Radiative processes, stellar atmospheres and winds

Master of Science in Astrophysics - P5.0.2
Master of Science in Physics with main focus on Astrophysics - P4.0.5, P5.2.5, P6.0.5

The Tarantúla Nebula (30 Dor) in the LMC

Content

Part I 1. Prelude: What are stars good for? A brief tour through present hot topics (not complete, personally biased)
2. Quantitative spectroscopy: the astrophysical tool to measure stellar and interstellar properties
3. The radiation field: specific and mean intensity, radiative flux and pressure, Planck function
4. Coupling with matter: opacity, emissivity and the equation of radiative transfer (incl. angular moments)
5. Radiative transfer: simple solutions, spectral lines and limb darkening
6. Stellar atmospheres: basic assumptions, hydrostatic, radiative and local thermodynamic equilibrium, temperature stratification and convection
7. Microscopic theory

1. Line transitions: Einstein-coefficients, line-broadening and curve of growth, continuous processes and scattering
2. Ionization and excitation in LTE: Saha- and Boltzmann-equation
3. Non-LTE: motivation and introduction

Part II Intermezzo: Stellar Atmospheres in practice
A tour de modeling and analysis of stellar atmospheres throughout the HRD
8. Stellar winds - an overview
9. Line driven winds of hot stars - the standard model

1. Radiative line-driving and line-statistics
2. Theoretical predictions for line-driven winds (incl. wind-momentum luminosity relation)
3. Quantitative spectroscopy: stellar/atmospheric parameters and how to determine them, for the exemplary case of hot stars

Literature

- Carroll, B.W., Ostlie, D.A., "An Introduction to Modern Astrophysics", 2nd edition, Pearson International Edition, San Francisco, 2007, Chap. 3,5,8,9
- Mihalas, D., "Stellar atmospheres", 2nd edition, Freeman \& Co., San Francisco, 1978
- Hubeny, I., \& Mihalas, D., "Theory of Stellar Atmospheres", Princeton Univ. Press, 2014
- Unsöld, A., "Physik der Sternatmosphären", 2nd edition, Springer Verlag, Heidelberg, 1968
- Shu, F.H., "The physics of astrophysics, Volume I: radiation", University science books, Mill Valley, 1991
- Rybicki, G.B., Lightman, A., "Radiative Processes in Astrophysics", New York, Wiley, 1979
- Osterbrock, D.E., "Astrophysics of Gaseous Nebulae and Active Galactic Nuclei", University science books, Mill Valley, 1989
- Mihalas, D., Weibel Mihalas, B., "Foundations of Radiation Hydrodynamics", Oxford University Press, New York, 1984
- Cercignani, C., "The Boltzmann Equation and Its Applications", Appl. Math. Sciences 67, Springer, 1987
- Kudritzki, R.-P., Hummer, D.G., "Quantitative spectroscopy of hot stars", Annual Review of Astronomy and Astrophysics, Vol. 28, p. 303, 1990
- Simon-Diaz, S., "A Modern Guide to Quantitative Spectroscopy of Massive OB Stars". In: "Reviews in Frontiers of Modern Astrophysics; From Space Debris to Cosmology", edited by Kabáth, P. et al., p. 155, Springer, 2020, arXiv:2001.04853.
- Sobolev, V.V., "Moving envelopes of stars", Cambridge: Harvard University Press, 1960
- Kudritzki, R.-P., Puls, J., "Winds from hot stars", Annual Review of Astronomy and Astrophysics, Vol. 38, p. 613, 2000
- Puls, J., Vink, J.S., Najarro, F., "Mass loss from hot massive stars", Astronomy \& Astrophysics Review Vol. 16, ISSUE 3, p. 209, Springer, 2008
- Puls, J., "Radiative Transfer in the (Expanding) Atmospheres of Early-Type Stars, and Related Problems", in:
"Radiative Transfer in Stellar and Planetary Atmospheres", Canary Islands Winter School of Astrophysics, Vol. XXIX, Cambridge University Press, 2020, arXiv:2011.02310

Chap. 1 - Prelude

- cosmology, galaxies, dark energy, dark matter, ...

What are stars good for?

- ... and who cares for radiative transfer and stellar atmospheres?
- remember
- galaxies consist of stars (and gas, dust)
- most of the (visible) light originates from stars
- astronomical experiments are (mostly) observations of light: have to understand how it is created and transported

What are stars good for?

- Us!
- (whether this is really good, is another question...)

First stars and reionization

WMAP = Wilkinson Microwave Anisotropy Probe color coding: $\Delta \mathrm{T}$ range $\pm 200 \mu \mathrm{~K}, \Delta \mathrm{~T} / \mathrm{T} \sim$ few 10^{-5} => "anisotropy" of last scattering surface (before recomb.) white bars: polarization vector
\Rightarrow CMB photons scattered at electrons (reionzed gas)
[NOTE: newer data from PLANCK]

- cosmic reionization:
- $\quad z=7.7 \pm 0.8$ (from PLANCK, assuming instantaneous reionization, state 2018)
- $z \approx 11$ (begin) to 7 (from WMAP)
- quasars alone not capable to reionize Universe at that high redshift, since rapid decline in space density for z > 3 (Madau et al.1999, ApJ 514, Fan et al. 2006, ARA\&A 44)

Bromm et al. (2001, ApJ 552)

- (almost) metal free: Pop III
- very massive stars (VMS) with
$1000 \mathrm{M}_{\odot}>\mathrm{M}>100 \mathrm{M}_{\odot}$, L prop. to $\mathrm{M}, \mathrm{T}_{\text {eff }} \sim 100 \mathrm{kK}$
- large H/He ionizing fluxes:
$10^{48}\left(10^{47}\right) \mathrm{H}(\mathrm{He})$ ionizing photons
per second and solar mass
- assume that primordial IMF is heavy, i.e., favours formation of VMS
- then VMS capable to reionize universe alone

But: theoretical models indicate more typical masses around $40 M_{\odot}$ (fragmentation!, Hosokawa et al. 2011), though (much) more massive stars might have formed as well
Present status: Massive stars important for reionization, but not exclusive
see also: Abel et al. 2000, ApJ 540; Bromm et al. 2002, ApJ 564; Cen 2003, ApJ 591; Furnaletto \& Loeb 2005, ApJ 634; Wise \& Abel 2008, ApJ 684; Johnson et al. 2008, Proc IAU Symp 250 (review); Maio et al. 2009, A\&A 503; Maio et al. 2010, MNRAS 407; Weber et al. 2013, A\&A 555
... and many more publications

... might be observable in the NIR

with $\mathrm{a} \geq 30 \mathrm{~m}$ telescope, e.g. via Hell $\lambda 1640 \AA$ (strong ISM recomb. line)
Standard IMF $\quad 1$ Mpc (comoving) Heavy IMF, zero metallicity

Massive \quad mediate-llow-mass stars

- massive stars ($\mathrm{M}_{\text {ZAMs }}>8 \mathrm{M}_{\text {sun }}$)
- short life-times (few to 20 million years)
- end products: core-collapse SNe (sometimes as slow GRBs) \rightarrow neutron stars, black holes (or even complete disruption in case of pair-instability SNe)
- Grav. waves from BH mergers!
- intermediate-/low-mass stars
($0.1 \ldots 0.8 \mathrm{M}_{\text {sun }}<\mathrm{M}_{\text {ZAMs }}<8 \mathrm{M}_{\text {sun }}$)
- long life-times (0.1 to 100 billion years)
- end products: White dwarfs, SNla
- brown dwarfs ($13 \mathrm{M}_{\text {Jupiter }}<\mathrm{M}<0.08 \mathrm{M}_{\text {sun }}$)
- 'failed stars', core temperature not sufficient to ignite H -fusion
- instead, Deuterium and, for higher masses, Lithium fusion

ZAMS: Zero Age Main Sequence MS: Main sequence, core hydrogen burning

low-mass vs. massive star during the MS

- radiative core
- convective envelope
- geometrically thin photosphere
- level populations collisionally dominated \rightarrow Local thermodynamic equilibrium (LTE):

Saha-Boltzmann population

- chromosphere (temp. begins to increase outwards)
- hot corona/thin wind (very low mass-loss rate)
massive star
factor 10... 20 prger than sun factor $10^{4} . . .10^{6}$ more luminous than sun
subsurface convect. zone
radiative envelope

dense wind X-ray, UV, radio radiation
photosphere
(most of optiFal radiation)

- convective core
- radiative envelope with subsurface convection zone
- geometrically thin photosphere + dense wind
- level populations radiatively dominated \rightarrow non-LTE level population
(all transition-probabilities need to be calculated explicitly)

NOTE: evolved objects (red giants and supergiants) and brown dwarfs are fully convective

Examples for current research:

Observations

- ... in all frequency bands
- both earthbound and via satellites
- Gamma-rays (Integral), X-rays (Chandra, XMM-Newton), (E)UV (IUE, HST), optical (VLT), IR (VLT, \rightarrow JWST, \rightarrow ELT) , (sub-) mm (ALMA) , radio (VLA, VLBI, \rightarrow SKAO) ...
- photometry, spectroscopy, polarimetry, interferometry, gravitational waves (aLIGO!)
- current telescopes allow for high S / N and high spatial resolution
- because of their high luminosity, massive stars can be spectroscopically observed not only in the Milky Way, but also in many Local Group (and beyond) galaxies ('record-holder': blue supergiants in NGC 4258 at a distance of ≈ 7.8 Mpc, Kudritzki+ 2013)

Abbreviations:

IUE - International Ultraviolet Explorer HST - Hubbble Space Telescope

VLT - Very Large Telescope (Cerro Paranal, Chile)
JWST - James Webb SpaceTelescope
ELT - Extremely Large Telescope (Cerro Armazones, Chile, 20 km away from VLT))
ALMA - Atacama Large Millimeter/Submillimeter Array (Chajnantor-Plateau, Chile, 5000 m altitude)
VLA - Very Large Array (Socorro, New Mexico, USA)
VLBI - Very Large Baseline Interferometer
SKAO - Square Kilometer Array Observatory (South Africa and Australia)

Examples for current research: Star formation

- Star formation - formation of massive stars
- until 2010, it was not possible to 'make' stars with $M>40 M_{\text {sun }}$

- Radiation pressure barrier for spherical infall:
when core becomes massive, high luminosity heats 'first absorption region', radiation pressure due to re-processed IR radiation stops and reverts accretion flow.

Examples for current research: Star formation

- Star formation - formation of massive stars

- until 2010, it was not possible to 'make' stars with $\mathrm{M}>40 \mathrm{M}_{\text {sun }}$

- Radiation pressure barrier for spherical infall:
when core becomes massive, high luminosity heats 'first absorption region', radiation pressure due to re-processed IR radiation stops and reverts accretion flow.
- If accretion via disk, re-processes radiation-field becomes highly anisotropic, the radial component of the radiative acceleration becomes diminished, and further accretion becomes possible. Stars with $M>40 M_{\text {sun }}\left(\ldots 140 M_{\text {sun }}\right)$ can be formed. (see work by R. Kuiper and collaborators)

Examples for current research: Stellar structure and evolution

- Stellar structure and evolution
- implementation/improved description of various processes, e.g.,
- impact of mass-loss and rotation (mixing!) in massive stars
- generation and impact of B-fields
- convection, mixing processes, core-overshoot etc. still described by simplified approximations in 1-D (e.g., diffusive processes), needs to be studied in 3-D (work in progress)

Ekstroem et al. Galactic Z models

- vrot vs. Teff , for rotating Galactic massive-star models from
Ekström+(2012, 'GENEC') and Brott+ (2011, ‘STERN'), with $\operatorname{vrot}($ initial $) \approx 300 \mathrm{~km} / \mathrm{s}$
- The main difference on the MS is due to the lack (Ekström) and presence (Brott) of assumed internal magnetic fields and the treatment of angular momentum transport.

- NOTE: Even at main sequence, stellar evolution of massive stars unclear in many details!!!!
- Do not believe in statements such as 'stellar evolution is understood'

Examples for current research: Stellar structure and evolution

- Stellar structure and evolution
- NOTE: binarity fraction of Galactic stars

M-stars: 25\%, solar-type: 45\%, A-stars: 55\% (Duchene \& Kraus 2013, review)
O-stars in Galactic clusters:

- 70% of all stars will interact with a companion during their lifetime (Sana+ 2012)
- THUS: needs to be included in evolutionary calculations
- even more approximations regarding tidal effects, mass-transfer, merging ... (e.g., MESA = Modules for Experiments in Stellar Astrophysics, Paxton et al. 2010 and follow-up papers - single stars and binaries, 'binary_c' by Izzard+ 2004/06/09)
- predictions on pulsations
- frequency spectrum of excited oscillations
- period-luminosity relations as a function of metallicity

LMU SS
 Asteroseismology: Revealing the internal structure

- non-radial pulsations: examples for different models
following slides adapted from C. Aerts (Leuven)

Internal behaviour of the oscillations

The oscillation pattern at the surface propagates in a continuous way towards the stellar centre.

Study of the surface patterns hence allows to characterize the oscillation throughout the star.

Probing the interior

The oscillations are standing sound waves that are reflected within a cavity

Different oscillations penetrate to different depths and hence probe different layers

LMU
 Doppler map of the Sun

The Sun oscillates in thousands of non-radial modes with periods of ~ 5 minutes

The Dopplermap shows velocities of the order of some cm/s

Solar frequency spectrum from ESA/NASA satellite

 SoHO: systematics!

Frequency separations in the Sun

Result: internal sound speed and internal rotation could be determined very accurately by means of helioseismic data from SoHO

Internal rotation of the Sun

Solar interior has rigid rotation

(radial) order: number of nodes between center and surface

- β Cep:
low order p - and g -modes
- SPB
slowly pulsating B-stars high order g-modes
- Hipparcos:

29 periodically variable B-supergiants
(Waelkens et al. 1998)

- no instability region predicted at that time
- nowdays: additional region for high order g -mode instability
\rightarrow asteroseismology of evolved massive stars becomes possible
p-modes: pressure
g-modes: gravity
as restoring force

Space Asteroseismology

COROT: COnvection ROtation and planetary Transits
French-European mission (27 cm mirror)
launched December 2006

Kepler: NASA mission (1.2m mirror), launched March 2009

TESS = Transiting Exoplanet Survey Satellite, lense-based mirror $10,5 \mathrm{~cm}$, launched April 2018 (still in operation)

MOST: Canadian mission
($65 \times 65 \times 30 \mathrm{~cm}, 70 \mathrm{~kg}$)
launched in June 2003

BRITE-Constellation:

Canadian-Austrian-Polish mission
(six $20^{3} \mathrm{~cm}$ nano-satellites, 7 kg)
first one launched 2013

asteroseismology of bright (= massive) stars

Examples for current research: End phases of evolution

- End phases
- evolutionary tracks towards 'the end'
- models for SNe and Gamma-ray bursters
- long: >2s
- Collapsar: death of a massive star

Collapsar Scenario for Long (slow) GRB (Woosley 1993)

- massive core (enough to produce a BH)
- removal of hydrogen envelope
- rapidly rotating core (enough to produce an accretion disk)
requires chemically homogeneous evolution of rapidly rotating massive star
- pole hotter than equator (von Zeipel)
- rotational mixing due to meridional circulation (Eddington-Sweet)

Chemically Homogeneous Evolution ...

- ...if rotational mixing during main sequence faster than built-up of chemical gradients due to nuclear fusion (Maeder 1987)
- bluewards evolution directly towards WolfRayet phase (no RSG phase).
Due to meridional circulation, envelope and core are mixed -> no hydrogen envelope
- since no RSG phase, higher angular momentum in the core
(Yoon \& Langer 2005)
$\mathrm{W} / \mathrm{W}_{\mathrm{k}}$: rotational frequency in units of critical one

massive stars as progenitors of high redshift GRBs:

\checkmark early work: Bromm \& Loeb 2002, Ciardi \& Loeb 2001, Kulkarni et al. 2000, Djorgovski et al. 2001, Lamb \& Reichart 2000
\checkmark At low metallicity stars are expected to be rotating faster because of weaker stellar winds

Examples for current research: End phases of evolution

- End phases

- evolutionary tracks towards 'the end'
- models for SNe and Gamma-ray bursters
- models for neutron stars and white dwarfs
- accretion onto black holes
- X-ray binaries ('normal’ star + white dwarf/neutron star/black hole)
- synthetic spectra of SN-remnants in various phases
- observations (now including gravitational waves) and comparison with theory
- first detection of aLIGO was the merger of two black holes with masses around $30 \mathrm{M}_{\text {sun }}$ (Abbott et al. 2016)
- Corresponding theoretical scenario published just before announcement of detection (Marchant+ 2016), predicting one BH merger for 1000 cc-SNe, and a high detection rate with aLIGO

Examples for current research: Impact on environment

- Impact on environment
- cosmic re-ionization and chemical enrichment
- chemical yields (due to SNe and winds)
- ionizing fluxes (for HII regions)
- Planetary nebulae (excited by hot central stars)
- impact of winds on ISM (energy/momentum transfer, triggering of star formation)
- stars and their (exo)planets

Feedback

- massive stars determine energy (kinetic and radiation) and momentum budget of surrounding ISM
- kinetic energy and momèntưm budget via winds (of different strengths, in dependence. of . evolutionary status)
- massive stars enrich environmenț with mietals, via winds and SNe , determine chemo (NGC 7635) in Cassiopeia dynamical evolution of Galaxies (exclusively

wind-blown bubble around

BD+602522 before onset of SNe la)

- in particular: first chemical enrichment of. Universe by First (VMS) Stars .
\rightarrow "FEEDBACK"

Chap. 2 - Quantitative spectroscopy

Experiment in astrophysics = Collecting photons from cosmic objects

Electromagnetic spectrum

Absorption by the Earth's atmosphere

hydrogen Lyman edge
$1 \AA=10^{-8} \mathrm{~cm}=10^{-4} \mu \mathrm{~m}$ (micron); $1 \mathrm{~nm}=10 \AA$
Collecting: earthbound and via satellites!
Note: Most of these photons originate from the atmospheres of stellar(-like) objects.
Even galaxies consist of stars!

