Intermezzo: Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD
except for white dwarfs

Stellar Atmospheres in practice

Some different types of stars...

Hot luminous stars:
Massive, main-sequence (MS) or evolved, ~10 Rsun. Strong, fast stellar winds

Cool, luminous stars (RSG, AGB):
Massive or low/interme-diate mass, evolved, several 100 (!) Rsun. Strong, slow stellar winds

Solar-type stars:
Low-mass, on or near MS, hot surrounding coronae, weak stellar wind (e.g. solar wind)

Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD

Different regimes require different key input physics and assumptions

- LTE or NLTE
- Spectral line blocking/blanketing -(sub-) Surface convection
- Geometry and dimensionality - Velocity fields and outflows

Stellar Atmospheres in practice

Spectroscopy and Photometry

ALSO:
Analysis of different WAVELENGTH BANDS is different
(X-ray, UV, optical, infrared...)

Depends on where in atmosphere light escapes from

Question: Why is this "formation depth" different for different wavebands and diagnostics?

Stellar Atmospheres in practice

Spectroscopy and Photometry (see Chap. 2)

...gives insight into and understanding of our cosmos

- provides
- stellar properties, mass, radius, luminosity, energy production, chemical composition, properties of outflows
- properties of (inter) stellar plasmas, temperature, density, excitation, chemical comp., magnetic fields
- INPUT for stellar, galactic and cosmologic evolution and for stellar and galactic structure
- requires
- plasma physics, plasma is "normal" state of atmospheres and interstellar matter (plasma diagnostics, line broadening, influence of magnetic fields,...)
- atomic physics/quantum mechanics, interaction light/matter (micro quantities)
- radiative transfer, interaction light/matter (macroscopic description)
- thermodynamics, thermodynamic equilibria: TE, LTE (local), NLTE (non-local)
- hydrodynamics, atmospheric structure, velocity fields, shockwaves,...

Stellar Atmospheres in practice

Spectroscopy (see Chap. 2)
UV spectrum of the O4I(f) supergiant ζ Pup

montage of Copernicus ($\lambda<1500 \AA$, high res. mode, $\Delta \lambda \approx 0.05 \AA$, Morton $\&$ Underhill 1977) and IUE $(\Delta \lambda \approx 0.1 \AA)$ observations

UV "P-Cygni" lines formed in rapidly accelerating, hot stellar winds
(quasi-)
Continuum formed in (quasi-) hydrostatic photosphere

Stellar Atmospheres in practice

Spectroscopy

Lines and continuum in the optical around 5200 Å, in cool solar-type stars, formed in the photosphere

Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD

Stellar Winds

 (see Chap. 8/9)KEY QUESTION: What provides the force able to overcome gravity?

$$
\dot{M} \approx 10^{-4} \ldots 10^{-8} M_{\odot} / y r
$$

- LTE or NLTE
- Spectral line blocking/blanketing -(sub-) Surface convection - Geometry and dimensionality - Velocity fields and outflows

Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD

KEY QUESTION: What provides the force able to overcome gravity?

Pressure gradient
in hot coronae of solar-type stars Radiation force:

Dust scattering (in pulsation-levitated material, see Chap. 8) in cool AGB stars
(S. Höffner and colleagues)

Same mechanism in cool RSGs?

$$
\dot{M} \approx 10^{-4} \ldots 10^{-8} M_{\odot} / y r
$$

- LTE or NLTE
- Spectral line blocking/blanketing - (sub-) Surface convection
- Geometry and dimensionality
- Velocity fields and outflows

Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD

KEY QUESTION: What provides the force able to overcome gravity?

Radiation force:
line scattering in hot, luminous stars \rightarrow done at USM, more to follow in Chap. 8/9

$$
\dot{M} \approx 10^{-4} \ldots 10^{-8} M_{\odot} / y r
$$

- LTE or NLTE - Spectral line blocking/blanketing - (sub-) Surface convection -Geometry and dimensionality - Velocity fields and outflows

Stellar Atmospheres in practice

from introductory slides ...

Stellar Winds from hot/evolved cool stars control evolution/late evolution, and feed the ISM with nuclear processed material

Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD

In the following, we focus on stellar photospheres

Stellar Atmospheres in practice

From Chap. 6 Summary: stellar atmospheres - the solution principle

$$
\begin{aligned}
& \begin{array}{l}
\text { THUS problem of stellar atmospheres solved (in principle, without convection, } \\
\text { Given logg*, Teft, abundances }
\end{array} \\
& \text { (A) hydrostatic equilibrium } \\
& \frac{d p_{\text {gas }}}{d 2}=-\rho\left(g_{4}-g_{\text {rad }}\right) ; \quad \text { gead }=\frac{4 \pi}{c S} \int_{0}^{\infty} x_{v} H_{v} d v-\frac{4 \pi}{c_{S}}\left(\sigma^{5 H} H(2)+\int_{0}^{\infty} x_{v}^{\text {rest }} H_{v} d v\right) \\
& \rightarrow \frac{d_{\text {pgas }}}{d 2}=-\rho \frac{q_{*}}{v}+\sigma^{\sigma H} \frac{\sigma_{8} \text { Teff }_{4}^{C}}{C}+\frac{4 \pi}{c} \int_{0}^{\infty} x_{v}^{\text {Dest }} H_{v} d y \\
& H=\frac{1}{4 \bar{x}} \sigma_{B} T_{e f f}^{4} \quad\left(=\frac{1}{4 \pi} F\right) \\
& \text { (B) equation of rad. tranefer } \\
& \mu \frac{d I_{v}}{d z}=x_{v}\left(S_{v}-I_{v}\right) \forall v_{1} \mu \Rightarrow J_{v}=\frac{1}{2} \int_{-1}^{+1} I_{v}(\mu) d \mu ; H_{v}=\frac{1}{2} \int_{-1}^{+1} I_{v}(\mu) \mu d \mu \\
& \text { (C) a) radiative equilibrium } \infty \\
& \begin{array}{l}
\text { scattering terms cancel, since } \\
\text { conser vative }
\end{array} \\
& \left.\left.\left.\int_{0}^{\infty}\left(u_{v}-x_{v}\right] v\right) d v=\int_{0}^{\infty}\left\{\sigma^{r H}\right]_{v}+x_{y}^{\text {eest }} S_{v}^{\text {rest }}\right)-\left(\sigma^{r H}+x_{y}^{\text {rest }}\right) J_{y}\right\} d v=\int_{0}^{\infty} x_{v}^{\text {rest }}\left(S_{v}^{\text {rest }}-J_{v}\right) d v \dot{=} 0 \\
& \text { 6) flux-conservation: } 4 \pi \int_{0}^{\infty} H_{y}(2) d y=4 \pi H(2) \stackrel{2}{=} \sigma_{B} \sigma_{\text {eft }}^{4} \quad \Rightarrow \Delta \sigma(2) \quad \rightarrow \Delta x_{2}(2) \text { etc } \\
& \text { (1) equation of state } \operatorname{pgas}(2)=\frac{k_{3}}{\mu m_{H}} \rho(2) T(2) \quad \begin{array}{l}
\text { solution by } \\
\text { iteration. }
\end{array}
\end{aligned}
$$

Solution of differential equations A and B by discretization differential operators => finite differences all quantities have to be evaluated on suitable grid

Eq. of radiative transfer (B) usually solved by the so-called Feautrier and/or Rybicki scheme

Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD

- LTE or NLTE
- Spectral line blocking/blanketing - (sub-) Surface convection
- Geometry and dimensionality
- Velocity fields and outflows

Stellar Atmospheres in practice

LTE or NLTE? (see part 1)

When is LTE valid???

```
roughly: electron collisions
    \alphane
```

```
    LTE: T low, \(\mathrm{n}_{\mathrm{e}}\) high
NLTE: T high, \(\mathrm{n}_{\mathrm{e}}\) low
```

>> photoabsorption rates $\propto I_{v}(\mathbf{T}) \propto \mathbf{T}^{\mathbf{x}}, \mathbf{x} \geq \mathbf{1}$
dwarfs (giants), late B and cooler all supergiants + rest

however:
NLTE-
effects also in cooler stars, e.g.. iron in sun

HOT STARS:

Complete model atmosphere and synthetic spectrum must be calculated in NLTE

NLTE calculations for various applications
(including Supernovae remnants) within the
expertise of USM

COOL STARS:

Standard to neglect NLTE-effects on atmospheric structure, might be included when calculating line spectra for individual "trace" elements (typically used for chemical abundance determinations)

BUT: See work by Phoenix-team (Hauschildt et al.) ALSO: RSGs still somewhat open question

Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD

- LTE or NLTE
- Spectral line blocking/blanketing - (sub-) Surface convection
- Geometry and dimensionality
- Velocity fields and outflows

Stellar Atmospheres in practice

Spectral line blocking/blanketing

- Effects of numerous -- literally millions -- of (primarily metal) spectral lines upon the atmospheric structure and flux distribution
- Q: Why is this tricky business?

Stellar Atmospheres in practice

Spectral line blocking/blanketing

- Effects of numerous -- literally millions -- of (primarily metal) spectral lines upon the atmospheric structure and flux distribution
- Q: Why is this tricky business?
- Lots of atomic data required (thus atomic physics and/or experiments)
- LTE or NLTE?
- What lines are relevant? (i.e., what ionization stages? Are there molecules present?)

Techniques:

Opacity Distribution Functions
Opacity-Sampling
Direct line by line calculations

Stellar Atmospheres in practice

Spectral line blocking/blanketing

Back-warming (and surface-cooling)

Numerous absorption lines
"block" (E)UV radiation flux
Total flux conservation demands these photons be emitted elsewhere \rightarrow redistributed to optical/infra-red
Lines act as "blanket", whereby back-scattered line photons are (partly) thermalized and thus heat up deeper layers

Stellar Atmospheres in practice

Spectral line blocking/blanketing

Back-warming and flux redistribution

...occur in stars of all spectral types

Fig. 4. The effects of switching off line absorption on the temperature structure of a sequence of models with $\log g=3.0$ and solar metallicity. Note that $\Delta T \equiv T$ (nolines) $-T$ (lines). It is seen that the blanketing effects are fairly independent of effective temperature for models with $T_{\text {eff }} \geq 4000$.

