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Problems Gravity Integrators Hydrodynamics Initial conditions

Our aim

Milky Way c©A. Arth

Andromeda, c©Robert Gendler

c©APOD 21.7.2008, Gemini Observatory

Not only, but even full of galaxies!

1011 stars times 1011 galaxies

∼ number of atoms in a dice

→ impossible to calculate analytically

and even to simulate directly
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Huge range of time and spatial scales

c©Nasa
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Problems Gravity Integrators Hydrodynamics Initial conditions

c©K. Dolag

Gravity

Lbox/vGravWave � tdyn ⇒ Newton sufficient

Different methods: Direct Sum, Tree, PM
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Problems Gravity Integrators Hydrodynamics Initial conditions

c©K. Dolag

Gravity

Cold dark matter → only gravitative

interaction

Many dark matter particles → use a single

particle distribution function f (~x , ~v , t)

Local interactions negligible, use response to

the global gravitational potential Φ
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Problems Gravity Integrators Hydrodynamics Initial conditions

c©K. Dolag

Gravity

Vlasov eq.:

df

dt
=
∂f

∂t
+
∂f

∂~x
· ~v +

∂f

∂~v
·
(
−∂Φ

∂~x

)
= 0

Poisson eq.: ∆Φ = 4πG

∫
f d~v

Stars: two body relaxation time � tH →

also collisionless system like DM

⇒ Hardly analytically solvable
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Problems Gravity Integrators Hydrodynamics Initial conditions

Basic equations

Use N test “particles” to discretize the medium and write

down Newton’s law ∀i (basically Monte Carlo method):

~̈xi = −∇iΦ (~xi ) & Φ (~x) = −G
N∑
j=1

mj(
(~x − ~xj)2

)

Introducing softening ε

c©V. Springel
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Problems Gravity Integrators Hydrodynamics Initial conditions

Basic equations

Use N test “particles” to discretize the medium and write

down Newton’s law ∀i (basically Monte Carlo method):

~̈xi = −∇iΦ (~xi ) & Φ (~x) = −G
N∑
j=1

mj(
(~x − ~xj)2 +ε2

)
Introducing softening ε

Problem: 3N coupled non-linear 2nd order differential

equations very time consuming to solve
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Problems Gravity Integrators Hydrodynamics Initial conditions

Reasons for softening

∗ Consistent with Plummer potential plugged into Lagrangian

∗ ⇒ Adhere to global rather than local potential

∗ Prevent diverging, unphysical force for close particle pairs

∗ Prevent large angle scatterings and bound particle pairs

∗ Ensure that two-body relaxation time is sufficiently large

∗ Allow integration with a low-order integrator
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Problems Gravity Integrators Hydrodynamics Initial conditions

Hierarchical structure formation

c©http://astronomy.swin.edu.au

Small particle mass

Internal structure

Small scale physics

Small objects

Large volume

Representative statistics

Rare objects

Max simulation time ↔

large density modes

Essentially want to produce a large mass range of haloes
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Problems Gravity Integrators Hydrodynamics Initial conditions

Solving Poisson’s equation

Introduce a Green’s function:

Φ (~x) =
∫
g (~x − ~x ′) ρ (~x) d~x ′

which in Fourier space comes down to a simple multiplication

Φ̂
(
~k
)

= ĝ
(
~k
)
· ρ̂
(
~k
)

Example for vacuum boundary conditions:

g (~x) = − G
|(~x)|

Steps to solution:

∗ Forward Fourier transformation of density

∗ Multiplication with Green’s function

∗ Backwards Fourier transformation to obtain potential
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Problems Gravity Integrators Hydrodynamics Initial conditions

First numerical approach: Particle Mesh

Four basic steps:

(1) Density assignment to cells

(2) Computation of potential

(3) Determination of force field

(4) Assignment of forces to particles

Potential from Green’s function
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Problems Gravity Integrators Hydrodynamics Initial conditions

(1) Density assignment

Put a mesh over the simulation domain, give each particle a shape

S (~x) and assign the overlap mass fraction to each cell (cell

coordinates xm and particles xi ). Overlap function:

W (~xm − ~xi ) =
∫

Π
(
~x ′−~xm

h

)
· S (~x ′ − ~xi ) d~x ′ (convolution) with

Π (x) =


1 |x | < 0.5

0 otherwise

Then density: ρ (~xm) = 1
h3

N∑
i=1

miW (~xm − ~xi )
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Problems Gravity Integrators Hydrodynamics Initial conditions

