Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

Minimum variance weak lensing cluster mass estimates

AlfA Lens/Cosmology Seminar

2012-08-28

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Daniel Gruen, G. Bernstein, T. Y. Lam, S. Seitz (2011)

Structure

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

1

2

What we did

Introduction

- Sources of noise
- Profile uncertainty
- Optimized apertures
- Mass results

Modelling the Covariance

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Clusters of Galaxies

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

- most massive structures: 10¹⁴ M_☉, 1Mpc
- dark matter, gas, galaxies
- formation \leftrightarrow cosmology

RXJ2248, source: WFI / own reduction

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

- Clusters bend space-time and light
- Multiple images: strong lensing
- shear: weak lensing
- mass measurements
- model fitting
- aperture mass

Source: galileospendulum.org

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

- Clusters bend space-time and light
- Multiple images: strong lensing
- shear: weak lensing
- mass measurements
- model fitting
- aperture mass

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

- Clusters bend space-time and light
- Multiple images: strong lensing
- shear: weak lensing
- mass measurements
- model fitting
- aperture mass

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

 Clusters bend space-time and light

- shear: weak lensing
- mass measurements
- model fitting
- aperture mass

$$\gamma_t(\theta) = \langle \kappa(\theta') \rangle_{\theta' < \theta} - \kappa(\theta)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

 Clusters bend space-time and light

- shear: weak lensing
- mass measurements
- model fitting
- aperture mass

$$\gamma_t(heta) = \langle \kappa(heta')
angle_{ heta' < heta} - \kappa(heta)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

- Clusters bend space-time and light
- Multiple images: strong lensing
- shear: weak lensing
- mass measurements
- model fitting
- aperture mass

 $\begin{aligned} \mathbf{M}_{\mathrm{ap}} &= \int \mathbf{2}\pi\theta \; \mathbf{d}\theta \; \mathbf{u}(\theta) \cdot \kappa(\theta) \\ \mathbf{M}_{\mathrm{ap}} &= \int \mathbf{2}\pi\theta \; \mathbf{d}\theta \; \mathbf{q}(\theta) \cdot \gamma_t(\theta) \end{aligned}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Faces of galaxy clusters

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

M. Gruendl, Institute of Psychology, Uni Regensburg

Faces of galaxy clusters

ヘロン 人間 とくほど 人ほど 一日

Simulations: van den Bosch, MPA

Tall tales of NFW Weak lensing cluster mass $\rho(r) = \frac{\rho_0}{(r/r_s)(1+r/r_s)^2}$ Yes, Introduction Navarro, Frenk, White (1996) What we did average profile of dark Sources of noise $c = r_{200}/r_s = c(M, z)$ matter halos Profile uncertainty Optimized apertures Mass results Modelling the but ... Covariance Conclusions $\gamma_{\mathrm{t,NFW}}(\mathrm{r}) / \gamma_{\mathrm{t,NFW}}(0)$ 0.1 10

100

r/r_

Tall tales of NFW Weak lensing cluster mass 30 Yes, Introduction 20 What we did average profile of dark Sources of noise 10 matter halos Profile uncertainty Optimized apertures **Jrcsec** Mass results Modelling the but ... Covariance -10 asphericity Conclusions -20 - 30 -30 -20-10

- surrounding structures
- core and outskirts

Source: Verdugo et al. (2007)

0 10 20 30

arcsec

Tall tales of NFW Weak lensing cluster mass $\sigma_{\log c} \approx 0.18$ Yes, Introduction Bullock et al. (2001) What we did average profile of dark Sources of noise matter halos Profile uncertainty Optimized apertures Mass results Modelling the but ... Covariance asphericity Conclusions concentration scatter

(ロ) (同) (三) (三) (三) (○) (○)

Tall tales of NFW

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

Yes,

 average profile of dark matter halos

but ...

- asphericity
- concentration scatter
- substructure
- surrounding structures

core and outskirts

Source: van den Bosch, MPA

Tall tales of NFW

Weak lensing cluster mass

Introduction

- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

Yes,

• average profile of dark matter halos

but ...