AN ATLAS OF STELLAR SPECTRA

WITH AN OUTLINE OF SPECTRAL CLASSIFICATION

Morgan, Keenan, Kellman

Main Sequence B8-A2

He I 4026, which is equal in intensity to K in the $B 8$ dwarf β Per. becomes faunter at B9 and disappears at AO. In the 89 star a Peg HeI $4026=5$ LII 4129 . He I 4471 behaves similarly to HeI 4026

Empirical system
 = >
 Physical system

The singly wonized metallic lines are progressively stri and η Oph than in a Lyr. The spectral type is deter ratios: 88, B9: HeI 4026: Ca.II K, HeI 4026:SIII 4129 , HeI 4471 Mg II 4481: 4385, S. II 4129: MnI 4030-4

Supergiants FO-KS

Accurate spectral types of supergiants cannot be determined by direct comparison with normal giants and dwaris. It is advisable to compare supergiants with a standard sequence of stars of similiar lumnosity. Useful criteria are: Intensity of Hi lines (FO-65), change in appearance

of G -band (FO-KS), growth of $\lambda 4226$ relative to $\mathrm{Hr}(F 5-K 5$), growth of the biend at $\lambda 440 \mathrm{G}$ ($G 5-K 5)$, and the relative intensity of the two blends near $\lambda 4200$ and $\lambda 4176(K 1-K 5)$. The last-named blend degenerates uto a line at K5. Cramer HL-Speed Specia)

Digitized spectra

Fig. 1.-Dwarf-type library stars. Near-IR gaps are excised telluric absorption bands. All spectra have been normalized to 100 at $5450 \AA$. Major tick marks on "Relative Flux" axis are separated by 100 relative units. The M dwarf library stars are displayed with the M giants in Fig. 3.
from Silva \& Cornell, 1992

Spectral lines formed in (quasi-)hydrostatic atmospheres

P-Cygni lines formed in hydrodynamic atmospheres

LMU
 UV spectrum of the O4I(f) supergiant ζ Pup

montage of Copernicus $(\lambda<1500 \AA$, high res. mode, $\Delta \lambda \approx 0.05 \AA$, Morton $\&$ Underhill 1977) and IUE $(\Delta \lambda \approx 0.1 \AA)$ observations

Supernova Type II in different phases

Spectrum of Planetary Nebula

pure emission line spectrum with forbidden lines of O III

From Meatheringham \& Dopita, 1991, ApJS 75
Fig. $1 a$

LMU
 Quasar spectrum in rest frame of quasar

"UV"-spectra of starburst galaxies

galaxy at $\mathrm{z}=2.72$
local
starburst galaxy, wavelengths shifted

From Steidel et al. (1997)

Atmospheres and nebulae - an overview

$n \sim 2 \cdot 10^{6} \mathrm{~cm}^{-3}$

...gives insight into and understanding of our cosmos

Quantitative spectroscopy = quantitative diagnostics of spectra

- provides
- stellar properties, mass, radius, luminosity, energy production, chemical composition, properties of outflows
- properties of (inter) stellar plasmas, temperature, density, excitation, chemical comp., magnetic fields
- INPUT for stellar, galactic and cosmologic evolution and for stellar and galactic structure
- requires
- plasma physics, plasma is "normal" state of atmospheres and interstellar matter (plasma diagnostics, line broadening, influence of magnetic fields,...)
- atomic physics/quantum mechanics, interaction light/matter (micro quantities)
- radiative transfer, interaction light/matter (macroscopic description)
- thermodynamics, thermodynamic equilibria: TE, LTE (local), NLTE (non-local)
- hydrodynamics, atmospheric structure, velocity fields, shockwaves,...

one example ...

atomic levels and allowed transitions ("Grotrian-diagram") in OIV
gf oscillator strength, measures "strength" of transition
(cf. Chap. 7)

Concept of spectral analysis

theory of atmospheres

physical concept

- hydro-/thermodynamics
- atomic physics
- radiative transfer

approximations for specific objects
- geometry, symmetry,
homogeneity, stationarity
synthetic spectrum

model calculations (simulation)
numerical solution of theoretical equations

INPUT of L, M, R, chemical composition

- FLAMES I: high resolution spectroscopy of massive stars in 3 Galactic, 2 LMC and 2 SMC clusters (young and old)
- total of 86 O- and 615 B-stars
- FLAMES II: high resolution spectroscopy of more than 1000 massive stars in Tarantula Nebula (incl. 300 O-type stars)

Major objectives

- rotation and abundances (test rotational mixing)
- stellar mass-loss as a function of metallicity
- binarity/multiplicity (fraction, impact)
- detailed investigation of the closest 'proto-starburst'
summary of FLAMES I results: Evans et al. (2008) summary of FLAMES II results: Evans et al. (2019)

Optical spectrum of a very hot O-star

BI237 O2V (f*) (LMC) - vsini $=140 \mathrm{~km} / \mathrm{s}$

- Synthetic spectra from Rivero-Gonzalez et al. (2012)
red: $\quad \mathrm{HI}$
blue: Hel
green: Hell
orange: NIV
magenta: NV

- Tarantula Nebula (30 Dor) in the LMC
- Largest starburst region in Local Group
- Target of VLT-FLAMES Tarantula survey ('FLAMES II', PI: Chris Evans)
- Cluster R136 contains some of the most massive, hottest, and brightest stars known
- Crowther et al. (2010): 4 stars with initial masses from 165-320 (!!!) M_{\odot}
- problems with IR-photometry (background-correction), lead to overestimated luminosities \rightarrow initial masses become reduced: 140-195 M_{\odot} (Rubio-Diez et al., IAUS 329, 2016, and in prep. for A\&A)

Spectral energy distribution of the most massive stars

in our "neighbourhood" - theory vs. observations

Figure 5. Rectified, ultraviolet (HST/GHRS), visual (HST/FOS) and nearIR (VLT/SINFONI) spectroscopy of the WN 5h star R136a3 together with synthetic UV, optical and near-IR spectra, for $T_{*}=50000 \mathrm{~K}$ (red) and $T_{*}=$ 55000 K (blue). Instrumental broadening is accounted for, plus an additional rotational broadening of $200 \mathrm{~km} \mathrm{~s}^{-1}$.

Chap. 3 - The radiation field

Number of particles in $(\mathbf{r}, \mathbf{r}+d \mathbf{r})$ with momenta $(\mathbf{p}, \mathbf{p}+d \mathbf{p})$ at time t

$f(\mathbf{r}, \mathbf{p}, t)$ is Lorentz-invariant
ii) $\delta N_{0}=f\left(\mathbf{r}_{0}, \mathbf{p}_{0}, t_{0}\right) d^{3} \mathbf{r}_{0} d^{3} \mathbf{p}_{0}$ evolution

$$
\Rightarrow \frac{\partial f}{\partial t}+\sum \frac{\partial f}{\partial r_{i}} \frac{\partial r_{i}}{\partial t}+\sum \frac{\partial f}{\partial p_{i}} \frac{\partial p_{i}}{\partial t}=
$$

For a detailed derivation and discussion, see, e.g.,
Cercignani, C., "The
Boltzmann Equation and Its Applications", Appl. Math.
Sciences 67, Springer, 1987
D/Dt f, Lagrangian derivative

$$
\delta N=f\left(\mathbf{r}_{0}+d \mathbf{r}, \mathbf{p}_{0}+d \mathbf{p}, t_{0}+d t\right) d^{3} \mathbf{r} d^{3} \mathbf{p}
$$

$$
(\dot{p}=F)=f\left(\mathbf{r}_{0}+\mathbf{v} d t, \mathbf{p}_{0}+\mathbf{F} d t, t_{0}+d t\right) d^{3} \mathbf{r} d^{3} \mathbf{p}
$$

Theoretical mechanics: If no collisions, conservation of phase space volume:
$d^{3} \mathbf{r}_{0} d^{3} \mathbf{p}_{0}=d^{3} \mathbf{r} d^{3} \mathbf{p}$
and
$\delta N_{0}=\delta N$ (particles do not "vanish", again no collisions supposed)
$\Rightarrow \quad f(\mathbf{r}, \mathbf{p}, t)=\mathrm{const}, \quad$ if no collisions
$=\underbrace{\frac{\partial f}{\partial t}+(\mathbf{v} \cdot \nabla) f}+\left(\mathbf{F} \cdot \nabla_{p}\right) f=\left\{\begin{array}{cc}0 & \text { Vlasov } \\ \left(\frac{\delta \mathrm{f}}{\delta \mathrm{t}}\right)_{\text {coll }} & \begin{array}{c}\text { Boltzmann } \\ \text { if collisions }\end{array}\end{array}\right.$ total derivative of f measured in fluid frame, at times $\mathrm{t}, \mathrm{t}+\Delta \mathrm{t}$ and positions $\mathrm{r}, \mathbf{r}+\mathbf{v} \Delta \mathrm{t}$

- implications for photon gas

$$
\mathbf{p}=\frac{h v}{c} \mathbf{n}
$$

$$
\begin{aligned}
d^{3} \mathbf{p} & =p^{2} d p d \Omega \leftarrow \text { solid angle with respect to } \mathbf{n} \\
& \text { absolute value } \\
= & \left(\frac{h v}{c}\right)^{2} \frac{h}{c} d v d \Omega=\frac{h^{3}}{c^{3}} v^{2} d v d \Omega
\end{aligned}
$$

$$
\Rightarrow f(\mathbf{r}, \mathbf{p}, t) d^{3} \mathbf{r} d^{3} \mathbf{p}=\frac{h^{3}}{c^{3}} v^{2} f(\mathbf{r}, \mathbf{n}, v, t) d^{3} \mathbf{r} d v d \Omega=
$$

$$
=\Psi(\mathbf{r}, \mathbf{n}, v, t) d^{3} \mathbf{r} d v d \Omega
$$

$\mathrm{p}_{\mathrm{x}}=p \sin \theta \cos \phi$
$\mathrm{p}_{\mathrm{y}}=p \sin \theta \sin \phi$
$\mathrm{p}_{\mathrm{z}}=p \cos \theta$
$J=\operatorname{det}\left(\begin{array}{lll}\frac{\partial p_{x}}{\partial p} & \frac{\partial p_{x}}{\partial \theta} & \frac{\partial p_{x}}{\partial \phi} \\ \frac{\partial p_{y}}{\partial p} & \frac{\partial p_{y}}{\partial \theta} & \frac{\partial p_{y}}{\partial \phi} \\ \partial p_{z} & \partial p_{z} & \partial p_{z}\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}\sin \theta \cos \phi & \operatorname{pos} \theta \cos \phi & -p \sin \theta \sin \phi \\ \sin \theta \sin \phi & \operatorname{pos} \theta \sin \phi & \mathrm{p} \sin \theta \cos \phi \\ \cos \theta & -\mathrm{p} \sin \theta & 0\end{array}\right)$

$$
=(\text { exercise }) \quad p^{2} \sin \theta
$$

$\Rightarrow d^{3} \mathbf{p}=d p_{x} d p_{y} d p_{z}=p^{2} d p \underbrace{\sin \theta d \theta d \phi}_{d \Omega}$

The specific intensity

Number of photons with $v, v+d v$ which propagate through surface element $d \mathbf{S}$ into direction \mathbf{n} and solid angle $d \Omega$, at time t and with velocity c :

$$
\begin{gathered}
=\frac{h^{3} v^{2}}{c^{3}} f(\mathbf{r}, \mathbf{n}, v, t) \cos \theta c d t d S d v d \Omega \\
\varangle(\mathbf{n}, d \mathbf{S})
\end{gathered}
$$

- corresponding energy transport

$$
\delta \mathrm{E}=\mathrm{h} v \delta \mathrm{~N}=\underbrace{\frac{h^{4} v^{3}}{c^{2}} f(\mathbf{r}, \mathbf{n}, v, t)}_{I(\mathbf{r}, \mathbf{n}, v, t)} \cos \theta d S d v d t d \Omega
$$

summarized
$I=\operatorname{ch} v \Psi=\frac{h^{4} v^{3}}{c^{2}} f \quad$ function of $\mathbf{r}, \mathbf{n}, v, t$
specific intensity is radiation energy, which is transported into direction \mathbf{n} through surface $d \mathbf{S}$, per frequency, time and solid angle. specific intensity is a distribution function, and the basic quantity in theory of radiative transfer
invariance of specific intensity
since $\frac{\mathrm{D} f}{\mathrm{Dt}}=0$ without collisions (Vlasov equation) and without $G R$ (i.e., $\mathbf{F} \equiv \mathbf{0}$), we have
$I \sim f$
$\Rightarrow I=$ const in fluid frame, as long as no interaction with matter!

If stationary process, i.e. $\partial / \partial \mathrm{t}=0$, then $\underline{\mathrm{n} \nabla} I=d / d s I=0$,
where $d s$ is path element, i.e.
$I=$ const also spatially!
(this is the major reason for working with specific intensities)

specific intensity is radiation energy with frequencies ($v, v+d v$), which is transported through projected area element docosθ into direction $\underline{\mathbf{n}}$, per time interval dt and solid angle d ω.

$$
\delta E=I(\vec{r}, \vec{n}, v, t) \cos \theta d \sigma d v d t d \omega
$$

Invariance of specific intensity
Consider pencil of light rays which passes through both area elements $\delta \sigma$ (emitter) and $\delta \sigma^{\prime}$ (receiver).

If no energy sinks and sources in between, the amount of energy which passes through both areas is given by
$\delta E=I_{v} \cos \theta d \sigma d t d \omega=$
$\delta E^{\prime}=I^{\prime}{ }_{\nu} \cos \theta^{\prime} d \sigma^{\prime} d t d \omega^{\prime}$, and, cf. figure,
$d \omega=\frac{\text { projected area }}{\text { distance }^{2}}=\frac{\cos \theta^{\prime} d \sigma^{\prime}}{r^{2}}$
$d \omega^{\prime}=\frac{\cos \theta d \sigma}{r^{2}}$
$\Rightarrow I_{v}=I^{\prime}{ }_{v}$, independent of distance
... but energy/unit area in pencil decreases with r^{-2} !

Plane-parallel and spherical symmetries
stars = gaseous spheres => spherical symmetry
BUT rapidly rotating stars (e.g., Be-stars, $\mathrm{v}_{\text {rot }} \approx 300 \ldots 400 \mathrm{~km} / \mathrm{s}$) rotationally flattened, only axis-symmetry can be used

AND atmospheres usually very thin, i.e. $\Delta r / R \ll 1$

example: the sun
$\mathrm{R}_{\text {sun }} \approx 700,000 \mathrm{~km}$
$\Delta \mathrm{r}($ photo $) \approx 300 \mathrm{~km}$
$=>\mathrm{r} / \mathrm{R} \approx 410^{-4}$
BUT corona
$\Delta \mathrm{r} / \mathrm{R}($ corona $) \approx 3$
as long as $\Delta \mathrm{r} / \mathrm{R} \ll 1 \Rightarrow$ plane-parallel symmetry
light ray through atmosphere

lines of constant temperature and density (isocontours)
curvature of atmosphere insignificant for photons' path : $\alpha=\beta$

significant curvature : $\alpha \neq \beta$, spherical symmetry

examples

solar photosphere / cromosphere atmospheres of main sequence stars white dwarfs giants (partly)
atmospheres of supergiants expanding envelopes (stellar winds) of OBA stars, M-giants and supergiants

Co-ordinate systems/symmetries

Cartesian

$\mathbf{r}=x \mathbf{e}_{\mathbf{x}}+y \mathbf{e}_{\mathrm{y}}+z \mathbf{e}_{\mathrm{z}}$
spherical

$\mathbf{r}=\Theta \mathbf{e}_{\Theta}+\Phi \mathbf{e}_{\Phi}+r \mathbf{e}_{\mathbf{r}}$
intensity has direction \mathbf{n} into $d \Omega$
n requires additional angles θ, ϕ with respect to

$$
\mathbf{e}_{\mathrm{x}}, \mathbf{e}_{\mathbf{y}}, \mathbf{e}_{\mathbf{z}} \quad \mathbf{e}_{\Theta}, \mathbf{e}_{\Phi}, \mathbf{e}_{r}
$$

and

$$
\begin{array}{lc}
\theta=\Varangle\left(\mathbf{e}_{\mathbf{z}}, \mathbf{n}\right) & \theta=\Varangle\left(\mathbf{e}_{r}, \mathbf{n}\right) \\
I_{v}(x, y, z, \theta, \phi, t) & I_{v}(\Theta, \Phi, r, \theta, \phi, t
\end{array}
$$

p-p symmetry

$$
\text { independent of azimuthal direction, } \phi
$$

$$
\rightarrow I_{v}(z, \theta, t)
$$

$$
\rightarrow I_{v}(r, \theta, t)
$$

$$
\mathbf{e}_{\mathbf{x}}, \mathbf{e}_{\mathbf{y}}, \mathbf{e}_{\mathbf{z}} \text { right-handed, orthonormal } \mathbf{e}_{\odot}, \mathbf{e}_{\Phi}, \mathbf{e}_{\mathbf{r}}
$$ specific intensity:

$$
I(x, y, z, \mathbf{n}, v, t)
$$

$$
I(\Theta, \Phi, r, \mathbf{n}, v, t)
$$

important symmetries
plane-parallel
physical quantities depend
only on z, e.g.
$I(\mathbf{r}, \mathbf{n}, v, t) \rightarrow I(z, \mathbf{n}, v, t)$
spherically symmetric depend
only on r, e.g.
$I(\mathbf{r}, \mathbf{n}, v, t) \rightarrow I(r, \mathbf{n}, v, t)$