Shape functions

NGP

Delta function

1 cell

CIC

Constant shape

23 = 8 cells

TSC

Triangular shape

33 = 27 cell
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Problems Gravity Integrators Hydrodynamics Initial conditions

(3,4) Determination of force field & assignment to particles

In general: ~f = −∇Φ

Approximate with a discretization scheme, e.g. finite

difference

Interpolate with same overlap function to get back to particle

picture: F (~xi ) =
∑
m

W (~xm − ~xi ) fm

Alexander Arth (USM) Cosmological Simulations



Problems Gravity Integrators Hydrodynamics Initial conditions

PM: Pros and Cons

∗ Fast

∗ Straight forward

∗ Optimized library usable:

FFTW

∗ Force resolution limited to

mesh → missing adaptivity

for large dynamic range

∗ Force errors anisotropic on

the scale of cell size
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Problems Gravity Integrators Hydrodynamics Initial conditions

Modifications: P3M

∗ Supplement particle mesh with direct summation (details in a

moment)

∗ Short range (scale of mesh cells)

∗ Larger dynamic range

∗ Slow with clustered of particles

∗ Straight forward to use with additional force term
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Problems Gravity Integrators Hydrodynamics Initial conditions

Modifications: AP3M

∗ Additional mesh refinement on clustered regions

∗ Avoid clustering slow down

∗ Complex because of interaction region

∗ Arbitrary to some degree in mesh placement

∗ Typically 2 initial fixed mesh layers

∗ Used e.g. for zoom simulations

c©V. Springel
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Problems Gravity Integrators Hydrodynamics Initial conditions

Direct sum / Tree based force calculation

∗ Calculate ~FG between each particle pair i , j

∗ Exploit symmetry

∗ Scaling still O
(
N2
)

⇒ Very expensive for large N

∗ Idea: Group distant particles together and consider them a

bound blob (multipole expansion)

→ Better scaling O (N logN)
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Problems Gravity Integrators Hydrodynamics Initial conditions

Different Tree types

( c©https://slideplayer.com/slide/10459895/)

Alexander Arth (USM) Cosmological Simulations
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Problems Gravity Integrators Hydrodynamics Initial conditions

Multipole expansion of the potential

c©V. Springel

Φ (~x) = −G
∑
i

mi
|~x−~xi |

|~x − ~xi | = |(~x − ~s)− (~xi − ~s)|

=: |~y − (~xi − ~s)| with ~y � (~xi − ~s)

Dipole vanishes under
∑
i

⇒ monopole, quadrupole

Barnes & Hut 1986: Use cell if

(cell size > (distance particle ↔ cell center) / opening angle)

Improvement: Use s and r
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Problems Gravity Integrators Hydrodynamics Initial conditions

Resulting potential

⇒ Φ (~x) = · · · = −G
[
M
|~y | + 1

2
~yTQ~y

|~y |5

]
∗ No intrinsic restrictions for dynamic range since adaptive

∗ Accuracy depends on the opening criterion and can be

adjusted to a desired level

∗ Speed depends only weakly on clustering

∗ Flexible, different optimal tree structures depending on

geometry
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Problems Gravity Integrators Hydrodynamics Initial conditions

Merging approaches yet again: TreePM

∗ Split particles potential in Fourier space: long-range PM and

short-range tree part:

∗ Poisson eq.: Φ̂
(
~k
)

= − 4πG
~k2ρ(~k)

∗ Φ̂Long

(
~k
)
∝ exp

(
−A · ~k2

)
⇒ CIC, FFT, Overlap, FFT, Solver, Interpolate back to

particles

∗ Φ̂Short

(
~k
)
∝ 1− exp

(
−A · ~k2

)
⇒ Φ (~x) = −Gm

r erf
(
|~x |

2
√
A

)
& Tree

Alexander Arth (USM) Cosmological Simulations



Problems Gravity Integrators Hydrodynamics Initial conditions

Final GADGET approach

Three stages of solvers

(1) PM or APM for long range

(2) Tree for mid range

(3) Direct sum for short range

⇒ Trade-of between Accuracy and Computation Time

⇒ Complex to implement
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Structure formation simulation

c©K. Dolag
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Millenium Simulation

c©V. Springel
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Problems Gravity Integrators Hydrodynamics Initial conditions

Numerical integration

Consider an ODE like ~̇x = f (~x). Many ways to solve this. For

example:

∗ Explicit Euler: ~xn+1 = ~xn + f (~xn) ∆t (simple, straight

forward, 1st order accurate)

∗ Implicit Euler: ~xn+1 = ~xn + f (~xn+1) ∆t (stable, complicated

since implicit)

