars

which requires magnetic fields in the progenitor.

Meanwhile, magnetic fields have been detected in a variety of stars. Depending

on the stellar mass, different methods can be used to observe magnetic fields. A

large survey of magnetic fields in massive stars is the MiMeS survey by Wade

et al. (2009, 2011, 2016).

While for low mass stars the Zeeman-effect in a single spectral line is sufficient to

derive the magnetic field strength, for massive stars the noise is too high. Instead,

a cross correlation of the variation in polarisation across spectral lines all over the

spectrum has to be performed to increase the signal-to-noise ratio.

Different observations agree that the total number of massive stars hosting

magnetic fields is ≈ 10% (Hubrig 2008, Grunhut, Wade, and MiMeS Collaboration

2012, Bagnulo et al. 2020).

Typical magnetic field strengths have been summarised by Petit et al. (2012)

and range from some 100 G for so-called dynamical magnetospheres to very high

field strengths of some 1000 G for “centrifugal magnetospheres”. Magnetic fields

play a role for all stages of stellar evolution. From fragmentation of molecular

clouds (Palau et al. 2020), over star formation (Liu et al. 2020, Girart et al. 2009,

Zhang 2020) to remnants (Schneider et al. 2020, Tremblay et al. 2015) and all

stages in between, which we are particularly interested in.

There are two main effects of magnetic fields. The first is its impact on the
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stellar wind. A dipole field significantly changes the structure of the wind (ud-

Doula and Owocki 2002, ud-Doula, Owocki, and Townsend 2008). Material can

get trapped by closed field lines and falls back to the surface. The total mass

loss thus is reduced. Petit et al. (2017) show that this effectively mimics a star

with lower metallicity. The reduced mass loss might explain the existence of more

massive black holes and gamma-ray bursts (GRB) also at higher metallicity.

Keszthelyi et al. (2020) show, based on the idea of ud-Doula, Owocki, and

Townsend (2009), that the coupling of the surface to the wind can slow down the

rotation drastically. In addition, internal magnetic fields cause efficient angular

momentum transport and solid body rotation (Maeder and Meynet 2003, 2004,

2005).

The source of magnetic fields is still under discussion. For low mass stars, a

dynamo effect in the convective envelope can explain the observed magnetic fields.

However, for massive stars this mechanism does not work as they do not have a

convective envelope but a convective core where the magnetic field is well confined

due to the high density and composition gradients (MacDonald and Mullan 2004).

Spruit (1999, 2006) found an alternative dynamo mechanism maintaining the

magnetic field acting in the radiative envelope. The dynamo needs some fossil field

and consists of two steps: A poloidal magnetic field B (with radial component Br

important in this context) is generated by the displacement of the toroidal field.

Differential rotation twists this poloidal field into a toroidal one. The mathematical

description is complicated, and a comprehensive summary is given by Maeder and

Meynet (2004).

Soon after the formulation, this description has been implemented into various

stellar evolution codes (MESA: Paxton et al. 2013, STERN: Petrovic et al. 2005,

Brott et al. 2011). It can reproduce the rotation rates of remnants (Heger, Woosley,

and Spruit 2005 and Suijs et al. 2008) as well as the solar rotation rates as

Eggenberger, Maeder, and Meynet (2005) show18. Nevertheless, the treatment is

inconsistent as only angular momentum transport is included. If chemical mixing

would be calculated, the effect would be much too large.

The validity of the Spruit-Taylor dynamo is still under discussion (Zahn, Brun,

and Mathis 2007, Denissenkov and Pinsonneault 2007, Braithwaite and Spruit

2017) and most likely cannot explain the observed magnetic fields (Cantiello and

Braithwaite 2019). One currently used alternative are fossil fields. These can

survive the main sequence for massive stars as Alecian et al. (2019) discuss. It is

18Charbonnel and Talon (2005) show that this could also be explained by gravity waves.
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not clear, if they decay until the B supergiant phase or are just too weak to be

observed.

Another option are that magnetic fields originate from mergers (Ferrario and

Wickramasinghe 2005, Ferrario et al. 2009, Schneider et al. 2019). This has the

advantage that it can explain, why only 10% of the massive stars host magnetic

fields.

2.6 Stellar Winds

The winds of massive stars are important for the evolution of the stars as well

as their neighbourhood. Massive stars can enrich the interstellar medium with

processed elements and also trigger star formation. For the star itself the mass

loss is a decisive parameter to determine the evolution, since massive stars can

loose a significant fraction of their initial mass.

Exact mass loss rates are still under debate, and a still valid review has been

presented by Puls, Vink, and Najarro (2008).

Depending on the evolutionary state, as well as the temperature of the star,

different mechanisms can be responsible for the mass loss. The main mechanisms

for massive stars are line driven and dust driven winds. For very massive stars,

M � 80M�, even a continuum driven wind, which is independent of metallicity

Z, might be present, changing the behaviour of stars at low metallicity.

A huge uncertainty comes from the mass loss rate of luminous blue variable stars,

which is very high but, in MESA, missing an adequate description, as discussed

in Sec. 3.2.3.

Typical mass loss rates for massive main sequence stars at solar metallicity are

on the order of O
(
10−7...−5

)
M�/yr on the main sequence. During later phases

the mass loss rates can be higher, up to ≈ 10−3.8M�/yr.

2.6.1 Line Driven Mass Loss

The theory of line driven winds has been pioneered by several authors (Lucy and

Solomon 1970, Castor 1974, Castor, Abbott, and Klein 1975 (CAK)). In the

following we will give a short overview about this theory.

The wind can be described by the equation of continuity (2.3) and the Euler

equation (2.5). An expression for the line acceleration has to be included. A

comprehensive summary of the derivation is given by Maeder (2009), and Puls,
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Springmann, and Lennon (2000). In this thesis we only want to give the most

important steps and relations.

The CAK line acceleration is written as acceleration resulting from the

most important continuum processes in massive hot stars, Thomson scattering

(scattering at free electrons), corrected by a so-called force multiplier M(t). The

latter is a function of the depth parameter t19, that takes into account the

contribution of line-processes relative to Thomson-scattering,

gl =
σeF

c
M(t), (2.78)

where σe is the electron-scattering cross section σTh divided by the density, σe =
σTh
ρ

. Summing up over many lines, CAK find

M(t) =kt−α (2.79)

where k and α are force multipliers. α is the ratio of the contribution of line

acceleration from only optically thin and all lines. Typical values range from

α = 1
2
. . . 2

3
. The optical depth parameter is calculated following the approximation

by Sobolev (1947),

t =
σeρvth
dv/ dr

, (2.80)

where vth is the thermal velocity. Inserting the force from Eqn. (2.78) in

the equation of motion, setting α = 1
2
, applying specific approximations and

integrating yields the velocity law

v =v∞

(
1− R

r

) 1
2

. (2.81)

The exponent 1
2

can be generalised to β. Pauldrach, Puls, and Kudritzki (1986)

find β = 0.8 taking into account the finite disk the star covers. The terminal

velocity v∞ is typically on the order of O (3vesc).

From the equation of motion, when the escape speed vesc accounts for the

effective gravity corrected for Thomson scattering, the mass loss rate follows as

Ṁ ∼L1/α
(
GM (1− Γe)

)α−1
α . (2.82)

19t is an approximation (in the limit of steep velocity gradients) for a line optical depth, with
a line strength corresponding to electron scattering.
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Line driven wind strongly depends on metallicity. A scaling

Ṁ =Z
1−α
α−δ (2.83)

can be found (Puls, Springmann, and Lennon 2000). An important relation is the

wind-momentum luminosity relation (WLR). It connects the mass loss rate, the

terminal velocity and the stellar radius to the luminosity, and can be derived from

the above results by approximating α ≈ 2/3,

Ṁv∞R
1/2 ∼ L1/α. (2.84)

This relation allows precise distance determinations. The mass loss rate and the

terminal velocity can be measured from Hα emission lines and UV P-Cygni profiles,

respectively.

One huge source for uncertainties in the measurement of mass loss rates is

clumping (wind inhomogeneities) in the mass outflow. The effect of clumping

has been suggested in various simulations (Owocki, Castor, and Rybicki 1988,

Feldmeier 1993), and confirmed in various observations (e.g., Najarro et al. 2008,

and the review by Puls, Vink, and Najarro 2008). If neglected in corresponding

analyses, clumping would mimic higher mass-loss rates than actually present.

Though the precise clumping degree is still unknown, new measurements and

simulations (Sundqvist et al. 2019, Björklund et al. 2020) indicate that the

currently used mass-loss rates should be reduced by a factor of 2 . . . 3.

Vink Mass Loss Rates and the Bi-Stability Jump

A widely used recipe to predict line driven mass loss rates has been developed by

Vink, de Koter, and Lamers (2001).

One of their important results (consistent with earlier findings by Pauldrach

and Puls 1990) is that the mass loss rates are not smooth but have jumps at

certain (effective) temperatures. At these temperatures, the force multipliers

change drastically due to ionisation effects, finally affecting v∞ and Ṁ .

The exact positions of these jumps are metallicity dependent. According to

Vink, de Koter, and Lamers, their position should be related to a density

log (ρ) =− 13.636 + 0.889 log

(
Z

Z�

)
(2.85)
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which leads, for galactic conditions, to the following “jump temperatures”:

T jumpeff =192 + 10.4 log (ρ)≈ 35 kK (2.86)

T jumpeff =61.2 + 2.59 log (ρ)≈ 25 kK (2.87)

T jumpeff =43 + 1.9 log (ρ)≈ 15 kK. (2.88)

The jump at 35 kK is due to carbon recombination and only plays a role in

low metallicity environments. As the mass loss rates decrease with decreasing

metallicity, it does not play a crucial role at all. The other two jumps are a result

of changes of the ionisation state or iron.

Models by Petrov, Vink, and Gräfener (2014, 2016), as well as observations

(Lamers, Snow, and Lindholm 1995, Markova and Puls 2008) revise the above

jump temperatures. The jump predicted by Vink, de Koter, and Lamers to be

located around 25 kK (usually called the first jump) is most likely around 20 kK.

The “second jump” predicted at ≈ 15 kK is thought to be actually located below

9 kK and thus below the range where the Vink mass loss scheme is typically

applied. Furthermore, de Koter (2008) argue that the jump has observational

problems, and different observations disagree on its impact.

Because of these arguments, MESA only includes the jump calculated following

Eqn. (2.87) at Teff ≈ 25 kK where Fe IV recombines into Fe III. Other codes such

as GENEC also include the second jump at ≈ 15 kK.

Accounting for the above jump temperatures, Vink, de Koter, and Lamers

provide mass loss rates that are applicable for Teff ≈ 12.5 . . . 50 kK.

On the hot side of the first jump they find

log

(
Ṁ

M�/yr

)
=− 6.697 + 2.194 log

(
L

105L�

)
(2.89)

− 1.313 log

(
M

30M�

)
− 1.226 log

(
v∞

2vesc

)
+ 0.933 log

(
T

4 · 104 K

)
− 10.92

(
log

(
T

4 · 104 K

))2

+ 0.85 log

(
Z

Z�

)
.

The ratio of terminal to escape velocity is a result by Pauldrach, Puls, and

Kudritzki (1986), including empirical metallicity scaling following Leitherer,
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Robert, and Drissen (1992)

v∞
vesc

=2.6

(
Z

Z�

)0.13

(2.90)

When crossing the jump, the mass loss increases by a factor of 5 or more. On the

cool side Vink, de Koter, and Lamers predict

v∞
vesc

=1.3

(
Z

Z�

)0.13

, (2.91)

log

(
Ṁ

M�/yr

)
=− 6.688 + 2.21 log

(
L

105L�

)
(2.92)

− 1.339 log

(
M

30M�

)
− 1.601 log

(
v∞

2vesc

)
+ 1.07 log

(
T

4 · 104 K

)
+ 0.85 log

(
Z

Z�

)
.

According to Vink, de Koter, and Lamers (2001), this recipe only covers the

metallicity range 3Z� . . .
1
30
Z�. Since the wind is very weak for very low Z,

basically no mass is lost for a non rotating model. In our investigations, we also

apply this scheme for lower metallicities than 1
30
Z�.

Alternative mass loss descriptions are given by Nieuwenhuijzen and de Jager

(1990) and van Loon et al. (2005).

An important observational finding is that the mass-loss rates change only

weakly over the jump (if at all), contrasted to the theoretical predictions from

above (Markova and Puls 2008). In connection with the erroneous position of

the jump temperatures, this leads to large overestimates of the mass-loss rates in

the jump regimes and particularly in the region below 15 kK, where the Vink,

de Koter, and Lamers mass-loss rates might overestimate the actual values much

more than the factor 2 . . . 3 discussed above.

Wolf-Rayet Mass Loss

Nugis and Lamers (2000) observed 44 WN and WC stars20 to derive mass loss

rates. The mass loss in this phase is much higher than during earlier phases.

They find that the mas loss rates depend not only on metallicity Z and luminosity

20Compare Sec. 3.2.4 for an explanation of the Wolf-Rayet classification.
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L, but also on the surface helium content Y ,

Ṁ

M�/yr
=10−11 ·

(
L

L�

)1.29

Y 1.7Z0.5. (2.93)

This is already smaller than previously thought, by about 0.2 . . . 0.6 dex. Because

of clumping, the real rates might be even lower.

2.6.2 Dust Driven Mass Loss

As an alternative to the absorption and scattering in spectral lines, also dust

grains can act as a driver. Dominik (1990) provides an extensive overview about

the formation of dust and how it drives the mass loss. For red giants, molecules can

form in the cooler outer photosphere. For even lower temperatures, the molecules

can form dust grains. The dust can absorb high energy photons while radiating

away infrared radiation. Observations have proven the infrared excess of such

giants (Sakon et al. 2010). In addition, the photon momentum is redistributed

from the dust to the gas by collisions. This way dust can drive a very strong mass

loss.

While this process works for asymptotic-giant-branch stars, it is not proven if it

also works for red supergiants, i.e. massive stars. The major problem is the wind

close to the star, where the dust forms. In evolved red giants, strong pulsations

accelerate the lower wind and compress the plasma, such that dust can form. In

red supergiants, there are no such pulsations. It is speculated, that the lower wind

of these stars might be accelerated by molecular lines (Josselin and Plez 2007).

De Jager, Nieuwenhuijzen, and van der Hucht (1988) found an empirical formula

for the mass loss rates of supergiants,

log

(
Ṁ

M�/yr

)
=1.769 log

(
L

L�

)
− 1.676 log

(
T

1 K

)
− 8.158. (2.94)

This equation was developed for roughly solar metallicities, it does not contain

any metallicity dependence, which can be a problem for very low metallicity.

The scaling of the de Jager, Nieuwenhuijzen, and van der Hucht (1988) mass loss

rates with metallicity is still under discussion. Van Loon (2006) discuss different

possibilities. The absorption by dust may reach saturation, such that also in

reality there is no metallicity dependence, at least in the range 0.2Z� < Z < 3Z�.

However, for lower metallicities the molecules may contain more oxygen compared
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to carbon and thus be a less efficient driver. For very low metallicities, no dust

may form at all.

As an alternative, very metal poor stars may have a chromosphere driven mass

loss. This idea is described by Schröder and Cuntz (2005). The chromosphere is

highly turbulent. Alfvén waves transport energy to outer layers and deposit it in

the chromosphere. They can drive a mass loss rate

Ṁ =η
L∗R∗
M∗

(
Teff

4000K

)3.5(
1 +

g�
4300g∗

)
, (2.95)

which is similar to Reimers’ law (Reimers 1975, 1977). From a fit to the red-giant-

branch they find η = 8 · 10−14M�/yr. Thus, the mass loss may be even higher for

metal poor stars, as pointed out by van Loon (2006).

However, this high mass loss has one problem, and thus most likely is not

realistic. The Alfvén point, where the mass loss originates, is far outside. The

mass in this region is too low to explain high mass loss rates.

An alternative was provided by Mauron and Josselin (2011). They add an

additional term α log
(

Z
Z�

)
, α = 0.7 to the de Jager, Nieuwenhuijzen, and van der

Hucht (1988) rates from Eqn. (2.94). This is similar to the scaling of other mass

loss rates such as from Vink, de Koter, and Lamers (2001).

Until to date it is not clear, which of these assumptions is the most physical

one.

2.6.3 Mass Loss at Critical Rotation

If the star gets closer to critical rotation, the outer layers can become unstable

and finally unbound.

In general, there are some requirements a mass loss scheme for rotating stars

has to fulfil. According to the van Zeipel theorem, the flux is higher at the poles,

such that also the mass loss is higher. The total mass loss should not change as

long the star is not too close to criticality. In contrast to that, when the star gets

closer to critical rotation,21

Ωcrit =

√
(1− Γe)

GM

R3
, (2.96)

21The following is only a 1d approximation, neglecting gravity darkening. The reality is more
complex, see, e.g., Puls, Vink, and Najarro (2008).
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the centrifugal forces at the equator approach the gravitational force and the

material can become unbound22. Thus the mass loss increases drastically. To

cover all effects, full 3d simulations, and, even more important, calculations of the

occupation numbers in Non-Local Thermodynamic Equilibrium (NLTE), would

be necessary.

MESA has different possibilities how the increase in mass loss is approximated.

The first option is a correction factor

Ṁ (Ω)

Ṁ (0)
=

(
1− Ω

Ωcrit

)−α
, (2.97)

which was derived by Bjorkman and Cassinelli (1993) based on results by Friend

and Abbott (1986). Langer (1998) found α = 0.43.

However, the validity of this form has been questioned by Owocki, Cranmer,

and Gayley (1996). A better description is the generalised ΩΓ limit, which was

derived by Maeder and Meynet (2000).

As an alternative, MESA can calculate an “implicit mass loss rate”, such that

the rotation is kept just below the critical value. If the rotation is too high,

Ω > Ωlimit
23, then the mass loss is increased, until the rotation is subcritical

again, and the mass loss rate within a given tolerance. We choose an upper limit

Ωlimit = 0.96 consistent with Ferraro (2020). A more detailed description on how

this is evaluated in MESA is given in the App. A.5.2.

2.6.4 Dutch Wind Scheme

In this work we use the description of Glebbeek et al. (2009) that combines different

mass loss rates for different regimes where they are applicable. For stars at high

temperatures (> 10 kK) that still have their envelope, the Vink, de Koter, and

Lamers (2001) rates are applied.

Wolf-Rayet stars are identified by a maximum surface hydrogen content X < 0.4

(Eldridge and Vink 2006). In this case the rates by Nugis and Lamers (2000) are

used.

For lower temperatures (below 8 kK), so mainly for Red Supergiants, the de

Jager, Nieuwenhuijzen, and van der Hucht (1988) rates are utilised.

22As we can see, another alternative to increase Ω/Ωcrit is to have Γe → 1
23MESA parameter surf w div w crit limit
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3 Stellar Evolution and MESA

The evolution of stars is strongly mass dependent. More massive stars are more

luminous and thus evolve faster, but can also reach later burning phases. In

addition to mass, there is a metallicity dependence of the evolution. Metal poor

stars are more compact and have less mass loss. Finally, the evolution depends on

the rotation rates.

An illustrative summary about stellar evolution is given by Kippenhahn,

Weigert, and Weiss (2012). In the following, we want to provide a short overview

about the different phases of evolution, and the dependencies of the evolutionary

pathways on the most important parameters.

Stars can be characterised depending on their initial mass or, more precisely,

on some characteristic properties of their evolution. While low mass stars (Mi .