Back warming in cool stars
(from Gustafsson et al. 2008)

Fig. 10. Emergent Eddington flux H_{v} as function of wavelength. Solid line: Current model of HD 15629 (O5V((f)) with parameters from Table $1\left(T_{\text {eff }}=40500 \mathrm{~K}, \log g=3.7\right.$, "model 1"). Dotted: Pure H / He model without line-blocking/blanketing and negligible wind, at same $T_{\text {eff }}$ and $\log g$ ("model 2"). Dashed: Pure H / He model, but with $T_{\text {eff }}=45000 \mathrm{~K}$ and $\log g=3.9$ ("model 3").

UV to optical flux redistribution in hot stars (from Repolust, Puls \& Hererro 2004)

Stellar Atmospheres in practice

Spectral line blocking/blanketing

Back-warming and flux redistribution

...occur in stars of all spectral types

Fig. 9 Effects of line blanketing (solid) vs. unblanketed models (dashed) on the flux distribution ($\log F_{v}$ (Jansky) vs. $\log \lambda(\AA)$, left panel) and temperature structure ($T\left(10^{4} \mathrm{~K}\right)$ vs. $\log n_{\mathrm{e}}$, right panel) in the atmosphere of a late B-hypergiant. Blanketing blocks flux in the UV, redistributes it towards longer wavelengths and causes back-warming.

Stellar Atmospheres in practice

Spectral line blocking/blanketing

in line/continuum forming regions, blanketed models at a certain $T_{\text {eff }}$ have a plasma temperature corresponding to an unblanketed model with higher T' ${ }^{\text {eff }}$

Back-warming - effect on effective temperature

RECALL: $T_{\text {eff }}$-- or total flux (planeparallel) -- fundamental input parameter in model atmosphere!
$F=\sigma_{\mathrm{B}} T_{\mathrm{eff}}^{4}$
$\mathrm{T}_{\text {eff }}$ in cool stars derived, e.g., by optical photometry

From Gustafsson et al. 2008: Estimate effect by assuming a blanketed model with $T_{\text {eff }}$ such that the deeper layers correspond to an unblanketed model with effective temperature T^{\prime} eff $>T_{\text {eff }}$

$$
\begin{equation*}
T_{\mathrm{eff}}^{\prime}=(1-X)^{-\frac{1}{4}} \cdot T_{\mathrm{eff}}, \tag{35}
\end{equation*}
$$

Fig. 3. The blocking fraction X in percent for models in the grid with two different metallicities. The dwarf models all have $\log g=4.5$ while
the giant models have $\log g$ values increasing with temperature, from the giant models have $\log g$ values increasing with temperature, from
$\log g=0.0$ at $T_{\text {eff }}=3000 \mathrm{~K}$ to $\log g=3.0$ at $T_{\text {eff }}=5000 \mathrm{~K}$.
where X is the fraction of the integrated continuous flux blocked out by spectral lines,

$$
\begin{equation*}
X=\frac{\int_{0}^{\infty}\left(F_{\text {cont }}-F_{\lambda}\right) \mathrm{d} \lambda}{\int_{0}^{\infty} F_{\text {cont }} \mathrm{d} \lambda} . \tag{36}
\end{equation*}
$$

Question: Why does the line blocking fraction increase for very cool stars?

Stellar Atmospheres in practice

Spectral line blocking/blanketing

Back-warming - effect on effective temperature

RECALL: $T_{\text {eff }}-$ or total flux (planeparallel) -- fundamental input parameter in model atmosphere!

$$
F=\sigma_{\mathrm{B}} T_{\mathrm{eff}}^{4}
$$

Question: Why is optical photometry generally NOT well suited to derive Teff in hot stars?

Previous slide were LTE models. In hot stars, everything has to be done in NLTE...

Stellar Atmospheres in practice

Spectral line blocking/blanketing

Instead, He ionization-balance is typically used (or N for the very hottest stars, or, e.g., Si for B-stars)

HeI4387 HeI4922 HeI6678 HeI4471 HeI4713 HeIl4200 HeII4541 Hell6404 HeII6683

 Simultaneous fits to observed Hel and Hell lines
 -- from Repolust, Puls, Hererro (2004)
 - Back-warming shifts ionization balance toward more completely ionized Helium in blanketed models
 \rightarrow thus fitting the same observed spectrum requires lower $T_{\text {eff }}$ than in unblanketed models

 - black - blanketed Teff=45 kK
 - red - unblanketed Teff=45 kK
 - blue - unblanketed Teff= 50 kK

Stellar Atmospheres in practice

Spectral line blocking/blanketing
Instead, He ionization-balance is typically used (or N for the very hottest stars, or, e.g., Si for B-stars)

Result: In hot O-stars with Teff $\sim 40,000 \mathrm{~K}$, backwarming can lower the derived $\mathrm{T}_{\text {eff }}$ as compared to unblanketed models by several thousand degrees! (~10\%)

New $\mathrm{T}_{\text {eff }}$ scale for O-dwarf stars. Solid line - unblanketed models. Dashed - blanketed calibration, dots - observed blanketed values (from Puls et al. 2008)

Stellar Atmospheres in practice

A tour de modeling and analysis of stellar atmospheres throughout the HRD

- LTE or NLTE
- Spectral line blocking/blanketing -(sub-) Surface convection
- Geometry and dimensionality
- Velocity fields and outflows

Surface Convection
from part 1 Convection
energy transport not only by radiation, however also by

- waves not efficient in typical
- heat conduction $\} \begin{aligned} & \text { stellar atmospheres, but } \\ & \text {-. coronal, phromospheres }\end{aligned}$
- convection white dwarfs?

Thus
total flux a cons
$\nabla \cdot\left(\underline{F}^{\text {ed }}+\mathbb{F}^{\text {conc }}\right) \stackrel{\downarrow}{=}=0$ (in quasi-hydrostatic atmospheres)

Stellar Atmospheres in practice

Surface Convection

OBSERVATIONS:
"Sub-surface"
convection in layers T~160,000 K (due to iron-opacity peak) currently discussed also in hot stars

- H/He recombines in atmospheres of cool stars
\rightarrow Provides MUCH opacity
\rightarrow Convective Energy transport

Stellar Atmospheres in practice

Surface Convection

Traditionally accounted for by rudimentary "mixing-length theory" (see Chap. 6) in
1-D atmosphere codes

BUT:

- Solar observations show very dynamic structure
- Granulation and lateral inhomogeneity
\rightarrow Need for full 3-D radiation-hydrodynamics simulations in which convective motions occur spontaneously if required conditions fulfilled
(all physics of convection 'naturally' included)

Stellar Atmospheres in practice

Surface Convection

Solar-type stars:

Photospheric extent << stellar radius Small granulation patterns

R
Δr

> example: the sun
> $\mathrm{R}_{\text {sun }} \approx 700,000 \mathrm{~km}$
> $\Delta \mathrm{r}($ photo $) \approx 300 \mathrm{~km}$
> $\Rightarrow \Delta \mathrm{r} / \mathrm{R} \approx 410^{-4}$
> BUT corona
> $\Delta \mathrm{r} / \mathrm{R}$ (corona) ≈ 3

$$
\text { as long as } \Delta \mathrm{r} / \mathrm{R} \ll 1 \Rightarrow \text { plane-parallel symmetry }
$$

light ray through atmosphere

lines of constant temperature and density (isocontours)
curvature of atmosphere insignificant for photons' path : $\alpha=\beta$
significant curvature : $\alpha \neq \beta$, spherical symmetry

examples

solar photosphere / cromosphere atmospheres of
main sequence stars
white dwarfs
giants (partly)
solar corona atmospheres of supergiants expanding envelopes (stellar winds) of OBA stars, M-giants and supergiants

Stellar Atmospheres in practice

Surface Convection

Solar-type stars:
Atmospheric extent << stellar radius Small granulation patterns
\rightarrow
Box-in-a-star Simulations
(cmp. plane-parallel approximation)

From Wolfgang Hayek

Stellar Atmospheres in practice

Surface Convection

Approach

(teams by Nordlund, Steffen):
Solve radiation-hydrodynamical conservation equations of mass, momentum, and energy (closed by equation of state).

3-D radiative transfer included to calculate net radiative heating/cooling $\mathrm{q}_{\text {rad }}$ in energy equation, typically assuming LTE and a very simplified treatment of lineblanketing

$$
q_{\mathrm{rad}}=4 \pi \rho \int_{\lambda} \kappa_{\lambda}\left(J_{\lambda}-S_{\lambda}\right) d \lambda
$$

From Wolfgang Hayek

Surface Convection

Stellar Atmospheres in practice

Surface Convection

Fıo. 4.-Pressure fluctuations about the mean hydrostatic equilibrium and the velocity field in an $x z$ slice through a granule. The pressure is high above the centers of granules, which decelerates the warm upflowing fluid and diverts it horizontally. High pressure also occurs in the intergranular lanes where the horizontal motions are halted and gravity pulls the now cool, dense fluid down into the intergranular lanes. Horizontal rolls of high vorticity occur at the edges of the intergranular lanes. The emergent intensity profile across the slice is shown at the top.

Stellar Atmospheres in practice

Surface Convection

Some key features:

Slow, broad upward motions, and faster, thinner downward motions
Non-thermal velocity fields
Overshooting from zone where convection is efficient according to stability criteria (see Chap. 6)
Energy balance in upper layers not only controlled by radiative heating/cooling, but also by cooling from adiabatic expansion

See Stein \& Nordlund (1998);
Collet et al. (2006), etc.

Fio 19- Comparison of granulation as seen in the emorgent intensity from the simulations and as observed by the Swe dish Vaccuum Solar Telecocopo on
 thows this simages smoothod by an Airy pluse exponential point-spread function. The bottom row shows an $18 \times 6 \mathrm{Mm}$ white-light image from Lap Palma. Note
the similar appearance of the smoothed simulation image and the observed granulation. The common edge brightening in the simulation is reducod when

Question: This does not look much like the traditional 1-D models we've discussed during the previous lecture! - Do you think we should throw them in the garbage?