Moments of the specific intensity

1. Mean intensity

$J(\underline{r}, v, t)=\frac{1}{4 \pi} \oint I(\underline{r}, \underline{n}, v, t) d \Omega$ specific intensity, averaged over solid angle

def. of solid angle

 solid angle $=$ ratio between area element (on sphere) and r^{2} total solid angle $=\frac{4 \pi R^{2}}{R^{2}}=4 \pi$$d \Omega$ with $r=1=d A$

$$
\text { urea }=d \theta \times \sin \theta d \phi
$$

$$
d e f=\mu=: \cos \theta
$$

$$
d \mu=-\sin \theta d \theta \quad \Rightarrow \quad d \Omega=-d \mu d \phi
$$

$$
\begin{aligned}
& \text { THus } \\
& J(I, v, t)=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \phi \int_{0 \rightarrow+1}^{\downarrow} I\left(I, \frac{u}{\downarrow}, v_{1} t\right) \underbrace{\sin \theta d \theta}_{-d \mu}
\end{aligned}
$$

In plane-parallel or spherical symmetry:

$$
\begin{aligned}
& \left.I_{v}\left(\int_{2}^{r}, t\right)=\frac{1}{4 \pi} \int_{0}^{2 \pi} d \phi \int_{-1}^{+1} I_{v}\binom{r}{2} \mu, t\right) d \mu= \\
& =\frac{1}{2} \int_{-1}^{+1} I_{v}(\mu) d \mu \quad{ }^{n} 0+4^{4} \text { moment }
\end{aligned}
$$

The Planck function
... on the other hand
energy density (ie., per Volume $d^{3} I$) per $d v$

$$
\begin{aligned}
& \text { (i.e., spectra) }=\operatorname{hv} \oint(\text { distr. function) } d \Omega \\
& \begin{aligned}
u_{v}\left(\begin{array}{l}
r \\
2
\end{array}, t\right) & =\operatorname{hv} \oint \Psi_{v}\left(\begin{array}{r}
r \\
2
\end{array}, \mu, t\right) d \Omega \\
\text { def. } & \frac{1}{c} \oint I_{v}\left(\begin{array}{r}
r \\
2
\end{array}, \mu, t\right) d \Omega=\frac{4 \pi}{c} J_{v}(r, t) \\
\operatorname{dim}\left[u_{y}\right] & =\operatorname{erg~cm}^{-3} H_{2}^{-1} \\
\operatorname{dim}[J v] & =\operatorname{ergcm}^{-2} H_{2}^{-1} \delta^{-1}
\end{aligned}
\end{aligned}
$$

- from thermodynamics, we know spectral energy density of a cavity or black body radiator (in thermodynamic equilibrium, "TE", with isotropic radiation, independent of material)

$$
\begin{aligned}
& u_{v}(T)=\frac{8 \omega h v^{3}}{c^{3}} \frac{1}{e^{h_{v}(k T}-1} \\
\Rightarrow & J_{v}=\frac{c}{4 \sigma} u_{v} \quad \text { and } \quad J_{v}=\frac{1}{2} \int_{-1}^{+1} I_{v} d \mu=I_{v}
\end{aligned}
$$

specific intensity of a cavitylblack body radiator at temperature r

$$
I_{v}^{*}=B_{\nu}(T)=\frac{2 h v^{3}}{c^{2}} \frac{1}{e^{k} \nu\left(k^{T}-1\right.} \quad \text { "Plauck-Function" }
$$

properties of Planck function

- $B_{y}\left(r_{1}\right)>B_{v}\left(r_{2}\right) \quad \forall v_{1}$ if $r_{1}>r_{2}$
i.e., Planck functions do not cross each otter!
- maximum is shifted towards higher wavelengths with decreasing temperature $\frac{V_{\max }}{T}=$ const, Wien's displacement law
- wien regime $\frac{h v}{k T} \gg 1 \Rightarrow B_{v} \approx \frac{2 h v^{3}}{c^{2}} e^{-h v / k T}$
- Rayleigh Jeans $\frac{h v}{k T}<c \Lambda \Rightarrow B_{v} \approx \frac{2 h v^{3}}{c^{2}} \frac{k T}{h v}=\frac{2 v^{2}}{c^{2}} k T$
regime

NOTE: in a number of cases one finds $B_{\lambda} \neq B_{D}$ since $B_{\lambda} d \lambda=B_{v} d \nu$

$$
\begin{aligned}
& \Rightarrow B_{2}=B_{2}\left(\frac{d v}{d \lambda} \left\lvert\,=B_{v} \frac{c}{\lambda^{2}}=\frac{2 h^{2}}{\lambda^{5}} \frac{1}{e^{h c / k T \lambda}-\lambda}\right.\right. \\
& \Rightarrow \operatorname{Max}\left(B_{\lambda}\right) \neq \operatorname{Max}\left(B_{v}\right)!
\end{aligned}
$$

$1^{\text {st }}$ moment: radiative flux
a) general definition
flux: rate of flow of a quantity across a given surface
flux-deusity: flux/unit area, alsocalled flux vector quantity

mass flux $=$ mass density - velocity
ii) \underline{v}^{\prime} arbitrarily oriented with respect to $d \underline{S}$

$$
\begin{aligned}
|\underline{Z}| & =\frac{m}{\Delta t|d S|}=\frac{m}{\Delta t\left|d S_{1}\right|} \frac{\left|d S_{1}\right|}{|d S|}=\frac{m}{v_{0} \mid}\left|v^{\prime}\right| \frac{|d S| \cos \theta}{|d S|} \\
& \uparrow_{v_{\theta} \mid}\left|=\left|v^{\prime}\right| \Delta t\right| d S_{1} \mid
\end{aligned}
$$

\Rightarrow mass flux through $\underline{d S}=\underline{I} \cdot d \underline{S}=S \underbrace{v^{\prime} \cdot d S}_{\left|v^{\prime}\right||d S| \cdot \cos \theta}$ since less material is transported across smaller effective area 1 flow (in same Δt)
iii) mass-loss rate for spherically sym. outflow $\dot{i}=\underbrace{(\rho v)(r)}_{\text {mass flux }} \cdot \underbrace{4 \pi r^{2}}_{\text {surface }} \quad \begin{aligned} & \text { transported masslunit time } \\ & \cos \theta=1 \text { ! }\end{aligned}$
b) application to radiation field

- photon flue through surface $d S$ into direction n and solid angle $d \Omega$ ("radiation pencil")

$$
\frac{\delta N}{d t d v}=(\underbrace{\psi(\underline{r} \underline{n}, v, t) d \Omega}_{\text {number DENSITY }} \cdot \underbrace{c \cdot \underline{n}}_{\text {velocity }}) \cdot d \underline{S}
$$

- netrate of total photon flow across d \underline{S} (ie., contribution of all pencils)

$$
\frac{N}{d t d y}=(c \oint \psi(\underline{I}, \underline{n}, v, t) \underline{n} d \Omega) \cdot d \underline{S}
$$

- net rate of radiant energy flow across $d \underline{S}$

$$
\begin{aligned}
& \frac{E}{d t d v}=(c 4 v \oint \psi(\underline{r}, v, v, t) \underline{n} d \Omega) d \underline{S}= \\
& \text { del. } \quad(\oint I(I, \underline{v}, v, t) \underline{n} d \Omega) d \underline{S} \\
&=\underline{F}_{v}(\underline{r}, t) \cdot d \underline{S}
\end{aligned}
$$

$\underline{I}_{V}(\underline{r}, t)=\oint I_{\nu}(\underline{r}, \underline{n}, t) \underline{n} d \Omega \quad$ radiative flux $\left.\operatorname{dim}\left[F_{V}\right]=\frac{\operatorname{erg}}{\mathrm{cm}^{2} s \mathrm{H}_{2}}=\operatorname{dim}[]_{\nu}\right]$

Vote: Carthesian / spherical co-ordinate system

$$
\begin{aligned}
& \left.\left(\begin{array}{l}
\frac{e}{e} \\
\frac{e}{e} \underline{q} \\
\underline{e}_{r}
\end{array}\right) \cong \text { (locally }\right)\left(\begin{array}{l}
e_{x} \\
\underline{e}_{y} \\
\underline{e}_{2}
\end{array}\right), \quad \begin{array}{l}
\theta_{1} \phi \text { defined } \\
\text { similarly }
\end{array} \\
& \Rightarrow \underline{F}=\left(\begin{array}{c}
F_{x, \theta} \\
F_{y, \Phi} \\
F_{z, r}
\end{array}\right)=\left(\begin{array}{c}
I_{n_{x}} d \Omega \\
\Phi_{n_{y}} d \Omega \\
I n_{2} d \Omega
\end{array}\right)=\int_{0}^{2 \pi} d \phi \sin \phi \int_{-1}^{\cos \phi} d \mu I\left(1-\mu_{\mu}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

$I(r, n, v, t) \Rightarrow I\left(\begin{array}{l}r \\ 2\end{array}, \mu, v_{1}^{t}\right)$ independent of ϕ, $x(\theta), y(\Phi)$ comp. cancel each other (math: $\cos \phi_{1} \sin \phi$ integrals $=0$)

$$
\Rightarrow \underline{\Psi}=\left(0,0,2 \pi \int_{-1}^{\infty} I(r, r, v, t) \mu d \mu\right)
$$

- in analogy to mean intensity $J y=\frac{1}{2} \int_{-1}^{+1} I(\mu) d \mu$ we define the Eddingtonflux

$$
H_{v}\left(\begin{array}{l}
r \\
2
\end{array}, t\right)=\frac{1}{2} \int_{-1}^{11} I_{v}\left(\begin{array}{l}
r \\
2
\end{array}, \mu, t\right) \mu d \mu=\frac{1}{4 \pi} \overparen{T}_{v}\binom{r}{2, t}
$$

"first moment"

- "flux" from a cavity radiator small opening

$$
\begin{aligned}
F_{V}=2 \pi \int_{-1}^{1} I(\mu) \mu d \mu & =2 \sigma \int_{0}^{1} I(\mu) \mu d \mu-2 \sigma \int_{0}^{1} I(-\mu) \mu d \mu \\
& =\mathcal{F}^{+}-F^{-}
\end{aligned}
$$

only photons escaping from radiation $I(\mu), \mu=0 \ldots 1=B_{V}(T)$ isotropic radiation $I(-\mu)=0$
$\Rightarrow \mathcal{F}=\int_{0}^{\infty} \pi B u(T) d y=\pi \cdot \frac{\sigma_{B}}{\pi} T^{4}=\sigma_{B} T^{4}$
REMEMBER Black Body
frequ. integrated specific and mean intensity $\frac{T_{B}}{\pi} T^{4}$ energy density $\frac{4 \sigma_{B}}{C} T^{4}$ flux
$\sigma_{B} \nabla^{4}$

Effective temperature

- total radiative energy loss is flux (outwards directed) times surface area of star = luminosity $L=\mathscr{F}+4 \pi R^{2}$
$\operatorname{dim}[L]=\mathrm{erg} / \mathrm{s}$ (units of power), $L_{\text {sun }}=3.8310^{33} \mathrm{erg} / \mathrm{s}$
- definition: "effective temperature" is temperature of a star with luminosity L at radius R_{*}, if it were a black body (semi-open cavity?)
- $T_{\text {eff }}$ corresponds roughly to stellar surface temperature (more precise \rightarrow later)

$$
L=: \sigma_{B} T_{\mathrm{eff}}^{4} 4 \pi R^{2} \text { or } T_{\mathrm{eff}}=\left(L / \sigma_{B} 4 \pi R^{2}\right)^{1 / 4}
$$

proof if no extinction, totally emitted stellar energy remains conserved

$$
\begin{aligned}
& L=\text { cons }=\mathcal{F}_{v}^{+}\left(R_{x}\right) \cdot 4 \pi R_{x}^{2} \stackrel{!}{=} \int_{v}^{\text {obs }}(d) 4 \pi d^{2} \\
& \Rightarrow \delta_{v}^{\text {oles }}(d)=\mathcal{F}_{v}^{+}\left(R_{x}\right) \frac{R_{x}^{2}}{d^{2}} \quad \text { q.e.d. }
\end{aligned}
$$

("quadratic dilution")
iv) Solar constant see exercise
v) exercise

How many L_{θ} is emitted by a typical θ-supergiant with ref $=40,000 \mathrm{~K}$ and $R_{x}=20 R_{0}$?
where is its spectral maximum?
$2^{\text {nd }}$ moment: radiation pressure (stress) tensor
$P_{i j}$ is net flux of momentum, in the $j-t h$ direction, through a unit area oriented perpendicular to the ith direction (per unit time and frequency)

- this is just the general definition of "pressure" in any fluid

$$
\begin{aligned}
& P_{i j}(r, v, t)=\oint \\
& \underbrace{\psi(r, n, v, t)\left(\frac{h_{v}}{c} n_{j}\right)}_{\text {transported quantity }} \underbrace{\left(c \cdot n_{i}\right)}_{\text {velocity }} d \Omega \\
&=\text { distrib. function momentum }
\end{aligned} \quad \begin{aligned}
& \text { deft } \\
& \stackrel{1}{c} \oint I(r, n, v, t) n_{i} n_{j} d \Omega
\end{aligned}
$$

- $P_{i j}=P_{j i}$ generally
- Now p-p/sph. symmetry
from def. of $n_{i}, i=1,3 \quad P_{i j}=0$ for $i \neq j$

$$
P=\left(\begin{array}{ccc}
P_{R} & 0 & 0 \\
0 & P_{R} & 0 \\
0 & 0 & P_{R}
\end{array}\right)-\frac{1}{2}\left(\begin{array}{ccc}
3 p_{R}-u & 0 & 0 \\
0 & 3 p_{R}-u & 0 \\
0 & 0 & 0
\end{array}\right)
$$

with respect to

$$
\left(\underline{e}_{x}, \underline{e}_{y}, \underline{e}_{2}\right) \text { or }\left(\underline{e}_{\theta}, e_{\Phi}, \underline{e} r\right)
$$

$P_{R}=\frac{4 \hbar}{C} K \quad$ radiation pressure scalar $\left.u=\frac{4 \pi}{C}\right] \quad$-radiation energy density $K_{v}=\frac{1}{2} \int_{-1}^{+1} I_{\nu}\left(\begin{array}{l}r \\ 2\end{array}, \mu_{1}{ }^{t}\right) \mu^{2} d \mu \quad$ "Ind moment"
Note in p-p/spherical symmetry the radiation pressure tensor is described by only two scalar quantities!
a) isotropic radiation $\quad\left(\begin{array}{l}\rightarrow \text { stellar interior) } \\ \text { cavity radiation }\end{array}\right.$

$$
\begin{aligned}
& I_{\nu}(r, \mu, t) \rightarrow I_{\nu}(r, t) \\
& \left.\begin{array}{l}
K=\frac{I}{2} \int_{-1}^{M} \mu^{2} d \mu \\
J=\frac{I}{2} \int_{-1}^{+1} d \mu
\end{array}\right\} K=\frac{1}{3} J \text { or } p_{R}=\frac{1}{3} u \\
& \Rightarrow P_{V}=\left(\begin{array}{ccc}
P_{R} & 0 & 0 \\
0 & P_{R} & 0 \\
0 & & P_{R}
\end{array}\right) \quad \begin{array}{l}
\text { ONE quality } \\
\text { sufficient }
\end{array}
\end{aligned}
$$

6) mean radiation pressure

$$
\begin{aligned}
\bar{P}_{v} & =\frac{1}{3}\left(P_{n}+P_{22}+P_{33}\right)=\frac{1}{3 c} \oint I \cdot(\underbrace{n_{1} n_{1}+n_{2} n_{2}+n_{3} n_{3}}_{\underline{n^{2}}=1}) \\
& \left.=\frac{1}{3} u_{v}\binom{r}{2}, t\right)
\end{aligned}
$$

C) divergence of radiation pressure tensor

gas pressure \rightarrow pressure force $\sim-\geq p$
here: radiative acceleration = volume forces exerted by radiation field
$(\underline{\nabla} \cdot \stackrel{P}{\underline{P}})_{i}=\sum_{j} \frac{\partial}{\partial x_{j}} P_{i j} \begin{aligned} & \text { eth component of divergence } \\ & \text { (Cartesian) }\end{aligned}$

- pop symmetry $p_{e}, u=f(2)$
only $\frac{\partial}{\partial 2} \neq 0 \Rightarrow$
$(\underline{Q} \cdot \underline{\underline{P}})_{2}=\frac{\partial p R(z, v, t)}{\partial z}$
- spherical symmetry
only ($(\underline{P} \cdot \stackrel{P}{=})_{r}$ has non-vanishing component
$(\underline{Q} \cdot \underline{\underline{P}})_{r}=\frac{\partial P_{R}}{\partial r}+\frac{1}{r}\left(3 P_{R}-u\right)$
So far, this is the only expression which
is different in $p-p$ and spherical symmetry!

For symmetric tensors $T^{i j}(i, j=\Theta, \Phi, r)$ one can prove the following relations (e.g., Mihalas \& Weibel Mihalas, "Foundations of Radiation Hydrodynamics", Appendix) $(\nabla \cdot T)_{r}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} T^{r r}\right)}{\partial r}+f\left(T^{r \Theta}\right)+f\left(T^{r \Phi}\right)-\frac{1}{r}\left(T^{\Theta \Theta}+T^{\Phi \Phi}\right)$
$(\nabla \cdot T)_{\Theta}=\frac{1}{r}\left\{f\left(T^{r \Theta}\right)+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta T^{\Theta \Theta}\right)}{\partial \theta}+f\left(T^{\Theta \Phi}\right)+\frac{1}{r}\left(T^{r \Theta}-\cot \theta T^{\Phi \Phi}\right)\right\}$
$(\nabla \cdot T)_{\Phi}=\frac{1}{r \sin \theta}\left\{f\left(T^{r \Phi}\right)+f\left(T^{\Theta \Phi}\right)+\frac{1}{r \sin \theta} \frac{\partial T^{\Phi \Phi}}{\partial \phi}+f\left(\cot \theta T^{\Theta \Phi}\right)\right\}$
where f are (different) functions of the tensor-elements which are not relevant here.