2M�) and intermediate mass stars (Mi ≈ 2 . . . 8M�) can have degenerate burning

phases already in their earlier evolution, high mass stars (Mi & 8M�) ignite all

burning processes until carbon in a non degenerate core. Thus their evolution is

smooth, they do not produce any flashes.

In addition, high mass stars end their lives with a core collapse, and produce

massive remnants such as black holes, or neutron stars which we will discuss later

in more detail. As the aim of this thesis is to provide initial stellar mass ranges

for these compact remnants to form, and use the remnant masses for statistics

useful for microlensing observations, as discussed in Chpt. 1, we are particularly

interested in the evolution of massive stars.

3.1 Main Sequence

A star is born, when a contracting cloud ignites hydrogen burning in its center.

This is when the star reaches the zero-age main sequence (ZAMS) and starts

the evolution that we consider. The following phase, while the star transforms
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hydrogen into helium in its center, is called main sequence (MS), as it lasts more

than 85% of its total lifetime.

There are different processes, that can convert hydrogen into helium. In general,

four protons (hydrogen nuclei) are needed to combine into one helium nucleus. The

simplest way to imagine is the p-p chain. Protons build up into a helium nucleus in

several steps. Especially the weak interactions, that convert protons into neutrons,

determine the timescale of this process.

An alternative is the CNO cycle. It uses carbon, nitrogen and oxygen as catalyst,

and thus can change their individual number fractions while the total number is

unchanged. Especially the increase of carbon at the expense of nitrogen can be an

observational tracer, if it is mixed to the surface. The CNO cycle is much more

efficient than the p-p chain for stars more massive than Mi ≥ 1.2M� (Maeder

2009).

Because of the steep temperature gradient due to efficient burning, massive stars

have a convective core and a huge radiative envelope. This provides very efficient

mixing in the core, as argued in Sec. 2.2.

The burning processes adjust to the outer properties of the star. In the other

direction, there is only some feedback, such as ionisation. As massive stars are

mainly radiative during the main-sequence, the total luminosity scales with L ∼
Mαµ4/κ, where α ≈ 2.3 . . . 3, and µ is a mean value averaged over the whole

stellar radius. We can use this relation to obtain an estimate of the MS lifetime.

The material available for fusion processes is ∼ M , typically O (0.1)Mi. Thus, a

simple scaling relation for the lifetime is τMS ∼ Mi

L
∼ M1−α. Massive stars live

shorter than lower mass stars, typically O
(
106...7

)
yr.

In addition, the fact that L ∼ µ4 predicts that the luminosity increases on the

main sequence as more hydrogen is transformed into helium. In parallel, the star

expands, but with a very weak dependence of R on µ, such that the temperature

Teff decreases.

Different parameters such as rotation rates and overshooting values can influence

the evolution. In general, all effects that allow more efficient mixing and increase

the core mass during the main sequence also increase the luminosity.1 They also

increase the lifetime as more material is available to be burned.

A special case is when the mixing is so efficient that it causes the star to evolve

quasi chemically homogeneously (QCHE). These stars evolve on different ZAMSs

1Analytical relations connecting core and envelope masses to observables can be found in
Farrell et al. (2020).
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(in dependence of composition) to higher temperatures and higher luminosities.

3.2 Later Evolutionary Phases

3.2.1 Hertzsprung Gap

When hydrogen is depleted in the core, the star contracts as no internal energy

source, and thus no stabilising pressure is present. The effective temperature

increases, appearing as “hook” after the MS in a HRD.

As soon as shell burning sets in, the core continues to contract, but the envelope

expands in a quasi-static way. This is known as “mirror effect”, and is found in

many simulations. This expansion happens on short thermal timescales, making

observations of stars in this phase very unlikely. The region where the stars evolve

rapidly is known as Hertzsprung-gap.

As its radius is increasing, the star evolves to lower effective temperatures.

Consequently, the opacity in its envelope is increasing and finally allows for

convection. The star forms a huge convective envelope, and the evolution continues

close to the Hayashi line with almost constant temperature. The Hayashi line is

the (mass and metallicity dependent) region of stars that are fully convective. It

marks a lowest effective temperature, where stars can exist.

If the convective envelope extends deep enough, processed material can be mixed

upwards, and change the surface abundances, known as “dredge up”.

3.2.2 Helium Core Burning to Carbon Core Burning

As soon as central helium burning is ignited, the evolution continues on the longer

nuclear timescale τnuc. Stars more massive than 2M� ignite helium in a non-

degenerate core, defined as the limit for intermediate mass stars.

As intermediate mass stars evolve along the Hayashi line, they form a radiative

envelope at the tip of the red giant branch. After core helium ignition, intermediate

mass stars can perform one or more blue loops, again found from stellar evolution

calculations. On that way, stars up to 20M� can cross the Cepheid-instability

region several times (Turner 1996).

Unlike low and intermediate mass stars, higher mass stars can continue the

bluewards evolution if they lost enough mass and become blue supergiants or even

Wolf-Rayet stars.
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As the energy released by burning helium is lower than for hydrogen burning,

and also the amount of available material is smaller, the timescales of these later

phases become shorter.

Massive stars even ignite carbon burning in a non degenerate core. This burning

phase has a convective core for stars up to 19M�, and a radiative one for higher

masses, because of neutrino losses (Timmes, Woosley, and Weaver 1996). The

timescale is on the order of O
(
103
)

yr and even shorter for later burning phases.

The evolutionary paths discussed depend strongly on the initial mass,

overshooting and mass loss rates. While stars up to 25M� end their life as red

supergiants, higher mass stars have more mass loss, and thus end their life as blue

supergiants or even as Wolf-Rayet stars. Massive stars can also evolve through

the luminous blue variable phase, that will be discussed in the next section.

3.2.3 Luminous Blue Variable Stars

Luminous blue variable (LBV) stars are discussed, e.g., in a review paper by

Humphreys and Davidson (1994). They are unstable massive stars, that are

located characteristically in the blue, but do not need to be there always. The

region of instability is specified by the observational Humphrey-Davidson limit,

a temperature dependent maximum luminosity. Typically, LBV stars are located

close to the Eddington limit Γe = κL
4πcGM

within a factor of 2, such that their

stability is reduced. Nevertheless, the mechanism of the instability is still under

discussion. There may be even a combination of several.

One idea was the ε mechanism, which is no longer a leading explanation.

Modern ideas include a modified Eddington limit, turbulent pressure, or some

subphotospheric instability. Some LBVs may be a result of binary interactions, as

suggested by their bipolar structure.

The instability manifests itself on different scales. There can be small variations

up to giant eruptions as observed for ηCar (van Genderen and The 1984). Changes

in the observed properties are mainly connected to a variability in temperature,

not luminosity. This is related to an optically thick, expanding atmosphere, that

we observe as “pseudo-photosphere”. As the surface and thus the radius is hard

to define, an apparent temperature Tapp, defined from the energy distribution, has

to be employed. Two states can be observed. An eruptive one at Tapp ≈ 7 . . . 8 kK

and a quiescent one at Tapp ≈ 12 . . . 30 kK. During the eruptive state the mass loss

is drastically increased, up to Ṁ = 10−5...−4M�/yr. However, this value is model
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dependent and highly uncertain. There can be single eruptions where 2 . . . 3M�

are lost within a few years, as observed for ηCar.

The star stays in the LBV phase for some 10000 yr, when it finally lost enough

mass to become a Wolf-Rayet star.

3.2.4 Wolf-Rayet Stars

Wolf-Rayet (WR) stars have been reviewed by Crowther (2008). (Classical) WR

stars are “naked cores”, meaning massive stars that completely lost their hydrogen

rich envelope.

Similar to LBV stars, WR stars are characterised by a very dense wind, such

that the temperature definition is challenging. Differences, depending on the

temperature-definition, can be seen, e.g., in the work by Groh et al. (2014). To

compare MESA calculations with observations, they should be coupled to a stellar

atmosphere code.

The classification of WR stars is based on the spectrum. Surface abundances

and ionisation stages act as discriminant between different types. If the ionisation

is high, they are called “early type”, for low ionisation “late type”. If they still

show helium in their spectra, they are classified as WN. Helium poor, but carbon

rich stars are classified as WC, where there exists a transition WN/C type. If they

show primarily oxygen on their surface, they are called WO stars. This distinction

is connected to an evolutionary scenario. Stars first loose their hydrogen envelope,

and become WN stars. If they loose their helium envelope, they become WC and,

for even more mass lost, WO stars.

An exception are the mid-type WNH stars which still show hydrogen in their

spectra. These are believed to still be on the main sequence. Massive stars can

develop a pseudo-photosphere for very strong mass loss and thus show a WR like

appearance.

Also the mass loss rates of classical WR stars are very high, as described in

Sec. 2.6. However, many values derived from observations need to be reduced,

when accounting for clumping effects.

3.3 Important MESA Parameters

As discussed already, MESA contains a variety of different options for the

treatment of physical processes. While working with MESA, we found some of
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Figure 3.1: Comparison between a 40M� model calculated using the Ledoux
criterion (solid) and the Schwarzschild criterion (dashed), without overshooting
and rotation. The smoothing parameter is varied between 0 and 3, and affects
the evolution drastically if the Ledoux criterion is applied. Without smoothing,
the track calculated with the Schwarzschild criterion separates from the one with
Ledoux criterion.

them to be of great importance for the evolution, while others have only small

effects. In the following we want to summarise the impact of some important

parameters.

3.3.1 µ-Barrier

Theoretical considerations predict a µ-barrier at the boundary of the convective

core, if it is treated with the Ledoux criterion.

The Ledoux and Schwarzschild criterion are the same, until a composition

gradient has build up. From this moment on, the convective core predicted by

the Ledoux criterion is limited to the region inside this “µ-barrier”, and thus

is smaller compared to calculations with the Schwarzschild criterion. As argued

already, a smaller core mass leads to a lower luminosity. We see this as separation

on the main sequence shown in Fig. 3.1 for the black tracks.

Rotation produces two opposite effects. Rotational instabilities can mix material

through the convective envelope, reducing the effect of the composition gradient.

In contrast, also these processes are affected by the µ-barrier, and may not allow

mixing beyond it, as described in Sec. 2.4.2. In most cases, mixing beyond the
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µ-barrier is still shielded. Finally, this leads to lower luminosities in the Ledoux

case, compared to the Schwarzschild one, where processed helium is still mixed to

the surface.

However, MESA smooths the composition gradient by default. The parameter

num cells for smooth gradL composition term is set to 3. The impact can be

seen in the red curve. The track calculated using the Schwarzschild criterion

is unchanged, while in the Ledoux case it changes drastically and produces

unphysical results. If overshooting is applied, the differences on the main sequence

are removed, as overshooting allows mixing beyond the µ barrier. One case, where

the impact of the µ-barrier can still be seen, are rotating models at very low

metallicity. The smoothing parameter is decisive for the existence of this barrier. If

smoothing is applied, more models show QCHE compared to calculations without

smoothing.

We conclude that the smoothing parameter should only be set, when the

Schwarzschild criterion is applied, or, even better, turned completely off!

3.3.2 Undershooting Problem

As described in Sec. 2.2.4, MESA has the possibility to set different overshooting

values for different regions. During our analysis we found that requiring a too high

value for undershooting below a shell can be problematic and causes the program

to terminate.

An explanation for this problem can be found by looking at a Kippenhahn

diagram, which is shown in Fig. 3.2. Strong undershooting mixes unprocessed

material down into the core. Thus the burning shell moves down, and can finally

cause the He burning in the core to stop. This behaviour is most likely not physical.

The undershooting problem does not occur in all cases. The limiting

undershooting value seems to depend mainly on the initial mass as well as

metallicity. Especially, we can see a huge difference between the models with

Milky Way (MW) and Large Magellanic Cloud (LMC) metallicities. While with

MW abundances the shell moves down slightly until it becomes radiative, for LMC

abundances it moves further down and thus is more unstable.

This difference finally goes back to differences in mass loss. Reducing the mass

loss value of the MW model by a factor of 0.4 gives similar results as for the LMC.

The more mass is lost, the shorter the H burning shell is convective. Thus high

mass loss can prevent this instability.
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Figure 3.2: Kippenhahn diagrams to demonstrate the undershooting problem.
Comparison of a non rotating 30M� model with core and shell-overshooting
parameter set to αover,core = αover,shell = 0.335, at MW (left), and LMC (right)
metallicity. The shell-undershooting parameter is varied between αunder = 0.09
(top), and αunder = 0.335 (bottom). Different processes are indicated by
different colors: convection, overshooting, semiconvection, thermohaline. burning
(> 10erg/s), and burning (> 100erg/s). Lines indicate the total mass (solid),
the He-core mass (solid), and the C-core mass (dashed). High undershooting at
LMC metallicity causes the convective shell to move down, and the calculation to
terminate.

Even though there is some difference in final masses, ∆Mf ≈ 5M� for the 30M�

model with MW abundances discussed, we completely neglect shell undershooting

and also shell overshooting to avoid this problem.

3.3.3 Boundary Conditions

The atmospheric pressure applied in MESA is discussed in Sec. 2.3. As

many approximations enter the derivation, MESA includes the parameter

Pextra factor to “manually” modify this quantity. Typical values should be

on the order of O (1).

We found, that the choice of this parameter can affect the evolution already on

the main sequence, depending on the MLT++ setting gradT excess max change.
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Figure 3.3: Comparison between different boundary conditions. Value of
Pextra value varied between 1 (dashed) and 2 (solid), and gradT max change

varied between -1 (meaning no limitation) and 0.001. Depending on the choice of
these parameters, the calculation can become unstable.

A default value is not set, whereas Keszthelyi (2015)2 limit the changes MLT++

can do, and set a value of 0.001.

In Fig. 3.3 we compare these different possibilities. We start with a comparison

of the calculations without MLT++ limitations (dashed curves). Depending on

the Pextra factor setting, the curves separate. Already on the MS a critical

Γe can be reached when we set a value for Pextra factor of 1 which we see as

instability close to the hook. This can be avoided by a higher value of 2. In

addition, it slightly shifts the position of the hook by ∆ log Teff ≈ 0.1.

Another way to avoid such an instability is setting gradT excess max change

to 0.001. This also diminishes the differences between different Pextra factor

values.

In order to increase the stability of our calculations, we choose Pextra factor=

2 and gradT excess max change= 0.001.

3.4 Comparison with Other Calculations

Various authors have calculated model grids consisting of massive stars, utilising

different stellar evolution codes. Besides MESA, two very popular codes used for

2MESA inlist available at https://doi.org/10.5281/zenodo.3250412

https://doi.org/10.5281/zenodo.3250412
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such calculations are STERN and GENEC. In the following, we want to compare

grids calculated with these two codes, and similar calculations we have performed

with MESA.

3.4.1 Comparison with Ekström et al. (2012)

Physics

Ekström et al. (2012) use the GENEC code for their calculations, covering the

evolution until late pre-supernova phases. The main difference to the MESA

code is the advective treatment of the Eddington-Sweet circulations for angular

momentum transport, and the second bi-stability jump that is missing in MESA.

We use the parameters described in their original paper. In their calculations, an

overshooting value of αover = 0.1 is adopted, where observations typically imply a

higher overshooting value (Castro et al. 2014, see Sec. 2.2.4).

Groh et al. (2014) analyse a non rotating 60M� model out of this grid in more

detail, such that we can use this model as a reasonable reference point. A huge

mass loss originates from crossing the second bi-stability jump at Teff ≈ 15 kK at

the end of the main sequence. The mass loss increases by a factor of 10.

In addition, all of their published evolutionary track3 are based on a temperature

definition corrected for the optical depth of the wind, as stated by Groh et al.

(2014). The track is shifted towards lower temperatures, especially for the later

phases. Thus we can only reproduce general trends for these later phases.

Results

The main sequence evolution has been discussed by Ferraro (2020). We can see

that the main sequence for our non rotating models, shown in Fig. 3.4, is very

similar to that of the Ekström et al. (2012) models. Also the hook is at a similar

position.

The evolution after the hook seems to be similar for smaller masses. The bump

after the hook is too small to be observed. Its origin might be related to slight

differences in the treatment of the convective boundary.

For higher initial masses, the differences get bigger. The stars calculated using

GENEC loose more mass than predicted by MESA. In order to get closer to the

solution, we have to include the second bi-stability jump with an increase in mass

loss by a factor of 10 when crossing the jump. The resulting tracks are presented

3All tracks are available at http://obswww.unige.ch/~mowlavi/evol/denseGrids/

http://obswww.unige.ch/~mowlavi/evol/denseGrids/
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Figure 3.4: Comparison between non-rotating models calculated by Ekström et
al. (2012) (dashed) and similar MESA calculations (solid). The initial mass is
indicated at each track. Huge differences, especially for the 60M� model, can be
seen.

in Fig. 3.5. For the 60M� model the mass loss is still too low. While our model

ends as RSG, the model calculated by Ekström et al. continues to the blue and

ends its life as WR star.

As already discussed, for the GENEC models a very high mass loss occurs

when crossing the second bi-stability jump on the main sequence. However, the

main sequence for our model does not reach the corresponding temperature of

log Teff = 4.2 (Teff ≈ 15 kK).

A longer extent of the main sequence was observed for models set up and

calculated by Ferraro (2020), such that we should be able to reproduce this

feature in MESA. Two parameters can account for that difference. The first is

Pextra factor, which was 2 in our models. A value of 1 can prolong the main

sequence by ∆ log Teff ≈ 0.1 as discussed in Sec. 3.3.3, which is, however, not

sufficient. The timestep setting based on the error in energy conservation made

by the solver4, has an even larger impact. This purely numerical parameter had

been set for our calculations, whereas it was not set by Ferraro (2020).

Removing it from our settings, we can get close to the solution found by Ekström

et al. (2012) for non-rotating models, as shown in Fig. 3.6. For the major part of

4MESA parameter limit for rel error in energy conservation. In our calculation, it
has been set to 10−4.
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Figure 3.5: As Fig. 3.4, but with the second bi-stability jump included. Especially
the 60M� model is still different.

Figure 3.6: As Fig. 3.5, but with timestep setting relaxed. This way, the MS of
the 60M� model has a longer extent and crosses the second bi-stability jump.
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Figure 3.7: Comparison between the timestep (black curves) on the MS of our non-
rotating 60M� model with the timestep constraint described in the text (solid),
and without it (dashed). As a reference point, the MS track is shown (red curves).
Depending on the timestep setting, there can be a huge difference in the actual
timesteps used for the calculation.

the MS, the timestep is limited by this setting, as can be inferred from Fig. 3.7,

and is up to one order of magnitude lower. This leads to a separation of the MS

which grows linearly. The difference finally results in a different position of the

hook. For the hook itself, the timestep is similar in both cases, indicating that

it is not influenced directly by this timestep, but rather by the different starting

point.

In general, we would expect that tighter timestep constraints result in a higher

precision. At least for this comparison though, relaxing this condition seems to be

the better choice (nevertheless it is not clear which is the more physical solution).

We can summarise, that the behaviour of the 60M� model is highly parameter

dependent. In addition, the second bi-stability jump on the main sequence is

most likely not physical, at least with respect to its position, and the enormous

increase of mass loss rate (see Sec. 2.6.1). In this case Ekström et al. (2012) would

overestimate the total mass being lost by a factor of ≈ 2.

For rotating models the transport of angular momentum by the Eddington-

Sweet-circulations plays a major role. It can change the rotational structure, and

thus can affect indirectly also the transport of elements by rotational instabilities.