Stellar Atmospheres in practice

Surface Convection

blue: mean temperature from 3D hydro-model (scatter = dashed)
red: from 1D semi-empirical model (Holweger \& Müller, see Chap. 5)
green: from 1D theoretical model atmospheres (MARCS)

Figure 1: The mean temperature structure of the 3D hydrodynamical model of Trampedach et al. (2009) is shown as a function of optical depth at 500 nm (blue solid line). The blue dashed lines correspond to the spatial and temporal rms variations of the 3D model, while the red and green curves denote the 1D semi-empirical Holweger \& Müller (1974) and the 1D theoretical MARCS (Gustafsson et al. 2008) model atmospheres, respectively.

In many (though not all) cases, AVERAGE properties still quite OK:

Convection in energy balance approximated by "mixinglength theory"
Non-thermal velocity fields due to convective motions included by means of so-called "micro-" and "macroturbulence"

BUT quantitatively we always need to ask:
To what extent can average properties be modeled by traditional 1-D codes?

Unfortunately, a general answer very difficult to give, need to be considered case by case

Stellar Atmospheres in practice

Surface Convection

Metal-poor red giant, simulation by Remo Collet, figure from talk by M. Bergemann

For example:

In metal-poor cool stars spectral lines are scarce
(Question: Why?),
and energy balance in upper photosphere controlled to a higher degree by adiabatic expansion of convectively overshot material.

In classical 1-D models though, these layers are convectively stable, and energy balance controlled only by radiation (radiative equilibrium, see part1).

Stellar Atmospheres in practice

Surface Convection

3-D radiation-hydro models successful in reproducing many solar features (see overview in Asplund et al. 2009), e.g:
Center-to-limb intensity variation
Line profiles and their shifts and variations (without micro/macroturbulence)
Observed granulation patterns

Surface Convection

Figure 3: The predicted spectral line profile of a typical Fer line from the 3D hydrodynamical solar model (red solid line) compared with the observations (blue rhombs). The agreement is clearly very satisfactory, which is the result of the Doppler shifts arising from the self-consistently computed convective motions that broaden, shift and skew the theoretical profile. For comparison purposes also the predicted profile from a 1D model atmosphere (here Holweger \& Müller 1974) is shown; the 1D profile has been computed with a microturbulence of $1 \mathrm{~km} \mathrm{~s}^{-1}$ and a tuned macroturbulence to obtain the right overall linewidth. Note that even with these two free parameters the 1D profile can neither predict the shift nor the asymmetry of the line.
affects chemical abundance (determined by means of line profile fitting to observations)

One MAJOR result:
Effects on line formation has led to a downward revision of the CNO solar abundances and the solar metallicity, and thus to a revision of the standard cosmic chemical abundance scale

Stellar Atmospheres in practice

Surface Convection

Also potentially critical for Galactic archeology...

...which traces the chemical evolution of the Universe by analyzing VERY old, metal-poor Globular Cluster stars -- relics from the early epochs (e.g. Anna Frebel and collaborators)

Stellar Atmospheres in practice

Surface Convection

Out to Jupiter...

Betelgeuse (HST) Gilliland \& Dupree 1996

- Giant Convection Cells in the lowgravity, extended atmo-spheres of Red Supergiants
- Question: Why extended?
$H=a^{2} / g \quad$ (with $a=\mathrm{v}_{\mathrm{s}}$ the
isothermal speed of sound)
$a_{\text {RSG }}^{2} / a_{\text {sun }}^{2} \approx T_{\text {RSG }} / T_{\text {sun }}=0.5 \ldots 0.6$
$g_{\text {RSG }} / g_{\text {sun }} \approx 10^{-4}$!
(see Chap. 6)

Stellar Atmospheres in practice

Surface Convection

Supergiants (or models including a stellar wind):
Atmospheric extent > stellar radius:
Box-in-a-star \rightarrow Star-in-a-box
(1D: Plane-parallel \rightarrow Spherical symmetry, see Chap. 3)

Star to model: Betelgeuse
Mass: 5 solar masses
Radius: 600 Rsun
Luminosity: 41400 Lsun
Grid: Cartesian cubical grid with 171^{3} points Edge length of box 1674 solar radii

Stellar Atmospheres in practice

Surface Convection

Mass: 5 solar masses
Radius: 600 Rsun
Luminosity: 41400 Lsun
Grid: Cartesian cubical grid with 171^{3} points
Edge length of box 1674 solar radii
Movie time span: 7.5 years
http://www.astro.uu.se/~bf/movie/dst35gm04n26/ movie.html

Stellar Atmospheres in practice

Surface Convection

Extremely challenging,
models still in their infancies.
LOTS of exciting physics to explore, like
Pulsations
Convection
Numerical radiation-hydrodynamics
Role of magnetic fields
Stellar wind mechanisms

Also, to what extent can main effects be captured by 1-D models?
For quantitative applications like....
st35gmo4n26: Surface Intensity(11), time(0.0$)=30.263$ yrs
st35gmo4n26: Surface Intensity(11), time(0.0$)=30.263$ yrs

Question: Why are RSGs ideal for observational extragalactic stellar astrophysics, particularly in the near future?

important codes and their features

Codes	FASTWIND CMFGEN PoWR	WM-basic	TLUSTY Detail/Surface	Phoenix	MARCS Atlas	
geometry	1-D spherical	1-D spherical	1-D plane-parallel	1-D/3-D spherical/ plane-parallel	1-D plane-parallel (MARCS also spherical)	3-D Cartesian
LTE/NLTE	NLTE	quasi-static photosphere + prescribed supersonic outflow	time-independent hydrodynamics	hydrostatic	hydrostatic or allowing for supersonic outflows	hydrostatic

Stellar Atmospheres in practice

And then there are, e.g.,

- Luminous Blue Variables (LBVs) like Eta Carina,
- Wolf-Rayet Stars (WRs)
- Planetary Nebulae (and their Central Stars)
- Be-stars with disks
- Brown Dwarfs
- Pre main-sequence T-Tauri and Herbig stars
...and many other interesting objects

Stellar astronomy alive and kicking! Very rich in both

Physics
Observational applications

Chap. 8 - Stellar winds: an overview

ubiquitous phenomenon

- solar type stars (incl. the sun)
- red supergiants/AGB-stars ("normal" + Mira Variables)
- hot stars (OBA supergiants, Luminous Blue Variables, OB-dwarfs, Central Stars of PN, sdO, sdB, Wolf-Rayet stars)
- T-Tauri stars
- and many more

The solar wind - a suspicion

- comet tails directed away from the sun
- Kepler: influence of solar radiation pressure (-> radiation driven winds)
- lonic tail: emits own radiation, sometimes different direction
- Hoffmeister (1943, subsequently Biermann): solar particle radiation different direction, since \mathbf{v} (particle) comparable to \mathbf{v} (comet) The solar wind - the discovery
- Eugene Parker (1958): theoretical(!) investigation of coronal equilibrium: high temperature leads to (solar) wind (more detailed later on)
- confirmed by
- Soviet measurements (Lunik2/3) with "ion-traps" (1959)
- Explorer 10 (1961)
- Mariner II (1962): measurement of fast and slow flows (27 day cycle -> co-rotating, related "coronal holes" and sun spots)

The solar wind - Ulysses ...

The solar wind - coronal holes

fast wind:
over coronal holes
(dark corona, "open" field lines, e.g., in
polar regions)
coronal X-ray
emission
\Rightarrow
very high
temperatures
(Yohkoh Mission)

Primary objectives for the mission

- trace the energy flow, understand heating of the solar corona, study the outer corona.
- determine the structure and dynamics of the plasma and magnetic fields
- explore solar wind driving, and mechanisms that accelerate and transport energetic particles.

planned: 24 orbits, first perihelion on Nov. 5, 2018; seven Venus-flybys over 7 years, to decrease perihelion distance from 36 to $8.9 \mathrm{R}_{\text {sun }}(6$ Millionen km , with $\mathrm{T} \sim 1100 \mathrm{~K}$)

First results (Nov. 2019)

- wind rotates, but up to 10 times faster than expected
- high speed plasma waves, up to c/6, can revert direction of B-field \rightarrow "switchbacks": coherent (wind) structures
- coronal mass ejections much more irregular than expected
- dust cleared by solar wind

LMU
 The sun and its wind: mean properties

The sun

radius $=695,990 \mathrm{~km}=109$ terrestrial radii
mass $=1.98910^{30} \mathrm{~kg}=333,000$ terrestrial masses
luminosity $=3.8510^{33} \mathrm{erg} / \mathrm{s}=3.8510^{20} \mathrm{MW} \approx 10^{18}$ nuclear power plants
effective temperature $=5770{ }^{\circ} \mathrm{K}$
central temperature $=15,600,000{ }^{\circ} \mathrm{K}$
life time approx. 1010^{9} years
age $=4.5710^{9}$ years
distance sun earth approx. $15010^{6} \mathrm{~km} \approx 400$ times earth-moon

The solar wind

temperature when leaving the corona: approx. $110^{6} \mathrm{~K}$
average speed approx. $400-500 \mathrm{~km} / \mathrm{s}$ (travel time sun-earth approx. 4 days)
particle density close to earth: approx. $6 \mathrm{~cm}^{-3}$
temperature close to earth: $\lesssim 10^{5} \mathrm{~K}$
mass-loss rate: approx $10^{12} \mathrm{~g} / \mathrm{s}(1$ Megaton $/ \mathrm{s}) \approx 10^{-14}$ solar masses/year
\approx one Great-Salt-Lake-mass/day \approx one Baltic-sea-mass/year
\Rightarrow no consequence for solar evolution, since only 0.01% of total mass lost over total life time

Stellar winds - hydrodynamic description

Need mechanism which accelerates material beyond escape velocity:

* pressure driven winds
* radiation driven winds

Note: red giant winds still not understood, only scaling relations available ("Reimers-formula")
remember equation of motion (conservation of momentum + stationarity, cf. Chap. 6, page 90) $v \frac{d v}{d r}=-\frac{1}{\rho} \frac{d p}{d r}+g^{e x t} \quad$ (in spherical symmetry), and $p=\rho a^{2}$ (equation of state, with isothermal sound-speed $\left.a\right)$
\Rightarrow with mass-loss rate \dot{M}, radius r, density ρ and velocity v
$\dot{M}=4 \pi \mathrm{r}^{2} \rho v$,
$\left(1-\frac{a^{2}}{v^{2}}\right) v \frac{d v}{d r}=-\frac{G M}{r^{2}}+g_{r a d}+\frac{2 a^{2}}{r}-\frac{d a^{2}}{d r}$
vel. field
positive for $\mathrm{v}>\mathrm{a}$ negative for v < a
grav. radiative (part of) accel. accel. accel. by pressure gradient inwards outwards outwards
equation of continuity:
conservation of mass
equation of motion:
from conservation of momentum

Pressure driven winds

$$
\begin{aligned}
\left(1-\frac{a^{2}}{v^{2}}\right) v \frac{d v}{d r}= & -\frac{G M}{r^{2}}+g / a d+\frac{2 a^{2}}{r}-\frac{d a^{2} /}{d r} \\
& \text { vel. field } \\
& \text { grav. } \begin{array}{l}
\text { radiative } \\
\text { accel. }
\end{array} \text { accel. }
\end{aligned}
$$

The solar wind as a proto-type for pressure driven winds

- present in stars which have an (extremely) hot corona ($\mathrm{T} \approx 10^{6} \mathrm{~K}$)
- with $\mathrm{g}_{\mathrm{rad}} \approx 0$ and $\mathrm{T} \approx$ const, the rhs of the equation of motion changes sign at $r_{c}=\frac{G M}{2 a^{2}} ; \quad$ with a $\left(\mathrm{T}=1.5 \cdot 10^{6} \mathrm{~K}\right) \approx 160 \mathrm{~km} / \mathrm{s}$, we find for the sun $r_{c} \approx 3.9 R_{\text {sun }}$
and obtain four possible solutions for $\mathrm{v} / \mathrm{v}_{\mathrm{c}}(\mathrm{c} \mathrm{c} "=$ critical point $)$
* only one (the "transonic") solution compatible with observations

* pressure driven winds as described here rely on the presence of a hot corona (large value of a!)
* Mass-loss rate $M \approx 10^{-14} \mathrm{M}_{\text {sun }} / \mathrm{yr}$, terminal velocity $\mathrm{v}_{\infty} \approx 500 \mathrm{~km} / \mathrm{s}$
* has to be heated (dissipation of acoustic and magneto-hydrodynamic waves)
* not completely understood so far

Radiation driven winds

accelerated by radiation pressure:

$$
\left(1-\frac{a^{2}}{v^{2}}\right) v \frac{d v}{d r}=-\frac{G M}{r^{2}}+g_{\text {rad }}+\underbrace{\frac{2 a^{2}}{r}-\frac{d a^{2}}{d r}}_{\text {important only in }} \quad \begin{aligned}
& \text { pressure terms only of secondary order } \\
& (a \approx 20 \mathrm{~km} / \mathrm{s} \text { for hot stars, } \\
& \\
& \approx 3 \mathrm{~km} / \mathrm{s} \text { for cool stars) }
\end{aligned}
$$

* cool stars (AGB): major contribution from dust absorption; coupling to "gas" by viscous drag force (gas - grain collisions)

$$
\dot{M} \approx 10^{-6} \mathrm{M}_{\text {sun }} / \mathrm{yr}, \mathrm{v}_{\infty} \approx 20 \mathrm{~km} / \mathrm{s}
$$

* hot stars: major contribution from metal line absorption; coupling to bulk matter (H / He) by Coulomb collisions

$$
\dot{M} \approx 10^{-6} \ldots 10^{-5} \mathrm{M}_{\text {sun }} / \mathrm{yr}, \mathrm{v}_{\infty} \approx 2,000 \mathrm{~km} / \mathrm{s}
$$

density ρ
Material on this and following pages from Chr. Helling, Sterne und Weltraum, Feb/March 2002
dust: approx. 1\% of ISM, 70\% of this fraction formed in the winds of AGB-stars (cool, low-mass supergiants)

Red supergiants are located in dust-forming "window"
transition from gaseous phase to solid state possible only in narrow range of temperature and density:
gas density must be high enough and temperature low enough to allow for the chemical reactions:

- sufficient number of dust forming molecules required
- the dust particles formed have to be thermally stable

Growth of dust in matter outflow

- decrease of density and temperature
- more and more complex structures are forming

- dust: macroscopic, solid state body, approx. $10^{-7} \mathrm{~m}$ (1000 Angstrom), 10^{9} atoms

terrestrial, macroscopic rutile crystal (TiO_{2}, yellowish)

first steps of a linear reaction chain, forming the seed of $\left(\mathrm{TiO}_{2}\right)_{\mathrm{N}}$

Dust-driven winds: the principle

The principle of radiation driven winds

- star emits photons
- photons absorbed by dust
- momentum transfer accelerates dust
- gas accelerated by viscous drag force due to gas-dust collisions
acceleration
proportional to number of photons, i.e., proportional to stellar luminosity L
\Rightarrow mass-loss rate $\propto L$
dust driven winds at tip of AGB responsible for ejection of envelope
\Rightarrow Planetary Nebulae
winds from massive red supergiants still not explained, but probably similar mechanism

snapshot of a time-dependent hydro-simulation of a carbon-rich circumstellar envelope of an AGB-star. Model parameters similar to next slide.
- star ("surface") pulsates,
- sound waves are created,
- steepen into shocks;
- matter is compressed,
- dust is formed
- and accelerated by radiation pressure
dust shells are blown away, following the pulsational cycle
\Rightarrow periodic darkening of stellar disc
\Rightarrow brightness variations

Stars and their winds - typical parameters

	The sun	Red AGB-stars	Blue supergiants
mass [M_{\odot}]	1	1... 3	10... 100
luminosity [L_{\odot}]	1	10^{4}	$10^{5} \ldots 10^{6}$
stellar radius [R_{\odot}]	1	400	10... 200
effective temperature [K]	5570	2500	$10^{4} \ldots .5 \cdot 10^{4}$
wind temperature [K]	10^{6}	1000	8000... 40000
mass loss rate [M_{\odot} / yr]	10^{-14}	$10^{-6} \ldots 10^{-4}$	$10^{-6} \ldots$ few 10^{-5}
terminal velocity [km/s]	500	30	200... 3000
life time [yr]	10^{10}	10^{5}	10^{7}
total mass loss [M_{\odot}]	10^{-4}	$\gtrsim 0.5$	up to 90% of total mass

wind-blown bubble around BD+602522

The principle of radiatively driven winds

- accelerated by radiation pressure in lines $M \approx 10^{-7} \ldots 10^{-5} \mathrm{M}_{\text {sun }} / \mathrm{yr}, \mathrm{v}_{\infty} \approx 200 \ldots 3,000 \mathrm{~km} / \mathrm{s}$
- momentum transfer from accelerated species (ions) to bulk matter (H/He) via Coulomb collisions

Prerequesites for radiative driving

- large number of photons => high luminosity
$L \propto R_{*}^{2} T_{\text {eff }}^{4} \quad=>$ supergiants or hot dwarfs
- line driving:
large number of lines close to flux maximum (typically some $10^{4} \ldots 10^{5}$ lines relevant) with high interaction probability (=> mass-loss dependent on metal abundances)
- line driven winds important for chemical evolution of (spiral) Galaxies, in particular for starbursts
- transfer of momentum (=> can induce star formation, hot stars mostly in associations), energy and nuclear processed material to surrounding environment
- dramatic impact on stellar evolution of massive stars (mass-loss rate vs. life time!)
pioneering investigations by
Lucy \& Solomon, 1970, ApJ 159
Castor, Abbott \& Klein, 1975, ApJ 195 (CAK)
reviews by Kudritzki \& Puls, 2000, ARAA 38
Puls et al. 2008 A\&Arv 16, issue 3

9.1 Radiative line driving and line-statistics

- Observational findings: massive star have outflows, at least quasi-stationary
- only small, in NO WAY dominant variability of global quantities $\left(\mathrm{M}, \mathrm{v}_{\infty}\right)$
- $\mathrm{M}, \mathrm{v}_{\infty}, \mathrm{v}(\mathrm{r})$ have to be explained
- diagnostic tools have to be developed
- predictions have to be given

Equation of motion in the standard model

$$
\Rightarrow \text { (with } \frac{\partial}{\partial t}=0, \quad 1 \text {-D spherically symmetric) }
$$

Hydro-equations
$\frac{\partial}{\partial t} \rho+\nabla \cdot(\rho \mathbf{v})=0 \quad$ continuity equation
$\frac{\partial}{\partial t}(\rho \mathbf{v})+\nabla \cdot(\rho \mathbf{v} \mathbf{v})=-\nabla p+\rho \mathbf{a}^{\mathrm{ext}}$ momentum equation
\Rightarrow (use continuity equation)
$\frac{\partial}{\partial t} \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{1}{\rho} \nabla p+\mathbf{a}^{\mathrm{ext}} \quad$ equation of motion

$$
4 \pi r^{2} \rho(r) \mathrm{v}(r)=\mathrm{const}=\dot{M} \quad \text { mass-loss rate }
$$

$$
\mathrm{v} \frac{d \mathrm{v}}{d r}=-\frac{1}{\rho(r)} \frac{d p}{d r}+a^{\mathrm{ext}}(r)
$$

$$
p=N k T \text { (equation of state) }=\frac{k T}{\mu m_{\mathrm{H}}} \rho=\mathrm{v}_{\mathrm{s}}^{2} \rho
$$

v_{s} isothermal sound speed, μ mean molecular weight

$$
\Rightarrow \quad \mathrm{v}\left(1-\frac{\mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{v}^{2}}\right) \frac{d \mathrm{v}}{d r}=\frac{2 \mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{r}}-\frac{d \mathrm{v}_{\mathrm{s}}^{2}}{d r}+a^{\mathrm{ext}}
$$