Since in spherical symmetry the radiation pressure tensor P is diagonal (ie., symmetric), and since p_{R} and u are functions of r alone, we have
$(\nabla \cdot P)_{r}=\frac{1}{r^{2}}\left(2 r P^{r r}+r^{2} \frac{\partial P^{r r}}{\partial r}\right)-\frac{1}{r}\left(P^{\Theta \Theta}+P^{\Phi \Phi}\right)=\frac{\partial P^{r r}}{\partial r}+\frac{1}{r}\left(2 P^{r r}-P^{\Theta \Theta}-P^{\Phi \Phi}\right)$
(which in the isotropic case would yield $(\nabla \cdot P)_{r}=\frac{\partial P^{r r}}{\partial r}=\frac{\partial p_{R}}{\partial r}$)
$(\nabla \cdot P)_{\Theta}=\frac{1}{r^{2} \sin \theta}\left(\cos \theta P^{\Theta \Theta}+\sin \theta \frac{\partial T^{\Theta \Theta}}{\partial \theta}\right)-\frac{1}{r^{2}} \cot \theta P^{\Phi \Phi} \rightarrow 0$ (in spherical symmetry) $(\nabla \cdot P)_{\Phi} \rightarrow 0$ (in spherical symmetry).

Finally, we obtain
$(\nabla \cdot P) \rightarrow(\nabla \cdot P)_{r}=\mathbf{e}_{\mathbf{r}} \cdot\left\{\frac{\partial p_{R}}{\partial r}+\frac{1}{r}\left(2 p_{R}-2\left(p_{R}-\frac{1}{2}\left(3 p_{R}-u\right)\right)\right)\right\}=$ $=\mathbf{e}_{\mathbf{r}} \cdot\left(\frac{\partial p_{R}}{\partial r}+\frac{1}{r}\left(3 p_{R}-u\right)\right)$, q.e.d.

Summarizing comparison:

 from p-p to spherical symmetryspecific intensity and moments similarly defined if $z \rightarrow r$
$I(z, \mu) \rightarrow I(r, \mu)$ with $\mu=\cos \theta$ and $\theta=\Varangle\left(\mathbf{e}_{\mathbf{r}}, \mathbf{n}\right)$ [in the following, v - and t-dependence suppressed] from symmetry about azimuthal direction:
$\mathrm{n}^{\text {th }}$ moment $=\frac{1}{2} \int_{-1}^{+1} I(r, \mu) \mu^{n} \mathrm{~d} \mu, \quad$ as in p-p case when $z \rightarrow r ; \mathrm{n}=0,1,2 \rightarrow J(r), H(r), K(r)$
flux(-density) $\mathscr{F}=\left(\begin{array}{c}0 \\ 0 \\ 4 \pi \mathrm{H}\end{array}\right)$: only r-component different from zero, prop. to Eddington-flux
radiation stress tensor \mathbf{P} : only diagonal elements different from zero
only difference refers to divergence of radiation stress tensor, $\nabla \cdot \mathbf{P}$
in pp-symmetry, only z-component different from zero, and
$(\nabla \cdot \mathbf{P})_{z}=\frac{\partial p_{\mathrm{R}}}{\partial \mathrm{z}}$ with $p_{\mathrm{R}}($ radiation pressure scalar $)=\frac{4 \pi}{c} K(z)$
in spherical symmetry, only r-component different from zero, and
$(\nabla \cdot \mathbf{P})_{r}=\frac{\partial p_{\mathrm{R}}}{\partial r}+\frac{3 p_{\mathrm{R}}-u}{r}$ with u (radiation energy density) $=\frac{4 \pi}{c} J(r)$

Chap. 4 - Coupling with matter

The equation of radiative transfer

- Gad Boltzmann eq. for particle distrib. Junction ff

$$
\left(\frac{\partial}{\partial t}+\underline{v} \cdot \underline{D}+\underline{I} \cdot \underline{Q}_{p}\right) f=\left(\frac{\delta f}{\delta t}\right)_{\text {coll }}
$$

for photons $v=C \cdot \underline{n}, ~ I \equiv 0$ without $g R$

$$
\Rightarrow\left(\frac{\partial}{\partial t}+c \underline{n} \cdot \underline{\square}\right) \psi_{v}=\left(\frac{\delta \psi_{v}}{\delta t}\right) \leftarrow \begin{aligned}
& \text { photon creation / destr. } \\
& \text { coll } \\
& \text { along path in phase } \\
& \text { space }
\end{aligned}
$$

with

$$
\psi_{v}(\underline{r}, \underline{n}, t) d^{3} \underline{r} d v d \Omega=f(r, f, t) d^{3} \underline{r} d^{3} f
$$

and

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}+c \cdot \underline{n} \cdot \underline{D}\right) \frac{I_{v}}{c h v}=\frac{1}{c h y}\left(\frac{\delta I_{v}}{\delta t}\right)_{{ }^{4} \operatorname{col}^{n}} \\
\Rightarrow & \left(\frac{1}{c} \frac{\partial}{\partial t}+\underline{n \cdot \underline{D}}\right) I_{v}=\left(\frac{\delta I_{v}}{d s}\right)_{4 c_{c o l}}=\frac{\delta I_{v}{ }^{e m}-\delta I_{v}^{a b s}}{d s}
\end{aligned}
$$

with

$$
I_{v}=c h v \psi_{v}, \quad d s=c \cdot \delta t
$$

Equation of radiative transfer for specific intensity

Emissivity and opacity
a) vacuum
\rightarrow no "collisions" \rightarrow Vlasovequation

$$
\rightarrow\left[\frac{1}{C} \frac{\partial}{\partial \alpha}+\underline{u} \cdot \underline{D}\right] I=0
$$

stationary

$$
(\underset{r}{n \cdot D}) I=\frac{d}{d s} I=0 \Rightarrow I=\text { const } \quad(c s \cdot C h a p 3)
$$

directional
derivative
b) energy gain by emission add energy to ray (matter ind radiates) by emission/ photon creation

$$
\begin{aligned}
\delta E_{v}^{+}=\delta E_{v}^{\mathrm{em}} & \stackrel{\operatorname{def}}{=} \eta_{v}(I, n, t) d V d \Omega d v d t \\
& -\eta v(r, n, t) \underbrace{\underbrace{\operatorname{nos} \theta d s}}_{d V} \cdot d s d \Omega d v d t
\end{aligned}
$$

compare with def. of specific energy $\delta E_{v}=I_{v}(I, n, t) \cos \theta d S d \Omega d v d t$
$\Rightarrow \delta I_{v}^{e m}=\eta_{v} d s \quad$ macroscopic emission coefficient $\operatorname{dim}\left[\eta_{v}\right]=\operatorname{ergcm} \operatorname{cm}^{-3} \operatorname{si}^{-1} \eta_{2^{-1} \delta^{-1}}$
c) energy loss by absorption
remove energy from ray (matter indVabsorbs) by absorption / photon distruction
NOTE i) energy gain/emission property of
interacting matter
ii) BUT: energy loss must depend on properties of matter and radiation, since no radiation field \Rightarrow no loss
no matter $\quad \Rightarrow$ no loss
THAles following definition

$$
\delta E_{y}^{-}=\delta E_{v}^{a b s}=\left(X_{v} I_{y}\right)(I, \underline{n}, t) \cos \theta d S d s d \Omega d \nu d t
$$

$$
\delta I_{v}^{a b s}=\chi_{v} I_{v} d s
$$

X_{y} absorption coefficient or opacity

$$
\operatorname{dim}\left[x_{y}\right]=\mathrm{cm}^{-1}
$$

c) optical depth
define $d \tau_{v}=\chi_{v} d s \rightarrow \tau_{v}(s)=\int_{0}^{s} x_{\nu}(s) d s$
$\delta I_{v}^{a b s}=I_{v} d \tau_{v} \quad$ the higher τ_{3} the move is absorbed
the more is absorbed
$\lim \left[\tau_{v}\right]$ dimensionless
interpretation later
e) emission and absorption in parallel

$$
\left(\frac{\delta I_{v}}{d s}\right)_{c o u}=\frac{\delta I_{v}^{e m}-\delta I_{v}^{a b s}}{d s}=\eta_{v}-\chi_{v} I_{v}
$$

\Rightarrow finally

$$
\left(\frac{1}{c} \frac{\partial}{\partial t}+\underline{n}-\underline{D}\right) I_{v}=\varphi_{v}-x_{v} I_{y}
$$

$\eta v_{1} x_{v}$ depend on microphysics of interacting mather

NOTE - in static media η_{v}, x_{v} (mostly) isotropic

- in moving media: Dopplereffect matter "sees" light at frequencies different than the observer \Rightarrow dependency on angle

The equation of transfer for specific geometries
a) plane-parallel symmetry $d_{2}=\mu d s$

$$
\rightarrow(n \cdot P)=\frac{d}{d s}=\mu \frac{d}{d z}
$$

$$
\left(\frac{1}{c} \frac{\partial}{\partial t}+\mu \frac{\partial}{\partial 2}\right) I_{v}\left(2, \mu_{1} t\right)=\mu_{v}-x_{v} I_{v}
$$

6) spherical symmetry along $d s, \mu \neq$ const

$$
\begin{aligned}
& (n-\underline{\square})=\frac{d}{d s}=\frac{\partial}{\mu \frac{\partial}{\partial r}+\frac{1-\mu^{2}}{r} \frac{\partial}{\partial \mu}} \\
& \left(\frac{1}{c} \frac{\partial}{\partial t}+\mu \frac{\partial}{\partial r}+\frac{1-\mu^{2}}{r} \frac{\partial}{\partial \mu}\right) I_{\nu}(r, \mu, t)=\varphi_{v}-x_{\nu} I_{v}
\end{aligned}
$$

c) in general

$$
\left[\frac{\partial}{\partial t}, \frac{\partial}{\partial r}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \Phi}, \frac{\partial}{\partial \mu}, \frac{\partial}{\partial \phi}\right] I_{\nu}(\theta, \Phi, r, \mu, \phi, t)
$$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d s}=\left.\frac{d}{d r}\right|_{p}=\left.\frac{\partial r}{\partial 2}\right|_{p} \frac{\partial}{\partial r}+\left.\frac{\partial \mu}{\partial z}\right|_{p} \frac{\partial}{\partial \mu} \\
& r^{2}=2^{2}+\left.p^{2} \rightarrow \frac{\partial r}{\partial 2}\right|_{p}-\frac{2}{r}=\mu \\
& \mu=\frac{2}{\left.\left(2^{2}+p^{2}\right)^{\frac{1}{2}} \rightarrow \frac{\partial \mu}{\partial z}\right|_{p}=\frac{1}{r}-\frac{2^{2}}{r^{3}}=\frac{1}{r}\left(1-\mu^{2}\right)} \\
& \Rightarrow n \cdot \underline{n}=\frac{d}{d s}=\mu \frac{\partial}{\partial r}+\frac{1-\mu^{2}}{r} \frac{\partial}{\partial \mu} \\
& \left\|\left(\frac{1}{c} \frac{\partial}{\partial t}+\mu \frac{\partial}{\partial r}+\frac{1-\mu^{2}}{r} \frac{\partial}{\partial \mu}\right) I\left(r, \mu_{\nu} t\right)=\mu_{v}-\chi_{\nu} I_{\nu}\right\|
\end{aligned}
$$

General (without proof) for θ, Φ, r

$$
\begin{aligned}
\left(\frac{1}{c} \frac{\partial}{\partial t}\right. & +\mu \frac{\partial}{\partial r}+\frac{\gamma \partial}{r} \frac{\partial}{\partial \theta}+\frac{\sigma}{r \sin \theta} \frac{\partial}{\partial \phi} \\
& \left.+\frac{1-\mu^{2}}{r} \frac{\partial}{\partial \mu}-\frac{\sigma \cot \theta}{r} \frac{\partial}{\partial \phi}\right) I_{r}\left(\theta, \phi_{1} \phi_{1}, \mu, \phi_{1} v_{1} r\right) \\
& =u_{v}-x_{v} I_{y}
\end{aligned}
$$

72

Source function
transfer equation

$$
\left.\left(\frac{1}{c} \frac{\partial}{\partial f}+\underline{n} \cdot \underline{\nabla}\right) I_{v}=\eta_{v}-x_{v} I_{v} \right\rvert\, \frac{1}{x_{v}}
$$

vow: stationary, $d \tau_{v}=x_{y} d s, \frac{\partial}{\partial s}=n \cdot I$
$\Rightarrow \frac{d}{x_{i} d s} I_{v}=\frac{d}{d \tau_{y}} I_{v}=\frac{\eta_{v}}{x_{v}}-I_{y} \stackrel{\text { def }}{=} S_{y}-I_{y}$
compact form of transfer equation $\frac{d I_{y}}{d \tau_{v}}=S_{V}-I_{v}$ with source function S_{y}

- valid in any geometry, if stationary $+\frac{d}{d \tau_{y}}=\frac{n \cdot D}{x_{y}}$
- Physical inter pretation
- later we will show that incan free path of photons corresponds to $\tau_{y}=1$

$$
\begin{aligned}
& \Rightarrow 1 \approx x_{v} \Delta s, \quad \Delta s=\frac{1}{x_{v}} \\
& \Rightarrow s_{v}=\frac{\eta_{v}}{x_{v}}=\eta_{v} \Delta s
\end{aligned}
$$

source function corresponds to emitted intensity $\delta I_{v}^{\text {em }}$ over mean free path

Kerch hodf-Planck law

- assume thermodynamic equilibrium (TE)
\rightarrow radiation field homogeneous stationary

$$
\rightarrow\left(\frac{1}{c} \frac{\partial}{\partial t}+\underline{n} \underline{\nabla}\right)=0
$$

intensity Planck - Junction
or other way round
$T E=\eta_{v}{ }^{*}=x_{\nu}^{*} B_{v}(\sigma) \quad$ [only one quantity to be specified]

True absorption and scattering

"true" absorption processes:

scattering:
radiation energy => thermal pool
if not TE, temperature $T(r)$ is changed
examples: photo-ionization
bound-bound absorption with subsequent collisional de-excitation
no interaction with thermal pool absorbed photon energy is directly reemitted (as photon) no influence on $T(r)$
But direction \underline{n}-> \underline{n} ' is changed (change in frequency mostly small)
examples: Thomson scattering at free electrons
Rayleigh scattering at atoms and molecules resonance line scattering

ESSENTIAL POINT

true processes:
localized interaction with thermal pool, drive physical conditions into local equilibrium often (e.g., in LTE - page 127/130): $\eta_{v}($ true $)=\kappa_{v} B_{v}(T)$
scattering processes: (almost) no influence on local thermodynamic properties of plasma propagate information of radiation field (sometimes over large distances)
$\eta_{\mathrm{v}}($ Thomson $)=\sigma_{T H} J_{\mathrm{v}}(->$ next page $)$

Thomson scattering

- limiting case for long wavelengths of
klein-Nishima scattering
- almost freq. independent
- major source of scattering opacity in \}ot stars (as long as enough free electrons and hydrogen ionized)
- dipol characteristics not important, isotropic approximation sufficient

$$
\begin{gathered}
T_{v}(I, \mu) \rightarrow \sigma(r)=u_{e}(r) \sigma_{e}, \\
\sigma_{e}=\frac{8 \pi_{e}^{4}}{3 m_{e}^{2} u^{4}}=6.65 \cdot 10^{-25} \mathrm{~cm}^{2} \\
\eta^{T H}=\sigma_{e} u_{e}(r) \cdot J_{v}(r)
\end{gathered}
$$

"coherent scattering", $V_{\text {abs }}=V_{\text {em }}$

Motivation - energy conservation of scattering, with $\chi_{v}=\sigma_{v}$, and assuming isotropic scattering
absorbed energy/area element $\propto \int \sigma_{\nu} I_{\nu} d \Omega=\sigma_{v} 4 \pi J_{v}$
emitted energy/area element $\propto \int \eta_{\nu} d \Omega=\eta_{\nu} 4 \pi$
$\Rightarrow \quad \eta_{v}=\sigma_{v} J_{v}$

Total continuum opacity / source function

$$
\begin{aligned}
& x_{v}=k_{v}^{+}+\sigma_{v} \quad(t \times \text { true }) \\
& \left.\eta_{v}=k_{v}^{+} B_{v}(T)+\sigma_{v}\right] v \\
& \left.\rightarrow S_{v}^{\text {cont }}=\frac{k_{v}^{+} B_{v}+\sigma_{v} J_{v}}{k_{v}^{+}+\sigma_{v}} \rightarrow\left(1-S_{v}^{T H}\right) B_{v}+S_{v}^{T H}\right]_{v} \text { scat } \\
& \quad S_{v}^{T H}=\frac{\sigma_{e} u e}{k_{v}^{+}+\sigma_{e} u_{e}}
\end{aligned}
$$

Moments of the transfer equation
transfer equation (\equiv Boltzmann equation with $I=0$)

$$
\left(\frac{1}{c} \frac{\partial}{\partial t}+\underline{n} \cdot \underline{D}\right) I_{v}=\eta_{v}-x_{v} I_{v}
$$

Oth moment: $\oint d \Omega$
note: $\frac{n}{(t, r, n \text { independent variables here })}$

- integrate transfer equation over $d \Omega$

$$
\frac{4 \pi}{c} \frac{\partial}{\partial t} J_{v}+\Omega \cdot \tilde{甘}_{v}=\oint\left(\eta_{v}-x_{v} I_{v}\right) d \Omega
$$

- if $\chi_{v,}, 4 v$ istropic, $\left.\rightarrow=4 \pi\left(\eta v-x_{v}\right] v\right)$
i.e., no velocity fields
- Now frequency integration

$$
\frac{4 \pi}{C} \frac{\partial}{\partial t} J(\underline{r}, t)+\underline{D} \cdot \underline{F}(r, t)=\int_{0}^{\infty} d y \oint\left(\eta_{y}-x_{y} I_{y}\right) d \Omega
$$

total rad. energy added and removed

- IF energy transported by radiation alone (ie., no convection) and no energy is created (which is true for stellar at mospheres)
\Rightarrow
$\int_{0}^{\infty} d v \oint^{\infty}\left(\eta_{v}-x_{v} I_{v}\right) d \Omega=0 \quad$ "radiative equilibrium" $\xrightarrow[\text { atm. }]{\text { static }} \int_{0}^{\infty} d v\left(\eta_{v}-\chi_{v} J_{v}\right)=\int_{0}^{\infty} d v \chi_{y}\left(s_{v}-J_{v}\right)=0$
- if radiation field time independent