As the treatment is different for the two codes, we can see huge differences
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Figure 3.8: Comparison between models calculated by Ekström et al. (2012)
(dashed) and similar MESA calculations (solid), rotating with ω = 0.4ωcrit. The
initial mass is indicated at each track. Already the MS evolution shows huge
differences.

in Fig. 3.8. Already the main sequence evolution is different for our models,

as discussed by Keszthelyi (2015). Ferraro (2020) showed that increasing the

efficiency by a factor of 10 allows to reproduce the post-main sequence. However,

he increased the efficiency both for angular momentum, and chemical transport.

In his calculation, the main sequence is different in all cases, indicating that

differences between advective and diffusive angular momentum transport can not

be expressed in a simple scaling factor. This is consistent with the result of Groh

et al. (2019), who also attribute the differences of rotating models in GENEC and

MESA in terms of meridional circulations.

3.4.2 Comparison with Brott et al. (2011)

Physics

This grid of stellar models has been calculated with the STERN code. The

calculation covers the main sequence evolution and central helium burning.

The treatment of the physical processes is very similar to the descriptions used

by MESA. Especially, both mixing and angular momentum transport are treated

as diffusive processes.
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Figure 3.9: Comparison between non-rotating models calculated by Brott
et al. (2011) (dashed) and similar MESA calculations (solid). The initial
mass is indicated at each track. Two different setups are compared,
one with our default parameters (left), and one with the timestep setting
limit for rel error in energy conservation deactivated (right). Differences
between the models are small. However, the hook of the 60M� model is highly
parameter dependent.

The parameters can be found in Brott et al. (2011). As the mass loss rates

are calculated based on the iron abundances, we have to set the metallicity used

for opacity calculations, Zbase5, to 0.014 while setting Z = 0.0088. We apply the

Dutch mass loss scheme. However, Brott et al. include a change from the de Jager,

Nieuwenhuijzen, and van der Hucht (1988) rates to the rates by Nieuwenhuijzen

and de Jager (1990) if the latter are higher. They argue that this naturally includes

the second bi-stability jump at Teff ≈ 12.5 kK.

Results

Comparing the main sequence of non-rotating models shown in Fig. 3.9, we see an

overall excellent agreement. For lower masses, changes are below what would be

measurable. For the higher masses, we again observe a shift in the position of the

hook. As in the comparison to the results of Ekström et al. (2012) in Sec. 3.4.1,

this disagreement can be reduced by changing the timestep settings. The position

of this hook for high masses is again highly parameter dependent!

The post-MS evolution shows further differences, which might be related to the

different treatment of mass loss. At first, Brott et al. use the iron abundances for

wind scaling, while we use the total metallicity. The correction by setting Zbase

can not fully compensate for the differences. In addition, Brott et al. include a

5This parameter is used for opacity calculations only until the metallicity Z exceeds this
value.
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Figure 3.10: Comparison between rotating models calculated by Brott et al. (2011)
(dashed) and similar MESA calculations (solid) with vinit ≈ 300km/s. The initial
mass is indicated at each track. As expected, the differences are similar to the
non-rotating models.

description of the second bi-stability jump. As argued in the previous section, this

most likely overestimates the mass loss.

The rotating models presented in Fig. 3.10 do not show other differences than the

non-rotating ones, which is to be expected, since the treatment of rotation and the

rotational instabilities in the STERN code is very similar to the implementation

in MESA.

3.4.3 Comparison between evolutionary tracks of Brott et

al. (2011) and Ekström et al. (2012)

There are significant differences between the tracks calculated by Brott et al.

(2011) with the STERN code and Ekström et al. (2012) with GENEC. The tracks

calculated by Brott et al. mostly look simpler than the ones by Ekström et al., as

they have less blue loops. The differences can be attributed to four main reasons.

At first, Brott et al. utilise the Ledoux criterion for calculations of the convective

boundary, while Ekström et al. apply the Schwarzschild criterion. This leads to

a µ-barrier for the Brott et al. models, which thus have a lower luminosity. In

addition, the treatment of angular momentum transport by meridional circulations

is different, as described in the previous sections. The evolution of the surface
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rotational velocity is drastically influenced by the presence of magnetic fields,

which are only used in the models calculated by Brott et al. Finally, the

overshooting value is drastically different.

An enlightening summary of the differences between stellar evolution codes has

been provided by Keszthelyi (2015).

3.5 Remnant Linking

Our calculations include the evolution from the ZAMS up to central carbon-

exhaustion. From then on, the timescales are very short, the internal structure

and especially the helium- and carbon-core masses do not change. Thus, the final

model of our calculation is sufficient to make predictions for the final remnant.

We assume the remnant properties are purely based on the final helium and

carbon core massesMHe andMCO as well as the final massMf before the explosion.

The explosion type is mainly based on the mass of the hydrogen-envelope MH . In

the following we will give a short overview about explosion and remnant types.

Finally, we will provide the two formalisms used to link the final structure to a

remnant mass.

3.5.1 Explosion Types

Massive stars end their life with a supernova (SN) explosion. The SN is

characterised by its spectral appearance. Especially, the H and He lines are

important, as these elements are lost at first by stellar winds. If hydrogen lines

are present in the spectrum, we define the SN as type II. If no H is present, the

star explodes as type I SN.

Depending on the spectral evolution and exact shape of the spectrum, further

distinctions can be made. We use the limits presented in table 3.1, taken from

Heger et al. (2003). Further information about SN classification can be found in

the book by Maeder (2009).

For very massive stars, there exist other types of SNe, such as the so-called

pair instability SN (PISN). As we only calculate models up to Mi = 60M�, they

are not important for our work. Other possible mechanisms that lead to a SN

explosion can occur in binary systems that host at least one white dwarf (SN

type Ia).
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MH/M� SN type
≥ 2 IIP
≤ 2 IIL/b
0 Ib/c

Table 3.1: Supernova type depending on the mass of the hydrogen-rich envelope
MH , following Heger et al. (2003).

3.5.2 Remnant Types

While low and intermediate mass stars end their life as white dwarfs (WDs),

electron degeneracy is not sufficient to stabilise the remnant produced by high

mass stars. The upper mass limit for WDs is known as Chandrasekhar mass as

it was first derived by Chandrasekhar (1931). If the mass (of a massive star)

is not too high, neutron degeneracy can stabilise the object and a neutron-stars

(NS) forms. If the mass is even higher, a black hole (BH) is produced. This

can contain either only a part of the progenitor mass (fallback BH), or the total

mass of it (direct BH), if the iron core mass is sufficiently high. While there is no

theoretical upper mass limit for their stability, stellar evolution calculations (for

single stars) predict an upper mass limit for black holes of O (50)M�, at least at

solar metallicity (Heger et al. 2003, Belczynski et al. 2010, Spera, Mapelli, and

Bressan 2015). Very massive stars in a certain mass range end their life with a

pair-instability SN, disrupt completely, and thus leave no remnant behind.

The exact limiting masses are still under discussion and may depend on the final

rotation rates (Chamel et al. 2013, Rezzolla, Most, and Weih 2018). However,

the uncertainty is negligible for our simulations. In our work we use the limits

described by Belczynski et al. (2008) to distinguish between different remnants.

Remnants with masses lower thanMrem = 1.4M� form white dwarfs. For masses

in the range 1.4 . . . 2.5M�, the remnant collapses into a neutron star. Even higher

masses lead to black holes.

As discussed already, these remnant masses can be calculated from the final

mass and the core masses. In the following, we describe the different options, how

to link the progenitor-properties to the final remnant mass.

3.5.3 Woosley-Formalism

The first scheme is based on the work by Woosley, Heger, and Weaver (2002).

They state that the remnant properties depend solely on the final helium-core
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Figure 3.11: Helium-core to remnant-mass relation obtained from Woosley, Heger,
and Weaver (2002). We differentiate as follows: zero-metallicity (solid) and
solar metallicity, where we further differentiate between RSGs (dashed) and WR
stars within the high mass loss scenario (dashed-dotted) and the low mass loss
scenario (dotted). Additional data-points from Woosley, Langer, and Weaver
(1995) (asterisks) and Woosley (2019) (x-symbols) are shown.

mass.

We use Figs. 12 and 16 from Woosley, Heger, and Weaver (2002) to read out

the data, and find the helium-core to final mass relation shown in Fig. 3.11. There

are different relations depending on metallicity and the internal structure.

The green curve follows the relation for stars at solar metallicity which end

their life as supergiants. For stars that end their life as WR stars, the red and

blue lines need to be considered. These are the two different scenarios described

by Woosley, Heger, and Weaver (2002), depending on the assumptions for Wolf-

Rayet mass loss rates. The higher mass loss scenario (red) provides data for lower

helium core masses than the scenario assuming lower mass loss rates. Nevertheless,

in the range of helium core masses where both relations can be used they coincide

very well. For all Wolf-Rayet stars that lost their hydrogen-rich envelope, we use

the mean value of the two relations for all helium core masses where both can

be applied, and only the relation provided by the high mass loss rate scenario

otherwise. The difference to the relation for RSGs can be explained by changes of

the internal structure by mass loss.

As the evolution of stars with LMC abundances is more similar to those with
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MW abundances compared to the zero metallicity case, we use these relations for

both metallicities.

The black curve is valid for zero metallicity6. The difference to the solar

metallicity environment can be explained by strong differences in the internal

structure as no mass loss is present, and by the fact that stars at lower metallicity

are more compact. Another explanation could be the lack of catalysts (at least in

the early phases of evolution).

Woosley, Langer, and Weaver (1995) and Woosley (2019) calculated more

detailed explosion models, shown as asterisks in this plot. They overlap very

well with the relations we found from Woosley, Heger, and Weaver (2002). The

highest mass model of Woosley (2019) has a very low remnant mass which can

be explained by complete disruption due to a PISN. However, none of our models

reached such a high helium core mass.

As we use, regarding specific aspects, somewhat different physics for the

evolution, stars might have higher He core masses than the maximum masses

presented by Woosley, Heger, and Weaver (2002). In this case we assume that the

whole helium core mass is included in the remnant.

3.5.4 Belczynski-Formalism

As already Woosley, Heger, and Weaver (2002) argue, the carbon core should be

an even better indicator of the remnant properties than the helium core mass. A

linking-scheme based on the carbon core mass is described by Belczynski et al.

(2008).

To find the remnant mass one has to follow two steps. The first is to find the

iron core mass. In general, one could continue the stellar evolution calculation to

a state just before core collapse to obtain it directly. Nevertheless, as the final

timescales get very short, and thus the time needed for the calculations would

increase drastically, we use the simple idea described by Belczynski et al. (2008),

who performed fits for models calculated by Timmes, Woosley, and Weaver (1996).

6Woosley, Heger, and Weaver (2002) assume that zero metallicity models evolve without mass
loss.
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The iron core mass can be calculated via

MFeNi =



1.5M� MCO < 4.82M�

2.11M� 4.82M� ≤MCO < 6.31M�

0.69MCO − 2.26M� 6.31M� ≤MCO < 6.75M�

0.37MCO − 0.07M� 6.75M� ≤MCO.

(3.1)

Even though this description was obtained for solar metallicity, Belczynski et al.

argue that it can be used for a wide range of metallicities Z ≈ 10−4 . . . 0.3 and

even is a good approximation at zero metallicity. We use this scheme not only for

MW and LMC abundances but also for a very low metallicity Z = 10−5.

Timmes, Woosley, and Weaver (1996) explain the jump from 1.5M� to 2.11M�

by a differences in core C burning. While smaller mass stars have convective

energy transport during central carbon burning, the core becomes radiative for

higher mass stars as discussed in Sec. 3.2.2.

In a second step, we can calculate the baryonic remnant mass by using the iron

core mass:

Mrem =


MFeNi MCO ≤ 5M�

MFeNi + MCO−5M�
(7.6−5)M�

(
Mf −MFeNi

)
5M� < MCO < 7.6M�

Mf 7.6M� ≤MCO.

(3.2)

The pre-factor in the second case describes partial fallback. For higher masses we

have a direct collapse, and, as above, the full progenitor mass is included in the

final remnant.

The models calculated by Timmes, Woosley, and Weaver cover initial masses

Mi = 10M� . . . 40M�. As for higher masses the iron core mass increases further,

and the remnant mass is determined by the final mass, the formalism can be

extended to higher masses. The only upper mass limit is given by the mass where

a pair instability occurs, which we do not reach in our models.

3.5.5 Gravitational Mass

The mass given by the previous relations is the baryonic mass of the remnant. As

neutron stars and black holes are very compact, their gravitational remnant mass

is smaller.
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For micro-lensing observations (see Chpt.1) the gravitational mass, and not the

baryonic one is important. We use the relations provided by Belczynski et al.

(2008, their Eqn. 3 and 4).

For NSs the gravitational mass can be calculated via

Mrem,grav =

√(
M�

2 · 0.075

)2

+Mrem,bar
M�

0.075
− M�

2 · 0.075
. (3.3)

For BHs a simple reduction by a factor of 0.9,

Mrem,grav =0.9Mrem,bar, (3.4)

describes the conversion.
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4 Evolutionary Model Grids

4.1 Physical Parameters

Our grid of models consist of eight different masses ranging from 10M� to 60M�,

as well as different rotational velocities. We chose a tighter mass spacing for stars

10M� ≤M ≤ 30M� in order to have a better resolution in logarithmic space and

as we expect many transitions between different remnant types to occur in this

region.

4.1.1 Standard Grid

Our standard grid includes the following values:

• Masses: Mi/M� = 10, 15, 20, 25, 30, 40, 50, 60,

• Rotational velocities: Ω/Ωcrit = 0, 0.2, 0.4.

As discussed in Sec. 2.2, the best choice for the convective boundary criterion

is still under discussion. In order to study the uncertainties resulting from this

choice, we include both, the Ledoux and the Schwarzschild criterion, in our grid. If

the Ledoux criterion is employed for the calculations of the convective boundary,

we adopt semiconvection with αsemi = 1.0. Overshooting above the convective

core is included with αover = 0.335 for all central burning phases.

Rotational mixing is implemented with an efficiency αmix = 1/30, and effects

of the composition gradient are reduced by fµ = 0.05. Out of the instabilities

described in section 2.4.2, we include the secular shear instability, the Solberg-

Hoiland instability, Eddington-Sweet circulations, and the Goldreich-Schubert-

Fricke instability. Effects of the viscosity as well as dynamical shear are neglected.

As not all massive stars host magnetic fields, and as the implementation is

highly uncertain, we include models with and without a Spruit-Tayler dynamo

being active.
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Mass loss is implemented following Sec. 2.6.4 in the Dutch scheme.

4.1.2 Additional Grids

For most of the above parameters, in particular the mass loss rates, the

corresponding values are still under debate. In order to study their influence

and the uncertainties originating from them, we calculate different grids where

these parameters are varied.

We assign the following numbers to these grids:

1. Standard grid.

2. Increased core overshooting following Castro et al. (2014), αover = 0.5.

3. Wind corrected towards a probably more realistic description, in several

steps. Position of the bi-stability jump Teff,jump and corrected wind scaling:

(a) total mass loss scaled down by factor 0.41, Teff,jump = 25 kK

(b) total mass loss scaled down by factor 0.4, Teff,jump = 20 kK

(c) only Vink mass loss scaled down by 0.42, Teff,jump = 20 kK

(d) as before, but including metallicity scaling for de Jager mass loss rates

(late type supergiants)

4. Mixing coefficients fc, fµ varied drastically according to Keszthelyi et al.

(2020, in prep.). The changes are more important, when the mixing efficiency

is increased, as it favours quasi chemically homogeneous evolution for more

models. Thus, we increased fc by a factor of 10, and decreased fµ by a factor

of 5.

4.1.3 Abundances

Our analysis includes calculations in three different environments. In order

to reproduce other grids, and because of rich observational data, calculations

with Milky Way (MW) and Large Magellanic Cloud (LMC) abundances are

performed. In addition, grids at very low metallicity Z = 10−5 (lowZ) are

1MESA parameter Dutch scaling factor
2MESA parameter Vink scaling factor. By default, this is not used when the Dutch scheme

is applied. However, we made this setting accessible in our run star extras.f (see App. A.5.1)
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evaluated. All metallicities Z including the initial Helium abundances Y are

summarised in table 4.1.

The initial abundances of individual elements vary depending on the

environment. For MW metallicity, we use the values provided by Asplund et al.

(2009), and corrected by Nieva and Przybilla (2012) and Przybilla et al. (2013). At

lowZ, the exact abundances play a minor role, as they are very small in any case.

We apply the same composition as for MW metallicity, scaled down according to

the metallicity difference. For the LMC we follow the approach of Brott et al.

(2011): The Asplund, Grevesse, and Sauval (2005) abundances are reduced by

0.4 dex except for C, N, O, Mg, Si, and Fe where we use the values from Brott

et al. (2011), their table 1.

X Y Z
MW 0.715 0.271 0.014
LMC 0.7391 0.2562 0.0047
lowZ 0.75229 0.2477 10−5

Table 4.1: Initial hydrogen abundances, helium abundances, and metallicities of
our models. For references, see text.

4.2 Numerical Parameters

Some critical parameters have already been discussed in Sec. 3.3. The full set of

numerical parameters can be found in our inlists3 attached in Sec. A.4.

However, we sometimes changed these settings, when models ran into timestep

issues with the default parameters. A major problem were density inversions, as

described in Sec. 2.2.5. We tried varying different parameters, where the following

was the best compromise between a physical choice of the parameters and avoiding

problems. As a first step, the timestep settings that force a better resolution of the

burning phase were relaxed. This often helped, as the calculation just “jumped”

over the problematic moment (compare also Sec. 3.4.1).

If the calculation still reached very small timesteps, we changed the MLT option

to the scheme described by Böhm-Vitense (1958) or adjusted the MLT++ options.

Both could help to increase the convective efficiency in the envelope and thus also

avoid the density inversion.

3The inlists are the files containing the data necessary for a MESA run. Physical and
numerical parameters can be varied, as already described.
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Different checks clarified that these changes do not alter the results drastically,

the differences are much smaller than differences between the grids.

4.3 Technical Aspects

Our basic grid consists of 96 models, as described in the previous section. In the

following, we provide a short overview about typical run-times, and the memory

usage. The exact numbers depend on the exact timestep and grid settings, as well

as on the assumptions about the physics of the model.

4.3.1 Runtime

MESA is designed to make efficient use of a multi-core architecture. At first, it

is programmed in a thread save way, such that it can use parallelisation inside a

single run. On our machine, we used 16 threads4, which we found as an optimum

number, as discussed in App. A.6. A single program takes an average wall-clock

runtime of ≈ 50 min to calculate from the pre-MS until carbon exhaustion.

In addition to executing a single run with multiple threads, several instances of

MESA can be run in parallel. Our machine had a total of 160 CPUs available.

We had to keep the maximum number of threads below this number, as virtual

threading drastically slows down the run. In order to keep some threads free for

our analysis, we executed a maximum of nine models in parallel. As our program

execution is split into different parts depending on the evolutionary phase, and

rotation is only set from the ZAMS on, we can reduce the number of pre-MS

models that has to be calculated. However, these calculations only make up a

small fraction of the runtime. It took O (10) hours for the calculation of a single

grid to finish.

4.3.2 RAM Usage

In addition to the CPUs, the number of models that can be calculated in parallel is

limited by the available RAM. A single run requires . 7 GB. If the available RAM

is exceeded, MESA can run into timestep problems, and the program terminates.

As we had 200 GB of RAM available, this was not a problem for us. However, for

earlier tries on other machines this was a limiting factor.

