The cosmic variance of the cluster weak lensing signal

Daniel Gruen

with Stella Seitz, Matt Becker and others

work in progress, comments/suggestions very welcome

OPINAS group seminar November 24, 2014

Contents

- Introduction
- Cosmic variance of cluster weak lensing
 - Why, how and how well do we model it?
 - Effects on mass measurement
 - Effects on mass-observable relation calibration
- Summary

RXC J2248.7-4431, z=0.35 Image: MPG/ESO 2.2m WFI Gruen et al. (2013)

deg

Introduction

Cluster cosmology

 Cosmology from cluster counts

Ingredients:

- Cluster catalog
- Cluster mass
 function
- Mass-observable
 relation
- exponential sensitivity at high mass / redshift

Cluster cosmology: MOR

requirement: mass observable relation (MOR)

$$E(z)^{-2/3} \times \left(\frac{D_A^2 \times Y_{500c}}{\text{Mpc}^2}\right) = 10^A \times \left(\frac{M_{500c} \times (1-b)}{6 \times 10^{14} h_{70}^{-1} M_{\odot}}\right)^B + \text{Err}(\sigma_{\text{int}})$$

- complications:
 - mass scale, hydrostatic bias

 $M_{500}^{\rm HE} = (1-b) \, M_{500}$

- self-similarity, B=5/3?
- intrinsic scatter
- self- vs. external calibration
- MOR uncertainty dominates statistical errors

- Matter (also dark) bends spacetime (and therefore light rays)
- Weak effect: % distortion
- Tangential distortion ~ overdensity

 Mass measurement w/o 'dirty' astrophysics!

Image: HST/CLASH Monna et al. (2014)

6a 8a 9a 11a 10a 11a

Source: M. Gruendl, Institute for Psychology, Regensburg University

R

Covariance model for $\kappa(r)$

The **k** data vectors for two clusters of same mass could differ due to

- observational uncertainty
- **CLSS** uncorrelated structure (e.g. Hoekstra 2001, 2003; Dodelson 2004; Schirmer+2007)
- Intrinsic variations of cluster profiles
 - Concentration scatter Cconc
 - Halo ellipticity and orientation
 - Projected correlated haloes

Component 1: Uncorrelated structures

- Uncorrelated line-of-sight structure adds noise to lensing signal independent of cluster mass (e.g. Hoekstra 2003)
- Limiting factor for single group-scale lenses (e.g. Spinelli+2012)
- here: uncorrelated structures in the 400 h⁻¹ Mpc cut-out box

$$C_{ij}^{\text{LSS}} = \int \frac{l \mathrm{d}l}{2\pi} P_{\kappa}(l) \hat{J}_0(l\theta_i) \hat{J}_0(l\theta_j)$$
$$P_{\kappa}(l) = \frac{9H_0^2 \Omega_m^2}{4c^2} \int_{\chi_1}^{\chi_2} \mathrm{d}\chi \left(\frac{\chi_s - \chi}{\chi_s a(\chi)}\right)^2 P_{\text{nl}}(l/\chi,\chi)$$

Component 2: Scatter in concentration

- Dark matter haloes are described well (on average) by Navarro, Frenk & White (NFW) profiles with two parameters: mass and concentration $c_{200m} = r_{200m}/r_{\rm s}$
- At fixed mass, concentration is log-norm around mean (e.g. Bullock+2001, Duffy+2008)

$$C_{ij}^{\text{conc}} = \int dP(c)\kappa_i\kappa_j - \left[\int dP(c)\kappa_i\right] \times \left[\int dP(c)\kappa_j\right]$$

Component 3: Correlated haloes

 Clusters live in dense environments with excess density of neighbouring haloes → excess shot noise in K

$$C_{ij}^{\mathrm{corr}} imes \Sigma_{\mathrm{crit}}^2 = \int \mathrm{d}P_c(\boldsymbol{h}|\boldsymbol{h}_{\mathrm{cl}})\Sigma^i(\boldsymbol{h})\Sigma^j(\boldsymbol{h})$$

 $dP_{c}(\boldsymbol{h}|\boldsymbol{h}_{cl}) = \text{probability of finding correlated halo } \boldsymbol{h} = (M, \theta)$ $= \underbrace{b(M_{cl})b(M)}_{dMdV} \underbrace{dN(M, z_{cl})}_{M(\theta, z_{cl})} W(\theta, z_{cl}) 2\pi\theta d\theta dM$