- radiative equilibrium and flux conservation equivalent formulations, are used to calculate $\Gamma(r)$

0th moment: frequency-dependent, stationary and static

$$
\nabla \cdot \mathscr{F}_{v}=4 \pi\left(\eta_{v}-\chi_{v} J_{v}\right)
$$

static: $\mathbf{v = 0}$ (or $\mathrm{v} \ll \mathrm{v}_{\text {sound }}$)
stationary: time-independent, $\partial / \partial \mathrm{t}=0$

Mst moment : $\quad \oint \underline{n} d \Omega / c$

$$
\oint \frac{d \Omega}{c}\left(n \frac{1}{c} \frac{\partial}{\partial t}+\underline{n} \cdot \underline{D}\right) I_{v}=\frac{1}{c} \phi\left(\psi_{v}-x_{v} I_{v}\right) n d \Omega
$$

\rightarrow

$$
\frac{1}{c^{2}} \frac{\partial}{\partial t} \tilde{F}_{v}+\underset{\substack{\nabla \\ \text { Tensor, ct. crap. } 3}}{ } P_{v}=\frac{1}{c} \oint\left(\eta_{v}-\chi_{v} I_{v}\right) \underline{u} d \Omega
$$

frequency integrated analogous

- can be shown
$\frac{1}{c} \int_{0}^{\infty} d y \phi x_{v} I_{v} \underline{n} d \Omega$ is force/Volume, by
$=f \mathrm{rad}(I)$ radiation on matter
"radiation force" (momentum transfer photons \rightarrow matter via absorption)
$\frac{\text { force }}{\text { volume }} \cdot \frac{1}{\rho}=\frac{\text { force }}{\text { mass }}=$ grad "radiative acceleration" and

$$
\int d v \oint n_{v} n d \Omega=0 \quad \begin{aligned}
& \text { beccense of forelaft symmetry } \\
& \\
& \text { of emission process (even in } v-d
\end{aligned}
$$ of emission process (even in v-fields)

- in total

$$
\begin{aligned}
\frac{1}{c^{2}} \frac{\partial}{\partial t} \hat{f}(I, t)+\underline{D} \cdot P(I, t) & =-\frac{1}{c} \int d v \oint x_{v} I_{v} \underline{n} d \Omega \\
& =-\rho \operatorname{grad}(I)
\end{aligned}
$$

- stationary

$$
\underline{D \cdot P}(\underline{r})=-g(r) g_{r a d}(r)=-\frac{1}{c} \int_{\infty}^{\infty} d v \phi d R\left(x_{v} I_{v}\right) \underline{n}
$$

- static $\rightarrow-\frac{1}{c} \int_{0}^{\infty} d v x_{\nu} \tilde{F}_{v}(I)$

$$
\xrightarrow[\rightarrow]{1-D} \operatorname{grad}\left(\frac{r}{2}\right)=\frac{4 \pi}{\operatorname{cg}\binom{r}{2}} \int_{0}^{\infty} d v x_{y}\binom{r}{2} H_{y}\binom{r}{2}
$$

1 st moment: frequency-dependent, stationary and static

$$
\nabla \cdot P_{v}=-\frac{1}{c} \chi_{v} \mathscr{F}_{v}
$$

The change in radiative pressure drives the flux!

Summary: moments of the RTE

general case, $0^{\text {th }}$ moment
general case, $1^{\text {st }}$ moment
$\frac{4 \pi}{\mathrm{c}} \frac{\partial}{\partial t} J_{v}+\nabla \cdot \mathscr{F}_{v}=\oint\left(\eta_{v}-\chi_{v} I_{v}\right) \mathrm{d} \Omega$

$$
\frac{1}{\mathrm{c}^{2}} \frac{\partial}{\partial t} \mathscr{F}+\nabla \cdot \mathbf{P}_{v}=\frac{1}{c} \oint\left(\eta_{v}-\chi_{v} I_{v}\right) \mathbf{n d} \Omega
$$

plane-parallel, stationary $(\partial / \partial t=0)$ and static $(\mathrm{v} \approx 0)$
$\frac{\mathrm{d} H_{v}}{\mathrm{~d} z}=\eta_{v}-\chi_{v} J_{v}$
$\frac{\mathrm{d} K_{v}}{\mathrm{~d} z}=-\chi_{v} H_{v}$
spherically symmetric, stationary and (quasi-)static
[no/negligible Dopplershifts \Rightarrow no winds or continuum problems(except for edges)
Otherwise, opacitids become angle-dependent (Doppler-shifts), and cannot be put in front of the integrals]
$\frac{1}{r^{2}} \frac{\partial\left(r^{2} H_{v}\right)}{\partial r}=\eta_{v}-\chi_{v} J_{v} \quad \frac{\partial K_{v}}{\partial r}+\frac{3 K_{v}-J_{v}}{r}=-\chi_{v} H_{v}$
when frequency integrated, $=0$, if ONLY
when frequency integrated, $=-\boldsymbol{f}_{\text {rad }}$ radiation energy transported: radiative equilibrium
\rightarrow (for stationary conditions) flux conservation

Chap. 5 - Radiative transfer: simple solutions

Pure absorption and optical depth

- from here on, stationary description $(\rightarrow$ stellar atmospheres)
- radiative transfer without emission

$$
\begin{array}{lc}
\frac{d I_{v}}{d s}=-\chi_{\nu} I_{v} & \rightarrow I_{\nu}(0) \circlearrowleft\| \| I_{v}^{\prime \prime} x_{y}^{\prime}\| \| \\
\frac{d I_{v}}{I_{y}}=-x_{v}(s) d s & \longleftrightarrow
\end{array}
$$

$$
\ln I_{V}(s)-\ln I_{V}(0)=-\int_{0}^{s} x_{V}\left(s^{\prime}\right) d s^{\prime}
$$

$$
I_{v}(s)=I_{y}(0) e^{-\int_{0}^{s} x_{v}\left(s^{\prime}\right) d s^{\prime}}=I_{v}(0) e^{-\tau_{v}(s)}
$$

$$
I_{v}\left(\tau_{v}\right)=I_{v}(0) e^{-\tau_{y}}
$$

optical depth, central quantity (more precisely: optical thickness)

- since $I_{V} \sim e^{-\tau_{V}}$, we look only until $\tau_{v}=1$ (freq. dep.!)
- Question: What is the average distance over which photons travel?
Answer: $\left\langle\tau_{v}\right\rangle=\int_{\lambda}^{\infty} \tau_{v} p\left(\tau_{v}\right) d \tau_{v}$ expectation probability density function
value $p\left(\tau_{v}\right) d \tau$ gives probability, that photon is absorbed in interval $\tau_{v}, \tau_{v}+d \tau_{v}$
- is probability, that photon is Nor absorbed between $0, \tau_{v}$ and then absorbed between $\tau_{v 1} \tau_{v}+d \tau_{v}$
a) prob., that photon is absorbed

$$
P\left(0, \tau_{v}\right)=\frac{\Delta I(\tau)}{I_{0}}=\frac{I_{0}-I\left(\tau_{v}\right)}{I_{0}}=1-\frac{I\left(\tau_{v}\right)}{I_{0}}
$$

6) prob, that photon is not absorbed

$$
1-P\left(0, \tau_{v}\right)=\frac{I\left(\tau_{v}\right)}{I_{0}}=e^{-\tau_{v}}
$$

c) prob., that photon is absorbed in $\tau_{y}, \tau_{v}+d \tau_{y}$

$$
P\left(\tau_{v}, \tau_{v}+d \tau_{v}\right)=\left|\frac{d I\left(\tau_{v}\right)}{I\left(\tau_{v}\right)}\right|=d \tau_{v}
$$

d) total probability is $e^{-\tau_{r}} d \tau_{y}$

THUS

$$
\left\langle\tau_{y}\right\rangle=\int_{0}^{\infty} \tau_{v} e^{-\tau_{y}} d \tau_{y}=1
$$

mean free path \bar{s} corresponds to $\left\langle\tau_{v}\right\rangle=1$

$$
\Delta \tau_{v}=x_{v} \Delta s \quad \rightarrow \quad \Delta s=\frac{1}{x_{v}} \text {, q.e.d. }
$$

USUAL convention

- Since we "measure" from outside to inside, $\tau_{y}=0$ is defined at outer "edge" of atmosphere $\rightarrow d s=-d_{2}(o r-d r)$
$\rightarrow \underbrace{d \tau_{y}}_{\partial 0!}=-\underbrace{x_{V}\binom{d z}{d r}}_{<0!} \quad \begin{cases}2=0 \\ r=R_{r}, & 2=2 \max \\ \tau_{r}, & r=r_{\max } \\ \tau_{r}=\tau_{\operatorname{rax}}, & \tau_{v}=0\end{cases}$

Formation of spectral lines: the principle

- look always down to $\tau_{v} \approx 1$
- BuT line: x_{y} large $\rightarrow \bar{s}$ small
 cont.: x_{y} small $\rightarrow \bar{s}$ large

$$
T\left(r_{\text {cont }}\right)>T\left(r_{\text {line }}\right)!
$$

"Formal solution"
solve eq. of RT with known source function

- pp geometry

$$
\begin{aligned}
\mu \frac{d I_{y}}{d z} & =\eta_{y}-x_{y} I_{y} \\
\rightarrow \mu \frac{d I_{y}}{d \tau_{v}} & =I_{y}-S_{y} \quad\left(\tau_{v}=0 \text { outside! }\right)
\end{aligned}
$$

- solution with integrating factor $e^{-\tau_{v} / \mu}$ multiply equation, integrate between τ_{1} and τ_{2} τ_{2} (inside) $>\tau_{1}$ (outside)

$$
\Rightarrow
$$

$$
I_{v}\left(\tau_{1}, \mu\right)=I_{y}\left(\tau_{2}, \mu\right) e^{-\left(t_{2}-\tau_{2}\right) \mid \mu}+\int_{\tau_{1}}^{\tau_{2}} \delta_{v}\left(t_{v}\right) e^{-\left(t_{v}-\tau_{11}\right) / \mu} \frac{d t_{v}}{\mu}
$$

$$
\underbrace{>0 \mathrm{~J}}
$$

intensity "emitted" at τ_{2}, loss (abs) by factor $e^{-\Delta \tau}$ $\widehat{\cong}$ pure absorption case

Boundary conditions
a) incident intensity from inside
$\mu>0$ at $\tau_{2}=\tau_{\text {max }}$

- either $I_{y}\left(\tau_{2}=\sigma_{m A_{k}}, \mu\right)=I_{v}^{+}(\mu)$ (eeg., from diffusion approx)
- or "semi-infinite" atmosphere
$\tau_{2}=\tau_{\text {max }} \rightarrow \infty$ with $\lim _{\tau_{y} \rightarrow \infty} I_{v}\left(\tau_{v} \mu\right) e^{-\tau_{v} / \mu}=0$
($I_{y}\left(\tau_{y}, \mu\right)$ increases slower than exp.)

$$
\Rightarrow I_{y}\left(\tau_{v}, \mu\right)=\int_{\tau_{v}}^{\infty} s_{y}(t) e^{-\left(t-\tau_{v}\right) \mid \mu} \frac{d t}{\mu} \quad \mu>0
$$

b) incident intensity from outside $\mu<0$ at $0 y=0$

- usually $I_{v}(0, \mu)=0$ no irradiation from outside (however, binaries!)

$$
\begin{aligned}
\Rightarrow I_{v}\left(\tau_{v}, \mu\right) & =\int_{\tau_{v}}^{0} \delta_{v}(t) e^{-\left(t-\tau_{v}\right) / \mu} \frac{d t}{\mu} \mu<0 \\
& =\int_{0}^{\tau_{v}} \delta_{v}(t) e^{-\left(\tau_{v}-t\right) /(-\mu)} \frac{d t}{(-\mu)} \quad(-\mu)>0
\end{aligned}
$$

c) emergent intensity $=$ observed intensity (if no extinction)

$$
\begin{aligned}
& \tau_{y}=0, \quad \mu>0 \\
& I_{y}^{e m}(\mu)=\int_{0}^{\infty} \delta_{v}(t) e^{-t / \mu} \frac{d t}{\mu}
\end{aligned}
$$

emergent intensity is laplace-transformed of source function!

NOW: suppose that δ_{v} is linear in τ_{ν}, i.e.,

$$
\begin{aligned}
& S_{v}\left(\tau_{v}\right)= S_{v 0}+S_{v_{i}} \cdot \tau_{v} \quad(\text { Taylorexpansion around } \\
&\left.\tau_{v}=0\right)
\end{aligned} \quad \begin{aligned}
\rightarrow I_{v}^{e m}(\mu) & =\int_{0}^{\infty}\left(S_{v o}+S_{v_{i}} \cdot t\right) e^{-t / \mu} \frac{d t}{\mu}=\ldots \ldots \\
& =S_{v o}+S_{v_{1}} \cdot \mu=S_{v}\left(\tau_{v}=\mu\right)
\end{aligned}
$$

Eddington-Barbier-relation

$$
\mathrm{I}_{v}^{\mathrm{em}}(\mu) \approx \mathrm{S}_{v}\left(\tau_{v}=\mu\right)
$$

We "see" source function at location $\tau_{v}=\mu$ (remember: τ_{v} radial quantity) (corresponds to optical depth along path $\tau_{v} / \mu=1$!)

Generalization of principle that we can see only until $\Delta \tau_{v}=1$
i) spectral lines (as before)
for fixed $\mu, \tau_{v} / \mu=1$ is reached further out in lines (compared to continuum)
$\Rightarrow S_{v}^{\text {line }}\left(\tau_{v}{ }^{\text {line }} / \mu=1\right)<S_{v}{ }^{\text {cont }}\left(\tau_{v}{ }^{\text {cont }} / \mu=1\right) \quad$ => "dip" is created

ii) limb darkening
for $\mu=1$ (central ray), we reach maximum in depth (geometrical)
temperature / source function rises with τ
=> central ray: largest source function, limb darkening
iii) "observable" information only from layers with $\tau_{v} \leq 1$ deepest atmospheric layers can be analyzed only indirectly

Solar limb-darkening

Empirical temperature stratification

$$
\begin{aligned}
& \text { Application: solar limb-darkening- } \\
& \text { Had } I_{\nu}^{e m}(\mu)=S_{\nu_{0}}+\mu S_{v_{1}} \\
& \rightarrow \text { LTE } \quad S_{v}=B_{v}, I_{v}^{e m}=B_{v}(0)+\left.\mu \frac{d B_{v}}{d \tau_{\nu}}\right|_{0} \\
& \rightarrow \frac{I_{v}(\mu)}{I_{v}(1)}=\frac{B_{v}(0)+\mu d B_{v} / d \tau_{v}}{B_{v}(0)+d B_{v} / d \tau_{v}} \\
& \begin{array}{ccc}
I_{v}(\mu) / I_{v}(i) \uparrow \\
1 & & \\
\hline \mu & 1 & 1 \\
& & \\
\hline
\end{array} \\
& \begin{array}{l}
\text { measurement } \\
\Rightarrow B_{v}(0),\left.\frac{d B_{v}}{d \tau_{v}}\right|_{0}
\end{array} \\
& \text { (one absolute measurement } \\
& \text { required, e.g., } B_{v}(0) \text {) } \\
& \Rightarrow B_{v}(\tau)=B_{v}(0)+\left.\frac{d B_{v}}{d \tau_{v}}\right|_{0} \cdot \tau=: \frac{2 h_{v} v^{3}}{c^{2}} \frac{1}{e^{h_{v} / k T(\tau)}-1} \\
& \Rightarrow T(\tau) \text {, empirical temperature stratification } \\
& \text { of solar photosphere }
\end{aligned}
$$

empirical temperature structure of solar photosphere by Holweger \& Müller (1974)

Lambda operator

$$
\begin{aligned}
& \text { The Lambda operator } \\
& \text { had mean intensity } \\
& J_{v}=\frac{1}{2} \int_{-1}^{+1} I_{v}(\mu) d \mu=\frac{1}{2} \int_{0}^{1}\left[I_{v}^{+}(\mu)+I^{-}(-\mu)\right] d \mu \xrightarrow[\substack{\text { infinite } \\
\text { atm. }}]{\text { semi }} \\
& \frac{1}{2}\{\int_{0}^{1} d \mu[\underbrace{\int_{\tau_{v}}^{\infty} \delta_{v}(t) e^{-\left(t-\tau_{v}\right) \mid \mu} \frac{d t}{\mu}}_{\text {out wards }}+\underbrace{\left.\int_{0}^{\tau_{v}} S_{v}(t) e^{-\left(\tau_{v}-t\right) t \mu} \frac{d t}{t \mu}\right]}_{\substack{\text { inboards } \\
(I(-\mu))}}\} \\
& =\left(x=\frac{1}{\mu}, \frac{d x}{x}=-\frac{d \mu}{\mu}\right) \\
& \frac{1}{2} \int_{\tau_{v}}^{\infty} d t \delta_{v}(t) \int_{1}^{\infty} e^{-\left(t-\tau_{v}\right) \times \frac{d x}{x}}+\frac{1}{2} \int_{0}^{\tau_{v}} d t \delta_{v}(t) \int_{1}^{\infty} e^{-\left(\tau_{v}-t\right) \times \frac{d x}{x}} \\
& \left(\int_{n}^{\infty} e^{-t \cdot x} \frac{d x}{x}=\int_{t}^{\infty} \frac{e^{-x}}{x} d x-E_{1}(t)\right) \\
& \text { 1stexponential integral } \\
& J_{v}\left(\tau_{v}\right)=\frac{1}{2} \int^{\infty} S_{v}(t) E_{1}\left(\left|t-\tau_{v}\right|\right) d t \quad \text { Karl Schwar2sdild } \\
& \text { with } \Lambda_{\tau}[f]=\frac{1}{2} \int_{0}^{\infty} f(t) E_{1}(|t-\tau|) d t \text { "Lamb Operator" } \\
& J_{v}\left(\tau_{v}\right)=\Lambda_{\tau_{v}}\left(S_{v}\right) \text { or } \quad J=\Lambda(S)
\end{aligned}
$$