(assumption here: $\mathrm{v}_{\mathrm{s}}^{2} \sim T$ known)

$$
a^{\text {ext }}(r)=-\frac{G M}{r^{2}}(1-\Gamma)+g_{\mathrm{Rad}}^{\text {true cont }}(r)+g_{\mathrm{Rad}}^{\text {line }}(r)
$$

$\Gamma=\frac{g_{\text {Rad }}^{\text {Thomson }}(r)}{g_{\text {grav }}(r)}=$ const is Eddington factor,

Principle idea of line acceleration

$\left.\begin{array}{l}\left.\begin{array}{l}\cos \theta_{\text {in }} \approx 1 \\ \text { isotropic reemission } \\ \left\langle\cos \theta_{\text {out }}\right\rangle\end{array}\right\}=0\end{array}\right\}\langle\Delta P\rangle=\frac{h v_{\text {in }}}{\mathrm{c}}$
$\Rightarrow g_{\text {rad }}=\frac{\langle\Delta P\rangle_{\text {tot }}}{\Delta \mathrm{t} \Delta \mathrm{m}}=\frac{\sum_{\text {all lines }}\langle\Delta P\rangle_{\mathrm{i}}}{\Delta \mathrm{t} \Delta \mathrm{m}}$
a) scattering of continuum light in resonance lines

$$
\begin{aligned}
\Delta P_{\text {radial }}= & P_{\text {in }}-P_{\text {out }} \\
= & \frac{h}{c}\left(v_{\text {in }} \cos \theta_{\text {in }}-v_{\text {out }} \cos \theta_{\text {out }}\right) \\
& \text { absorption reemission }
\end{aligned}
$$

b) momentum transfer from metal ions (fraction 10^{-3}) to bulk plasma $(\mathrm{H} / \mathrm{He})$ via Coulomb collisions (see Springmann \& Pauldrach 1992)

- velocity drift of ions w.r.t. H / He is compensated by frictional force as long as $\mathrm{v}_{\mathrm{D}} / \mathrm{v}_{\mathrm{th}}<1$ (linear regime, "Stokes" law)

$$
R_{i j}^{\mathrm{fric}} \sim G\left(x_{i j}\right) \quad x_{i j}=\sqrt{A_{i j}} \frac{\left|\mathrm{v}_{i}-\mathrm{v}_{j}\right|}{\mathrm{v}_{\mathrm{th}}(\mathrm{prot})} \quad A_{i j} \text { is reduced mass }
$$

Fig. 1. The Chandrasekhar function $G(x)$ which gives the frictional force on test particles by field particles of unit density for an inverse square law of Coulomb interaction. The variable x is essentially the ratio of the velocity of the test particles in the rest frame of the field particles to the thermal velocity of the field particles (see text). The limiting cases are $G(x) \sim x$ for $x \ll 1$ and $G(x) \sim x^{-2}$ for $x \gg 1$
approximate description (supersonic regime) by linear diffusion equation

$$
\begin{aligned}
& \mathrm{v}_{\text {ion }} \frac{d}{d r} \mathrm{v}_{\text {ion }}=g_{\text {Rad }}^{\text {ion }}-\frac{G M}{r^{2}}-\frac{w}{\tau_{i b}} \quad w \text { drift velocity } \\
& \mathrm{v}_{\text {bulk }} \frac{d}{d r} \mathrm{v}_{\text {bulk }}=-\frac{G M}{r^{2}}+\frac{w}{\tau_{b i}} \quad \text { bulk } \approx \mathrm{H} / \mathrm{He}
\end{aligned}
$$

τ relaxation time between collisions
in order to obtain one-component fluid,
$\mathrm{v}_{\text {ion }} \frac{d \mathrm{v}_{\text {ion }}}{d r}=\mathrm{v}_{\text {bulk }} \frac{d \mathrm{v}_{\text {bulk }}}{d r}$
$\Rightarrow w=g_{\text {Rad }}^{\text {ion }}\left(\frac{1}{\tau_{i b}}+\frac{1}{\tau_{b i}}\right)^{-1} \approx g_{\text {Rad }}^{\text {tot }} \frac{\rho_{\mathrm{tot}}}{\rho_{\mathrm{ion}}} \cdot \tau \sim g_{\mathrm{Rad}}^{\mathrm{tot}} \frac{1}{Z} \frac{1}{\rho}$
tot $=$ bulk + ion, Z is metallicity
for low $\rho \sim \frac{\dot{M}}{V}$ and/or low $Z \rightarrow$ drift large \rightarrow runaway
e.g., winds of A-dwarfs, Babel et al. 1995, A\&A 301

The photon-tiring limit

What is the maximum mass-loss rate that can be accelerated???

- mechanical luminosity in wind at infinity is
$L_{\text {wind }}=\dot{M}\left(\frac{\mathrm{v}_{\infty}^{2}}{2}+\frac{G M}{R}\right)=\dot{M}\left(\frac{\mathrm{v}_{\infty}^{2}}{2}+\frac{\mathrm{v}_{\mathrm{esc}}^{2}}{2}\right) \quad$ with $\mathrm{v}_{\mathrm{esc}}=\sqrt{\frac{2 G M}{R}}$
- maximum mass loss, if $L_{\text {wind }}=L_{*} \quad \Rightarrow L(\infty)=0$, star becomes invisible
$\dot{M}_{\max }=\frac{2 L_{*}}{\mathrm{v}_{\infty}^{2}+\mathrm{v}_{\text {esc }}^{2}}$
$\Rightarrow \eta_{\max }=\frac{\dot{M}_{\text {max }} \mathrm{v}_{\infty}}{L / c}=\frac{2 c}{\mathrm{v}_{\infty}\left(1+\left(\frac{\mathrm{v}_{\mathrm{esc}}}{\mathrm{v}_{\infty}}\right)^{2}\right)}$
typical values: $\mathrm{v}_{\infty} \approx 2000 \ldots 3000 \mathrm{~km} / \mathrm{s} \approx 0.01 c, \mathrm{v}_{\mathrm{esc}} / \mathrm{v}_{\infty} \approx 1 / 3 \rightarrow \eta_{\max } \approx 200$
$M_{\text {tir }}$ (Owocki \& Gayley 1997) is maximum mass-loss rate when wind just escapes the gravitational potential, with $\mathrm{v}_{\infty} \rightarrow 0$
$\dot{M}_{\text {tir }}=\frac{2 L_{*}}{\mathrm{v}_{\mathrm{esc}}^{2}}=0.032 \frac{M_{\odot}}{\mathrm{yr}} \frac{L_{*}}{10^{6} L_{\odot}} \frac{R}{R_{\odot}} \frac{M_{\odot}}{M}=0.0012 \frac{M_{\odot}}{\mathrm{yr}} \Gamma_{\mathrm{e}} \frac{R}{R_{\odot}}$

Calculation of the line force

crucial point of the problem

$$
g_{\mathrm{Rad}}^{\mathrm{line}}=\frac{4 \pi}{c \rho} \frac{1}{2} \int_{0}^{\infty} d \nu \int_{-1}^{1} \mu d \mu\left[\chi_{v}^{\mathrm{line}}(r, \mu) I_{v}(r, \mu)-\eta_{v}^{\mathrm{line}}(r, \mu)\right]
$$

\rightarrow (in single-line approximation: no interaction of different lines)

$$
g_{\mathrm{Rad}}^{\operatorname{line}}=\frac{2 \pi}{c \rho} \sum_{\text {lines } \mathrm{i} \text { line }} \int_{-1} d \nu \int_{-1}^{1} \mu d \mu \chi_{\nu}^{\mathrm{i}}(r, \mu) I_{\nu}^{i}(r, \mu)
$$

- two quantities to be known
$>$ force/line in response to χ_{v}
$>$ distribution of lines with χ_{v} and v

The force per line

- super-simplified
- simplified: "Sobolev approximation" : assume that opacities and source functions are constant inside t-integral, i.e., over Doppler-shifted profile function \rightarrow analytic solution possible, purely local
- "exact":
$>$ comoving frame, special cases
$>$ observer's frame, instability

Super-simplified theory

interaction with line at v_{0}, when comoving frame frequency of photon starting at R_{*} with $v_{\text {obs }}$ is equal to v_{0} (finite profile width neglected, interaction probability $=1$)
$v_{\mathrm{CMF}}=v_{\mathrm{obs}}-\frac{v_{0} \mathrm{v}(r)}{c}=: v_{0} \quad$ (Doppler shift, radial photons, $\mu=1$, assumed)
$v_{0}=v_{1}^{\mathrm{obs}}-\frac{v_{0}}{c} \mathrm{v}_{1}(r)$
scattering at larger v requires 'bluer' photons
$\left.v_{0}=v_{2}^{\mathrm{obs}}-\frac{v_{0}}{c} \mathrm{v}_{2}(r)\right\}$
$\Rightarrow \Delta v_{\mathrm{obs}}=\frac{v_{0}}{c} \Delta \mathrm{v}$

Number of photons in interval $\left[v_{1}^{\text {obs }}, v_{2}^{\text {obs }}=v_{1}^{\text {obs }}+\Delta v_{\text {obs }}\right]$ per unit time

$$
\begin{aligned}
& \frac{N_{v} \Delta v}{\Delta t}=\frac{L_{v} \Delta v}{h v_{\mathrm{obs}}} \Rightarrow\left(g_{\mathrm{Rad}}=\frac{\Delta P}{\Delta t \Delta m}\right) \\
& g_{\mathrm{Rad}}=\frac{h v_{\mathrm{obs}}}{\mathrm{c}} \cdot \frac{L_{v} \Delta v}{h v_{\mathrm{obs}}} \cdot \frac{1}{\Delta m}=\left(\Delta v=\frac{v_{0}}{c} \Delta \mathrm{v}\right) \\
& \quad=\frac{L_{v} v_{0}}{c^{2}} \frac{\Delta \mathrm{v}}{\Delta r} \frac{1}{4 \pi r^{2} \rho} \propto \frac{d \mathrm{v}}{d r} \frac{1}{r^{2} \rho}
\end{aligned}
$$

Why $\mathrm{g}_{\mathrm{rad}} \propto \mathrm{dv} / \mathrm{dr}$?

shell of matter with spatial extent $\Delta \mathrm{r}$,
and velocity $\mathrm{v}_{0}+\left(\frac{\mathrm{dv}}{\mathrm{dr}}\right)_{1} \Delta r$
absorption of photons at $v_{0} \pm \delta v$

in frame of matter

photons must start at higher (stellar)
frequencies, are "seen" at $v_{0} \pm \delta v$
in frame of matter because of Doppler-effect.