- Ingredients:
 - halo mass function (Tinker+2008)
 - halo bias (Tinker+2010)
 - linear angular correlation
 - assumption of Poissonian process for halo placement

Component 4: Halo asphericity and orientation

- Cluster haloes are triaxial with preference for prolateness (e.g. Bett+2007)
- Known bias in lensing mass depending on orientation w.r.t. LOS (Corless+2007)
- Complete degeneracy with mass / concentration (Dietrich+2014)
- We assume prolate halo, log-normal axis ratio q, isotropic orientation

$$C_{ij}^{\text{ell}} = \int dP(q, \cos \alpha) \kappa_i \kappa_j$$
$$- \left[\int dP(q, \cos \alpha) \kappa_i \right] \times \left[\int dP(q, \cos \alpha) \kappa_j \right]$$

Putting it all together: Covariance model C(M) for **κ**

 $C(M) = C^{\text{obs}} + C^{\text{LSS}} + C^{\text{conc}}(M) + c^{\text{corr}}(\nu)C^{\text{corr}}(M) + c^{\text{ell}}(\nu)C^{\text{ell}}(M)$

Putting it all together: Covariance model C(M) for **κ**

 $C(M) = C^{\text{obs}} + C^{\text{LSS}} + C^{\text{conc}}(M) + c^{\text{corr}}(\nu)C^{\text{corr}}(M) + c^{\text{ell}}(\nu)C^{\text{ell}}(M)$

$$c^{\text{corr}}(\nu) = c_0^{\text{corr}} + (\nu - \nu_0^{\text{corr}})c_1^{\text{corr}} \\ c^{\text{ell}}(\nu) = c_0^{\text{ell}} + (\nu - \nu_0^{\text{ell}})c_1^{\text{ell}},$$

Putting it all together: Covariance model C(M) for **κ**

 $C(M) = C^{\text{obs}} + C^{\text{LSS}} + C^{\text{conc}}(M) + c^{\text{corr}}(\nu)C^{\text{corr}}(M) + c^{\text{ell}}(\nu)C^{\text{ell}}(M)$

Covariance model C(M) for κ

 $z_{|}=0.25, z_{s}=1, M_{200m}=2x10^{14} h^{-1} M_{sol}$

Covariance model C(M) for к

Effect on mass measurement

- $-2 \ln \mathcal{L} = \ln \det C(M)$ $+ (\boldsymbol{\kappa}(M) - \boldsymbol{K})^{\mathrm{T}} C^{-1}(M) (\boldsymbol{\kappa}(M) - \boldsymbol{K})$ $+ \operatorname{const}.$
- Likelihood of observed convergence ${\bf K}$ in mass
- C(M) can include only $C^{obs} + C^{LSS}$ or also our C^{int}
- Q: how does C^{int} influence mass measurement?

Mass uncertainty: Confidence intervals

Empirical coverage of 68% and 90% confidence intervals (without C^{int} and including C^{int}) for simulated clusters

Mass uncertainty: Fisher prediction

VS.

- Increase in depth of only moderate help for massive clusters
- Increase in mass of only moderate help for given depth

Mass observable relation estimation

- Consider lensing survey of sample of 100 observable-limited clusters
- Use mass likelihood from lensing to constrain power-law MOR

$$\ln Y_0(M)/\hat{Y} = A + B \ln M/\hat{M} + \mathcal{N}(\mu = 0, \sigma) \qquad \sigma = \sqrt{\sigma_{\text{int}}^2 + \sigma_{\text{obs}}^2}$$

- Simulate cluster profiles including C^{int} model
- Effect of cluster profile covariance?

Mass observable relation estimation

To do

- Redshift dependence
 - all results so far at z=0.25
 - using second snapshot, extend to z=0.5
- Effect of baryons
 - outside scope, but interesting
- Higher redshift, higher resolution
 - outside scope, but interesting

Summary

- Simple model for variation in projected cluster profiles at fixed mass
 - analytic templates
 - re-scaled to match simulations
- Potential uses
 - correct mass confidence intervals
 - Fisher analyses for cluster WL surveys
 - unbiased estimation of intrinsic scatter and other parameters of mass-observable relation