Diffusion approximation

The didfusion approximation

- for large optical depths $\quad S_{v} \rightarrow B_{v}$
- Question What is response of radiation field?
- expansion

$$
S_{v}\left(t_{v}\right)=\left.\sum_{n=0}^{\infty} \frac{d^{n} B_{v}}{d \tau_{v}^{v}}\right|_{\tau_{v}}\left(t_{v}-\tau_{v}\right)^{n} / u!
$$

- put into formal solution

$$
\rightarrow I_{v}^{+}\left(\tau_{y}, \mu\right)=\sum_{n=0}^{\infty} \mu^{n} \frac{d^{4} B_{y}}{d \tau_{v}^{v}}=B_{v}\left(\tau_{v}\right)+\mu \frac{d B_{v}}{d \tau_{v}}+\mu^{2} \frac{d^{2} B_{v}}{d \tau_{v}^{2}+\ldots}
$$

$$
I_{v}^{-} \text {analogous, dicflerence } O\left(e^{-\tau_{v}} / \mu\right)
$$

$$
\Rightarrow J_{v}\left(\tau_{v}\right)=\sum_{n=0}^{\infty}(2 n+1)^{-1} \frac{d^{2} g_{v}}{d \tau_{v} v_{v}}=B_{v}\left(\tau_{v}\right)+\frac{1}{3} \frac{d^{2} B_{v}}{d \tau_{v}^{2}}+\text { even }
$$

$$
H_{v}\left(\tau_{v}\right)=\sum_{n=0}^{\infty}(2 n+3)^{-1} \frac{d^{2 n+1} 3_{v}}{d \tau_{v}^{2 n+1}}=\frac{1}{3} \frac{d B_{v}}{d \tau_{v}}+\ldots \text { odd }
$$

$$
K_{v}\left(\tau_{v}\right)=\sum_{n=0}^{\infty}(2 n+3)^{-1} \frac{d^{2 n} B_{v}}{d \tau_{v}^{2 n}}=\frac{1}{3} B_{v}+\frac{1}{5} \frac{d^{2} B_{y}}{d \tau_{v}^{2}+\ldots \text { even }}
$$

$$
\begin{aligned}
& \Rightarrow \text { diffusion approx. for radiation field } \\
& \tau_{v} \gg 1 \text {, use ouly first order } \\
& I_{v}=3_{v}\left(\tau_{v}\right)+\mu \frac{d B_{v}}{d \tau_{v}} \text { required to obtain } H_{v} \neq 0 \\
& J_{v}=B_{v}\left(\tau_{v v}\right. \\
& \left.\begin{array}{l}
H_{v}=\frac{1}{3} \frac{4 B_{v}}{d \tau_{v}}=-\frac{1}{3} \frac{1}{x_{v}} \frac{\partial B_{v}}{\partial T} \frac{d T}{d 2} \\
K_{v}=\frac{1}{3} B_{v}\left(\tau_{v}\right) \quad z
\end{array}\right\} \begin{array}{l}
f_{v}=\frac{K_{v}}{J_{v}}=\frac{1}{3}\left(\tau_{v}>1\right) \\
\text { "Eddington factor" }
\end{array}
\end{aligned}
$$

- $H_{v}=-\frac{1}{3} \frac{1}{x_{v}} \underbrace{\frac{\partial B_{y}}{\partial T}}_{>0} \frac{d T}{d z}$
\Rightarrow in order to transport flux $H_{y}>0, \frac{d T}{d 2}<0$, i.e., temperature must decrease!

The Milne-Eddington model

The Milue-Eddington model for continua with scattering-

- allows understanding of emergent (continuum) fluxes from stellar atmospheres
- can be extended to include lines
- required for curve of growth method (\rightarrow Chap. 7)
assume sourcefunction $(\rightarrow$ page 75)

$$
\left.\begin{array}{rl}
S_{v} & =\left(1-\rho_{v}\right) B_{v}+\rho_{v} J_{v} \quad \text { with } \quad \rho_{v}=\frac{r_{e} u_{e}}{K_{v}^{+}+r_{e} u_{e}} \\
& =: \varepsilon_{v} B_{v}+\left(1-\varepsilon_{v}\right) J_{v}, \varepsilon_{v}=1-\rho_{v}
\end{array}\right\}
$$

$$
B_{v}=a_{v}+b_{v} \cdot \tau_{v}+\text { plane-parallel symmetry }
$$

- Oth moment

$$
\begin{aligned}
\frac{\partial H_{v}}{\partial \tau_{v}} & =J_{v}-\delta_{v}, \quad d \tau_{v}=-\left(k_{v}^{+}+u e \sigma_{e}\right) d z \\
& =J_{v}-\left(\varepsilon_{v} B_{v}+\left(l-\varepsilon_{v}\right) J_{v}\right)=\varepsilon_{v}\left(J_{v}-B_{v}\right)
\end{aligned}
$$

- 1st moment

$$
\frac{\partial K_{v}}{\partial \tau_{v}}=H_{v}
$$

in diffusion approximation, we had

$$
K_{v}=\frac{1}{3} J_{v} \quad\left(\tau_{v} \rightarrow \infty\right)
$$

- Eddington's approximation
(1929, 'The formation
use $K_{v} / y_{v}=\frac{1}{3}$ everywhere of absorption lines')
... hot so wrous

$$
\Rightarrow \frac{\partial K_{v}}{\partial \tau_{v}}=H_{v} \rightarrow \frac{1}{3}\left(\frac{\partial \zeta_{v}}{\partial \tau_{v}}\right)=H_{v}
$$

\Rightarrow (with Oth moment)

$$
\frac{1}{3} \frac{\partial^{2} \gamma_{y}}{\partial \tau_{v}^{2}}=\varepsilon_{v}\left(J_{v}-B_{v}\right)=\frac{1}{3} \frac{\partial^{2}\left(\zeta_{v}-B_{v}\right)}{\partial \tau_{v}^{2}}
$$

since B_{y} linear in τ_{v} !
assume $\varepsilon_{v}=$ const (otherwise similar solution)

$$
J_{v}-B_{v}=\text { cons }{ }^{\prime} \cdot \exp \left(-\left(3 \varepsilon_{v}\right)^{\frac{1}{2}} \tau_{v}\right) \quad\left[\begin{array}{l}
\text { with lower bic. } \\
J_{v} \rightarrow B_{v} \text { for } \tau \rightarrow \infty
\end{array}\right]
$$

- Eddington's approximation implies also
a) $J v(0)=\sqrt{3} H_{v}(\theta) \quad$ (see problem sheet 6)
b) $\frac{\partial k_{v}}{\partial \tau_{y}}=\left.H_{y} \rightarrow \frac{1}{3} \frac{\partial I_{y}}{\partial \tau_{v}}\right|_{0}=H_{v}(0)$

Thus $\left.\frac{1}{\sqrt{3}} \frac{\partial \tau_{v}}{\partial \tau_{v}}\right|_{0}=J_{v}(0)$
\Rightarrow insert in above equation

$$
\begin{aligned}
& \text { cost } \\
\Rightarrow & \frac{b_{v} \mid \sqrt{3}-a_{v}}{\left(1+\varepsilon_{v}^{\frac{1}{2}}\right)} \\
\Rightarrow & a_{v}+b_{v} \tau_{v}+\frac{b \sqrt{3}-a_{v}}{1+\varepsilon_{v}^{\frac{1}{2}}} e^{-\left(3 \varepsilon_{v}\right)^{\frac{1}{2}} \tau_{v}}
\end{aligned}
$$

$$
\begin{aligned}
& J_{v}=a_{v}+b_{v} \tau_{v}+\frac{b_{1} / \sqrt{3}-a_{v}}{1+\varepsilon_{v}^{\frac{1}{2}}} e^{-\left(3 \varepsilon_{v}\right)^{\frac{1}{2}} \tau_{v}} \\
& J_{v}(0)=a_{v}+\frac{b_{v} / \sqrt{3}-a_{v}}{1+\varepsilon_{v} \frac{1}{2}} \\
& H_{v}(0)=\frac{1}{\sqrt{3}} J_{v}(0)
\end{aligned}
$$

- assume isothermal atmosphere, $\mathrm{b}_{\mathrm{v}}=0$ (possible, if gradient not too strong)

$$
\Rightarrow J_{v}(0)=\frac{\varepsilon_{v} \frac{1}{2}}{1+\varepsilon_{v} \frac{1}{2}} a_{y}>B_{v} / 2 \text { for } \varepsilon_{v}=1 \text {, ie. } \sigma=0
$$

$$
\rightarrow \mathrm{J}_{v}(0)<\mathrm{B}_{v}(0)!!!
$$

- Thermalization
only for large arguments of the exponent, we have $J_{v} \approx B_{v}$
$\Rightarrow \approx_{v} \gtrsim \frac{1}{\varepsilon_{v} \frac{1}{2}}$ thermalisation depth
a) $\sigma \ll k^{+} \Rightarrow J_{v}\left(\tau_{v} \geq 1\right) \rightarrow B_{v}$
b) SN remnants: scattering dominated, very large thermalization depth
- pure scattering_ (test case)

$$
\begin{aligned}
& \frac{\partial H_{v}}{\partial \tau_{v}}=J_{v}-S_{v}=0 \quad \text { for } \varepsilon_{v}=0 \quad \text { Flux conservation } \\
& +H_{v}=\frac{1}{3} \frac{\partial B_{v}}{\partial \tau_{v}} \text { from diffusion limit }
\end{aligned}
$$

in Milne Eddington model

$$
H_{v}(0)=\frac{1}{\sqrt{3}}\left(a_{v}+\frac{b_{v} / \sqrt{3}-a_{v}}{1+2_{v}^{\frac{1}{3}}}\right) \stackrel{\varepsilon_{v} \rightarrow 0}{\rightarrow} \frac{b_{v}}{3} \hat{=} \frac{1}{3} \frac{\partial B_{y}}{\partial \tau_{v}}
$$

consistent result

- Question: why $J_{v}(0) \ll B_{v}(0)$?
- remember: $J_{v}(0)$ determined by $S_{v}\left(\tau_{v}=1\right)$
- Iv (1) might fall significantly below $\operatorname{Br}(1)$, since many photons can escape from photosphere (into interstellar medium)
- minimum value is given by incident flux, if no thermal emission
- interesting possibility
if ε_{y} small, $H_{v}(0)$ can become larger than $H_{v}(0)\left(\varepsilon_{v}=1\right)$, if

$$
\underbrace{a_{v}+\frac{b_{v} \sqrt{3}-a_{v}}{2}}_{J_{v}\left(0, \varepsilon_{v}=1\right)}<\underbrace{\frac{b_{v}}{\sqrt{3}}}_{J_{v}\left(0, \varepsilon_{v} \ll l\right)} \text {, i.e } \frac{b_{v}}{a_{v}}>\sqrt{3}
$$

i.e. for large temperature gradients (information is transported from hotter regions to outer boundary by scattering dominated stratifications)

- further consequences later

Chap. 6 - Stellar atmospheres

Basic assumptions

1. Geometry

plane-parallel or spherically symmetric (-> Chap. 3)
2. Homogeneity
atmospheres assumed to be homogenous (both vertical and horizontal)
BUT: sun with spots, granulation, non-radial pulsations ..
white dwarfs with depth dependent abundances (diffusion)
stellar winds of hot stars (partly) with clumping ($\left\langle\rho^{2}\right\rangle \neq\langle\rho\rangle^{2}$)
HOPE: "mean" = homogenous model describes non-resolvable phenomena in a reasonable way
[attention for (magnetic) Ap-stars: very strong inhomogeneities!]
3. Stationarity
vast majority of spectra time-independent $=>\partial / \partial \mathrm{t}=0$
BUT: explosive phenomena (supernovae)
pulsations
close binaries with mass transfer ...

Density stratification

mass element dm in (spherically sym.) atmosphere
assume (at first) no velocity-fields, i.e. hydrostatic stratification
$\sum_{i} d f_{i}=0$, if f_{i} are forces acting on $d m$

- $d_{f_{\text {grave }}}=-G \frac{M_{r d m}}{r^{2}}=-g(r) d m$ with grave. accel.

$$
g(r)=\frac{G_{0} M_{r}}{r^{2}} \text { and Mr mass }
$$

- dfp pressure forces

gas pressure causes forces on surfaces $\perp \underline{e}_{r}$. Forces on surfaces "er compensate each other in spherical (or p-p) symmetry

$$
d f p=A \cdot p(r)-A p(r+d r)=-A \frac{d p}{d r} d r
$$

$$
\text { - } f_{\text {rad }} \text { (radiation force) }=\operatorname{grad}(r) d m
$$

$$
\begin{aligned}
\sum d k_{i} & =-g(r) d m+g r a d(r) d m-A \frac{d p}{d r} d r=0 \\
d m & =A \cdot g(r) d r
\end{aligned}
$$

$$
\Rightarrow \frac{1}{S} \frac{d p}{d r}=-g(r)+\operatorname{grad}(r) \quad \text { or }
$$

$$
\frac{d p}{d r}=-g(r)[g(r)-\operatorname{grad}(r)]
$$

Approximation $\left\|g(r)=\frac{G M r}{r^{2}} \rightarrow \frac{G M_{*}}{r^{2}}\right\|$
since mass within atmosph: $M(r)-M\left(R_{r}\right) \ll M\left(R_{r}\right)$
example: The sun

$$
\Delta M_{\text {plot }}=\bar{\rho} \frac{4 \pi}{3}\left((R+\Delta r)^{3}-R^{3}\right) \approx \bar{\rho} 4 \pi R^{2} \Delta r
$$

$R \approx \nabla \cdot 10^{10} \mathrm{~cm}, \Delta r \approx 3 \cdot 10^{2} \mathrm{~cm}$ (later), $\bar{S} \approx m_{m} \bar{N}$, with $\bar{N}=10^{15} \mathrm{~cm}^{-3}$ and $m_{H} \approx 1.2 \cdot 10^{-24} \mathrm{~g}$
$\Rightarrow \Delta M_{\text {phot }} \approx 3 \cdot 10^{21} g<M_{\theta} \approx 2 \cdot 10^{33} \mathrm{~g}$
(same argument holds also if atmosphere is extended)
in plane-parallel geometry, we have additionally $\Delta r \ll R_{x}$, thus $\left\|g(0)=g_{*}=\frac{G M_{x}}{R_{4}^{2}}\right\|$ examples main seq. stars supergiants white dwarfs sun earth

$$
\begin{aligned}
\log g[\text { cos }] & =4 \\
(0 \rightarrow A) & 3.5 \ldots 0.8 \\
& 8! \\
& 4.44 \\
& 3.0
\end{aligned}
$$

- if stellar wind present, hydrodynamic description $\dot{M}=4 \pi r^{2} g(r) v(r)$ equation of continuity $\rightarrow v(1)=\frac{\dot{M}}{4 \pi} \frac{1}{r^{2} g(r)} \neq 0 \quad$ (everywhere)
Question When are velocity fields important, ie. induce significant deviations from Hydrostatic equilibrium?

Hydrodynamic description

Hydrodynamic description: inclusion of velocity fields
Equation of continuity:
$\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0$

Equation of momentum
("Euler equation")
$\frac{\partial \rho \mathbf{v}}{\partial t}+\underbrace{\nabla \cdot(\rho \mathbf{v} \otimes \mathbf{v})}_{\mathbf{v}[\nabla \cdot(\rho \mathbf{v})]+[\rho \mathbf{v} \cdot \nabla] \mathbf{v}}=-\nabla p+\rho \mathbf{g}^{\mathrm{ext}}$

$$
r^{2} \rho \mathrm{v}=\text { const }=\frac{\dot{M}}{4 \pi}(\mathrm{I})
$$

$$
\Rightarrow
$$

stationarity, i.e., $\frac{\partial}{\partial t}=0$ and spherical symmetry, i.e., $\nabla \cdot \mathbf{u} \rightarrow \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)$
with $\nabla \cdot(\rho \mathbf{v})=0$

$$
\begin{equation*}
\rho \mathrm{v} \frac{\partial \mathrm{v}}{\partial r}=-\frac{\partial p}{\partial r}+\rho g_{r}^{\mathrm{ext}} \tag{II}
\end{equation*}
$$

"advection term",
(from inertia)

I: Conservation of mass-flux
II: "Equation of motion"
with gravity and radiative acceleration

$$
\Rightarrow \quad \rho(r) \mathrm{v}(r) \frac{\partial \mathrm{v}}{\partial r}=-\frac{\partial p}{\partial r}+\rho(r)\left(-\frac{G M_{*}}{r^{2}}+g_{\text {Rad }}(r)\right)
$$

or, to be compared with hydrostatic equilibrium

$$
\frac{\partial p}{\partial r}=\rho(r)\left(-\frac{G M_{*}}{r^{2}}+g_{\text {Rad }}(r)\right)-\rho(r) \mathrm{v}(r) \frac{\partial \mathrm{v}}{\partial r}
$$

Exercise:

Show, by using the cont. eq., that the Euler eq. can
be alternatively written as
$\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=-\frac{\nabla p}{\rho}+\mathbf{g}^{\text {ext }}$

By using $\quad p=\frac{k_{\mathrm{B}} T}{\mu m_{\mathrm{H}}} \rho=\mathrm{v}_{\text {sound }}^{2} \rho \quad$ (equation of state, with μ mean molecular weight, and $\mathrm{v}_{\text {sound }}$ the isothermal sound speed), and $\dot{M}=4 \pi r^{2} \rho \mathrm{v}=\mathrm{const}$ (for the hydrodynamic case)
the equations of motion and of hydrostatic equilibrium can be rewritten:

$$
\begin{aligned}
\left(\mathrm{v}_{\text {sound }}^{2}-\mathrm{v}^{2}(r)\right) \frac{\partial \rho}{\partial r} & =-\rho(r)\left(g_{\text {grav }}(r)-g_{\text {Rad }}(r)+\frac{\mathrm{dv}_{\text {sound }}^{2}}{\mathrm{~d} r}-\frac{2 \mathrm{v}^{2}(r)}{r}\right) \quad \text { [hydrodynamic] } \\
\mathrm{v}_{\text {sound }}^{2} \frac{\partial \rho}{\partial z} & =-\rho(z)\left(g_{\text {grav }}\left(R_{*}\right)-g_{\text {Rad }}(z)+\frac{\mathrm{dv}_{\text {sound }}^{2}}{\mathrm{dz}}\right) \quad \text { [hydrostatic, p-p] }
\end{aligned}
$$

Conclusion:

for v << $\mathrm{v}_{\text {sound }}$, hydrodynamic density stratification becomes ("quasi"-) hydrostatic
this is reached in deeper photospheric layers, well below the sonic point, defined by $v\left(r_{s}\right)=v_{\text {sound }}$ example: $\mathrm{v}_{\text {sound }}($ sun $) \approx 6 \mathrm{~km} / \mathrm{s}, \mathrm{v}_{\text {sound }}(0-\mathrm{star}) \approx 20 \mathrm{~km} / \mathrm{s}$

Thus: p-p atmospheres using hydrostatic equilibrium give reasonable results even in the presence of winds as long as investigated features (continua, lines) are formed below the sonic point.