∗ Implicit Mid-Point: ~xn+1 = ~xn + f
(
~xn+~xn+1

2

)
∆t (2nd order

accurate, symplectic, implicit)
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Problems Gravity Integrators Hydrodynamics Initial conditions

Numerical integration

Consider an ODE like ~̇x = f (~x). Many ways to solve this. For

example:

∗ Runge-Kutta (e.g. 4th order accurate):

~k1 = f (~xn, tn)

~k2 = f
(
~xn + ~k1∆t/2, tn + ∆t/2

)
~k3 = f

(
~xn + ~k2∆t/2, tn + ∆t/2

)
~k4 = f

(
~xn + ~k3∆t/2, tn + ∆t

)
~xn+1 = ~xn + 1

6

(
~k1 + 2~k2 + 2~k3 + ~k4

)
∆t

∗ Leapfrog (2nd order accurate, explicit and symplectic!)
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Problems Gravity Integrators Hydrodynamics Initial conditions

Leap frog

We typically deal with a 2nd order ODE: ~̈x = f (~x)

Drift-Kick-Drift

~xn+1/2 = ~xn + ~vn∆t/2

~vn+1 = ~vn + f
(
~xn+1/2

)
∆t

~xn+1 = ~xn+1/2 + ~vn+1∆t/2

Kick-Drift-Kick

~vn+1/2 = ~vn + f (~xn) ∆t/2

~xn+1 = ~xn + ~vn+1/2∆t/2

~vn+1 = ~vn+1/2+f (~xn+1) ∆t/2

For deeper investigation see tutorial today!
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Problems Gravity Integrators Hydrodynamics Initial conditions

Symplectic Integrators

Formally: Preserve Hamiltonian structure of the system by

formulating each integration step as a canonical transformation.

⇒ Time evolution operator applied to the Hamiltonian.

Idea operator splitting: H = Hkin + Hpot (+Hnum err )

Then drift and kick operators:

D (∆t) := exp

(
t+∆t∫
t

dt Hkin

)

K (∆t) := exp

(
t+∆t∫
t

dt Hpot

)
⇒ D (∆t/2)K (∆t)D (∆t/2) and K (∆t/2)D (∆t)K (∆t/2)
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Problems Gravity Integrators Hydrodynamics Initial conditions

Timesteps

∗ Accuracy Vs Computational cost

∗ Courant-Friedrichs-Levy criterion for hydro codes (see next

section):

∆t = CCFL · lrescs with CCFL ∼ 0.1− 0.3

∗ Idea: Individual timesteps

- Accuracy where required

- Complex: Interactions of active with inactive particles

- Additional drifts required
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DM only Code Comparison
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Problems Gravity Integrators Hydrodynamics Initial conditions

Is gravity enough?

Of course not!

∗ Baryonic matter can collide, dissipate energy, clump, . . .

∗ Idea: Mainly H, He ⇒ Hydrodynamics

∗ Requirement: Mean free path λe small enough:

- λe ≈ 22.5
(

Te
108K

)2 ( ne
10−3cm−3

)−1
kpc (Spitzer 1956)

- Influence of magnetic fields (see tomorrow)

Typical scales: rg ,e = mecv
eB &

|~B|
∇·~B

- kpc ⇒ km scale
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Problems Gravity Integrators Hydrodynamics Initial conditions

Reminder: Basics of Hydrodynamics

Euler: d~v
dt = − ~∇p

ρ − ~∇Φ

Continuity: dρ
dt + ρ~∇ · ~v = 0

1st law t-d: du
dt = −p

ρ
~∇ · ~v − Λ(u,ρ)

ρ

Eq of state: p = (γ − 1) ρu (adiabatic γ = 5
3 )
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Problems Gravity Integrators Hydrodynamics Initial conditions

Different Methods

Eulerian

c©V. Springel
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Problems Gravity Integrators Hydrodynamics Initial conditions

Different Methods

Eulerian

Discretize volume

Grid cells = volume elements

Solve fluxes, capture shocks

natively

Not Galilean invariant

Mixing implicitly at cell level

Low numerical viscosity
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Problems Gravity Integrators Hydrodynamics Initial conditions

Different Methods

Eulerian

Discretize volume

Grid cells = volume elements

Solve fluxes, capture shocks

natively

Not Galilean invariant

Mixing implicitly at cell level

Low numerical viscosity

Lagrangian

c©V. Springel
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Problems Gravity Integrators Hydrodynamics Initial conditions