Let Δv be frequency band contributing to acceleration of matter in Δr

The larger $\frac{\mathrm{dv}}{\mathrm{dr}}$,

- the larger Δv
- the more photons can be absorbed
- the larger the acceleration

$$
\mathrm{g}_{\mathrm{rad}} \propto \frac{\mathrm{dv}}{\mathrm{dr}}
$$

(assuming that each photon is absorbed, i.e., acceleration from optically thick lines)

Accounting for finite interaction probability

$$
g_{\text {rad }}\left(\text { one line at } v_{0}\right)=\frac{L_{v} v_{0}}{c^{2}} \frac{\Delta \mathrm{v}}{\Delta r} \frac{1}{4 \pi r^{2}}
$$

Assumption was: each photon is scattered

Then: $g_{\text {rad }}$ independent of cross-sections, occuption numbers etc. only dependent on hydro-structure and flux distribution

What happens if interaction probability < 1 ?
interaction probability $=1-\mathrm{e}^{-\tau}$, with optical depth τ (see p. 79)

```
\tau>>1 prob = 1
\tau<<1 prob=\tau
```

Now: division in two classes
optically thick lines, $\tau \geq 1 \quad \underset{ }{\approx}$ prob $=1$ (saturation, independent of τ) optically thin lines $\tau<1 \quad \xrightarrow{\approx}$ prob $=\tau$
$\Rightarrow \quad g_{\text {rad }}($ optically thin line $)=\tau \cdot g_{\text {rad }}($ optically thick line $)$

Line acceleration from a line ensemble

$g_{\text {Rad }}^{\text {lota }}(r)=\sum_{\text {licick }} g_{\text {Rad }}^{i}(r)+\sum_{\text {linin }} g_{\text {Rad }}^{j}(r)=$
$=\frac{1}{4 \pi r^{2} c^{2}}\left(\sum_{\text {mick }} L_{v} v_{\mathrm{i}} \frac{d \mathrm{v}}{d r} \frac{1}{k_{1}}+\sum_{\text {thin }} L_{\nu} v_{\mathrm{i}} \frac{d \mathrm{v}}{d r} \frac{\tau_{i}}{\rho}\right)$
$\tau_{\mathrm{i}}=\frac{\bar{\chi}_{\mathrm{L}} \lambda_{\mathrm{i}}}{d \mathrm{v} / d r}=\frac{k_{\mathrm{i}} \rho(r)}{d \mathrm{v} / d r} \quad\left(\right.$ precisely: $\left.k_{\mathrm{i}}=\frac{\bar{\chi}_{\mathrm{L}} \lambda_{\mathrm{i}}}{\rho s_{\mathrm{e}} \mathrm{v}_{\mathrm{th}}}\right)$
\uparrow optical depth of line in "Sobolev theory"
k_{i} is line strength $\sim \frac{\sigma_{\mathrm{i}} n_{\mathrm{i}}(r) \lambda_{\mathrm{i}}}{\rho(r)} \quad \sigma_{\mathrm{i}}$ cross section,
n_{i} lower occup. number of line transition
k_{i} roughly constant in wind!!!
Which line strength corresponds to 'border' $\tau_{\mathrm{i}}=1$?

$$
\begin{array}{r}
1=\frac{k_{1} \rho}{d \mathrm{v} / d r} \quad \Rightarrow \quad k_{1}=\frac{d \mathrm{v} / d r}{\rho} \\
\Rightarrow g_{\text {Rad }}^{\text {tot }}(r)=\frac{1}{4 \pi r^{2} c^{2}}\left(\sum_{k_{1}}^{\sum_{k_{\mathrm{i}}>k_{1}} L_{v} v_{\mathrm{i}}+\sum_{k_{\mathrm{i}}<k_{1}} L_{v} v_{\mathrm{i}} k_{\mathrm{i}}}\right) \\
\text { optically thick optically thin }
\end{array}
$$

Millions of lines

... are present
... and needed!

$$
\begin{aligned}
& g_{\text {Rad }}^{\text {tot }}=\sum_{\text {all lines }} g_{\text {Rad }}^{\mathrm{i}}, \\
& g_{\text {Rad }}^{\text {thin }}=L_{v}^{\mathrm{i}} v_{\mathrm{i}} k_{\mathrm{i}}, \quad k_{\mathrm{i}} \propto \frac{\bar{\chi}_{\mathrm{i}} \lambda_{\mathrm{i}}}{\rho} \quad \text { (line-strength) } \\
& g_{\text {Rad }}^{\text {thick }}=L_{v}^{\mathrm{i}} v_{\mathrm{i}} \frac{d \mathrm{v} / d r}{\rho} \propto L_{v}^{\mathrm{i}} v_{\mathrm{i}} k_{1}
\end{aligned}
$$

The line distribution function

- pioneering work by Castor, Abbott \& Klein (CAK, 1975):
- from glance at CIII atom in LTE, they suggested that ALL line-strengths follow a power-law distribution
- first realistic line-strength distribution function by Kudritzki et al. (1988)
- NOW: couple of MI (Mega lines), 150 ionization stages (H - Zn), NLTE

$$
\begin{aligned}
& \frac{d N(k)}{d k}=k^{\alpha-2}, \quad \alpha \approx 0.6 \ldots 0.7 \\
& +2^{\text {nd }} \text { empirical finding: } \\
& \text { valid in each frequential } \\
& \text { subinterval } \\
& d N(k, v)=-N_{0} f(v) d v k^{\alpha-2} d k
\end{aligned}
$$

Logarithmic plot of line-strength distribution function for an 0-
type wind at 40,000 K and corresponding power-law fit (see Puls et al. 2000, A\&AS 141)

Force/line + line-strength distribution

$$
\begin{aligned}
& \Rightarrow g_{\text {Rad }}^{\text {tot }}(r)=\frac{1}{4 \pi r^{2} c^{2}}\left(k_{1} \sum_{k_{\mathrm{i}}>k_{1}} L_{v} v_{\mathrm{i}}+\sum_{k_{\mathrm{i}}<k_{1}} L_{v} v_{\mathrm{i}} k_{\mathrm{i}}\right) \rightarrow \\
& \rightarrow \frac{1}{4 \pi r^{2} c^{2}}\left(\int_{0}^{\infty} k_{1} \int_{k_{\max }}^{k_{1}} L(v) v d N(k, v)+\int_{0}^{\infty} \int_{k_{1}}^{0} L(v) v k d N(k, v)\right)= \\
& =\frac{N_{0} \int L(v) v f(v) d v}{4 \pi r^{2} c^{2}}(\underbrace{}_{\underbrace{k_{1}}_{\frac{k_{1}}{k_{1} \frac{1}{1-a} k_{1}^{\alpha-1}} \frac{k_{\text {max }}}{k_{1} k^{\alpha-2} d k}+\underbrace{\int_{0}^{\alpha}}_{\frac{1}{\alpha} k_{1}^{\alpha}} k \cdot k^{\alpha-2} d k}}) \\
& \Rightarrow \text { final result }
\end{aligned}
$$

$$
g_{\text {Rad }}^{\text {tot }}(r)=\frac{\text { const }}{4 \pi \mathrm{r}^{2}} k_{1}^{\alpha}
$$

very 'strange' acceleration, non-linear in dv/dr

$$
k_{1}=\frac{d \mathrm{v} / d r}{\rho}=\frac{4 \pi}{\dot{M}} r^{2} \mathrm{v} \frac{d \mathrm{v}}{d r} ; \quad \text { const }=\frac{N_{0} \int L(v) v f(v) d v}{c^{2} \alpha(1-\alpha)}
$$

9.2 Theoretical predictions for line-driven winds

first hydro-solution developed by CAK 1975, ApJ 195, improved for non-radial photons and ionization effects by Pauldrach, Puls \& Kudritzki 1986, A\&A 164 and Friend \& Abbott 1986, ApJ 311
had equation of motion
$\mathrm{v}\left(1-\frac{\mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{v}^{2}}\right) \frac{d \mathrm{v}}{d r}=\frac{2 \mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{r}}-\frac{d \mathrm{v}_{\mathrm{s}}^{2}}{d r}+a^{\text {ext }}(r)$
$a^{\text {ext }}(r)=-\frac{G M}{r^{2}}(1-\Gamma)+g_{/ \text {trud }}^{\text {tru/ } / \text { ont }}(r)+g_{\text {Rad }}^{\text {line }}(r)$
$g_{\text {Rad }}^{\text {line }}(r)=f \cdot \frac{L}{r^{2}} k_{1}^{\alpha}$
$k_{1}=\frac{r^{2} \mathrm{v} d \mathrm{v} / d r}{\dot{M} /(4 \pi)} \quad f=f\left(r, \mathrm{v}, \frac{d \mathrm{v}}{\mathrm{dr}}, \dot{M}\right)$ if all subtleties included
All together
$\mathrm{v}\left(1-\frac{\mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{v}^{2}}\right) \frac{d \mathrm{v}}{d r}=-\frac{G M}{r^{2}}(1-\Gamma)+\frac{2 \mathrm{v}_{\mathrm{s}}^{2}}{\mathrm{r}}-\frac{d \mathrm{v}_{\mathrm{s}}^{2}}{d r}+\frac{f \cdot L}{r^{2}}\left(\frac{\dot{M}}{4 \pi}\right)^{-\alpha}\left(r^{2} \mathrm{v} \frac{d \mathrm{v}}{d r}\right)^{\alpha}$