Barometric formula

The barometric formula
had hydrostatic equation $\left(v(r) \ll v_{s}\right)$

$$
v_{s}^{2} \frac{d s}{d r}=-\rho\left(g-g r a d+\frac{d v_{s}^{2}}{d r}\right) \text { and } v_{s}^{2}=\frac{k_{g} \sigma}{\mu m_{H}}
$$

\rightarrow for given $\sigma(r)$, grad $(r): S(r)$ by um. integration
Now analytic approximation
Neglect photospheric extension $\rightarrow g(r)=g *=$ const V radiative acceleration \Rightarrow main seq. etc $\frac{d v_{0}^{2}}{d r}$, shall be small against other terms \rightarrow neglect of $\frac{d r}{d r}$

$$
\begin{aligned}
\Rightarrow v_{s}^{2} \frac{d \rho}{d r} & =-\rho g * \\
\frac{d_{\rho}}{\rho} & =-g_{*} / v_{s}^{2} \quad \text { barometric formula } \\
\rho^{(r)} & =\rho\left(r_{0}\right) e^{-\frac{\left(r-r_{0}\right) g *}{v_{s}^{2}}}=\rho\left(r_{0}\right) e^{-\frac{r-r_{0}}{H}} \\
(\rho(2) & \left.=\rho(0) e^{-z / H}\right) \quad
\end{aligned}
$$

with pressure scale height $H=\frac{K T}{m_{H} \cdot \mu \cdot g_{x}}$

- extension no longer negligible, if H significant fraction of R_{*}

$$
H / R_{x}=\frac{k T R_{x}}{m_{H} \mu G M}=\frac{v_{s}^{2}}{g R_{x}}=\frac{2 v_{s}^{2}}{v_{e s c}^{2}}
$$

with vesc photospheric esc. velocity

$$
=\left(\frac{2 G M}{R_{x}}\right)^{\frac{1}{2}}=\left(2 g R_{x}\right)^{1 / 2}\left[\text { from } \frac{m}{2} v^{2}=\frac{G_{m M}}{R_{x}}\right]
$$

example sun $v_{S} \approx\left(\frac{1.38 \cdot 10^{-16} \cdot 5700}{1.7 \cdot 10^{-24}}\right)^{\frac{1}{2}} \not \approx 6.8 \mathrm{~km} / \mathrm{s}$

$$
\begin{aligned}
& v_{\text {ese }} \approx\left(2 \cdot 10^{4.44} \cdot 2.10^{10}\right)^{\frac{1}{2}} \approx 620 \mathrm{~km} / \mathrm{s} \\
\Rightarrow H \mid R_{*} & \approx 2.5 \cdot 10^{-4}, H
\end{aligned}
$$

Alternative solution
had also

$$
\begin{aligned}
& \frac{1}{\rho} \frac{d p}{d r}=-g+g r a d \\
& \operatorname{qrad}=-\frac{1}{S} \nabla \cdot P \quad(\rightarrow \text { Chap. } 4) \\
\Rightarrow & \frac{1}{S} \frac{d P_{\text {tot }}}{d r}=-g \quad, \quad P_{\text {tot }}=P_{\text {gas }}+P_{\text {Rad }},
\end{aligned}
$$

Q.P only comp. in rad.direet.
define column density $\quad d m=-\rho d r$ in analogy to $d \tau=-x d r$ optical depth

$$
\Rightarrow \frac{d P_{\text {tot }}}{d m}=g, \quad P_{\text {tot }}=g \cdot m \text { exact }
$$

Hydrostatic equilibrium
or

$$
\frac{d p_{\text {gas }}}{d m}=g-g_{R a d}=g-\frac{4 \pi}{c S} \int_{0}^{\infty} x_{v} H_{v} d v
$$

- solution by numerical integration
- analytic approx: neglect... as before

$$
\begin{aligned}
\rightarrow \text { pas } & =g_{*} \cdot m \\
S & =\frac{g_{*} \mu m_{H}}{k \cdot r} \cdot m=\frac{1}{H} \cdot m
\end{aligned}
$$

or $\log \rho=\log m-\log H$

Fig. 16. Mass density ρ as function of logarithm of atmospheric column density m for a typical unified model (solid) and a hydrostatic model (dashed) with similar $T_{\text {eff }}$ and $\log g$

Exercise: derive H directly from above figure compare with result from

$$
\left(T_{\text {eff }}=40,000 \mathrm{~K}, \log g=3.6\right) \quad H \quad(\Gamma=40000 \mathrm{~K}, \log g=3.5)
$$

photosphere + wind = unified atmosphere (Gabler et al. 1989)

Two possibilities:
a) stratification from theoretical wind models [Castor et al. 1975, Pauldrach et al. 1986, WM-Basic (Pauldrach et al. 2001), see lecture part 2]
Disadvantage: difficult to manipulate if theory not applicable or too simplified
b) combine quasi-hydrostatic photosphere and empirical wind structure [PHOENIX (Hauschildt 1992), CMFGEN (Hillier \& Miller 1998), PoWR (Gräfener et al. 2002), FASTWIND (Puls et al. 2005), see lecture part 2]
Disadvantage: transition regime ill-defined
deep layers: at first $\rho(\mathrm{r})$ calculated (quasi-hydrostatic, with $\mathrm{g}_{\text {grav }}(r)$ and $\mathrm{g}_{\mathrm{rad}}(\mathrm{r})$)

$$
\rightarrow \mathrm{v}(r)=\frac{\dot{M}}{4 \pi r^{2} \rho(r)} \quad \text { for } \mathrm{v} \ll \mathrm{v}_{\text {sound }}\left(\text { roughly: } \mathrm{v}<0.1 \mathrm{v}_{\text {sound }}\right)
$$

outer layers: at first $\mathrm{v}(\mathrm{r})=\mathrm{v}_{\infty}\left(1-\frac{b R_{*}}{r}\right)^{\beta}$, "beta-velocity-law", from observations/theory (b from transition velocity)

$$
\rightarrow \rho(r)=\frac{\dot{M}}{4 \pi r^{2} \mathrm{v}(r)}
$$

transition zone: smooth transition from deeper to outer stratification
Input/fit parameters: $M, \mathrm{v}_{\infty}, \beta$, location of transition zone

Unified atmospheres density/velocity stratification for stars with winds
abscissa: $\tau_{\text {Ross }}$ Rosseland optical depth (frequency averaged opacity, see below)

Figure : (Left) Electron-density as a function of the Rosseland optical depth, $\tau_{\text {Ross }}$, for different atmospheric models of an O5-dwarf. Dotted: hydrostatic model atmosphere; solid, dashed: unified model with a thin and a moderately dense wind, respectively. In case of the denser wind, the cores of optical lines $\left(\tau_{\text {Ross }} \approx 10^{-1}-10^{-2}\right)$ are formed at significantly different densities than in the hydrostatic model, whereas the unified, thin-wind model and the hydrostatic one would lead to similar results.
Figure : (Right) Velocity fields in unified models of an O-star with a thin wind. Dotted: hydrodynamic solution; solid: analytical velocity law with similar terminal velocity and $\beta=0.8$ (see text).

NOTE: at same τ or m, wind-density (for $v \geq v_{\text {sound }}$) lower than if in hydrostatic equilibrium

Plane-parallel or unified model atmospheres?

\square Unified models required if $\mathrm{T}_{\text {Ross }} \geq 10^{-2}$ at transition between photosphere and wind (roughly at $0.1^{*} v_{\text {sound }}$)
\square rule of thumb using a typical velocity law $(\beta=1)$

$$
\dot{M}_{\max }=\dot{M}\left(\tau_{\mathrm{Ross}}=10^{-2} \text { at } 0.1 \mathrm{v}_{\text {sound }}\right) \approx 6 \cdot 10^{-8} M_{\odot} y r^{-1} \cdot \frac{R_{*}}{10 R_{\odot}} \cdot \frac{\mathrm{v}_{\infty}}{1000 \mathrm{kms}^{-1}}
$$

\square if $\dot{M}($ actual $)<\dot{M}_{\max }$ for considered object, then (most) diagnostic features formed in quasi-hydrostatic part of atmosphere
\rightarrow plane-parallel, hydrostatic models possible for optical spectroscopy of late O-dwarfs and B-stars up to luminosity classes II (early subtypes) or lb (mid/late subtypes)
\square check required!

Eddington limit

Summary: stellar atmospheres - the solution principle
THUS problem of stellar atmospheres solved (in principle, without convection, Given log g ex *, ref, abundances
(A) hydrostatic equilibrium

$$
\begin{aligned}
& \begin{aligned}
\frac{d_{p \text { pas }}}{d 2} & =-\rho\left(g *-g_{\text {rad }}\right): \quad g_{\text {eam }}=\frac{4 \pi}{c \rho} \int_{0}^{\pi} x_{v} H_{v} \\
\rightarrow \frac{d_{\text {pas }}}{d 2} & =-\rho q_{*}+\sigma^{\pi H} \frac{\sigma_{B} T_{e f t}^{4}}{c}+\frac{4 \pi}{c} \int_{0}^{\infty} x_{v}^{\text {rect }} H_{v} d v
\end{aligned}
\end{aligned}
$$

(B) equation of rad. Transfer

$$
\mu \frac{d I_{y}}{d z}=\chi_{v}\left(S_{v}-I_{v}\right) \quad \forall v, \mu \Rightarrow J_{v}=\frac{1}{2} \int_{-1}^{+1} I_{v}(\mu) d \mu ; H_{v}=\frac{1}{2} \int_{-1}^{+1} I_{v}(\mu) \mu d \mu
$$

(C) a) radiative equilibrium. pp geometry, static)
scattering terms cancel, since consed vative

$$
\left.\left.\left.\int_{0}^{\text {radiative equilibrium }}\left(\eta_{v}-x_{1},\right] v\right) d v=\int_{0}^{\infty}\left\{\sigma^{T H}\right]_{v}+x_{v}^{\text {est }} S_{v}^{\text {rest }}\right)-\left(\sigma^{r H}+x_{v}^{\text {rest }}\right) J_{y}\right\} d y=\int_{0}^{\infty} x_{v}^{\text {rest }}\left(\delta_{v}^{\text {rest }}-y_{v}\right) d v \stackrel{\text { conservative }}{=}
$$

6) flux-conservation: $4 \pi \int_{0}^{\infty} H_{y}(2) d v=4 \pi H(2)^{2} \stackrel{=}{=} \sigma_{B} \sigma_{e f t}^{4} \quad \Rightarrow \Delta \sigma(2)$
(1) equation of state pas $(2)=\frac{k_{B}}{\mu m_{H}} \rho(2) \Gamma(2) \quad \begin{aligned} & \text { solution by } \\ & \text { iteration! }\end{aligned}$ iteration."

Solution of differential equations A and B by discretization differential operators $=>$ finite differences all quantities have to be evaluated on suitable grid

Eq. of radiative transfer (B) usually solved by the so-called Feautrier and/or Rybicki scheme

NOTE: the following method (based on Hummer \& Rybicki 1971) works ONLY for spherically symmetric problems and no Doppler-shifts!
a) define p-rays (impact-parameter) tangential to each discrete radial shell
b) augment those by a bunch of (equidistant) p-rays resolving the core
c) use only the forward hemisphere, i.e.,

$$
z_{d i}=\sqrt{r_{d}^{2}-p_{i}^{2}} \quad \text { and } z_{d i}>0
$$

\Rightarrow all points $z_{d i}, i=1, \mathrm{NP}$, are located on the same r_{d}-shell, i.e., have the same physical parameters such as emissivities, opacities, velocities, ... (due to spherical symmetry, and neglect of Doppler-shifts)

Now one solves the RTE along each p-ray: from first principles,
$\pm \frac{\mathrm{d} I_{v}^{ \pm}\left(z, p_{i}\right)}{\mathrm{d} z}=\eta_{v}(r)-\chi_{v}(r) I_{v}^{ \pm}\left(z, p_{i}\right) \quad($ with ' + ' for $\mu>0$ and ' - ' for $\mu<0)$ using appropriate boundary conditions (core vs. non-core rays), and standard methods (finite differences etc.)

After being calculated, $I_{v}^{ \pm}\left(z_{d i}\left(r_{d}\right), p_{i}\right), i=1, \mathrm{NP}$, samples the specific intensity at the same radius, $\overline{r_{d}}$, but at different angles, $\bar{\Sigma}$ $\pm \mu_{\mathrm{di}}=\frac{z_{d i}}{r_{d}}$, starting at $\left|\mu_{\mathrm{di}}\right|=1$ for $i=1$ and $d=1, \mathrm{NZ}$ (central ray, $p_{i}=0$) to $\mu_{\mathrm{di}}=0$ (tangent ray, where $p_{i}=r_{d}$ and thus $z_{d i}=0$).

In other words, along individual r_{d}-shells, the specific intensities $I_{v}^{ \pm}\left(r_{d}, \mu\right)=I_{v}^{ \pm}\left(z_{d}, \mu\right)$ are sampled for all relevant μ, and corresponding moments can be calculated by integration.

Feautrier-variables

In fact, the RTE is not solved for $I_{v}^{ \pm}$seperately, but for a linear combination of I_{v}^{+}and I_{v}^{-}, using the so-called Feautrier-variables u_{v} and v_{v}, which allows to construct a 2 nd order scheme as in the plane-parallel case: higher accuracy, diffusion limit can be easily represented
$u_{v}(z, p)=\frac{1}{2}\left(I_{v}^{+}(z, p)+I_{v}^{-}(z, p)\right) \quad$ mean intensity like
$\mathrm{v}_{v}(z, p)=\frac{1}{2}\left(I_{v}^{+}(z, p)-I_{v}^{-}(z, p)\right) \quad$ flux like
$\Rightarrow \frac{\partial \mathrm{v}_{v}}{\partial z}=\chi_{v}\left(S_{v}-u_{v}\right), \quad \frac{\partial u_{v}}{d z}=-\chi_{v} \mathrm{v}_{v}$
$\Rightarrow \frac{\partial^{2} u_{v}}{\partial \tau_{v}^{2}}=u_{v}-S_{v} \quad\left(2\right.$ nd order, with $\left.d \tau_{v}=-\chi_{v} d z\right)$
... and corresponding boundary conditions
inner boundary: for core rays, first order, using the diffusion approximation; for non-core rays, 2 nd order, using symmetry arguments outer boundary: either $I_{V}^{-}\left(z_{\max }, p\right)=0$, or higher order for optically thick conditions (e.g., shortward of HeII Lyman edge)

Formal solution for $I_{v}(\mu)$ (or $u_{v}(\mu)$ and $\left.v_{v}(\mu)\right)$ and corresponding angle-averaged quantities (moments) affected by inaccuracies, due to specific way of discretization, but ratios of moments much more precise (errors cancel to a large part)

Continuum transfer in extended atmospheres

Thus: variable Eddington-factor method
solve the moments equations (only radius-dependent), and use Eddington-factors from formal solution to close the relations. Ensures high accuracy (since direct solution for angle-averaged quantities, and 2nd order scheme), whilst Eddington-factors (from the formal solution) quickly stablilize in the course of global iterations.