4Linux bash variable OMP NUM THREADS
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4.3.3 Final Storage

Besides the MESA program, that already occupies 36 GB5, there is also the

memory space for our mesa program and the inlists, which is only 54 MB. Also the

output of the run has to be saved. The default way, how this is done in MESA,

is to save the output into a history file for core and surface data, and profile files,

which contain data at a single timestep along the radial coordinate. We chose

to save the core and surface data at every timestep6, and a profile every tenth

step7. These data occupy ≈ 1.5 . . . 2 GB for a single model. In order to analyse

the data, we read them into IDL8 binary files, which have an average size of only

≈ 200 . . . 300 MB. To reduce the necessary space even further, we saved the most

important core and surface data, as well as a final profile, into an ASCII file of

only O (1) MB.

5Split into 1.8 GB for the MESAsdk, and 34 GB for the main program.
6MESA parameter history interval set to 1
7MESA parameter profile interval set to 10
8Interactive Data Language (IDL) is a programming language, used mainly for data analysis.

We used it to analyse the output. How we analyse the data is described further in App. B.
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5 Evolutionary Tracks and Core

Masses

In the following, we analyse the outcome of our stellar evolution calculations. As

the core and final masses are most relevant to link from the progenitor to the

remnant, we will focus on their analysis. In addition, a deeper understanding

can be gained from analysing the evolutionary tracks in the Hertzsprung-Russel

diagram. These can also be used to compare our results to observations of RSGs,

which are a reliable tracer of the quality of the models. Subsequently, we study

the systematic effects of rotation, magnetic fields, and the choice of the convective

boundary criterion.

The HRDs comparing all models from our calculations are shown in Figs. 5.12

to 5.14. Enlarged versions of our plots for the standard grids are shown in Figs. 5.1

to 5.3. The core and final masses are compared more quantitatively in Figs. 5.4

and 5.5.

5.1 Position of RSGs

As explained already in Sec. 3.2.2, stars with smaller masses tend to explode as

RSGs. There exist various observations of RSGs at different metallicities. A large

survey has been carried out by P. Massey in various publications. We compare the

RSGs from Massey and Olsen (2003) at LMC abundances to our corresponding

calculations. In addition, we compare with observations by Levesque et al. (2005)

of RSGs at MW metallicity.

RSGs are located at a metallicity dependent, and approximately constant

effective temperature, as they evolve along the Hayashi line. Indeed, in Figs. 5.1,

and 5.2 we can see that this is true both for the observed RSGs, and for

our calculations. In addition, we find an overall excellent agreement at LMC

metallicity, while at MW abundances, we note a small difference, potentially
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Figure 5.1: Hertzsprung-Russel diagrams of all models with MW metallicity in
the standard grid. Different colors indicate a combination of rotation rates, and
if the Spruit-Tayler dynamo (ST) is applied or not. The H surface abundances,
and the convective boundary criterion are indicated by the choice of the linestyle.
Ω/Ωcrit ST on off

0 black
0.2 red green
0.4 blue turquoise

H surface abundance Ledoux Schwarzschild
> 60% solid long dashed

10%− 60% dashed dashed dotted
< 10% dashed dotdot dotted

RSGs from the MW (Levesque et al. 2005) are indicated as red circles. See text
for further discussion.

related to the metallicity. Levesque et al. (2005) find an excellent agreement with

the tracks calculated by Meynet and Maeder (2003), where they adopt Z� = 0.021.

In contrast, we assume Z� = 0.014, and thus observe a shift of the RSGs to lower

effective temperatures, consistent with the findings by Levesque et al. (2006).

Also for higher masses, Mi ≥ 25M�, there are some differences, mainly

noticeable for LMC metallicity. These models do not reach the corresponding

temperature, but evolve back to the blue already at higher effective temperatures

and become BSGs or WR stars. Massey and Olsen (2003) suggest that this

1Even though this value seems to be correct for the sample of RSGs observed by Levesque
et al. (2005), the solar metallicity is most likely smaller.
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Figure 5.2: As Fig. 5.1, but for LMC metallicity. RSGs from the LMC (Massey
and Olsen 2003) are indicated as red circles.

difference might be reduced by decreasing the mass loss. We could not verify

this from our tests; the tracks calculated assuming an overall reduced mass loss

and corrected jump temperature (grid 3b), decreasing the mass loss even further,

did not show a strong effect (compare Figs. 5.12d and 5.13d). However, there

is only a small number of such stars at higher luminosity, and a more detailed

analysis of them, similar to the work of Massey and Evans (2016), could reveal an

explanation.

5.2 Systematic Effects

Already within a single grid we include uncertainties about the convective

boundary criterion, magnetic fields, and different rotational velocities. In the

following, we want to discuss the systematic effects of these parameters. In

Figs, 5.4 and 5.5, we show the differences in final masses, ∆Mf , and core masses,

∆MHe and ∆MCO, for these three parameters.
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Figure 5.3: As Fig. 5.1, but for lowZ.

5.2.1 Rotation and Magnetic Fields

Rotation can lead to two opposite effects on the MS concerning the luminosity

(Brott et al. 2011). Typically, it is assumed that rotation increases the luminosity

by more efficient mixing, and thus increased core masses. For our models, this

only occurs for some of the highest mass stars considered, in combination with

strong rotation, and especially for grids where mixing is increased, either directly

by an increase in overshooting or rotational mixing efficiency (grids 2 and 4), or

indirectly by applying reduced mass loss rates (grids 3a-3c/d) and thus higher

rotational velocities. At lower metallicity, the increase in luminosity is much more

prominent, as the rotation rates are in general higher.

We can see an increase in surface abundances for all rotating models. In Fig. 5.6,

we compare the surface nitrogen enrichment in our calculations to those of Brott

et al. (2011). Non-rotating models do not mix any processed material to the

surface on the MS, while rotating models can show drastic changes in the surface

abundances. Our calculations are consistent with the results of Brott et al., both

concerning the timescales, and the number fractions. Small differences can be
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a) Difference between Ledoux and Schwarzschild criterion. Different symbols are used
to compare between different rotation rates: non-rotating (plus-symbols), Ω = 0.2Ωcrit

(triangles), and Ω = 0.4Ωcrit (squares)

b) Difference between rotating (Ω = 0.4Ωcrit) and non-rotating models. Different
symbols are used to compare between models including magnetic fields in the Spruit-
Tayler description (triangles) and without (squares)

c) Difference between models including, and without magnetic fields. Different symbols
are used to compare between different rotation rates: Ω = 0.2Ωcrit (triangles) and
Ω = 0.4Ωcrit (squares).

Figure 5.4: Differences in core masses (MHe, MCO) and final mass, Mf , resulting
from different descriptions of specific processes. Models of the standard grids with
MW and LMC abundances are shown on the left and right, respectively.
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a) Difference between Ledoux and Schwarzschild criterion. As Fig. 5.4a.

b) Difference between rotating and non-rotating models. As Fig. 5.4b.

c) Difference between models including magnetic fields and without. As Fig. 5.4c.

Figure 5.5: As Fig. 5.4, but for lowZ.
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I. Brott et al.: Grids of evolutionary models and isochrones

nonrotating stars. Note that all models have been computed be-
yond central hydrogen exhaustion, in most cases up to the ig-
nition of helium. This allows us to later compare the main se-
quence surface abundances with those resulting from the first
dredge-up in the red supergiant regime.

Metallicity dependence of rotational mixing: Fig. 6 depicts
evolutionary tracks of models with various initial rotation rates.
The most striking feature in these diagrams is the bifurcation
of the evolutionary tracks occurring at high masses and low
metallicity, most clearly visible at SMC metallicity. Stars that
rotate faster than a certain threshold are so efficiently mixed that
they evolve almost chemically homogeneously. Stars that rotate
slower than this threshold build a chemical gradient at the bound-
ary between the convective core and the radiative envelope. This
gradient itself has an inhibiting effect on the mixing processes,
strongly reducing the transport of material from the core to the
envelope. The minimum rotation rate required for chemically
homogeneous evolution decreases with increasing mass (Yoon
et al. 2006).

At high metallicity, rotational mixing is less efficient. In ad-
dition, mass and angular momentum loss due to stellar winds
becomes important, slowing down the rotation rate and there-
fore the efficiency of the mixing processes. The fastest rotating
stars at high metallicity initially evolve blue- and upward in the
Hertzsprung-Russell diagram, see in the lower panel of Fig. 6.
However, the combined effects of spin down by a stellar wind
and the build up of an internal chemical gradient reduces the
efficiency of internal mixing processes. The star switches onto
a redward evolutionary track, similar to that of a non rotating
star. However, its larger core mass results in a higher luminosity
compared to the slower rotating counterparts.

3.2. Isochrones

While for a given metallicity, a classical isochrone can be rep-
resented by a single line in the Hertzsprung-Russell diagram,
the isochrones of rotating stars span an area for a given age and
initial composition. This is shown in Fig. 7. The isochrone con-
structed from nonrotating evolutionary models is plotted in red.
The isochrone corresponding to the fastest initial rotational ve-
locity for which the models do not yet follow a blueward evo-
lution in the HRD is plotted in black. The isochrone with the
slowest initial velocity that shows a clear bluewards evolution
is shown in green. In blue and yellow we have selected two
isochrones from the transition region that may help the reader
to asses the sudden transition from classical to chemically ho-
mogeneous evolution.

For rotational velocities above 350 km s−1, when the most
massive stars undergo chemically homogeneous evolution,
the isochrones deviate strongly from the nonrotating case. The
maximum spread in effective temperature occurs around 4 Myr
(second row in Fig. 7). At lower metallicity the isochrones
split into more clearly separated branches. At SMC metallicity
(e.g. the third panel in the first column in Fig. 7) the isochrone
based on models rotating initially at 500 km s−1 moves straight
to the blue. In contrast, the comparable LMC isochrone returns
to the red for stars above ∼50 M�. This behavior is directly re-
lated to the feature in the evolutionary LMC tracks in Fig. 6,
see for example the 50 M� track for 550 km s−1. At Galactic
metallicity the blueward evolution does not appear in the mod-
els. Nevertheless, the area spanned by the isochrones extends
over a wide range of effective temperatures.
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Fig. 8. Nitrogen as a function of time at SMC, LMC and Galactic metal-
licity. The models are of 15 and 40 M�. Full lines represent nonrotating
models, dashed lines models rotating initially at ∼270 km s−1.

Between about 5 and 10 Myr the most massive nonrotating
stars have evolved off the main sequence. However, at low metal-
licity, the most massive fast rotators, which undergo chemically
homogeneous evolution are still in their main-sequence phase at
this time, forming a blue straggler-like blue population (see the
bottom panels of Figs. 7). If homogeneously evolving stars exist
in nature they would most likely be found in low metallicity star
clusters with ages between 5 and 10 Myr.

4. Surface abundances

4.1. Abundances as a function of time

A direct observable consequence of rotationally induced mixing
is the enrichment or depletion of certain elements in the atmo-
spheres of main-sequence stars. In Figs. 9−11 we show the evo-
lution of the surface abundance of various elements as a func-
tion time. The effects of rotational mixing are more pronounced
at lower metallicity, at higher masses and for higher rotational
velocity (see also Fig. 4 and Sect. 3).

As is usual in observational work, we express the surface
abundances relative to the abundance of hydrogen. When stars
become significantly hydrogen depleted at the surface, using
hydrogen as a reference element may not be the most logical
choice. Changes in the abundance may partially reflect changes
in the reference element hydrogen. We plot the abundances in
red when these effects become important (i.e. when the helium
mass fraction at the surface becomes larger than 40%).

Most of our stellar models evolve to the red supergiant stage
directly after the end of core hydrogen burning. This leads to a
large vertical step in the surface abundances of many elements in
Figs. 9−11, which is due to the convective dredge-up in the red
supergiant stage. In the following, we discuss the evolution of
the surface abundances of various groups of elements, focusing
on the changes occurring over the course of the main-sequence
evolution.

4.1.1. Helium

Even though helium is the main product of hydrogen burn-
ing, the abundance of helium at the surface remains remark-
ably constant in most evolutionary tracks during the main-
sequence phase. For the 12 M� models the enhancement is less

A115, page 9 of 20

Figure 5.6: Comparison of the surface nitrogen enrichment of the models calculated
by Brott et al. (2011), (left), and our models (right). Models at MW (black), and
LMC metallicity (blue) are shown. Non-rotating models (solid) do not show any
surface enrichment on the MS, while the surface nitrogen abundance increases
for rotating models (dashed), where the initial rotational velocities are vrot ≈
270km/s for Brott et al., and Ω = 0.4Ωcrit for our calculations. Our results and
the calculations by Brott et al. agree in an order of magnitude comparison, both
concerning number fractions and timescales.

explained by slightly different rotation rates and other minor differences in the

models, similar to what has been discussed in Sec. 3.4.2. A more detailed analysis

of the surface abundances on the MS is beyond the scope of this thesis.

In contrast to the changes in surface abundances, rotation decreases the

luminosity for most of our models. This is the second of the two opposite effects

mentioned above. This decrease is related to the reduced effective gravity (because

of rotation), which leads to a reduced effective mass coordinate for the whole star.

The reduction is by a constant factor for solid body rotation (with Spruit-Tayler

dynamo), and even stronger for inner regions without the Spruit-Tayler dynamo,

as rotation rates increase towards inner regions, as shown in Fig. 5.8. The effective

mass enters partly in the derivation of the relation L ∼Mα, such that a decrease

also affects the luminosity. This effect is more pronounced for lower rotation rates,

where mixing plays a lesser role.

In all cases, however, the MS becomes extended, as more material is available

to be burnt.

All rotational effects become more important for lower metallicity, but overall

affect the evolutionary tracks weakly. An exception are models that evolve quasi

chemically-homogeneously, which we will discuss later in more detail. However,

this might change if advective angular momentum transport is included, as argued

in Sec. 3.4.1. The main effect in our calculations are the changes in the surface

abundances. The low importance of rotation, and also the dominance of the effect
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Figure 5.7: Comparison of the evolution of the angular velocity of a 40M� model
at MW metallicity with (dashed) and without (solid) magnetic fields in the Spruit-
Tayler description. If magnetic fields are active, the star keeps a higher rotation
rate. In general, the rotation slows down already on the MS.

Figure 5.8: Comparison of the internal run of rotation with (dashed) and without
(solid) magnetic fields for a 40M� model with MW metallicity.

decreasing the luminosity, can be explained by the slowdown already on the MS,

which is shown in Fig. 5.7. At MW and LMC metallicity, it occurs even faster for

higher initial masses as the mass loss rates are higher. Only for lower metallicities

or reduced mass loss rates, the star can keep the rotation rates sufficiently high.

The general effect of rotation on the progenitor properties is to increase the core

masses while the final mass is decreased, as one can see from Figs. 5.4b and 5.5b.

The increase in core masses can be explained by more efficient mixing through the

radiative envelope by the different rotational instabilities. Higher core masses and

higher rotation rates both favour higher mass loss rates, thus reducing the final

mass. However, the effect is very small at MW and LMC metallicity, and can be

seen clearly only at lowZ.

Internal magnetic fields can enforce solid body rotation, as shown in Fig. 5.8.

As less angular momentum is redistributed to the core, this keeps the surface

rotation rates on the MS higher, as can be seen for the dotted line in Fig. 5.7.
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Thus, magnetic fields can increase the effects of rotation, and lead to increased

core masses, and reduced final masses. As expected, the higher the rotation, the

larger this effect.

5.2.2 Convective Boundary Criterion

From the HRDs in Figs. 5.1 to 5.3, we can see that the choice of the convective

boundary criterion does not change the MS evolution, as already discussed in

Sec. 3.3.1. However, it can affect the post main sequence evolution drastically.

Models that are calculated using the Schwarzschild criterion are brighter on the

post main sequence as can be seen for the 15 . . . 30M� models of the default grid

at MW metallicity in Fig. 5.1. Models using the Ledoux criterion, on the other

hand, are fainter, at least for MW and LMC metallicities. Even though, they more

likely end their life in the blue, and also for lowZ experience higher mass loss. The

initial mass limit for the formation of WR stars is shifted to lower masses, as can

be seen for the 30M� model at MW metallicity in Fig. 5.1.

Indeed, for LMC as well as MW metallicity, the most important uncertainty

comes from the treatment of the convective boundary criterion, as can be inferred

from Fig. 5.4!

To understand the origin of this difference, we take a more detailed look on

the structure of these two models, shown in Fig. 5.9. Already during shell

hydrogen burning, the shell-convection drastically changes the structure in the

outer envelope. The two models separate after the hook, when core helium

burning sets in. For the model calculated using the Ledoux criterion, the envelope

convection2 during central helium burning reaches deep stellar layers, resulting

in a dredge up, consistent with the results of Kaiser et al. (2020), and brings up

processed material to the surface. In contrast, envelope convection is restricted to

a surface layer for the Schwarzschild case.

Nevertheless, the helium core mass is higher when central helium burning sets

in for the model calculated using the Schwarzschild criterion, thus resulting in a

higher luminosity.

In general, a higher luminosity should lead to a higher mass loss, and thus lower

final masses. However, in this case the mass loss in late RSG phases is of great

importance. This can be seen best for the models at lowZ. In contrast to higher

metallicities, where a noticeable increase of mass loss occurs when crossing the

2The existence of envelope convection during these later phases was discussed in Sec. 3.2.2.
The main reason are changes of the opacity in the envelope.
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a) Evolution of surface (solid) and central (dashed) abundances. The elements plotted
are hydrogen, helium, carbon, nitrogen, and oxygen. We can clearly see the dredge-up
in the Ledoux case when core helium burning stars (t ≈ 7.357 Myr) as a jump in the
surface abundances, especially for carbon, nitrogen, and oxygen.

b) Kippenhahn diagrams comparing these models. Regions are indicated using different
colors, as in 3.2. The outer convective zone during shell hydrogen burning is different
for the two criteria, and the core mass increases in the Ledoux case, when central helium
burning sets in.

Figure 5.9: Comparison of the evolution of a 25M� model at solar metallicity,
calculated with the Ledoux (left) and the Schwarzschild criterion (right).

bi-stability jump, at low metallicity, the rates provided by Vink, de Koter, and

Lamers are very small. The only rate that is independent of metallicity is the one

provided by de Jager, and thus determines almost all mass loss3. Depending if we

use the Ledoux or the Schwarzschild criterion, the post MS evolution occurs on

different timescales, as can be seen for a 40M� in Fig. 5.10. The de Jager rates set

in at a different point in time, as can be seen from the HRD, and shown directly in

Fig. 5.11. The mass loss lasts for O
(
104
)

years when we use the Ledoux criterion,

whereas it lasts for O
(
105
)

years when the Schwarzschild criterion is applied. The

difference in the timescale of de Jager, Nieuwenhuijzen, and van der Hucht (1988)

mass loss can fully account for the difference in final mass of ∆Mf ≈ 10.

3However, as argued in Sec. 2.6, it might be overestimated.
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Figure 5.10: Comparison-HRD of a 40M� non-rotating model at lowZ calculated
using the Ledoux criterion (solid) and the Schwarzschild criterion (dashed). The
Line is colored depending on the mass loss scheme: Vink, de Koter, and Lamers
to de Jager, Nieuwenhuijzen, and van der Hucht and the transition region. After
the main sequence we display symbols every 1000 yr.

Figure 5.11: Comparison of the mass loss rates of the same 40M� at lowZ as in
Fig. 5.10. The model calculated using the Ledoux criterion (solid) spends much
more time in the RSG regime where the de Jager rates apply than the model
calculated using the Schwarzschild criterion (dashed).