Different Methods

Eulerian

Discretize volume

Grid cells = volume elements

Solve fluxes, capture shocks

natively

Not Galilean invariant

Mixing implicitly at cell level

Low numerical viscosity

Lagrangian

Discretize mass

Particles = mass elements

Inherent adaptivity through

particle movement

Galilean invariant

Mixing suppressed at particle

level

Artificial viscosity,

conductivity
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Problems Gravity Integrators Hydrodynamics Initial conditions

Eulerian in a nutshell

ρ1, u1,T1 ρ2, u2,T2

A1 A2

Flux

∗ Godunov method: solve

fluxes through cell faces

∗ 1st order accurate scheme:

Riemann problem

∗ Exact vs approximate

Riemann solvers

∗ Typically finite volume

scheme
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Problems Gravity Integrators Hydrodynamics Initial conditions

Eulerian in a nutshell

ρ1, u1,T1 ρ2, u2,T2

A1 A2

Flux

∗ Slope limitiers: positive,

smooth solutions

∗ Typically 2nd order scheme

∗ Adaptive Mesh Refinement:

Adaptivity but memory

expensive

∗ Self Gravity difficult

c©K. Dolag
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Problems Gravity Integrators Hydrodynamics Initial conditions

SPH in a nutshell

Sample mass instead of volume → “Particles” instead of cells

c©Price 2012

Fundamental quantity: ρ (~x) =

Nngb∑
j

mjW (|~x − ~xj | , h)
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Problems Gravity Integrators Hydrodynamics Initial conditions

Kernel theory

ρ (~x) =

Nngb∑
j

mj W (|~x − ~xj | , h)

∗ Remember Overlap function earlier

∗ Positive

∗ Monotonically decreasing

∗ Radial symmetry

∗ Central plateau

∗ Normalised

∗ Finite

c©K. Dolag

c©Dehnen & Ali 2012
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Problems Gravity Integrators Hydrodynamics Initial conditions

Discretization in general

ρi (~x) =
Nngb∑
j

mjW (|~x − ~xj | , hi )

hi = η
(
mi
ρi

)1/d

Ai ≈
Nngb∑
j

mj
Aj

ρj
Wij(hi )

DAi ≈
Nngb∑
j

mj
Aj

ρj
DWij(hi )

for a differential operator D

Many modifications possible! E.g. subtracting error terms:

~∇Ai ≈
〈
~∇Ai

〉
− Ai

〈
~∇1
〉

=
Nngb∑
j

mj
ρj

(Aj − Ai )Wij(hi )
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Problems Gravity Integrators Hydrodynamics Initial conditions

Equation of motion in SPH

∗ Can be derived directly from fluid Lagrangian:

L = 1
2

∑
i
mi~̇x

2
i −

∑
i
miui

∗ d~vi
dt = −

∑
j
mj

(
pi

Ωiρ
2
i

~∇iWij (hi ) +
pj

Ωjρ
2
j

~∇iWij (hj)

)
with variable smoothing lengthes h:

Ωi = 1− ∂hi
∂ρi

Nngb∑
j

mj
∂Wij (hi )
∂hi

∗ Equation of state: pi = (γ − 1) ρiui

∗ Classical description in terms of density and “entropy”:

A (S) = P
ργ = (γ − 1) u

ργ−1
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Problems Gravity Integrators Hydrodynamics Initial conditions

Artificial Viscosity (Beck, Arth et al. 2016)

Ideal Euler eq. → no dissipative terms → problems at

discontinuities e.g. shocks

Remove post-shock oscillations & noise, smooth velocity field

Energy conserving

dvi
dt

∣∣∣
visc

= 1
2

∑
j

mj

ρij
(vj − vi )α

v
ij f

shear
ij v sig,vij F ij

dui
dt

∣∣∣
visc

= −1
2

∑
j

mj

ρij
(vj − vi )

2 αv
ij f

shear
ij v sig,vij F ij

Shear flow limiter f sheari = |∇·v|i
|∇·v|i+|∇×v|i+σi

Kernel gradient ~∇iWij (hi ) = Fij r̂ij
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Problems Gravity Integrators Hydrodynamics Initial conditions

Artificial Conductivity (Beck, Arth et al. 2016)

SPH does not mix energy at particle level

Discontinuities in internal energy u

Required in density-entropy formalism, less e.g. in

pressure-entropy

dui
dt

∣∣∣
cond

=
∑

j
mj

ρij
(uj − ui )α

c
ijv

sig,c
ij F ij

Coefficient αc
i = hi

3
|∇u|i
|ui |
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dui
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Problems Gravity Integrators Hydrodynamics Initial conditions