- non-linear differential equation
- has 'singular point' in analogy to solar wind
- $\mathrm{v}_{\text {crit }} \gg \mathrm{v}_{\mathrm{s}}(100 \ldots 200 \mathrm{~km} / \mathrm{s})$
- solution: iteration of singular point location/velocity, integration inwards and outwards

Approximate solution

(see also Kudritzki et al., 1989, A\&A 219)

- supersonic \rightarrow pressure terms vanish
- radially streaming photons $\rightarrow \mathrm{f}(4 \pi)^{\alpha} \rightarrow$ const

$$
\begin{aligned}
& \mathrm{v} \frac{d \mathrm{v}}{d r}=-\frac{G M}{r^{2}}(1-\Gamma)+\frac{\mathrm{const} \cdot L}{r^{2}} \dot{M}^{-\alpha}\left(r^{2} \mathrm{v} \frac{d \mathrm{v}}{d r}\right)^{\alpha} \\
& \Rightarrow y+A=\mathrm{const} \cdot L \cdot \dot{M}^{-\alpha} y^{\alpha} \Rightarrow y \text { is constant } \\
& \text { with } A=G M(1-\Gamma), \quad y=r^{2} \mathrm{v} \frac{d \mathrm{v}}{d r}
\end{aligned}
$$

graphical solution (Cassinelli et al. 1979, ARAA 17,
Kudritzki et al. 1989)

$y+A=$ const $\cdot L \cdot M^{-\alpha} y^{\alpha} \quad$ equation of motion
and equality of derivatives

$$
1=\text { const } \cdot L \cdot \dot{M}^{-\alpha} \alpha y^{\alpha-1} \text { at critical point } y_{c}
$$

$$
\dot{M}^{-\alpha}=\frac{1}{\operatorname{const} \cdot L \cdot \alpha} y_{c}^{1-\alpha}
$$

in equation of motion at critical point

$$
\begin{aligned}
& y_{c}+A=\frac{1}{\alpha} y_{c}, \quad \text { i.e., } y_{c}\left(1-\frac{1}{\alpha}\right)=-G M(1-\Gamma) \\
& y_{c}=\frac{\alpha}{1-\alpha} G M(1-\Gamma)=y
\end{aligned}
$$

for unique solution, derivatives have to be EQUAL!

Scaling relations for line-driven winds (without rotation)

- $\dot{M} \propto N_{\text {eff }}^{\frac{1}{\alpha^{\prime}}} L^{\frac{1}{\alpha^{\prime}}}(M(1-\Gamma))^{1-\frac{1}{\alpha^{\prime}}} \quad$ scaling law for \dot{M}
- $r^{2} \mathrm{v} \frac{d \mathrm{v}}{d r}=\frac{\alpha}{1-\alpha} G M(1-\Gamma)$
\rightarrow Integration between ∞ and R_{*}
- $\mathrm{v}(r)=\mathrm{v}_{\infty}\left(1-\frac{R_{*}}{r}\right)^{\beta}, \beta=\left\{\begin{array}{l}0.5 \text { for approx. solution, "CAK-velocity law" } \\ 0.8(\mathrm{O}-\text { stars }) \ldots 2(\mathrm{BA}-\mathrm{SG}), \text { see next slide }\end{array}\right.$
- $\mathrm{v}_{\infty}=\left(\frac{\alpha}{1-\alpha}\right)^{\frac{1}{2}}\left(\frac{2 G M(1-\Gamma)}{R_{*}}\right)^{\frac{1}{2}}$ scaling law for v_{∞}
$\bullet \rightarrow \mathrm{v}_{\infty} \approx 2.25 \frac{\alpha}{1-\alpha} \mathrm{v}_{\mathrm{esc}}, \quad$ if all subtleties included
Γ Eddington factor, accounting for acceleration by Thomson-scattering, diminishes effective gravity
$\mathrm{N}_{\text {eff }}$ number of lines effectively driving the wind, dependent on metallicity and spectral type
α (actually, $\alpha-2$) exponent of line-strength distribution function, $0<\alpha<1$ large value: more optically thick lines
$\alpha^{\prime}=\alpha-\delta$, with δ ionization parameter, typical value for O-stars: $\alpha^{\prime} \approx 0.6$

The wind-momentum luminosity relation (WLR)

- use scaling relations for Mdot and v_{∞}, calculate modified wind-momentum rate

$$
\begin{gathered}
\dot{M} \mathrm{v}_{\infty} \propto N_{\mathrm{eff}}^{1 / \alpha^{\prime}} L^{1 / \alpha^{\prime}}(M(1-\Gamma))^{1-1 / \alpha^{\prime}} \frac{(M(1-\Gamma))^{1 / 2}}{R_{*}^{1 / 2}} \\
\dot{M} \mathrm{v}_{\infty} R_{*}^{1 / 2} \propto N_{\mathrm{eff}}^{1 / \alpha^{\prime}} L^{1 / \alpha^{\prime}}(M(1-\Gamma))^{8 / 2-1 / \alpha^{\prime}}
\end{gathered}
$$

- use scaling relations for Mdot and v_{∞}, calculate modified wind-momentum rate

$$
\dot{M} \mathrm{v}_{\infty} R_{*}^{1 / 2} \propto N_{\mathrm{eff}}^{1 / \alpha^{\prime}} L^{1 / \alpha^{\prime}} \quad \text { since }\left(\alpha^{\prime} \approx \frac{2}{3}\right)
$$

independent of M and $\Gamma!!!!!$

$$
\log \left(\dot{M} \mathrm{v}_{\infty} R_{*}^{1 / 2}\right) \approx \frac{1}{\alpha^{\prime}} \log L+\operatorname{const}(z, \text { sp.type })
$$

- stellar winds contain info about
stellar radius!!!

(Kudritzki, Lennon \& Puls 1995)

- (at least) two applications
(1) construct observed WLR, calibrate as a function of spectral type and metallicity ($\mathrm{N}_{\text {eff }}$ and α^{\prime} depend on both parameter)
- independent tool to measure extragalactic distances from wind-properties, Teff and metallicity
(2) compare with theoretical WLR to test validity of radiation driven wind theory

Validity of WLR concept

Theoretical wind-momentum rates as a function of luminosity, as calculated by Vink et al. (2000). Though multi-line effects (line overlaps) are included, the WLR concept (derived from simplified arguments) holds!

Determination of wind-parameters: v_{∞}

P Cygni profile formation

P Cygni profile

$v_{\text {obs }}=v_{0}\left(1+\frac{\mu \mathrm{v}(r)}{c}\right) ; v_{0}$ line frequency in CMF
$\mu \mathrm{v}(r)>0: \quad v_{\text {obs }}>v_{0}$ blue side $\mu \mathrm{v}(r)<0: \quad v_{\text {obs }}<v_{0} \quad$ red side

$$
\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{c}}=\frac{v_{\max }-v_{0}}{v_{0}}=1-\frac{\lambda_{\min }}{\lambda_{0}}
$$

LIM
 Determination of mass-loss rate from H_{α}

Note: Wind parameters can be cast into one quantity

$$
Q=\frac{M}{\left(R_{z} v_{\infty}\right)^{1.5}} \text { or } \quad Q^{\prime}=\frac{M}{R_{*}^{1.5}}
$$

For same values of $\mathrm{Q}^{()}$(albeit different combinations of Mdot, v_{∞} and R_{*}), profiles look almost identical!

H_{α} taken with the Keck HIRES spectrograph, compared with two model calculations adopting $\beta=3$, $v_{\infty}=200 \mathrm{~km} / \mathrm{s}$ and $M d o t=1.7$ and $2.1 \times 10^{-6} \mathrm{M}_{\text {sun }} / \mathrm{yr}$.

Observed WLR

Modified wind momenta of Galactic O-, early B-, mid B- and A-supergiants as a function of luminosity, together with specific WLR obtained from linear regression. (From Kudritzki \& Puls, 2000, ARAA 38).

The line-driven instability

exponential growth of perturbation
$\delta g_{\text {Rad }} \propto \delta v$
[for details, see MacGregor et al. 1979 and Carlberg 1980]

Time dependent hydro-simulations of line-driven winds: Snapshot of density, velocity and temperature structure

average hydro-structure not too different from stationary approx.:
Most line profiles fairly similar, but effect ("clumping")
needs to be accounted for in analysis
(very) hot gas
\rightarrow X-ray emission
(observed!)