We can do a more quantitative analysis of this difference using Figs. 5.4a

and 5.5a, with the following result. Applying the Ledoux criterion reduces the

final mass drastically, while it increases the core masses. For models that end as

WR stars, also the helium core mass can be reduced, together with the total mass.

As rotational mixing is very efficient for stars at low metallicity, the difference

between the Ledoux and the Schwarzschild criterion becomes smaller for rotating

stars. Other effects become more important, such as mechanical mass loss in this
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case. As the ST dynamo keeps the rotation rates higher, this further decreases

the difference.

5.3 Specific Effects

Within the different grids, we study the influence of uncertainties in the

overshooting parameter, mass loss rates, and the rotational mixing efficiency. A

comparison of the evolutionary tracks of all grids is shown in Figs. 5.12 to 5.14.

As the HRDs would become convoluted if also an increased mixing efficiency was

accounted for, we show the latter effect separately in Fig. 5.17. For all grids, we do

a more quantitative analysis similar to the systematic effects, shown in Figs. 5.15,

5.16, and 5.18. We start with a brief comparison of the different metallicities,

before we continue with the effects mentioned above.

5.3.1 Metallicity

The most important effect of metallicity is the reduction of mass loss rates. This

leads to a shift of the initial masses required to form WR stars, towards higher

values. In the extreme case of lowZ, most of the models considered end their life

as RSGs. Only the higher mass stars with Mi ' 50M� can evolve back to the

blue and become BSGs, but no WR stars are formed. As explained already, the

mass loss rates provided by de Jager, Nieuwenhuijzen, and van der Hucht (1988)

become more important, as they are the only ones not depending on metallicity.

The effect of a metallicity scaling will be discussed later in this section, together

with the other grids set up for “manipulating” the wind.

In addition, models at lower metallicity are more compact. This, in conjunction

with their lower mass loss rates (less loss of angular momentum), enables keeping

higher rotation rates, such that rotation becomes a more important parameter.

Another critical difference for lowZ is the lack of catalysts. These are necessary

for burning via the CNO cycle, such that models at this metallicity have a pp-chain

being active in their center (during the MS) instead.

5.3.2 Overshooting

From the HRDs in Figs. 5.12b to 5.14b, we can see that a higher overshooting

value causes the MS to be brighter and more extended. It further increases the



73 Evolutionary Tracks and Core Masses

a) Grid 1 b) Grid 2

c) Grid 3a d) Grid 3b

e) Grid 3c

Figure 5.12: Hertzsprung-Russel diagrams of all models with MW metallicity.
Colors and linestyles indicate different parameters, as in Fig. 5.1. See text for
further discussion.
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a) Grid 1 b) Grid 2

c) Grid 3a d) Grid 3b

e) Grid 3c f) Grid 3d

Figure 5.13: As Fig. 5.12, but for LMC metallicity. RSGs from the LMC (Massey
and Olsen 2003) are indicated as red circles.
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a) Grid 1 b) Grid 2

c) Grid 3a d) Grid 3b

e) Grid 3c f) Grid 3d

Figure 5.14: As Fig. 5.12, but for lowZ.
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Figure 5.15: Differences in core masses (MHe, MCO) and final masses, Mf , for
the grid with increased overshooting (grid 2) and the standard grid (grid 1) at
MW metallicity (upper left), LMC metallicity (upper right), and lowZ (lower).
We distinguish between models calculated using the Ledoux (triangles), and the
Schwarzschild criterion (squares). Larger overshooting increases the core masses,
while it decreases the final mass.

MS lifetime. During the later evolution, a higher value can also lead to an evolution

towards the blue, either to the BSG regime of even towards WR stars.

This can be explained by analysing the core and final masses, shown in Fig. 5.15.

As a direct effect, larger overshooting increases the core mass by ≈ 1 . . . 3M� at

MW metallicity, and up to ∆MCO ≈ 5M� and ∆MHe ≈ 8M� at lowZ. This has

two indirect effects. At first, it increases the mass loss rates, and thus reduces

the final mass. And second, it reduces the envelope mass, as the core mass is

increased. In combination with increased mass, the reduced envelope mass makes

it much easier to remove the envelope, and explains the drastic shift of the WR

limit towards lower masses. While in our standard grid at MW metallicity, WR

stars form for Mi & 30M�, for increased overshooting, they form already for

Mi & 25M� (compare Figs. 5.12a and 5.12b). For WR stars, the final mass

depends only very weakly on the parameters chosen and on the earlier evolutionary

history. This can be explained by the special behaviour of their mass loss rates,
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at least for Galactic metallicities. While Eqn. (2.93) predicts a dependence on

their luminosity, Schaerer and Maeder (1992) find that the luminosity is directly

connected to their mass via

log
L

L�
=3.4949 + 1.7267 log

M

M�
(5.1)

from fits to their models. In combination, the mass loss rate depends on the mass.

Thus, WR stars with initially higher mass loose more mass, such that the final

masses become independent of the earlier evolutionary history. We can see this

behaviour of the final mass for higher metallicities and higher initial masses. This

is similar to the result for helium stars calculated by Woosley, Heger, and Weaver

(2002).

WRs also lost at least their hydrogen rich envelope, such that the helium core

mass and the final mass coincide. For most WR stars, they even become WC

stars, such that the same is true for the carbon core mass. In combination, this

causes the differences in core and final masses to become negligible, if the models

end as WR stars in both grids.

For lowZ, two models even show QCHE due to the efficient mixing. These stars

skip the RSG regime, and their final structure is very different from the other

models.

5.3.3 Mass loss

As already explained, we changed the mass loss prescription towards more realistic

values in several steps. In the following, we begin our discussion with a description

of the effects at MW and LMC metallicity, as at lowZ the whole mass loss originates

from the RSG phase alone, where the de Jager rates apply.

For grids 3a and 3b, where the total mass loss is reduced, the effects on the

evolutionary tracks are extreme. The limit, where WR stars form, is shifted

towards much higher initial masses, and almost all models end their life as RSGs.

Only very few 60M� models evolve back towards the blue. The final masses are

larger, as can be seen in Fig. 5.16. As less mass is lost, the core masses can become

larger as well.

The effect of the reduced jump temperature is much smaller. In general, this

decreases the mass loss rates even further, and thus amplifies the effect. An

exception are some 60M� models at MW metallicity, which evolve towards the

WR phase only in this case, while they ended as BSGs with unchanged jump
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Figure 5.16: As Fig. 5.15, but for the mass differences between grids with reduced
mass loss rates (grid 3a(triangles)/b(squares)/c(x-symbols)/d(plus-symbols, only
for LMC metallicity and lowZ)) and the standard grid. At MW and LMC
metallicity, reduced mass loss leads to higher remnant masses. At lowZ, the
situation is more complicated.

temperature (compare Figs. 5.12c and 5.12d). This might be explained by the

second time they cross the bi-stability jump on the way back. However, the

difference is very small for these models.

When only the Vink mass loss is scaled down, the changes compared to the

standard grid are much smaller. Nevertheless, these models show the same

systematic increase in core and final masses.

As, together with the mass, also angular momentum is lost, reduced mass loss

rates can prevent the slowdown of rotation on the MS, not only at lowZ, but also

at LMC metallicity. These models show more pronounced effects of rotation, and

can even reach critical rotation and implicit mass loss.

At lowZ, the evolutionary tracks do not change significantly in all cases, as the

overall mass loss is very low. However, as argued already, the de Jager mass loss

rates play a major role. Especially for higher mass stars, the mass being lost in

the RSG regime allows them to move back towards the blue. If this is prevented

by including a metallicity scaling, they can evolve close to the Eddington limit,
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probably related to an LBV phase. The behaviour and especially the mass loss

during these phases are highly unknown. For our models, they end their life as

RSGs, with a total mass loss for the highest mass models of only ∆M . 1 . . . 3M�.

However, there exist no constraints from observations or theory, whether such a

metallicity scaling should be included. This introduces the largest uncertainty at

lowZ, and can be seen best for the higher mass models.

The complex behaviour of the helium core masses at lowZ, displayed in

Fig. 5.16, and in general the decrease of specific helium core masses, also at other

metallicities, can be explained by slight differences in the envelope convection

during later phases. This is similar to the differences between the Ledoux and

Schwarzschild criterion, discussed in Sec. 5.2.2.

5.3.4 Mixing

As expected, an increased mixing efficiency makes QCHE much more likely. As

these tracks are very different compared to “classical” ones, and give rise to

complicate tracks in the HRD, we show the latter enlarged in Fig. 5.17. Note

that the tracks of non-rotating models are unchanged from the default grid.

In contrast to the default grid, all rotating models show an increased luminosity

due to the efficient mixing. For most of the rapidly rotating models with

Ω = 0.4Ωcrit, this even leads to quasi chemically homogeneous evolution. These

models evolve towards higher luminosities, at roughly constant radii. As the

surface abundances increase in parallel with the central ones, they eventually

become WR stars, without evolving through the RSG regime. Thus, even 10M�

stars can form WRs, independent of the metallicity! As this is in contradiction to

observations, the real uncertainty, at least for lower masses, is most likely lower

than our extreme assumption.

Our evolutionary tracks are roughly consistent with the tracks presented by

Köhler et al. (2015). The latter have been calculated for rapidly rotating

very massive (Mi ≥ 60M�) models at LMC metallicity and “normal” mixing

efficiencies. Thus, we can only compare the main features. Both show the

same luminosity and temperature evolution during most of their evolution. One

difference is that our models do not expand and evolve towards the red at any

point, while the models by Köhler et al. evolve to lower temperatures just before

they become WR stars. In our earlier models, however, we could see a similar

decrease in effective temperatures for a small fraction of their lifetime, depending
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a) MW metallicity

b) LMC metallicity

c) lowZ

Figure 5.17: Hertzsprung-Russel diagrams for all models with increased rotational
mixing efficiency, at different metallicities. Colors and linestyles indicate different
parameters, as in Fig. 5.1. See text for further discussion.
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Figure 5.18: As Fig. 5.15, but for differences between increased rotational mixing
efficiency (grid 4), and the standard grid. Models evolving quasi chemically
homogeneously show a very different behaviour.

on the exact settings that decide how to deal with critical rotation (especially the

wind setting).

Returning to our grids, a detailed comparison of the core and final masses, as

resulting from enhanced vs. standard mixing, is provided in Fig. 5.18. As a direct

effect, the efficient mixing increases the core masses. However, the lower initial

mass limit for WR stars can cause a reduction of core and final masses. As rotation

plays a major role at lower metallicity, this can be seen best for lowZ.

As for WR stars that formed the classical way, the final mass of WR stars

that formed via QCHE is independent of the previous evolution. However,

the final value is different compared to classical WRs. These models have

drastically decreased core and final masses, also for higher masses at MW and

LMC metallicity, where also in the standard grid WR stars form.

Thus, insecure mixing coefficients add a strong uncertainty, especially for lower

mass models, that would end their life as RSGs otherwise, and for lowZ, where

rotation rates remain higher.
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6 Remnant Analysis

6.1 Remnant Masses

In the following, we will analyse the remnant masses resulting from our

calculations. We use the two formalisms described in Secs. 3.5.3 and 3.5.4 to link

the progenitor properties the the remnant mass. Besides discussing the individual

effects, we compare our results with other calculations.

There are various studies with the intention of finding a relation between

remnant and initial stellar mass. We will focus on the calculations performed by

Heger and Woosley (2002) and Woosley, Heger, and Weaver (2002) who provide

relations for zero metallicity1 and for MW metallicity, respectively. In addition,

theoretical considerations by Renzini and Ciotti (1993) are shown, which should

also hold for MW metallicity. Even though Renzini and Ciotti use a very simple

approximation, this function is used in several studies analysing microlensing

observations, including Riffeser, Seitz, and Bender (2008), and Thomas et al.

(2011).

6.1.1 Remnant Masses at MW Metallicity

The resulting remnant masses at MW metallicity are shown in Fig. 6.1. It is

important to notice that the different formalisms provided by Woosley, Heger,

and Weaver (2002) and Belczynski et al. (2008) show a reasonable agreement in

most cases. Nevertheless, there is a noticeable difference for some masses in the

transition from NSs to direct BHs, i.e. for models with Mi ≈ 20 . . . 30M� at MW

abundance. There is an even bigger disagreement of remnant masses for the WR

stars that form for lower masses . 20M�, which are a result of QCHE (red and

1As discussed in Sec. 3.5.3, zero metallicity means here a very low metallicity, where almost
no mass loss is present.
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Figure 6.1: Comparison of remnant masses from our calculations at MW
metallicity with other studies. Solid lines indicate calculations by Woosley,
Heger, and Weaver (2002) (MW metallicity) (two blue lines, differentiating the
adopted WR mass loss), and Renzini and Ciotti (1993) (red). Different symbols
differentiate between different grids: grid 1 (plus-symbols), 2 (asterisks), 3a
(diamonds), 3b (triangles), 3c (squares), and 4 (stars). We show both, the remnant
masses calculated using the Woosley formalism (red symbols), and the Belczynski
formalism (blue symbols). Indicated by lines are also our current preferential
models with reduced Vink mass loss (grid 3c), mild rotation (Ω = 0.2Ωcrit), both
with Ledoux (dashed) and Schwarzschild criterion (dashed dotted) applied, and
for ST turned on (dark color) and off (bright color). The grey line at the top
displays the one-to-one relation, and the lower one at Mrem = 2.5M� marks the
limit between the formation of NSs and BHs. See text for further details.

blue stars at 10M� and 15M�). As their final structure is very different from other

models, it is unclear which formalism would be the better choice.

The different grids as well as different physics introduce an uncertainty in

remnant masses. Especially, the grid with increased mixing coefficients shows

a different trend compared to all other grids. The remnant masses of WRs that

formed via QCHE is Mrem ≈ 10M�, independent of the evolutionary history. This

is a consequence of the behaviour of core and final masses described in the previous

sections (see Sec. 5.3.4).

The other grids show the behaviour expected from the considerations in the

previous chapter. Reduced mass loss rates increase the remnant masses. The same

is true for increased overshooting at lower initial masses. For higher initial masses,

increased overshooting leads to the formation of WR stars, that are slightly lower
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Figure 6.2: Comparison of uncertainties in remnant masses at MW metallicity due
to rotation and mass loss. Symbols and colors as in Fig. 6.1. Only a selection of
models is displayed for clarity. For the standard grid, non rotating (solid line),
mildly rotating (Ω = 0.2Ωcrit, dashed line), and rapidly rotating (Ω = 0.4Ωcrit,
dashed dotted) models are shown. Only mildly rotating models are included within
the grids with reduced mass loss rates. The displayed models are calculated using
the Ledoux criterion, and with the Spruit-Tayler dynamo applied.

in mass, but lead to similar remnant masses as the other models that form WR

star via “classical” tracks, at around Mrem ≈ 20 . . . 30M� (compare Sec. 5.3.2).

As already argued, within a single grid the choice of the convective boundary

criterion adds an significant uncertainty, as can be seen from the dashed and

dotted lines, shown in Fig. 6.1. The ST dynamo only plays a weak role. Also

rotation only leads to a very small difference in the remnant mass, as shown in

Fig. 6.2. Reducing the Vink mass loss rates, differences are larger, and even more

extreme when the total mass loss rates are scaled down. Presumably, the reality is

somewhere in between, since also the WR mass loss rates might be overestimated,

as argued in Sec. 2.6.

6.1.2 Comparison with Other Studies

Using Fig. 6.1, we can compare our results at MW metallicity with those from other

calculations. In almost all cases, we find higher remnant masses than Renzini and

Ciotti (1993). The only exception are the most massive WR stars, that agree
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Figure 6.3: Comparison of remnant masses with other studies for non-rotating
models with no overshooting at MW metallicity. The WR mass loss is increased
by a factor of 10. Solid lines indicate calculations by Woosley, Heger, and Weaver
(2002) (MW metallicity) (blue), and Renzini and Ciotti (1993) (red). Models
calculated using the Ledoux criterion are connected with a dashed line. The
displayed models are able to reproduce the results of Woosley, Heger, and Weaver
(2002) at a large extent.

quite well with the approximated BH masses predicted by Renzini and Ciotti, and

indeed, much better than with the other studies!

Compared to Woosley, Heger, and Weaver (2002), we find a shift of the lower

mass limit to form BHs towards lower initial masses. While we find a lower limit

of Mi ≈ 15, Woosley, Heger, and Weaver find that only stars with Mi & 21M�

form BHs. In addition, our WR masses are much higher.

There are two main reasons for these differences. The first is that Woosley,

Heger, and Weaver did not apply overshooting in their models. Even though

they argue it would be necessary to reproduce observations2, our comparison (in

particular Fig. 6.3 and corresponding text) suggests that they did not apply it in

their calculations. The second reason is that in their calculations, the applied WR

mass loss rates are not corrected for clumping, and thus too high, thus explaining

our larger WR masses.

In Fig. 6.3, we can see that increasing the WR mass loss and neglecting

overshooting, our calculations can get very close to the results provided by

Woosley, Heger, and Weaver. However, it seems that even in their low mass loss

scenario for WR stars, the mass loss is still higher than a factor of 10 compared

to the rates we use.

2Though carefully reading their publication, we could not find any definite statement
regarding whether they considered overshooting in their calculations or not.
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In summary, we conclude that using modern calculations and state-of-the-art

physical assumptions, our predictions for remnant masses are considerably larger

than those predicted by Woosley, Heger, and Weaver (2002), for a wide range of

initial masses.

6.1.3 Remnant Masses at Lower Metallicities

In Fig. 6.4, we compare the remnant masses at all metallicities considered

for our calculations. At lower metallicity, the average remnant mass becomes

increased. While the effect is small comparing LMC and MW metallicity, it is

more pronounced at lowZ.

The general systematic effects within the grids are very similar at LMC

metallicity when compared to MW metallicity models. From the lines indicated

for the current preferential model at lowZ, we can notice that the choice of

the convective boundary criterion plays a similar role as for other metallicities.

However, the Spruit-Tayler dynamo and thus also rotation may play a larger role

at lowZ3. Nevertheless, for most models the effect is still quite small.

A comparison of our remnant masses for lowZ with the calculations by Heger

and Woosley (2002) for zero metallicity shows that our calculations coincide very

well if calculated using the Woosley formalism, which is also based on the data

provided by Heger and Woosley. Even though overshooting increases the core mass

for our models, the mass loss (tiny at earlier phases, but significant for RSGs) that

is only applied in our case has the opposite effect, explaining the agreement.

Moreover, there is a significant disagreement between the two formalisms at

lowZ! One difference occurs for the models with increased rotational mixing, that

end their life as WR stars. Woosley, Heger, and Weaver do not provide any

WR regime at very low metallicity, such that we had to use the same description

as for RSGs, not taking into account the different final structure. Also for the

other models (those with Mi = 15 . . . 30M�), there are essential differences in the

predicted remnant masses, by a factor up to & 2.

As explained, our models have several differences to the models calculated by

Heger and Woosley, the most important ones being overshooting and mass loss.

Thus, our final structure is very different, and the agreement with their data might

just be a coincidence. As the mass loss at lowZ occurs during later stages, where

3Even though this is suggested by Fig. 6.4, we cannot provide a definite conclusion, since
some 30M� and 40M� models of grid 3c where we observe a discrepancy have been calculated
with slightly different settings (compare Sec. 4.2).
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a) MW metallicity.

b) LMC metallicity.

c) lowZ.

Figure 6.4: As Fig. 6.1, but for different metallicities. At lowZ, the calculations
by Heger and Woosley (2002) for Z = 0 (black solid line) are shown. For LMC
metallicity and lowZ, grid 3d (x-symbols) is indicated. See text for further details.
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also the CO core forms, the Belczynski formalism might be the more reasonable

choice. Nevertheless, a more detailed analysis of the late evolution up to the

iron core formation of stars at very low metallicity would be necessary to obtain

confidence in this hypothesis.