Modern SPH (Beck, Arth et al. 2016)
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Problems Gravity Integrators Hydrodynamics Initial conditions
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Problems Gravity Integrators Hydrodynamics Initial conditions

Modern SPH (Beck, Arth et al. 2016)
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Problems Gravity Integrators Hydrodynamics Initial conditions

“Modern” approaches: Moving Mesh

∗ Arbitrary Lagrangian Eulerian

∗ Sample fluid with mass points

∗ Create non regular mesh around particles using Voronoi

tessellation / Delauny triangulation

∗ Solve Riemann problem across cell faces similar to grid code
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Problems Gravity Integrators Hydrodynamics Initial conditions

“Modern” approaches: Moving Mesh

∗ Let particles move and thereby mesh deform

∗ Repair / Recreate mesh

∗ See e.g. Springel 2010
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Problems Gravity Integrators Hydrodynamics Initial conditions

“Modern” approaches: Meshless Finite Mass/Volume

∗ Sample fluid with mass points

∗ Partition volume around them using an SPH-like weighting for a

smooth transition
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Problems Gravity Integrators Hydrodynamics Initial conditions

“Modern” approaches: Meshless Finite Mass/Volume

∗ Solve the Riemann problem with fixed “cells”: MFV method

∗ Distort Lagrangian volume to keep mass constant: MFM method

∗ See e.g. Hopkins 2015
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Problems Gravity Integrators Hydrodynamics Initial conditions

Code Comparisons
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Problems Gravity Integrators Hydrodynamics Initial conditions

Code Comparisons
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Problems Gravity Integrators Hydrodynamics Initial conditions

Gadget timeline

> 200k lines now ( c©V. Springel)

Alexander Arth (USM) Cosmological Simulations



Problems Gravity Integrators Hydrodynamics Initial conditions

Gadget features

∗ Symplectic integration

∗ Hybrid gravity solver

∗ Conservative SPH

∗ Modular

∗ A lot of subgrid physics

∗ Different output styles including HDF5

∗ Hybrid parallelization OpenMP / MPI

∗ Only fftw and gsl required

∗ Built in group and halo finder (FoF and Subfind)
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Problems Gravity Integrators Hydrodynamics Initial conditions

Structure formation simulation with gas

c©K. Dolag
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Problems Gravity Integrators Hydrodynamics Initial conditions

Outline

1 What we do we want to solve?

2 Gravity: Solvers & Co.

3 A quick detour: Integrators

4 Is gravity enough?

5 Simulation types < − > Initial conditions.
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Problems Gravity Integrators Hydrodynamics Initial conditions

Technical aspects

∗ No simulation without proper initial conditions!

∗ Need ρ (~x), u (~x), ~v (~x), . . .

∗ Easy to translate into a volume discretization, ...

∗ Mass discretization not so much: Particle configuration needs

to resemble ρ (~x)

∗ Adjust particle mass or distribution (or both)
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Problems Gravity Integrators Hydrodynamics Initial conditions

Typical particle configurations

Grid VS Random VS Glass

Tool to create arbitrary ICs: Arth et al. in prep.
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Problems Gravity Integrators Hydrodynamics Initial conditions

Density fluctuations

https://briankoberlein.com

Alexander Arth (USM) Cosmological Simulations
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Problems Gravity Integrators Hydrodynamics Initial conditions

Cosmic initial conditions

Gaussian density perturbation

Formation of cosmic structures like voids, filaments and collapsed

objects

c©K. Dolag
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Problems Gravity Integrators Hydrodynamics Initial conditions

Zoom simulations

Parent large scale box

Re-simulation with higher resolution (factor 100-1000 in mass

resolution)

Study internal structures in zoomed region

c©Springel et al. 2001
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Problems Gravity Integrators Hydrodynamics Initial conditions

Adiabatic gas dynamics

c©V. Springel
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Problems Gravity Integrators Hydrodynamics Initial conditions

Moore’s law: double every 18 months

c©K. Dolag
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Problems Gravity Integrators Hydrodynamics Initial conditions
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Problems Gravity Integrators Hydrodynamics Initial conditions

c©K. Dolag
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Problems Gravity Integrators Hydrodynamics Initial conditions

c©K. Dolag

Next lecture...
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Problems Gravity Integrators Hydrodynamics Initial conditions

Sources

∗ Lecture of Volker Springel

∗ Lectures of Klaus Dolag

∗ The Encyclopedia of Cosmology

∗ My PhD thesis ,

∗ Several papers as mentioned . . .

Now, break and tutorials!
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