

# The Dark Energy Survey: Status and new lensing results

Daniel Gruen, USM/MPE

with the DES weak lensing working group

Daniel Gruen Excellence Cluster Science Week Nov 30 2015

# Contents

- Introduction
  - DES
  - Weak Lensing

#### DES results

- Overview of Oth year results
- Lensing results
- Lensing by galaxy troughs
- Summary and Outlook

Daniel Gruen Excellence Cluster Science Week Nov 30 2015

#### **The Dark Energy Camera**



62 science CCDs, 3 sq. deg FOV, prime focus of Blanco 4m telescope

Source: darkenergysurvey.org

# **The Dark Energy Survey**

- 5000 sq. deg. survey in grizY, 10 exposures, 5 years, ~300 scientists, 28 institutions
- Primary goal:

dark energy equation of state

- Status:
  - SV (150 sq. deg, full depth): data understood, most science done
  - Y1 (2000 sq. deg, 40% depth): data processed, science starting
  - Y2 (5000 sq. deg, 30% depth):
    data taken, being processed
  - Y3 (5000 sq. deg, goal 60% depth): observations running



# How to learn about Dark Energy by taking pictures of the sky

- Dark energy influences
  - expansion and
  - growth of structures
- DES primary probes:
  - Count of clusters of galaxies
  - Galaxy autocorrelation
  - Supernovae
  - Weak lensing



sensitive to expansion history



- Matter (also dark) bends space-time (and therefore light rays)
- Weak effect: % distortion
- Tangential distortion ~ overdensity

Tangential shear 
$$\gamma_t( heta)$$

Convergence (surface mass density)

 $= \langle \kappa(\theta') \rangle_{\theta' < \theta} - \kappa(\theta)$  $\kappa = \Sigma / \left[ \frac{c^2}{4\pi G} \frac{D_{\rm s}}{D_{\rm d} D_{\rm ds}} \right]$ 

 Measure mass and growth of structure w/o 'dirty' astrophysics!

**Daniel Gruen Excellence Cluster Science Week** Nov 30 2015

# How to learn about Dark Energy by taking pictures of the sky

- Dark energy influences
  - expansion and
  - growth of structures
- DES primary probes:
  - Count of clusters of galaxies
  - Galaxy autocorrelation
  - Supernovae
  - Weak lensing



sensitive to expansion history

## **DES** early science can...

(a selection apart from lensing...)



# DES early lensing results: mass mapping

- From the measured shear of background galaxies, a (projected) map of foreground matter (incl. Dark) can be made
- DES SV has made the largest such map to date covering 139 sq. deg (Vikram+2015, Chang+2015)



Daniel Gruen Excellence Cluster Science Week Nov 30 2015

# DES early lensing results

 Structures along line of sight coherently align background galaxy images

Μ

Shear two-point correlation

 $\xi_{\pm}(\theta) = \left\langle \gamma_{t} \gamma_{t} \right\rangle(\theta) \pm \left\langle \gamma_{\times} \gamma_{\times} \right\rangle(\theta)$ 

 Cosmology dependence: growth of structure and geometry



# DES early lensing results: Weak lensing by galaxy troughs

DG, Oliver Friedrich, Bhuvnesh Jain, Annalisa Mana, Eduardo Rozo, Eli Rykoff, Stella Seitz, Vinu Vikram++, arXiv:1507.05090



Millennium simulation, z=0, thick slice









# Galaxy troughs

- Trough: (long) cylinder\* with galaxy count below some threshold
- Goals: statistics of matter field around underdense lines of sight
- easy to find even with poor z coordinate, high S/N of lensing due to suppression of random structures
- new way of probing structure and gravity
- not actual individual physical entities



#### Theory: galaxy count to lensing **k**

Galaxy count N in trough

$$p(N|\delta_T) = \frac{1}{N!} \left( \bar{N} \left[ 1 + b\delta_T \right] \right)^N \exp\left( -\bar{N} \left[ 1 + b\delta_T \right] \right)$$
$$\langle \delta_T | N \rangle = \int_{-1}^{\infty} \mathrm{d}\delta_T \ \delta_T \ \frac{p(N|\delta_T) p(\delta_T)}{P(N)}$$

Matter contrast  $\delta_T$  in trough

$$C_{\kappa,\Sigma}(\ell) = \int_0^\infty \mathrm{d}w \; \frac{q_1(w) \, q_2(w)}{w^2} \; P_\delta\left(\frac{\ell}{w}, w\right)$$

Convergence  $\kappa$  / shear g<sub>t</sub> around trough



**Oliver Friedrich** 

#### **Theory: prediction**



#### Measurement

- DES Science Verification: 139 sq. deg, grizY, full DES depth
- tracers: Rykoff/Rozo redMaGiC galaxies, 0.2<z<0.5, L>0.5L\*, 1/[1000 Mpc<sup>3</sup>]
- troughs = lower 20<sup>th</sup> percentile in galaxy count
- sources:~2x10<sup>6</sup> at z>0.6



#### Measurement

- DES Science Verification: ~150 sq. deg, grizY,full DES depth
- tracers: Rykoff/Rozo redMaGiC galaxies, 0.2<z<0.5, L>0.5L\*, 1/[1000 Mpc<sup>3</sup>]
- troughs = lower 20<sup>th</sup> percentile in galaxy count
- sources:~2x10<sup>6</sup> at z>0.6
- S/N ~ 15!



#### **Measurement: under/overdensity**



# **Outlook: Trough lensing for cosmology**

Friedrich+ in prep.

- Fisher prediction for DES final Y5 data
- Constraints on Dark energy w
  - Non-marginalized



## Summary

- DES is on track with a variety of science applications
- Several DES weak lensing projects finished, with new and relevant results
- More to come soon: this was 150/5000 sq. deg.