Concluding, the biggest uncertainty for lowZ results from the differences between

the Woosley and the Belczynski formalism! Only for smaller as well as much higher

masses, both formalisms predict NSs and direct BHs, respectively, and thus agree

again.

6.2 Remnant Types

In addition to analysing the remnant masses, we can explore the regions of

metallicities and initial masses, where we expect different remnant types to form.

In Fig. 6.5, the most popular result of Heger et al. (2003) is shown. The

corresponding smaller range of metallicities and initial masses covered by our grid

is indicated in this figure.

In the following, we only use the formalism based on Belczynski et al. (2008) for

calculating the remnant masses, unless explicitly stated otherwise. As discussed

in the previous chapter, for MW and LMC metallicity the choice of the linking

affects the remnant masses and thus also the types only weakly. For lowZ, further

analysis would be necessary to provide a valid linking formalism. Based on the

remnant mass, the remnant type can be found, after comparing with the limits

described in Sec. 3.5.2.

Since we considered in our calculations the effects of various uncertainties, in

the resulting final diagrams displaying the remnant type as a function of initial

mass and metallicity we find overlap regions, where different kinds of remnants

might form. Such a diagram is provided in Fig. 6.6. The transition between the

metallicities indicated is a piecewise zeroth order interpolation. The same is true

for other masses than the ones for which we calculated models. We extend the

grid point to a box with boundaries in the middle between neighbouring models

(logarithmic space).

For all calculations, we observe a shift of the limits between different remnant

types towards lower masses. This can be explained by overshooting, that was only

included in our calculations, as explained in Sec. 6.1.2. Neutron stars can form for

masses . 15M�. Stars may become BHs with fallback for masses 15 . . . 20M�, and

direct BHs for masses & 20M�. Thus, we find an overlap for masses around 15M�,
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Figure 6.5: Figure from Heger et al. (2003), displaying the remnant types as a
function of metallicity and initial mass. The blue box indicates the region of
metallicities and initial masses corresponding to our calculations.

Figure 6.6: A diagram similar to Heger et al. (2003), Fig. 1. Remnant type
depending on metallicity and initial mass. Values for other metallicities than
indicated are only interpolations (see text). Mixed colors indicate overlap regions
for different remnant types, because of uncertainties in the current physical (and
numerical) description.
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that can form both NSs and fallback BHs, depending on the physical assumptions.

Models around 20M� may form fallback or direct BHs. Nevertheless, the overlap

region is comparatively small, and most models agree about the remnant type, even

if the evolution, as well as final and core masses are different! As our maximum

mass is 60M�, we do not find any pair instability SN, which only occurs for helium

cores larger than 65M� (Sec. 3.5.1)

In order to obtain a diagram with clearly distinct regions for the different

remnant types, similar to Heger and Woosley, in Fig. 6.7 we display a diagram

using only our current preferential models. These models have been calculated

using the Ledoux criterion to define the convective boundary, mild rotation

(Ω = 0.2Ωcrit, as indicated by Huang and Gies (2006) from observations), and

magnetic fields in the Spruit-Tayler description. The mass loss rates of Vink, de

Koter, and Lamers (2001) are reduced, and the bi-stability jump is corrected (our

grid 3c). For lowZ, we reduce the de Jager, Nieuwenhuijzen, and van der Hucht

(1988) mass loss rates, as described in Sec. 2.6. Again, values for other metallicities

and initial masses than calculated are only zeroth order interpolations.

Consistent with Heger et al. (2003), we find that the transition between different

remnant types is only weakly metallicity dependent. As Heger et al. argue, this

can be explained by the weak dependence of the final core mass on the mass loss

rates, that are the main difference between the metallicities. This dependence is

even smaller for the carbon core masses compared to the helium core masses.

As our mass loss rates are smaller, our calculations effectively correspond to

lower metallicities calculated by Heger and Woosley. In particular, our WR mass

loss rates are reduced drastically. In addition, only stars more massive than Mi =

20 . . . 25M� form WR stars, which is higher than the limits between different

remnant types. Thus, we do not observe strong changes in the remnant type at

solar metallicity, in contrast to the results from Heger and Woosley. Instead, our

models become direct BHs in almost all cases.

The remnant masses increase at lower metallicity, as can be concluded from the

results presented in Chpt. 5.

The situation is different when the Woosley-formalism is used to calculate the

remnant masses. While the remnant masses and types are only weakly affected at

MW and LMC metallicity, drastic changes are visible for lowZ. This is consistent

with our earlier findings concerning the differences between the two formalisms.

We find that the remnant mass is decreased compared to higher metallicities in

several cases! As stars at low metallicity do not loose their hydrogen rich envelope,
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Figure 6.7: As Fig. 6.6, but only for our current preferential models (see text).
Numbers indicate the mass of the corresponding remnant, resulting from our
calculations. We provide the results both for the formalisms based on Woosley
(upper) and Belczynski (lower).

and their final mass is purely determined by the helium core, they never become

direct BHs. Instead, fallback BHs are formed.
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6.3 Explosion types

In addition to the the remnant types, a comparison of the different explosion

types can give a valuable basis for comparisons with observations. In Fig. 6.8, we

show the results of Heger and Woosley (2002) for the explosion types, depending

on initial mass and metallicity. A similar diagram for our results is shown in

Fig. 6.9. Again, this covers a smaller region, and there can be overlaps between

different explosion types, as explained in the previous section. In order to allow

for a clear distinction, we changed the colors, as shown in the corresponding

legend. All regions that are hatched may show no explosion, but a direct collapse

(corresponding to the white region in Fig. 6.8).

For lower masses, the stars typically still have a hydrogen-rich envelope when

they explode, such that they may explode as SNe type II. However, the rapidly

rotating models with increased rotational mixing efficiency evolved towards the

WR stage already for low initial masses, such that they explode as type I SN.

As explained already, this is most likely not physical, and the real uncertainty in

mixing coefficients is probably smaller. Thus, also the uncertainty in the explosion

type would be reduced. Higher mass stars at MW and LMC metallicity become

WRs, meaning they lost their hydrogen rich envelope. However, all stars more

massive than 25M� do not show any SN explosion but a collapse into a direct

black hole.

This becomes clearer, when only looking at the current preferential model, which

is shown in Fig. 6.10. Very similar to the original results of Heger and Woosley, we

find that all models at lower masses explode as type II SN. There is a thin band

of models that explode as type IIL/b, while the others explode as type IIp. As

this band is thin, we may just have missed the corresponding initial mass at solar

metallicity. The lower mass limit, where models have a direct collapse and thus no

SN, is shifted towards lower initial masses. In contrast to Heger and Woosley, we

find that for all metallicities, and especially also at MW metallicity, models with

Mi & 20M� have no SN, but a direct collapse. This is most likely related to the

differences in overshooting.

The explosion type is determined by the hydrogen-rich envelope, such that it is

independent of the calculated remnant mass. The only change we observe using the

Woosley-formalism instead of the Belczynski one is that at lowZ fallback BHs form,

such that we can observe explosions also at higher masses. As they experience only
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Figure 6.8: Figure from Heger et al. (2003), showing the explosion types as a
function of metallicity and initial mass. The blue box indicates the region of
metallicities and initial masses corresponding to our grid of evolutionary models.

Figure 6.9: A diagram similar to Heger et al. (2003), Fig. 2. Remnant type
depending on metallicity and initial mass. Values for other metallicities than
indicated are only interpolations. Mixed colors indicate overlap between different
explosion types because of uncertainties in the current physical (and numerical)
description. The low mass models exploding as type I SN originate from WR
stars due to rapid rotation in combination with increased rotational mixing, and
are most likely not physical.
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Figure 6.10: As Fig. 6.9, but only for the current preferential model. We provide
the results both for the formalisms based on Woosley (upper) and Belczynski
(lower).

very weak mass loss4, they explode as type IIp SN.

4We remind that here we discuss the grid with scaled down RSG mass loss, such that almost
no mass loss is present.
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6.4 Statistics for Microlensing

One aim of this thesis is to provide predictions that can be used for analysing

microlensing observations. The theoretical background is beyond the scope of

this thesis, an instructive summary has been provided by Wambsganss (2006) and

Riffeser et al. (2006). As microlensing is a gravitational effect, the gravitational

mass is observed instead of the baryonic one, and we have to convert the masses

via Eqns. (3.3) and (3.4).

The microlensing probability is related to the fraction of mass available in

compact remnants. The total mass that is present in remnants can be found by

a convolution of the remnant mass relation with the initial mass function (IMF).

Under the approximation of a single stellar population (SSP, valid, e.g., for the

bulge of M31 – see below), and as massive stars live shorter than lower mass stars,

a “turn-off mass” MTO can be defined. Lower mass stars are still on the MS,

while more massive stars evolved further. As the later timescales are short, all

stars more massive than the turn-off mass have most likely turned into remnants.

Thus, the ratio of dark remnants to luminous stars for a SSP can be approximated

via

Mrem,tot

Mstar,tot

=

∫Mmax

MTO
IMF (Mi)Mrem(Mi) dMi∫MTO

Mmin
IMF (Mi)Mi dMi

. (6.1)

The cut-offs of the integration are defined by the minimum stellar mass Mmin and

the maximum mass of stars Mmax. We adopt Mmin = 0.08M� as a theoretical

lower limit (Cohen 1988). The highest mass is still under debate, and we present

solutions based on different values. Most likely, it is Mmax & 100M�. Both values

may also depend on the metallicity. Descriptions for the IMF can be found in

various publications (see, e.g., the legend in Fig. 6.12).

The assumption of a single stellar population is reasonable for the bulge of M31,

where stars only formed, with a time-independent IMF, in the first 1 . . . 2 Gyr,

which is short compared to its age of O (10) Gyr (Stephens et al. 2003, Saglia

et al. 2010, Saglia et al. 2018). For other systems, a more careful treatment is

required. As ongoing star formation in younger stellar populations drastically

changes the value of MTO, one needs to integrate over different turn-off masses

(corresponding to different times). Equation (6.1) only provides a lower limit in

this case.

To calculate the remnant and luminous masses in Eqn. (6.1), we numerically
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Figure 6.11: Ratio between mass included in compact remnants and visible mass,
for a Salpeter (1955) IMF with Mmax = 200M� at MW metallicity. The solid line
indicates the result when using the remnant mass relation provided by Renzini and
Ciotti (1993). The hatched area represents the possible range of our results without
the correction for the gravitational mass (horizontal hatching) and including the
correction (vertical hatching). The changes due to the gravitational correction are
very small. The vertical and horizontal lines at MTO = 1M� and Mrem/Mstar = 1
can be used for a better orientation in the plot. See text.

integrate over our grid using a five-point Newton-Cotes formula. For higher masses

beyond the upper mass limit of our grid, we apply the BH-relation Mrem = Mi/2,

based on the reasonable agreement with Renzini and Ciotti (1993) for higher

masses. For lower masses, we assume that NSs form for Mi ≥ 8.5M� (Renzini and

Ciotti 1993), and WDs below. A relation for the remnant masses of WDs has also

been provided by Renzini and Ciotti (1993).

In Fig. 6.11, we present our result for MW metallicity using the widely used

Salpeter (1955) IMF. To obtain the full range of possible values, we include all

models contained in our grids, as well as both formalisms to calculate the remnant

masses. We restrict the analysis to a physically relevant range, given by the oldest

existing populations, which have MTO & 0.7 . . . 1M�, as can be concluded from

isochrones based on PARSEC and COLIBRI5. The effect of the correction for the

gravitational mass on the result is very small, far below the uncertainty range

5calculations by Bressan et al. (2012), Chen et al. (2014, 2014), Tang et al. (2014), Marigo
et al. (2017), Pastorelli et al. (2019, 2020). The data is available online under http://stev.

oapd.inaf.it/cmd

http://stev.oapd.inaf.it/cmd
http://stev.oapd.inaf.it/cmd
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resulting from our various assumptions (grids).

As a comparison, the corresponding result for the remnant masses given by

Renzini and Ciotti (1993) is shown. Our relation coincides with the result based

on Renzini and Ciotti for MTO ≥ 60M�, as we use the same relation for these

masses. Also for the lowest turn-off masses considered, they approach each other,

as the total remnant mass is dominated by the WDs due to the higher IMF weight

for less massive stars.

The impact of our calculations can be clearly seen for intermediate masses

MTO = 1 . . . 20M�. As we mostly predict higher remnant masses than Renzini

and Ciotti, the ratio of remnant to stellar mass is increased in most cases. At

higher turn-off masses MTO ≈ 20 . . . 60M�, our results predict an uncertainty

range around the relation based on Renzini and Ciotti. The general agreement at

higher turn-off masses can be explained by the reasonable agreement of our relation

and that of Renzini and Ciotti for initial masses Mi ≥ 40M�, that dominate the

uncertainty. Indeed, there have been some models that produced slightly lower

remnant masses than predicted by Renzini and Ciotti. Here the high mass black

holes dominate the uncertainty range, even though the IMF in this range is lower.

We can conclude that our calculations mainly predict a higher total remnant-

to-star ratio compared to the relation based on Renzini and Ciotti (1993), except

for younger populations with high MTO, where our calculations mainly predict the

actual uncertainty range of this relation.

6.4.1 Constraining the IMF

Typically, when analysing microlensing observations, a certain IMF has to be

assumed. However, by measuring the total mass of remnants via microlensing,

measuring the visible mass directly, and using reliable stellar evolution models, one

might obtain meaningful constraints on the IMF, similar to the work by Green

(2016) and Niikura et al. (2019), who carried out observations to find a mass-

function for primordial BHs.

Including different IMFs in our analysis, we find an overlap for most of them,

especially at higher turn-off masses, as shown in Fig. 6.12. Even for the lowest

turn-off masses, there is still a large uncertainty range. The problem of finding

the IMF is degenerate when applying our (current) remnant mass relation.

To lower the uncertainty range, there is a need for better knowledge about

the parameters determining stellar evolution. Especially, the main sources
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Figure 6.12: Ratio between mass included in compact remnants and visible mass,
for different IMFs at MW metallicity. The range of possible values is indicated by
the hatched regions.

of uncertainties, namely the choice of the convective boundary criterion,

overshooting, and mass loss rates, need to be improved.

In addition to these imponderables in our theoretical considerations, MACHOS6

in the Halo would produce additional lensing events, and thus influence the

measurement.

Already Riffeser, Seitz, and Bender (2008) concluded from their observed lensing

events in the bulge of M31 that at least one event cannot be explained by star

self-lensing. While they concluded that such events might be related to MACHOS,

an alternative reason is lensing due to remnants instead.

With our remnant mass relations we are able to clearly rule out certain IMFs.

For the bulge of M31 (with MTO ≈ 1M� and Z ≈ ZMW ) Riffeser (2020, priv.

comm.) argues that a factor 4 . . . 7 higher remnant masses are not seen in

microlensing surveys. Especially, the Zoccali et al. (2000) IMF with Mmax = 50M�

(solid line and enclosed region) would predict a very high total remnant mass. Most

likely, the remnant mass is lower than the stellar mass, and also the Matteucci

and Tornambe (1987) model (solid line and enclosed region) can be excluded.

These results are independent of the assumption of a single stellar population,

as they require only an upper estimate of the remnant mass fraction. Thus far,

only 56 lensing events have been found in M31 (Lee et al. 2015), such that further

observations are necessary for improving the reliability of this result. Observing

several thousand lensing events would be required to put tight constraints on the

6Massive Compact Halo Objects
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shape of the IMF.

6.4.2 Different Metallicities

A similar analysis as for MW metallicities can be also performed for the other

metallicities of our model grids. For lower metallicities, the maximum remnant

masses, and thus the maximum possible ratio of total remnant to stellar mass,

increases, as shown in Fig. 6.13. However, also the region of possible values

becomes larger, and may even extend towards lower remnant mass fractions. While

this effect is small when comparing our results for MW and LMC metallicity, it

becomes obvious when analysing the lowZ data.

The high uncertainty range can be explained by two main reasons. The first

is the difference between models with almost no mass loss and models where the

mass loss is drastically enhanced by quasi-chemically homogeneous evolution. The

second, and even more important source for uncertainties, is the difference between

the two formalisms to estimate the remnant mass, as described in Sec. 6.1.3.
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Figure 6.13: As Fig. 6.12, but comparing MW (top), LMC (middle), and lowZ
(lower) metallicity.
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7 Conclusion and Outlook

The final aim of this work was to find the end products of massive star evolution in

dependence of the initial mass and the most important physical uncertainties. To

accomplish this goal, we calculated model grids of stellar evolution with the MESA

code up to carbon exhaustion. From this point on, we used different formalisms

to link the progenitor properties to the corresponding remnant.

In Chpt. 2, we presented the most important physics for such calculations

and the involved uncertainties. Most of the processes have to be approximated

and formulated in a 1d description. Convection is included following the mixing

length theory, where already the choice of the convective boundary criterion is

still under debate. To take into account the finite velocity of the convective

bubbles, convective overshooting has to be included. Different studies calibrate

the overshooting parameter above the convective core, where such calibrations

strongly depend on other physical assumptions, especially the applied mass loss

rates. Finally, the efficiency parameters for rotational mixing have to be calibrated.

Magnetic fields can be measured inO (10) % of massive stars. In MESA, they are

implemented in the description of the Spruit-Tayler dynamo, which can reproduce

some key findings, but has physical problems, and most likely does not work.

Mass loss rates of massive stars are still under discussion. Different descriptions

have to be used, depending on the evolutionary stage. Recent observations and

simulations suggest that the rates of Vink, de Koter, and Lamers (2001) may be

too high. Especially, the bi-stability jump has to be shifted towards lower effective

temperatures, and its role for the mass loss rates might be less important than

previously thought. The metallicity scaling of the mass loss rates in the RSG

regime is unknown, and adds a huge uncertainty at very low metallicities.

In order to understand how MESA works, and which parameters are important,

we explored the impact of specific parameters in Chpt. 3. Four of them were

discussed in more detail.
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For the existence of the predicted µ-barrier, the smoothing of the composition

gradient has to be avoided.

The choice of the overshooting parameter is not only important in the core, but

too large values for the extension of the convective region below a shell can lead

to significant problems, especially at lower metallicities or lower mass loss rates.

Shell-undershooting mixes unprocessed material down into the core, and causes

the convective shell to move down, until the core burning might be extinguished.

Finally, stars with a convective envelope during later evolutionary phases may

evolve close to the Eddington-limit and become unstable. This can be avoided

by increasing the convective efficiency with the help of the MESA module MLT++.

In combination with the choice of the boundary criterion for the atmospheric

pressure, these settings can drastically increase the stability of the calculations

(though it might lead to somewhat unphysical solutions, by suppressing envelope

inflation).

To explore the differences between MESA and other stellar evolution codes, we

compared our simulations with results of Brott et al. (2011) and Ekström et al.

(2012) who used the STERN and GENEC code, respectively. We found that the

most crucial difference for non-rotating model is the implementation of the mass

loss, and especially if the second bi-stability jump is included or not. In addition,

the evolution of the 60M� model close to the hook is highly parameter dependent.

Effects of second order can have a huge impact for this model, as they decide if it

crosses the second jump already on the main sequence. The actual behaviour could

be revealed by analysing the convergence of the model by consecutively varying

the timestep controls.

For rotating models, the treatment of angular momentum transport is crucial.