- asphericity
- concentration scatter
- substructure
- surrounding structures
- ore and outskirts

Source: Becker & Kravtsov (2011)

What we did: four steps

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

Sources of Noise

NFW signal + shape noise + LSS + intrinsic mess

Intrinsic profile variability

Can we explain the scatter in shear profiles we see?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Optimized apertures

What do optimized apertures look like?

Mass uncertainty

Does it help at all?

Sources of noise in Weak Lensing

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Sources of noise in Weak Lensing

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Sources of noise in Weak Lensing

14,000 clusters $> 10^{14} M_{\odot}$ at z = 0.245

Profile uncertainty: components

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Profile uncertainty: components

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Profile uncertainty: components

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Aperture mass

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized aperture: Mass results

Modelling the Covariance

Conclusions

$$egin{aligned} M_{\mathrm{ap}} &= \int 2\pi heta \; d heta \; u(heta) \cdot \kappa(heta) \ M_{\mathrm{ap}} &= \int 2\pi heta \; d heta \; q(heta) \cdot \gamma_t(heta \ M_{\mathrm{ap}} &= \sum_i \mathcal{Q}_i \gamma_i \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Minimum variance aperture

 $ar{\mathcal{Q}} \propto \hat{\mathcal{C}}^{-1} ec{\gamma}_{ ext{true}}$

for uncorrelated LSS: Dodelson (2004), Maturi et al. (2005) including correlated structures: this work

Aperture mass

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

$$\begin{array}{l} M_{\rm ap} = \int 2\pi\theta \; d\theta \; u(\theta) \cdot \kappa(\theta) \\ M_{\rm ap} = \int 2\pi\theta \; d\theta \; q(\theta) \cdot \gamma_t(\theta) \\ M_{\rm ap} = \sum_i Q_i \gamma_i \end{array}$$

(ロ) (同) (三) (三) (三) (○) (○)

Minimum variance aperture

 $ec{Q} \propto \hat{C}^{-1} ec{\gamma}_{ ext{true}}$

for uncorrelated LSS: Dodelson (2004), Maturi et al. (2005) including correlated structures: this work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Mass uncertainty

Mass uncertainty

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 の々で

Mass uncertainty

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Modelling the Covariance

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

Why model the covariance of cluster shear?

- prediction of mass uncertainty
- full Bayesian mass estimation
- peak detection completeness

lea.

Use two simple components:

- concentration variation
- Poisson noise of correlated halos

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and rescale to fit

Modelling the Covariance

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

Why model the covariance of cluster shear?

- prediction of mass uncertainty
- full Bayesian mass estimation
- peak detection completeness

Idea

Use two simple components:

- concentration variation
- Poisson noise of correlated halos

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

and rescale to fit

Modelling the Covariance [preliminary]

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

Can we model the variations of cluster shear profiles...in small mass bins using these components?

Modelling the Covariance [preliminary]

Weak lensing cluster mass

- Introduction
- What we did Sources of noise Profile uncertainty Optimized apertures Mass results
- Modelling the Covariance
- Conclusions

Modelling the Covariance [preliminary]

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

Can we model the variations of cluster shear profiles... also for off-diagonal components?

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

NFW

spherical NFW is only a good approximation on average

Halo structure

(M, c) is no sufficient description either possible to model variations

Mass uncertainty

 σ_M > naive expectations; deeper only marginally better

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Optimized apertures

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

NFW

spherical NFW is only a good approximation on average

Halo structure

(M, c) is no sufficient description either possible to model variations

Mass uncertainty

 σ_M >naive expectations; deeper only marginally better

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Optimized apertures

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

NFW

spherical NFW is only a good approximation on average

Halo structure

(M, c) is no sufficient description either possible to model variations

Mass uncertainty

 σ_M >naive expectations; deeper only marginally better

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Optimized apertures

Weak lensing cluster mass

Introduction

What we did Sources of noise Profile uncertainty Optimized apertures Mass results

Modelling the Covariance

Conclusions

NFW

spherical NFW is only a good approximation on average

Halo structure

(M, c) is no sufficient description either possible to model variations

Mass uncertainty

 σ_M >naive expectations; deeper only marginally better

Optimized apertures