From Runacres \& Owocki, 2002, A\&A 381

Density evolution in an unstable wind

X
 X-ray
 "flash"

Chap. 10 Quantitative spectroscopy The exemplary case of hot stars

Determine atmospheric parameters from observed spectrum

Required

$\mathrm{T}_{\text {eff }}, \log \mathrm{g}, \mathrm{R}, \mathrm{Y}_{\mathrm{He}}$, Mdot, $\mathrm{v}_{\infty}, \beta$ (+ metal abundances)
(R stellar radius at $\tau_{\mathrm{R}}=2 / 3$)

also necessary

$\mathrm{v}_{\mathrm{rad}}$ (radial velocity)
$\mathrm{v} \sin \mathrm{i}$ (projected rotational velocity)

Given

- reduced optical spectra (eventually +UV, +IR, +X-ray)
- $\lambda / \Delta \lambda$, resolution of observed spectrum
- Visual brightness V
- distance d (from cluster/association membership), partly rather insecure
- NLTE-code(s), "model grid"

1. Rectify spectrum, i.e. divide by continuum (experience required)
2. Shift observed spectrum to lab wavelengths (use narrow stellar lines as reference):
$\lambda_{\text {lab }} \approx \lambda_{\text {obs }}\left(1-\frac{v_{\text {rad }}}{\mathrm{c}}\right), \quad v_{\text {rad }}$ assumed as positive if object moves away from observer

Alternative set of parameters
$\mathbf{L}, \mathbf{M}, \mathbf{R}$ or
$\mathbf{L}, \mathbf{M}, \mathbf{T}_{\text {eff }}$ or
$\mathbf{T}_{\text {eff }} \log \mathbf{g}, \mathbf{R} \ldots$

- interrelations

$$
\begin{aligned}
& L=4 \pi R_{*}^{2} \sigma_{B} T_{\text {eff }}^{4} \\
& g=\frac{G M}{R_{*}^{2}}
\end{aligned}
$$

- Useful scaling relations

If L, M, R in solar units, then
$R_{*}=\frac{L^{0.5}}{T_{\text {eff }}^{2}} \cdot 3.327 \cdot 10^{7}$
$\log g=\log \left(\frac{M}{R_{*}^{2}} \cdot 2.74 \cdot 10^{4}\right)$
$v_{\text {esc }}=\sqrt{R_{*} g(1-\Gamma) \cdot 1.392 \cdot 10^{11}}$
$\Gamma=s_{\mathrm{e}} T_{\mathrm{eff}}^{4} / g \cdot 1.8913 \cdot 10^{-15}$
$s_{\mathrm{e}}=0.4 \frac{1+I_{\mathrm{He}} Y_{\mathrm{He}}}{1+4 Y_{\mathrm{He}}}$
with I_{He} number of free electrons per Helium atom
rectified optical spectrum, ("blue" and "red") corrected for $\mathrm{v}_{\text {rad }}$, of the late O-SG 19 Cep
___ Hydrogen
...... Helium I

- - - Helium II
in "red":
"strategic" lines to derive atmospheric parameters in hot stars

equivalent width $W_{\lambda}=\int_{\text {line }} \frac{H_{\text {cont }}-H_{\text {line }}(\lambda)}{H_{\text {cont }}} d \lambda=\int_{\text {line }}(1-R(\lambda)) d \lambda$,
area of profile under continuum, $\operatorname{dim}\left[W_{\lambda}\right]=$ Angstrom or milliAngstrom, $m \AA$ corresponds to width of saturated profile $(R(\lambda)=0)$ with same area

LMU
 Determine projected rotational speed $v \sin i$

Use weak metal lines to derive $\mathrm{v} \sin \mathrm{i}$:
Convolve theoretical line with rotational profile.

Convolve finally with instrumental profile

$$
\text { (} \sim \text { Gauss) according }
$$ to spectral resolution

material moves towards obs. -> higher freq

Silv, vsini $=110 \mathrm{~km} / \mathrm{s}$

Silv, vsini $=50 \mathrm{~km} / \mathrm{s}$

Silv, vsini=110 km/s, resol $=4000$

Convolution with rotational and instrumental profile conserves equivalent width!!!
 Recent methods use a Fourier technique to infer vsini

$\mathrm{H} \gamma-\log \mathrm{g}$ and $\mathrm{T}_{\text {eff }}$

Iso-contours of equiv. widths for $\mathrm{H} \gamma$ (from model grid), for solar Helium abundance and (very) thin winds
to derive $\mathrm{T}_{\text {eff }}, \log \mathrm{g}$ and Y_{He}, at least 3 lines have to be fitted in parallel
(if no wind is present):
$\mathbf{H} \gamma$ defines $\log \mathbf{g}$ HeII/HeI define $\mathbf{T}_{\text {eff }}$ absolute strength of $\mathbf{H e}$ lines define $\mathbf{Y}_{\mathbf{H e}}$
eff (for given $\log \mathrm{g}$)
usually, wind emission has to be accounted for (profiles shallower)
(for given $\mathrm{T}_{\text {eff }}$) (for given $\log g$)

degeneracy of profiles: (almost) identical lines for $\mathrm{T}_{\text {eff }}=40,000$ and $\log \mathrm{g}=4.0$ and
$\mathrm{T}_{\text {eff }}=25,000$ and $\log \mathrm{g}=3.2$

wings of Balmer lines (Stark-broadened)
react strongly on electrondensity (as a function of τ) => perfect gravity indicator

__ Hydrogen
...... Helium I

- - -Helium II

derived parameters

$T_{\text {eff }}=31,000 \mathrm{~K}$
$\log g=3.17$
$\log \mathrm{Q}=-12.87$
$Y_{\text {He }}=0.10$
$\beta=1.0$
with $\mathrm{v}_{\infty}=2050 \mathrm{~km} / \mathrm{s}$ we have
$\log \left(M / R_{*}^{1.5}\right)=-7.9$ indicated lines used for fits

$$
\log \left(M / R_{*}^{1.5}\right)=-7.9
$$

analysis via (semi-) automatic methods, based on highdimensional bnodel grids or
genetic algorithms, to optimize the fit

Determination of stellar radius if it cannot be resolved

- IF you believe in stellar evolution models
* use evolutionary tracks to derive M from (measured) $\mathrm{T}_{\text {eff }}$ and $\log \mathrm{g}=>\mathbf{R}$
* transformation of conventional HRD into $\log \mathrm{T}_{\text {eff }}-\log \mathrm{g}$ diagram required
* problematic for evolved massive objects, "mass discrepancy": spectroscopic masses (derived from spectroscopic analysis) and evolutionary masses often not consistent
- IF you know the distance and have theoretical fluxes (from model atmospheres), proceed as follows
-IF you believe in radiation driven wind theory \star use wind-momentum luminosity relation
$V=-2.5 \log \int_{\text {filter }} \mathcal{F}_{\lambda} S_{\lambda} d \lambda+$ const
S_{λ} spectral response of photometric system
absolute flux calibration
$V=0$ corresponds to $\mathcal{F}_{\lambda}=3.66 \cdot 10^{-9} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ at $\lambda_{0}=5,500 \AA$ outside earth's atmosphere
λ_{0} isophotal wavelength such that $\int_{\text {filter }} \mathcal{F}_{\lambda} S_{\lambda} d \lambda \approx \mathcal{F}\left(\lambda_{0}\right) \int_{\text {filter }} S_{\lambda} d \lambda, \int_{\text {filter }} S_{\lambda} d \lambda \approx 2895$ for Johnson V-filter
\Rightarrow
const $=-2.5 \log \left(3.66 \cdot 10^{-9} \cdot 2895\right)=-12.437$
$M_{V}=-2.5 \log \left[\left(\frac{R_{*} R_{\text {sun }}}{10 \mathrm{pc}}\right)^{2} \int_{\text {filter }} \mathcal{F}_{\lambda} S_{\lambda} d \lambda\right]+$ const

$5 \log \mathrm{R}_{*}=29.553+\left(V_{\text {theo }}-M_{V}\right)$
3000
if R_{*} in solar units, M_{v} the absolute visual brightness (dereddened!) and
$\mathrm{V}_{\text {theo }}-2.5 \log \int_{\text {filter }} 4 H_{\lambda} S_{\lambda} d \lambda$ with H_{λ} the theoretical Eddington flux in units of [$\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$]

Alternatively, use bolometric correction (BC)
Calibration for Galactic O-stars:
$B C=M_{\text {Bol }}-M_{V} \approx 27.58-6.8 \log \left(T_{\text {eff }}\right) \quad($ see Martins et al. 2005, A\&A 436)
and definition of $M_{\text {Bol }}$

$$
\begin{aligned}
\log \frac{L}{L_{\odot}} & =4 \log \frac{T_{\text {eff }}}{T_{\text {eff, } \odot}}+2 \log \frac{R_{*}}{R_{\odot}}=0.4\left(M_{\text {Bol }, \odot}-M_{\mathrm{Bol}}\right) \\
\log \frac{R_{*}}{R_{\odot}} & =0.2\left(4.74-M_{\mathrm{Bol}}\right)-2 \log \frac{T_{\text {eff }}}{5770}= \\
& =0.2\left(4.74-M_{\mathrm{V}}-27.58+6.8 \log \left(T_{\text {eff }}\right)\right)-2 \log \frac{T_{\text {eff }}}{5770}= \\
& =2.954-0.2 M_{\mathrm{V}}-0.64 \log \left(T_{\text {eff }}\right) \quad\left[\text { valid only for O-stars with } \mathrm{Z} \quad \approx \mathrm{Z}_{\odot}\right]
\end{aligned}
$$

remember relation between M_{V} and V (distance modulus)

$$
M_{V}=V+5(1-\log d)-A_{V}, \quad d \text { distance in } \mathrm{pc}, A_{V} \text { reddening }
$$

d from parallaxes (if close) or cluster/ association/ galaxy membership (hot stars) (note: clusters/ assoc. radially extended!)

For Galactic objects, use GAIA (if you believe DR2 parallaxes), or compilation by
Roberta Humphreys, 1978, ApJS 38, 309 and/or
Ian Howarth \& Raman Prinja, 1989, ApJS 69, 527

Back to our example

HD 209975 (19 Cep): $\mathrm{M}_{\mathrm{v}}=-5.7$
check: belongs to Cep OB2 Assoc., $\mathrm{d} \approx 0.83 \mathrm{kpc}$ (Gaia parallax: $1.165 \pm 0.15 \mathrm{mas}=0.85 \pm 0.11 \mathrm{kpc}$)

$$
\mathrm{V}=5.11, \mathrm{~A}_{\mathrm{v}}=1.17 \Rightarrow \mathrm{M}_{\mathrm{V}}=-5.65, \mathrm{OK}
$$

From our final model, we calculate $\mathrm{V}_{\text {theo }}=-29.08 \Rightarrow \mathrm{R}=17.4 \mathrm{R}_{\text {sun }}$ (Alternatively, by using $\mathrm{BC}, \mathrm{M}_{\mathrm{V}}$ and $\mathrm{T}_{\text {eff }}=31 \mathrm{kK}$, we would obtain $\mathrm{R}=16.6 \mathrm{R}_{\text {sun }}$)

Finally, from the result of our fine fit, $\log \left(M / R_{*}^{1.5}\right)=-7.9$, we find $\dot{M}=0.91 \cdot 10^{-6} \mathrm{M}_{\text {sun }} / \mathrm{yr}$

Finished, determine metal abundances if required, next star but end of lecture ...