While in MESA and STERN it is implemented as a purely diffusive process,

Ekström et al. (2012) argue that it needs to be treated as an advective process

instead. This can cause drastic differences.

For our main calculations, we set up a grid of stellar evolution models with

different initial masses in the range from 10 . . . 60M�, and rotational velocities up

to 0.4 of the critical value, as described in Chpt. 4. We calculated models at three

metallicities, namely a vary low one (Z = 10−5), and LMC (Z = 0.0047) and MW

(Z = 0.014) metallicity. In order to study the uncertainties, we varied the choice

of the convective boundary criterion, the implementation of magnetic fields, the

overshooting value, mass loss rates, and the rotational mixing coefficients.

Rotation can influence the surface abundances on the MS drastically.
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Nevertheless, it only has a minor impact on the evolutionary path and on the

final mass for MW and LMC metallicity. For most of the models, it decreases

the luminosity due to the reduced effective gravity. Mixing processes are efficient

enough to increase the luminosity only in a few rapidly rotating models, especially

at lower metallicity or if mixing is increased. The low importance of rotation

and the dominance of the effect reducing the luminosity can be explained by the

slowdown of rotation already on the MS. As internal magnetic fields enforce a solid

body rotation, the surface rotational velocity is higher and the effects of rotation

increased when the Spruit-Tayler dynamo has been switched on.

In contrast, the choice of the convective boundary criterion adds an important

uncertainty due to differences in the envelope convection after core hydrogen

exhaustion. Models calculated using the Ledoux criterion undergo a dredge-up,

but have smaller core masses compared to the Schwarzschild case. The different

structure alters the later timescales, and results in strong differences in the final

masses.

In addition, changing the mass loss rates can have drastic effects on the

evolution. If the total mass loss is reduced, even at MW metallicity the highest

mass stars considered do not become WR stars! Increasing the overshooting has

the opposite effect, and shifts the lower mass limit for the formation of WR stars

towards lower masses. Nevertheless, both, reduced mass loss rates and increased

overshooting, result in increased core masses.

An increase in the rotational mixing efficiency can lead to extreme effects on

the evolution. Rapidly rotating models even become WR stars for Mi = 10M�

via QCHE independent of the metallicity, which is most likely not physical.

WR stars that formed via QCHE, as well as “classical” ones, show a convergence

of final and core masses, as the core is uncovered. In addition, the final and

remnant masses depend only weakly on their earlier evolution, due to the specific

behaviour of their mass loss rates.

The remnant mass at all metallicities follows the same systematics as the core

masses. Regarding the metallicity, the remnant mass is increased for lower values.

Also the spread becomes much larger. One reason is the difference between models

without almost any mass loss and others, that still undergo mass loss during the

RSG phase. The main source for uncertainties at low metallicities, however, is the

formalism used to predict the remnant mass!

Comparing our remnant masses with other studies, we find a surprising

agreement with the relation by Renzini and Ciotti (1993) for the highest mass
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stars, that end as WR stars. For smaller mass stars, we find higher remnant

masses. The main differences to the simulations by Woosley, Heger, and Weaver

(2002) and Heger and Woosley (2002) is the treatment of overshooting and mass

loss, especially in the WR regime. We conclude that using modern calculations

and state-of-the-art physical assumptions, our predictions for remnant masses at

MW metallicity are considerably larger than those predictions, for a wide range

of initial masses.

Subsequently, we have presented diagrams displaying the remnant and explosion

types depending on metallicity and initial mass. We provide diagrams including

the derived uncertainties, and thus with overlap regions between different types,

and alternative diagrams for our current preferential model with clearly distinct

regions. The uncertainty regions are relatively narrow, and much smaller than

expected from the large number of uncertain parameters.

As for the remnant masses, we find a shift of the different regions towards lower

initial masses compared to the results of Heger et al. (2003), due to overshooting.

Except for this shift, all our results are very similar to those of Heger et al. (2003).

Especially, the remnant type is (almost) independent of the metallicity. This bases

on the weak importance of mass loss rates (being the main difference between

the metallicities) for the final carbon core masses. WR stars might change this

behaviour at higher metallicities, however we apply drastically reduced WR mass

loss rates compared to Heger et al., and they only form for higher masses than

where the transitions between different types occur. We thus also observe this

metallicity-independence at MW metallicity.

Finally, we discussed the total mass fraction of remnants compared to the

luminous stellar mass, in dependence of the initial mass function. Knowledge of

this relation is especially relevant for interpreting microlensing events. We find a

large uncertainty range and overlap between different IMFs. The uncertainty range

increases for lower metallicities, mainly due to the uncertainty in the formalism

to predict the remnant mass from the progenitor properties. Nevertheless, this

diagram can be useful to rule out specific IMFs via present and future observations.

Outlook

The results presented in this work should be permanently revised and updated, if

sources for uncertainties can be reduced or improved stellar evolution models are
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available. The limits presented by us have to be understood as current, reasonable

ranges.

The descriptions for mass loss rates are strongly under discussion, with many

recent results, that will probably allow to better constrain the mass loss. Not only

the rates for non rotating models have to be improved, but also the behaviour of

mass loss with rotation. A possible solution might be two-dimensional models (e.g.

the ESTER code, Gagnier et al. 2019), that can treat the impact of rotation with

less approximations. The best would be full 3d simulations, which will, however,

be not available in the near future.

One of the most important open questions that will most likely remain unsolved

in the near future is the description of mass loss during the LBV phase.

As the calibrations of several parameters depend on other physical assumptions,

primarily on the applied mass loss description, they may become more reliable in

parallel with increased knowledge about mass loss rates.

In order to reduce the uncertainties of the remnant-linking at lower metallicities,

further studies of the late evolution until iron core formation are necessary.

In addition to possible improvement, our grid should be extended towards higher

and lower initial masses. For the results relevant for microlensing, especially the

lower mass range is of great importance, such that we do not need to rely on the

relations presented by Renzini and Ciotti, but also find the potential range for

remnant masses.

As several microlensing observations are carried out in M31, also an extension

of our grids towards higher metallicities could be useful.

Finally, a more detailed analysis of the surface abundances, the impact of

the different parameters, and the corresponding uncertainties on the MS, in

combination with spectroscopic observations, will allow us to provide further

constraints on the physical assumptions and processes.
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A Massive Star Evolution with

MESA – Set-Up and Technical

Aspects

A.1 EOS, Opacities, Nuclear Reaction Rates

The MESA equation of state is a blend of the OPAL (Rogers and Nayfonov 2002),

SCVH (Saumon, Chabrier, and van Horn 1995), PTEH (Pols et al. 1995), HELM

(Timmes and Swesty 2000), and PC (Potekhin and Chabrier 2010) equations of

state.

Radiative opacities are primarily from OPAL (Iglesias and Rogers 1993, 1996),

with low-temperature data from Ferguson et al. (2005) and the high-temperature,

Compton-scattering dominated regime by Buchler and Yueh (1976). Electron

conduction opacities are from Cassisi et al. (2007).

Nuclear reaction rates are from JINA REACLIB (Cyburt et al. 2010) plus

additional tabulated weak reaction rates (Fuller, Fowler, and Newman 1985, Oda

et al. 1994, Langanke and Mart́ınez-Pinedo 2000). Screening is included via the

prescription of Chugunov, Dewitt, and Yakovlev (2007). Thermal neutrino loss

rates are from Itoh et al. (1996).
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A.2 MESA setup

A.2.1 Installation and first steps

We use MESA version 121151 together with MESA SDK version 201908302. For

the installation, we followed the description on the MESA webpage3, where all

requirements are listed as well. As MESA is programmed in Fortran (partly

including 2003 standard), an up-to-date compiler is necessary for the installation,

which is distributed within the SDK.

To become familiar with MESA, the tutorial is an excellent starting point,

published on the MESA webpage4. This does not only teach how to change

the settings, but also some basic knowledge about the in-build analysis routines.

Settings useful for the calculations of a specific model can be found in the

test suite examples. However, settings often have to be adjusted to more

physical values.

A.2.2 Starting our project

The black hole test suite provided a good foundation for our work, because

of several reasons: First, it contains the necessary settings and is designed for the

calculation of a high mass star, while many other examples are designed to tackle

the evolution of low mass stars. Since these evolve differently, only high mass stars

with at least 8M� are relevant for our work. Second, the evolution includes also

later phases, which is advantageous compared to the high mass test suite, from

which we started initially. Especially these later phases after the MS require a

careful choice of numerical and physical parameters. Third, black hole includes

rotation. This is the main advantage over ppisn which also fulfills the first two

criteria from above.

In addition, we combine settings from inlists provided by Z. Keszthelyi5 and by

Eva Sextl (2019, priv. comm.). Our final inlists are provided in App. A.4.

1All versions are available online under https://sourceforge.net/projects/mesa/files/
releases/

2Information and releases available online under http://www.astro.wisc.edu/~townsend/

static.php?ref=mesasdk
3http://mesa.sourceforge.net/
4http://mesa.sourceforge.net/starting.html
5available under https://doi.org/10.5281/zenodo.3250412

https://sourceforge.net/projects/mesa/files/releases/
https://sourceforge.net/projects/mesa/files/releases/
http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
http://mesa.sourceforge.net/
http://mesa.sourceforge.net/starting.html
https://doi.org/10.5281/zenodo.3250412
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A.2.3 Visualisation and Troubleshooting

A first impression on how the calculation proceeds can be gained using the MESA

module pgstar. It contains a variety of options and diagrams that might be

displayed. These can also be saved as images (typically in the png format, but

also pdf is possible) for a later analysis. All options relevant for the creation

of diagrams can be changed during the run. However, for a detailed analysis and

comparison of different models, more advanced plotting routines are useful. MESA

offers routines programmed in python6. However, we chose to do our analysis in

IDL, also based on existing routines, described in Sec. B.1.

If problems of any kind occur during the calculations, a helpful guide for solving

them is provided on the MESA webpage.7 For more specific questions about the

implementation of physical aspects, we advise to consult the MESA instrument

papers (Paxton et al. 2011, 2013, 2015, 2018, 2019). As well, the MESA mailing

list archive8 contains solutions for various specific problems. In addition, a closer

look on the output data and different diagrams can give enlightening hints, at

which time the problematic behaviour begins and what the reason might be.

A.3 Settings for Our Calculations with MESA

For different evolutionary stages, the settings have to be adjusted. Different

test suites contain scripts that can execute a MESA run with different inlists,

depending on the evolutionary stage. For the purpose of modifying the settings,

the MESA calculation is interrupted. However, these runs use “restart-models”,

which only contain limited information about the complete model. When loading

a model, the later run is affected by that interruption. In order to restart without a

loss of information, we use “photos” instead, that contain all information necessary

for the run.9

The different parts of the evolution are combined using a Linux bash script. This

script is especially designed to run a grid of models, where all possible parameters

can be varied.

We take advantage of the different possibilities to parallelize the calculation.

At first, a single instance of MESA can make efficient use of multiple threads,

6http://mesa.sourceforge.net/output.html#python
7http://mesa.sourceforge.net/troubleshooting.html
8https://lists.mesastar.org/pipermail/mesa-users/
9A comparison of the MS evolution of models after restart with photo and model at the

ZAMS has been provided by Ferraro (2020).

http://mesa.sourceforge.net/output.html#python
http://mesa.sourceforge.net/troubleshooting.html
https://lists.mesastar.org/pipermail/mesa-users/
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as discussed further in App. A.6. This is done by setting the system variable

OMP NUM THREADS. We chose the optimum number of 16. In addition, several

instances of MESA can be executed in parallel10. MESA has been designed in a

thread save way, however one has to take care of the system requirements described

in Sec. 4.3!

A.3.1 Structure of Inlists

The inlists are contained within the inlist/ directory and are split in the following

way:

• inlist (main inlist) includes the following inlists:

– inlist massive defaults

– inlist common

– inlist Z abundances, where Z has to be replaced with mw, lmc, lowz

– inlist massive stars (adopted as a general name for simplicity; the

original name is inlist to X with different phases X) includes the

following inlists:

∗ inlist after zams general, used for all phases from the ZAMS

on (as the name suggests)

∗ inlist to X common

∗ inlist to X values, copied to the directory of the individual run

The inlists written with red color are copied inside the directory of each run, while

all other inlists are fixed and stay inside the inlists/ directory, and thus are used

for all runs.

The execution is split into different evolutionary stages:

• pre-MS (inlist to zams),

• MS (inlist to he zams),

• until central helium exhaustion (inlist to he tams), and

• until central carbon exhaustion (inlist to c burn)

10Discussions on the optimal use of multiple threads can also be found on the MESA mailing
list.
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and corresponding inlists with appendices common and values (replacing the X

from the previous list).

Each of the inlists inlist to X common contains a stopping condition. When

all models finished the calculation of a certain phase, the last photos are used for

a restart, where the phase-specific inlists are exchanged with those for the next

phase. After central carbon exhaustion, the script continues with some basic data

analysis. As the calculation proceeds automatically, all inlists should be provided

before starting a run.

A.3.2 Setup and Execution

For running a grid of models within our approach, the following has to be prepared:

1. The abundance can be chosen by using the corresponding inlist (see above).

2. All other inlists may also be adjusted if necessary.

3. The inlists used for different parts of the evolution, inlist to X values,

have to be manipulated. Placeholders can be inserted, which should be

varied during the run. <<PLACEHOLDER>> is replaced by the different values.

4. The list of values for the placeholders is provided in models.dat and

pms models.dat. Placeholders are given in the first line of the two files

(same order in both files). As, e.g., rotation is activated only after the

pre-MS, models.dat can contain more placeholders. In the following lines,

the values are specified. We note that an empty line at the end has to be

inserted.

5. The parallelisation has to be adjusted inside

• run parallel: OMP NUM THREADS (threads used by a single MESA

instance) and

• run all mesa: parallel runs (number of MESA instances executed

in parallel).

6. The execution is started by run parallel.

In addition to the routines necessary for the run, we created additional routines

for easy clean-up, storage reduction and data analysis. For sake of brevity, we will

not discuss these in more detail.
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A.4 Inlists

As described in Sec. A.3.1, we use different inlists for our MESA calculations.

Each inlist is divided into three sections. The first section star job contains

mainly settings that are necessary to set up the model and initialise the run. It

is followed by the controls section, which contains the majority of the physical

and numerical parameters. The third section is responsible for manipulating the

visualisation with pgstar (as long as it is activated in the first section), and

omitted in our inlists.

The inlist massive default is distributed together with the MESA version.

In the following, we will provide all other inlists.

A.4.1 Abundances

MW

&star_job

!*********** initial Abundances *****************

initial_zfracs = 8 ! Asplund 2009 corrected (see chem/public/chem_def)

initial_h1 = 0.715

initial_h2 = 0

initial_he3 = 0

initial_he4 = 0.271

/ !# end of starjob namelist

&controls

!*********** initial Mass/initial_z etc. ********

initial_z = 0.014 ! Pryzbilla

Zbase = 0.014

initial_y = 0.271

/ !# end of controls namelist
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LMC

&star_job

!*********** initial Abundances *****************

initial_zfracs = 0 ! define them in controls

initial_h1 = 0.7391

initial_h2 = 0

initial_he3 = 0

initial_he4 = 0.2562

/ !# end of star_job namelist

&controls

!*********** initial Mass/initial_z etc. ********

initial_z = 0.0047

Zbase = 0.0047

initial_y = 0.2562

z_fraction_Be = 0

z_fraction_B = 0

z_fraction_C = 0.1022

z_fraction_N = 0.0168

z_fraction_O = 0.5428 ! + 1 at last digit for sum

z_fraction_F = 0

z_fraction_Ne = 0.0835

z_fraction_Na = 0.0021

z_fraction_Mg = 0.0408

z_fraction_Al = 0.0038

z_fraction_Si = 0.0672

z_fraction_P = 0.0004

z_fraction_S = 0.0266

z_fraction_Cl = 0.0007

z_fraction_Ar = 0.0037

z_fraction_K = 0.0003
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z_fraction_Ca = 0.0049

z_fraction_Sc = 0

z_fraction_Ti = 0.0002

z_fraction_V = 0

z_fraction_Cr = 0.0014

z_fraction_Mn = 0.0008

z_fraction_Fe = 0.0952

z_fraction_Co = 0.0003

z_fraction_Ni = 0.006

z_fraction_Cu = 0.0001

z_fraction_Zn = 0.0002

/ !# end of controls namelist

lowZ

&star_job

!*********** initial Abundances *****************

initial_zfracs = 8 ! Asplund 2009 corrected (see chem/public/chem_def)

initial_h1 = 0.75229

initial_h2 = 0

initial_he3 = 0

initial_he4 = 0.2477

/ !# end of starjob namelist

&controls

!*********** initial Mass/initial_z etc. ********

initial_z = 1.d-5

Zbase = 1.d-5

initial_y = 0.2477

/ !# end of controls namelist
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A.4.2 inlist common

&star_job

eos_file_prefix = ’mesa’

kappa_file_prefix = ’gs98’ ! inlist_massive_defaults

/ !# end of star_job namelist

&controls

use_eps_mdot = .false.

dedt_eqn_r_scale = 0d0 ! <= 0 means use old scheme

! radiation pressure at boundary

Pextra_factor = 2 ! important near eddington limit

!*********** EOS ********************************

use_eosDT2 = .true. !default

use_eosELM = .true. !default

!*********** SOLVER *****************************

use_gold_tolerances = .true. !default

scale_max_correction = 0.2d0

ignore_species_in_max_correction = .true.

smooth_convective_bdy = .false. ! avoid numerical changes in composition.

!*********** ROTATION / MIXING ******************

use_Ledoux_criterion = .true.

alpha_semiconvection = 0.1

semiconvection_option = ’Langer_85’
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num_cells_for_smooth_gradL_composition_term = 0

! + ‘D_DSI‘ = dynamical shear instability

! + ‘D_SH‘ = Solberg-Hoiland

! + ‘D_SSI‘ = secular shear instability

! + ‘D_ES‘ = Eddington-Sweet circulation

! + ‘D_GSF‘ = Goldreich-Schubert-Fricke

! + ‘D_ST‘ = Spruit-Tayler dynamo

!## Diffusion coefficients for chemical mixing

D_DSI_factor = 0 ! only late pre-SN phases

D_SSI_factor = 1

D_SH_factor = 1

D_GSF_factor = 1

D_ES_factor = 1

D_ST_factor = 0 ! no transport of elements due to magnetic fields

!## Diffusion coefficients for angular momentum transport set

am_nu_visc_factor = 0 ! timescale > hubble time

am_nu_ST_factor = 1 ! magnetic field

am_nu_factor = 1

am_D_mix_factor = 0.03333333d0

am_gradmu_factor = 0.05 ! default

mixing_length_alpha = 1.5

MLT_option = ’Mihalas’

recalc_mixing_info_each_substep = .true.

!*********** MESH *******************************

mesh_delta_coeff = 0.6

mesh_delta_coeff_for_highT = 0.6

max_dq = 1d-3 ! -3 from zsolt, so at least 1000 cells.



119 Massive Star Evolution with MESA – Set-Up and Technical Aspects

! avoid over-resolving composition changes

min_dq_for_xa = 1d-4

logT_max_for_standard_mesh_delta_coeff = 9.0

logT_min_for_highT_mesh_delta_coeff = 9.5

! from zsolt, important for avoiding problems near Eddington limit

max_q_for_k_const_mass = 0.98

min_q_for_k_const_mass = 0.98

!*********** MLT++ ******************************

! important for avoiding problems near Eddington limit

gradT_excess_age_fraction = 0.95

gradT_excess_max_change = 0.001

!*********** TIMESTEP ***************************

varcontrol_target = 7d-4 !3d-4 !7d-4

delta_lgRho_cntr_limit = 1.2d-2

delta_lgT_cntr_limit = 2.0d-3

dX_nuc_drop_limit_at_high_T = 2d-3

delta_lgR_limit = 0.05

delta_HR_limit = 0.05

delta_HR_hard_limit = 0.1

relax_hard_limits_after_retry = .false.

delta_lgL_nuc_limit = 0.2

delta_lg_XH_cntr_max = 0.0

delta_lg_XH_cntr_min = -6.0

delta_lg_XH_cntr_limit = 0.01d0
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delta_lg_XHe_cntr_max = 0.0

delta_lg_XHe_cntr_min = -6.0

delta_lg_XHe_cntr_limit = 0.01d0

delta_lg_XC_cntr_max = 0.0d0

delta_lg_XC_cntr_min = -6.0d0

delta_lg_XC_cntr_limit = 0.01d0

!*********** WIND *******************************

cool_wind_RGB_scheme = ’Dutch’

cool_wind_AGB_scheme = ’Dutch’

hot_wind_scheme = ’Dutch’

use_other_wind = .true.

Dutch_scaling_factor = 1.0

Vink_scaling_factor = 1.0

x_ctrl(20) = -1 ! Jump temperature, use Vink prescription for <= 0

x_ctrl(21) = 0 ! exponent for metallicity scaling of de Jager rates

cool_wind_full_on_T = 0.8d4

hot_wind_full_on_T = 1.2d4

max_mdot_redo_cnt = 100

surf_w_div_w_crit_limit = 0.96d0

surf_w_div_w_crit_tol = 0.05d0

mdot_revise_factor = 1.2d0

!*********** OVERSHOOTING ***********************

! offset

overshoot_f0_above_nonburn_core = 0.01



121 Massive Star Evolution with MESA – Set-Up and Technical Aspects

overshoot_f0_above_nonburn_shell = 0.01

overshoot_f0_below_nonburn_shell = 0.01

overshoot_f0_above_burn_h_core = 0.01

overshoot_f0_above_burn_h_shell = 0.01

overshoot_f0_below_burn_h_shell = 0.01

overshoot_f0_above_burn_he_core = 0.01

overshoot_f0_above_burn_he_shell = 0.01

overshoot_f0_below_burn_he_shell = 0.01

overshoot_f0_above_burn_z_core = 0.01

overshoot_f0_above_burn_z_shell = 0.01

overshoot_f0_below_burn_z_shell = 0.01

! exponential

overshoot_f_above_nonburn_core = 0.0

overshoot_f_above_nonburn_shell = 0.0

overshoot_f_below_nonburn_shell = 0.0

overshoot_f_above_burn_h_core = 0.0

overshoot_f_above_burn_h_shell = 0.0

overshoot_f_below_burn_h_shell = 0.0

overshoot_f_above_burn_he_core = 0.0

overshoot_f_above_burn_he_shell = 0.0

overshoot_f_below_burn_he_shell = 0.0

overshoot_f_above_burn_z_core = 0.0

overshoot_f_above_burn_z_shell = 0.0

overshoot_f_below_burn_z_shell = 0.0

! step

step_overshoot_f_above_nonburn_core = 0.345

step_overshoot_f_above_nonburn_shell = 0.!345

step_overshoot_f_below_nonburn_shell = 0.!345
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step_overshoot_f_above_burn_h_core = 0.345

step_overshoot_f_above_burn_h_shell = 0.!345

step_overshoot_f_below_burn_h_shell = 0.!345

step_overshoot_f_above_burn_he_core = 0.345

step_overshoot_f_above_burn_he_shell = 0.!345

step_overshoot_f_below_burn_he_shell = 0.!345

step_overshoot_f_above_burn_z_core = 0.345

step_overshoot_f_above_burn_z_shell = 0.!345

step_overshoot_f_below_burn_z_shell = 0.!345

! helps with off center ignition in progenitor

!2nd scale length for exponential overshooting

overshoot_f2_below_burn_z = 0.10

overshoot_D2_below_burn_z = 1d10 !initial diffusion coefficient

!*********** STOPPING CONDITION *****************

when_to_stop_rtol = 1d-3

when_to_stop_atol = 1d-3

!*********** OUTPUT *****************************

profile_interval = 10

max_num_profile_models = 10000

history_interval = 1

terminal_interval = 100

write_header_frequency = 500

photo_interval = 5000

! definitions of core boundaries

he_core_boundary_h1_fraction = 0.5
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c_core_boundary_he4_fraction = 0.5

o_core_boundary_c12_fraction = 0.5

si_core_boundary_o16_fraction = 0.5

fe_core_boundary_si28_fraction = 0.33

/ !# end of controls namelist

A.4.3 Phase-Specific

Pre-MS

common

&star_job

create_pre_main_sequence_model = .true.

write_profile_when_terminate = .false. !default

set_uniform_initial_composition = .true.

!*********** ROTATION ACTIVATION ****************

! no rotation before zams

change_rotation_flag = .true.

new_rotation_flag = .false.

/ !# end of starjob namelist

&controls

max_number_backups = 0

max_number_retries = 0

max_model_number = 5000

!*********** TIMESTEP ***************************

varcontrol_target = 7d-4

x_integer_ctrl(1) = -1 ! no varcontrol increase
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x_integer_ctrl(3) = -1 ! no varcontrol increase

!*********** STOPPING CONDITION *****************

Lnuc_div_L_upper_limit = 0.9

!*********** OUTPUT *****************************

warn_when_large_rel_run_E_err = 1d99 ! off until reach zams

x_logical_ctrl(1) = .false. ! do varcontrol debugging

x_integer_ctrl(5) = 0 ! minimum counter for varcontrol debugging

/ !# end of controls namelist

values

&star_job

/ !# end of starjob namelist

&controls

!*********** INITIAL MODEL **********************

initial_mass = <<MASS>>

!*********** OTHER ******************************

use_Ledoux_criterion = .<<LEDOUX>>.

alpha_semiconvection = 0.1

/ !# end of controls namelist

MS

common

&star_job
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set_initial_cumulative_energy_error = .true.

new_cumulative_energy_error = 0d0

!*********** ROTATION ACTIVATION ****************

! activate rotation from now on

new_rotation_flag = .true.

change_rotation_flag = .true.

! rotational velocity in km sec^-1

!new_surface_rotation_v = 0

!relax_surface_rotation_v = .true.

! omega in units of critical rotation

new_omega_div_omega_crit = 0.0

relax_omega_div_omega_crit = .true.

! use this many steps to change value

num_steps_to_relax_rotation = 100

/ !# end of star_job namelist

&controls

!*********** STOPPING CONDITION *****************

xa_central_lower_limit_species(1) = ’h1’

xa_central_lower_limit(1) = 1d-3

/ !# end of controls namelist

values

&star_job

!*********** ROTATION ACTIVATION ****************
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!new_surface_rotation_v = <<VROT>>

new_omega_div_omega_crit = 0.<<OMEGA>>

/ !# end of star_job namelist

&controls

!*********** OTHER ******************************

use_Ledoux_criterion = .<<LEDOUX>>.

alpha_semiconvection = 0.1

am_nu_ST_factor = <<ST>>

/ !# end of controls namelist

Until Central Helium Exhaustion

common

&star_job

/ !# end of star_job namelist

&controls

!*********** STOPPING CONDITION *****************

xa_central_lower_limit_species(1) = ’he4’

xa_central_lower_limit(1) = 1d-3

/ !# end of controls namelist

values

&star_job

/ !# end of star_job namelist

&controls
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!*********** OTHER ******************************

use_Ledoux_criterion = .<<LEDOUX>>.

alpha_semiconvection = 0.1

am_nu_ST_factor = <<ST>>

/ !# end of controls namelist

Until Central Carbon Exhaustion

common

&star_job

/ !# end of star_job namelist

&controls

!*********** STOPPING CONDITION *****************

xa_central_lower_limit_species(1) = ’c12’

xa_central_lower_limit(1) = 1d-3

/ !# end of controls namelist

values

&star_job

/ !# end of star_job namelist

&controls

!*********** OTHER ******************************

use_Ledoux_criterion = .<<LEDOUX>>.

alpha_semiconvection = 0.1

am_nu_ST_factor = <<ST>>
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/ !# end of controls namelist

inlist after zams general

&star_job

logT_for_conv_vel_flag = 8.5d0

/ ! end of star_job namelist

&controls

max_number_backups = -1 !300 ! no limit

max_number_retries = -1 !3000 ! bo limit

max_model_number = 20000

!*********** INITIAL MODEL **********************

! set inside abundace and to_zams inlist.

!*********** SOLVER *****************************

gold_iter_for_resid_tol3 = 10

gold_tol_residual_norm3 = 1d-6

gold_tol_max_residual3 = 1d-3

ignore_too_large_correction = .true.

!*********** STRUCTURE EQUATIONS ****************

use_dedt_form_of_energy_eqn = .true.

min_energy_for_dedt_form_of_energy_eqn = 1d13

min_cell_energy_fraction_for_dedt_form = 1d-10

!*********** TIMESTEP ***************************

limit_for_rel_error_in_energy_conservation = 1d-4
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x_integer_ctrl(1) = 0 ! initialise counter for varcontrol increase

x_integer_ctrl(2) = 1000 ! number of steps when to reduce

x_ctrl(1) = 5e-5 ! maximum dHR when to start counter

x_ctrl(2) = 5 ! increase factor

x_integer_ctrl(3) = 0 ! initialise counter for varcontrol increase 2

x_integer_ctrl(4) = 1500 ! number of steps when to reduce 2

x_ctrl(3) = 1.3e-4 ! maximum dHR when to start counter 2

x_ctrl(4) = 5 ! increase factor 2

!*********** WIND *******************************

max_tries_for_implicit_wind = 0 ! 20

iwind_tolerance = 1d-3

iwind_lambda = 1 ! 0.5d0

max_T_center_for_any_mass_loss = 1.1d9

!*********** OUTPUT *****************************

warn_when_large_rel_run_E_err = 1d99 ! off

x_logical_ctrl(1) = .false. ! do varcontrol debugging

x_integer_ctrl(5) = 0 ! minimum counter for varcontrol debugging

/ ! end of controls namelist

A.4.4 Different Grids

For calculating the different grids we had to alter the inlist common. In the

following, we will provide the changes.

Grid 2

default:

• step_overshoot_f_above_nonburn_core = 0.345

• step_overshoot_f_above_burn_h_core = 0.345
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• step_overshoot_f_above_burn_he_core = 0.345

• step_overshoot_f_above_burn_z_core = 0.345

adjusted:

• step_overshoot_f_above_nonburn_core = 0.51

• step_overshoot_f_above_burn_h_core = 0.51

• step_overshoot_f_above_burn_he_core = 0.51

• step_overshoot_f_above_burn_z_core = 0.51

Grid 3a

default:

• Dutch_scaling_factor = 1.0

adjusted:

• Dutch_scaling_factor = 0.4

Grid 3b

default:

• Dutch_scaling_factor = 1.0

• x_ctrl(20) = -1

adjusted:

• Dutch_scaling_factor = 0.4

• x_ctrl(20) = 20d3

Grid 3c

default:

• Vink_scaling_factor = 1.0

• x_ctrl(20) = -1

adjusted:

• Vink_scaling_factor = 0.4

• x_ctrl(20) = 20d3
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Grid 3d

default:

• Vink_scaling_factor = 1.0

• x_ctrl(20) = -1

• x_ctrl(21) = 0

adjusted:

• Vink_scaling_factor = 0.4

• x_ctrl(20) = 20d3

• x_ctrl(21) = 0.7

A.4.5 Adjustments for Avoiding Problems

As discussed in Sec. 4.3, we sometimes had to change the settings to avoid

problems.

A first step was to comment out the following lines:

• delta_lg_XH_cntr_max = 0.0

• delta_lg_XH_cntr_min = -6.0

• delta_lg_XH_cntr_limit = 0.01d0

• delta_lg_XHe_cntr_max = 0.0

• delta_lg_XHe_cntr_min = -6.0

• delta_lg_XHe_cntr_limit = 0.01d0

• delta_lg_XC_cntr_max = 0.0d0

• delta_lg_XC_cntr_min = -6.0d0

• delta_lg_XC_cntr_limit = 0.01d0

As a second possibility, we adjusted the MLT option from

• MLT_option = ’Mihalas’
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to

• MLT_option = ’ML1’

Finally, we could adjust the MLT++ settings by commenting out

• gradT_excess_max_change = 0.001

A.5 Mass Loss

A.5.1 Hooks

MESA offers the possibility to use hooks to manipulate the program without the

need of manipulating and compiling the whole code. They can be introduced

at different parts during the evolution. All hooks are defined in the file

run star extras.f90, and have to be compiled11 once before the program

execution.

A main part of this thesis was to manipulate the wind routine, which we did

using a hook. It is based on the Dutch wind scheme, however we introduced more

free parameters:

• The Vink scaling factor is now also available when the Dutch scheme is

applied.

• x ctrl(20) adjusts the temperature (in K) of the first jump. If it is ≤ 0,

the jump-temperature is calculated using Eqn. 2.87.

• x ctrl(21) is the exponent α for the metallicity scaling ∼
(
Z/Z�

)α
of the

de Jager, Nieuwenhuijzen, and van der Hucht (1988) rates.

In the early phases of our work, we also created other hooks, for debugging and

as workarounds for some problems we have been able to fix later on. All hooks

except the modified wind were deactivated in the final calculations (compare also

the provided inlists).

A.5.2 Implicit Mass Loss at Critical Rotation

For many models at low metallicity that evolve close to critical rotation, we found

that the implicit mass loss was the best solution to keep the rotation subcritical.

11Using the commands clean and mk
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If the rotation exceeds a specific value surf w div w crit limit, the implicit

mass loss is applied.

It increases the mass loss by mdot revise factor, until a value slightly smaller

than the above limit for the rotational speed is reached. It saves the last values of

Ṁ , when the rotation has been critical (subcritical) as Ṁsmall (Ṁlarge), and checks

if they lie within the tolerance∣∣∣∣∣Ṁlarge − Ṁsmall

Ṁlarge

∣∣∣∣∣ <tol, (A.1)

with tolerance defined by the parameter surf w div w crit tol.

If the difference is larger than the tolerance, bisections are performed, until the

value lies within the tolerance. If

Ω <Ωlimit (A.2)

∧

∣∣∣∣∣Ṁ − Ṁsmall

Ṁ

∣∣∣∣∣ <tol (A.3)

the mass loss Ṁ is applied.

The sum of mass loss increases and bisections must not exceed

max mdot redo cnt, otherwise the calculation is retried with smaller timesteps.

However, this condition can lead to severe problems if used in combination

with the general implicit wind (max tries for implicit wind6= 0). The general

implicit wind alters the mass loss rate, already before the first change due to

critical rotation. It is not the explicit value any longer. As the conditions for

terminating the routine and not modifying the mass loss are different, this might

lead to a problematic situation, if the general implicit wind is slightly lower than

the explicit value, and thus the rotation rate too high:

1. The general implicit wind returns a value Ṁ 6= Mexplicit, but Ω < Ωlimit

2. As Ω < Ωlimit, Ṁlarge = Ṁ is set.

3. As Ṁ 6= Mexplicit, the implicit mass loss for critical rotation alters Ṁ . It

retains the explicit mass loss Ṁ = Ṁexplicit. However, this adjustment causes

Ω > Ωlimit, and Ṁsmall = Ṁ is set.

4. The implicit wind for critical rotation is again calculated.
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5. By coincidence, condition (A.1) is fulfilled. In the following steps, the wind

is not adjusted. As the wind is not adjusted, Ω stays larger than Ωlimit.

Condition (A.2) thus cannot be fulfilled, and the calculations continues.

6. In all the following tries, the situation does not change.

7. After the maximum of tries, MESA retries with a smaller timestep.

In some cases, several retries occur, finally causing too small timesteps. The

simplest way to avoid this behaviour is to force the wind calculation to start with

the explicit value.

General implicit wind must not be used together with implicit rotational

enhancement!

A.6 Runtime analysis

MESA is partly multi-threaded as described by Paxton et al. (2011, their section

6.8) and Paxton et al. (2013, their section B.9). It uses algorithms that are thread-

save, such that the results are independent of the number of threads used. We

expect that the runtime decreases roughly linear (in log-log space) for increasing

number of threads assigned to the execution. The number of threads can be set

by using the system variable OMP NUM THREADS.

To obtain an impression of the optimum number of threads, we performed

an analysis of models with different masses and rotational velocities. From the

rotating 60M� model shown in Fig. A.1, we can derive an optimum thread number

of 16. The trend is similar, independent of the rotational velocity and the initial

mass.

The runtime decreases by a factor of 2 for every increase of the number of

threads by a factor of 3 to 10. Different evolutionary stages lead to different

slopes. Especially, the pre MS seems to be more efficient using synchronisation

than later evolutionary stages. Compared to Paxton et al. (2013), the decrease in

runtime is on the same order of magnitude, but slightly less steep. This can be

explained by the different MESA version, differences in the specific models, and

different hardware.

The runtime decreases for up to 16 threads, which is the number we finally used

for all later runs. For even more threads, this trend reverses and the runtime

increases again. This can be explained by bottlenecks in memory, reading, and
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Figure A.1: Runtime analysis for a rotating (Ω = 0.4Ωcrit) 60M� model. The four
different phases: pre MS, MS, until central He exhaustion, and until central C
exhaustion are shown. The slope was calculated by a fit for up to 16 threads and
varies between −0.37 and −0.62, depending on the evolutionary stage.

writing. Non-efficient synchronisation could be another issue. More detailed

studies would be required to find the exact reason.
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B IDL

B.1 Analysis of a Single Model

Before analysing the data, we convert them into IDL structures. This drastically

simplifies the following analysis, and accelerates the execution. The conversion

consists of two steps

• read all mesa reads all data from the model and profile files.

• find zones calculates additional properties. Especially, it defines the

(connected) zones for different mixing processes and burning strengths

relevant for the Kippenhahn diagram, but also specific times, such as the

ZAMS or the beginning of different burning stages.

These routines are based on the work of K. Zaidi (a summer student in the working-

group of J. Puls).

Together with Ferraro (2020), we programmed many routines to create specific

diagrams. The most important ones are

• abundance evolution( multi linear) creates a plot displaying the

evolution of central and surface abundances. The multi linear version

has different time axes for different evolutionary phases.

• hrd creates a Hertzsprung-Russel-diagram.

• kippenhahn( multi linear): creates a Kippenhahn diagram.

In addition, we prepared debugging routines for several parameters, such as Γe,

Ṁ , and vrot. To simplify plotting of specific parameters, Ferraro (2020) prepared

hpp and ppp.

For the analysis of specific models and comparisons presented in the thesis, we

programmed routines only designed for this specific purpose.



IDL 138

B.2 Grid Analysis

To speed up the analysis of the different grids, we read the most important data

into a new IDL structure. It is split into progenitor properties, and the main

evolutionary data:

• grid analysis

• grid analysis evolution

For the analysis, we prepared several routines to create specific diagrams:

• comp hrds: HRD comparing the evolution of all models,

• core and final masses: effect of specific parameters on core and final

masses,

• all remnants: comparison of remnant masses,

• heger2003: plots similar to those of Heger et al. (2003) displaying the

remnant or explosion type depending on metallicity and initial mass,

• all remnants mrem div mstar: plot of Mrem/Mstar, relevant for

microlensing.
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