Using the $0^{\text {th }}$ and $1^{\text {st }}$ moment of the RTE and $f_{v}=K_{v} / J_{v}$, we obtain

$$
\frac{\partial\left(r^{2} H_{v}\right)}{\partial \tau_{v}}=r^{2}\left(J_{v}-S_{v}\right)
$$

$$
\frac{\partial\left(f_{v} J_{v}\right)}{\partial \tau_{v}}-\frac{\left(3 f_{v}-1\right) J_{v}}{\chi_{v} r}=H_{v}
$$

Introducing a "sphericality factor" q_{v} via $\ln \left(r^{2} q_{v}\right)=\int_{r_{\text {core }}}^{r}\left[\left(3 f_{v}-1\right) /\left(r^{\prime} f_{v}\right)\right] \mathrm{d} r^{\prime}+\ln \left(r_{\text {core }}^{2}\right)$, the 2 nd equation becomes $\frac{\partial\left(f_{v} q_{v} r^{2} J_{v}\right)}{\partial \tau_{v}}=q_{v} r^{2} H_{v}$, and can be combined with the first one to yield a 2 nd order scheme for $r^{2} J_{v}$
$\frac{\partial^{2}\left(f_{v} q_{v} r^{2} J_{v}\right)}{\partial X_{v}^{2}}=\frac{1}{q_{v}} r^{2}\left(J_{v}-S_{v}\right) \quad$ with $\mathrm{d} X_{v}=q_{v} \mathrm{~d} \tau_{v} \quad$ [for comp.: in $\mathrm{p}-\mathrm{p}, \frac{\partial^{2}\left(f_{v} J_{v}\right)}{\partial \tau_{v}^{2}}=\left(J_{v}-S_{v}\right)$, limit for $q_{v} \rightarrow 1$ and $\left.r^{2} \rightarrow R_{*}^{2}\right]$

Grey temperature stratification

- for iteration, we need initial values
- analytic understanding
\Rightarrow "grey" approximation
assume $\chi_{V}=\chi$, freq. independent opacities (corresponds to suitable averages)

$$
\left.\begin{array}{rlrl}
\Rightarrow \mu \frac{d I_{v}}{d \tau} & =I_{v}-S_{v} & & \approx \text { radiative eq. } \\
\frac{d H_{y}}{d \tau} & =J_{v}-S_{y} \\
\frac{d k_{y}}{d \tau} & =H_{v}
\end{array}\right\} \begin{array}{ll}
& \begin{array}{l}
d H \\
\text { (trey. integr.) } \\
J=\int_{0}^{\infty} J_{v} d v
\end{array} \\
& \begin{array}{l}
\text { etc }
\end{array} \\
\frac{d k}{d \tau}=H
\end{array}
$$

$$
\Rightarrow \frac{d K}{d \tau}=H \text {, i.e. } K=H \cdot \tau+C
$$

For large $\tau \gg 1$, we know from diff -approx. that $K_{v} / J_{v}=\frac{1}{3}$
Eddington's approx. $\quad K / y=\frac{1}{3}$ everywhere

$$
\Rightarrow J=3 H(\tau+c)
$$

- From rad. equilibrium

$$
J=S, \quad S=3 H(\tau+c)
$$

- remember $人$-operator

$$
J=\lambda_{\tau}(S)
$$

- analogous
$H=\phi_{\tau}(S)$, in particular
$H(0)=\frac{1}{2} \int_{0}^{\infty} S(t) E_{2}(t) d t \quad E_{2}$ ind Exp. integral
$\Rightarrow H(0)=\frac{1}{2} \int_{0}^{\infty}(3 H(t+c)) E_{2}(t) d t=\ldots$.

$$
\cdots H\left(\frac{1}{2}+c \frac{3}{4}\right)
$$

But $H(0)=H$, i.e., $\left(\frac{1}{2}+c \frac{3}{4}\right)=1$ $c=\frac{2}{3}$ in Eddington approx
Exact sol. $c=q(\tau)$, "Mopffunction",

$$
0.51<q(\tau)<0.71
$$

- $J=3 H(\tau+2 / 3)$

$$
H=\frac{\sigma \Gamma_{\text {eHf }}^{4}}{4 \pi} \quad i \quad J \xrightarrow[\rightarrow]{L T E} B=\frac{\sigma_{B} T^{4}}{\pi}
$$

Finally

$$
T^{4}=\frac{3}{4} T_{e f f}^{4}(\tau+2 / 3)
$$

grey temp -in Eddington approx!
consequences

- $T=r_{\text {eff }}$ at $\tau=2 / 3$
- $T(0) \mid$ Ref $=\left(\frac{1}{2}\right)^{1 / 4}=0.841$
-grey temp. in opherical symmetry basic difference

J, $H \sim \frac{1}{r^{2}}$ for $r \gg R_{*}$
quadratic dilution
$J \mid K=1$ for $r \gg R_{x}$
result

$$
T^{4}(r)=r_{e f t}^{4}\left(\omega+\frac{3}{4} \tau^{\prime}\right)
$$

ω dilution factor, $\frac{1}{2}\left[1-\left(1-\left(\frac{e_{r}}{r}\right)^{2}\right)^{\frac{2}{2}}\right]$

$$
\tau^{\prime}=\int_{r}^{\infty} x(r)\left(\frac{e_{x}}{r}\right)^{2} d r
$$

NOTE

$$
T^{\text {sph }}(r) \xrightarrow{r \rightarrow Q_{*}} T^{P P}(\tau)
$$

Radiation field in optically thin envelopes

assume

- envelope optically thin $\Rightarrow I$ = const - radiation field leaving photosphere isotropic $\Rightarrow I_{\text {plot }}^{*}(\mu)=$ cost

$$
\Rightarrow J_{v}(r)=\frac{1}{2} \int_{-1}^{1} I_{v}(r) d \mu \longrightarrow
$$

$$
=\frac{1}{2} \int_{\mu_{*}}^{1} I_{v}^{+}\left(Q_{x}\right) d \mu+\frac{1}{2} \int_{0}^{\mu^{*}} I_{0}^{+} d \mu+\frac{1}{2} \int_{-1}^{-1} \frac{I}{1}_{0}^{I^{-}} d \mu
$$

$$
=\frac{1}{2} I_{n}^{+}\left(l_{x}\right)\left(1-\mu_{x}\right)
$$

$$
\sin \theta=\frac{R_{x}}{r} \Rightarrow \mu_{x}=\cos \theta=\sqrt{1-\left(\frac{R_{x}}{r}\right)^{2}}
$$

$$
J_{v}(r)=W \cdot I_{v}^{+}\left(Q_{k}\right), \quad \omega=\frac{1}{2}\left(1-\left(1-\frac{R_{x}^{2}}{r^{2}}\right)^{\frac{1}{2}}\right)
$$

"Dilution factor"
exercise: show that for $r>l_{x}$,

$$
J_{v}(r) \approx H_{v}(r) \approx K_{v}(r)
$$

Rosseland opacities

Rosseland opacities

$$
\begin{aligned}
& \text { grey approximation } x_{v} \equiv x \\
& \text { But ionization edges, lines, bf-opacities } \sim v^{-3}, \ldots \\
& \text { Question can we define suitable means which } \\
& \text { might replace the grey opacity? }
\end{aligned}
$$

answer not generally, but in specificicases
most important Rosseland mean
$(\rightarrow T$-stratification, stellar structure, \ldots)
$\frac{d K_{v}}{d z}=-x_{v} H_{y}$ exact

- require, that freq. integration results in correct flux
$\rightarrow-\int_{0}^{\infty} \frac{1}{x_{v}} \frac{d k_{v}}{d z} d y=\int_{0}^{\infty} H y d v=H \equiv-\frac{1}{\bar{x}} \frac{d k}{d z}$
Problem: to calculate $\bar{\chi}$, we have to know k_{y}
- thus, use additionally diffusion approximation

$$
\begin{aligned}
& K_{v}=\frac{1}{3} B_{v} \quad \text { and } H_{v}=\frac{1}{3} \frac{d B_{v}}{d \tau_{v}} \\
& \Rightarrow \frac{1}{\bar{\chi}_{\mathrm{R}}}=-\frac{H}{d K / d z} \rightarrow \frac{\int_{0}^{\infty} \frac{1}{3} \frac{1}{\chi_{v}} \frac{\partial B_{v}}{\partial T} \frac{d T}{d z} d v}{\int_{0}^{\infty} \frac{1}{3} \frac{\partial B_{v}}{\partial T} \frac{d T}{d z} d v}=\frac{\int_{0}^{\infty} \frac{1}{\chi_{v}} \frac{\partial B_{v}}{\partial T} d v}{\int_{0}^{\infty} \frac{\partial B_{v}}{\partial T} d v}=\frac{\int_{0}^{\infty} \frac{1}{\chi_{v}} \frac{\partial B_{v}}{\partial T} d v}{\frac{4 \sigma_{\mathrm{B}}}{\pi} T^{3}}
\end{aligned}
$$

$$
\left[\text { since } \int B_{\nu} d v=\frac{\sigma_{\mathrm{B}}}{\pi} T^{4} \rightarrow \frac{\partial}{\partial T}=\frac{4 \sigma_{\mathrm{B}}}{\pi} T^{3}\right]
$$

\Rightarrow Rosseland opacity

$$
\bar{\chi}_{\mathrm{R}}=\frac{\frac{4 \sigma_{\mathrm{B}}}{\pi} T^{3}}{\int_{0}^{\infty} \frac{1}{\chi_{v}} \frac{\partial B_{v}}{\partial T} d v}
$$

- can be calculated without radiative transfer
- harmonic weighting: maximum flux transport where χ_{v} is small!
- alternatively, from construction (for $\tau_{v} \gg 1$)
$\frac{1}{\bar{\chi}_{\mathrm{R}}}=-\frac{H}{d K / d z} \rightarrow-\frac{H}{\int_{0}^{\infty} \frac{1}{3} \frac{\partial B_{v}}{\partial z} d v}=-\frac{H}{\frac{1}{3} \frac{d T}{d z} \int_{0}^{\infty} \frac{\partial B_{v}}{\partial T} d v}=-\frac{H}{\frac{1}{3} \frac{4 \sigma_{\mathrm{B}}}{\pi} T^{3} \frac{d T}{d z}}$ \Rightarrow
i) $F=4 \pi H=\frac{16 \sigma_{\mathrm{B}}}{3} T^{3} \frac{d T}{d \tau_{\mathrm{R}}}$
ii) in spherical geometry
$\frac{L(r)}{4 \pi r^{2}}=-\frac{16 \sigma_{\mathrm{B}}}{3 \bar{\chi}_{\mathrm{R}}} T^{3} \frac{d T}{d r} \quad$ (used for stellar structure)
iii) integrate i), $+F=\sigma_{\mathrm{B}} T_{\text {eff }}^{4}$
$\rightarrow T^{4}=T_{\text {eff }}^{4} \frac{3}{4}\left(\tau_{\text {Ross }}+\right.$ const $), \quad$ as in grey case, but now with $\tau_{\text {Ross }}$

THUS possibility to obtain initial (or approx.) values for temperature stratification (\approx exact for large optical depths)
calculate (LTE) opacities χ_{v}
calculate $\bar{\chi}_{\mathrm{R}}, \quad \tau_{\mathrm{R}} \quad$ \}again, iteration required calculate $T\left(\tau_{\mathrm{R}}\right)$

Now we define the stellar radius via
$R_{*}=R\left(\tau_{\text {Ross }}=2 / 3\right)$
as the average layer ('"stellar surface") where the observed UV/optical radiation is created.

Furthermore, if we approximate const $=2 / 3$ as in the (approx.) grey case, i.e.,
$T^{4}\left(\tau_{\text {Ross }}\right) \approx T_{\text {eff }}^{4} \frac{3}{4}\left(\tau_{\text {Ross }}+2 / 3\right)$
then we obtain $T\left(\tau_{\text {Ross }}=2 / 3\right)=T\left(R_{*}\right)=T_{\text {eff }}$ and the definition $L=4 \pi R_{*}^{2} \sigma_{\mathrm{B}} T_{\text {eff }}^{4}$ has also a physical meaning (at least for LTE conditions): "the effective temperature is the atmospheric temperature of a star at its surface".

Note: in reality, $T\left(\tau_{\text {Ross }}=2 / 3\right)$ deviates (slightly) from $T_{\text {eff }}$, since const $\neq 2 / 3$, and because of deviations from LTE
... back to Milne Eddington Model (page 86) had $B_{v}\left(\tau_{v}\right)=a_{v}+b_{v} \tau_{v} \quad$ linear approx and $I_{v}(0)=\frac{b_{v}}{\sqrt{3}}$ for $\varepsilon_{v}=0$ pure scattering

$$
=a_{v}+\frac{b v \sqrt{3}-a_{v}}{2} \text { for } \varepsilon_{v}=1 \text { purely thermal }
$$

$$
\varepsilon_{v}=\frac{k_{v}{ }^{+}}{k_{v}^{+}+\sigma_{e} u_{e}}
$$

- since temperature stratification known by now, can perform some estimates concerning continuer fluxes

$$
\begin{aligned}
& \text { had } \left.\begin{array}{rl}
T^{4} & \approx \operatorname{Teff}^{4} \frac{3}{4}\left(\tau_{R}+2 / 3\right) \\
T(0)^{4} & =\operatorname{Teff}^{4} \frac{3}{4} \cdot 2 / 3
\end{array}\right\} T^{4}=T^{4}(0)\left(1+\frac{3}{2} \tau_{R}\right) \\
& B_{v}\left(\tau_{R}\right)=B_{y}\left(\tau_{0}\right)+\left(\frac{\partial B_{v}}{\partial \tau_{R}}\right)_{0} \tau_{R}=B_{0}+B_{1} \tau_{R} \\
& \Rightarrow B_{1}=\left.\left.\frac{\partial B_{v}}{\partial \sigma}\right|_{T_{0}} \cdot \frac{\partial T}{\partial \tau_{R}}\right|_{T_{0}}=\left.\left.B_{v} \frac{\mu v / k T \cdot \frac{1}{T} e^{-h v / k T}}{\left(e^{\operatorname{h} v} k T-1\right.}\right|_{T_{0}} \frac{\partial \sigma}{\partial \tau_{R}}\right|_{T_{0}} \\
& =\left.B_{\nu} \frac{u_{0}}{1-e^{-u_{0}}} \frac{1}{T_{0}} \frac{\partial T}{\partial \tau_{R}}\right|_{0} \text { with } u_{0}=\frac{l_{v}}{k T_{0}} \\
& 4 T^{3} \frac{\partial T}{\partial \tau_{R}}=T^{4}(0) \frac{3}{2},\left.\frac{\partial T}{\partial \tau_{R}}\right|_{T_{0}}=\frac{3}{8} T_{0}
\end{aligned}
$$

Thus $B_{1}=B_{0} \frac{u_{0}}{1-e^{-u_{0}}} \frac{3}{8} \rightarrow$ (Rayleigh-Jeaus) $B_{1}=\frac{3}{8} B_{0}$

$$
\rightarrow \text { (wien) } B_{1}=\frac{3}{8} u_{0} B_{0}
$$

example $T_{\text {eff }}=40,000 \mathrm{~K} \quad \lambda=500,912 \mathrm{~A}$
 can look down deeper into atm.

- additional effect 1
T-stratification with respect to $\tau_{R}\left(\bar{x}_{R}\right)$, but radiation transfer with respect to freq. τ_{y} $J_{v}=B_{v}+\ldots=a_{v}+b_{v} \tau_{v}+\ldots$
$B_{v}=B_{v_{0}}+B_{\Lambda} \widetilde{\tau}_{R}=B_{v_{0}}+B_{\Lambda} \tau_{v} \frac{\tau_{R}}{\tau_{D}} \approx B_{v_{0}}+\underbrace{\tau_{v}}_{\text {on }^{B_{1}} \frac{\bar{\chi}_{R}}{\bar{x}_{V}}}$
effective gradient increased, if K_{v} small compared to \vec{x}_{R}
- additional effect 2
far away from ionization edges (where ε_{y} is small, anyway), also χ_{v} small $\left(K_{v}^{+} \sim\left(\frac{v_{0}}{v}\right)^{3}, c \delta\right.$ Chapter 5) \rightarrow additional

LIM
 H / He continuum of a hot star around $1000 \AA$

Convection (simplified)

Convection
energy transport not only by radiation, however also by

- waves
- convection
not efficient in typical stellar atmospheres, but ... coronal, chromospheres white dwarfs

Thus
total flux = oust
$\nabla \cdot\left(\underline{F}^{l a d}+\underline{F}^{c o n v}\right) \stackrel{\downarrow}{=}=0$ (in quasi-hydrostatic atmospheres)
$\frac{d F^{\text {conc }}}{d 2}=-\frac{d F^{\text {pad }}}{d 2}=-4 \pi \int_{0}^{\infty} d v \chi_{v}\left(S_{v}-J_{v}\right)$
energy transport by radiation convection most efficient way is chosen early spectral type late $0 \rightarrow(A)$
 convective core

The schwarzschild Criterion

assume mass element in photosphere, which moves upwards (by perturbation). Ambient pressure decreases, and "bubble" expands Thus
$\rho \rightarrow \rho_{i}, r \rightarrow r_{i} \quad$ in bubble ($i^{k}=$ internal)
$\rho \rightarrow \rho a, T \rightarrow r_{a}$ in ambient medium two possibilities
$S_{i}>\rho a$ bubble falls back stable
Si < ga bubble rises further instable buoyancy as long as $\mathrm{\rho i}\left(r+\Delta_{r}\right)<\rho_{a}(r+\Delta r)$ since

$$
F_{b}=-g(\rho i-\rho a)>0 \text {, i.e., (or } \Delta \rho=(\rho i-\rho a)<0
$$

assumption 1
movement so slow, that pressure equilibrium ($\bar{v}<v_{\text {sound }}$)
$\Rightarrow p_{i}=p_{a}$ and $\left(\rho^{T}\right)_{i}=\left(\rho^{T}\right)_{a}$ over Δr

$$
\Rightarrow \Delta \rho=\left[\frac{d \rho_{i}}{d r}-\frac{d \rho_{a}}{d r}\right] \Delta r=\left(\left|\frac{d s a}{d r}\right|-\left|\frac{d s_{i}}{d r}\right|\right) \Delta r
$$

Instability, if density inside bubble drops faster

$$
\left|\frac{d s_{i}}{d r}\right|>\left|\frac{d s a}{d r}\right| \text { or }\left|\frac{d r_{i}}{d r}\right|<\left|\frac{d r_{a}}{d r}\right|
$$

assumption 2
no energy exdange between bubble and ambient medium (will be modified later)
\Rightarrow adiabatic change of state in bubble

$$
\begin{aligned}
& s_{i}=a-p_{i}^{1 / \gamma} \quad, \gamma=c_{p} / C_{V} \\
\rightarrow & \frac{d s_{i}}{d r}=a \frac{1}{\gamma} p_{i}^{1 / \gamma-1} \frac{d p_{i}}{d r}=\frac{1}{\gamma} \frac{\rho_{i}}{p_{i}} \frac{d p_{i}}{d r}=\frac{1}{\gamma} s_{i} \frac{d \ln p_{i}}{d r}
\end{aligned}
$$

\Rightarrow ambient medium ideal gas

$$
\begin{aligned}
& \rho a=a^{\prime} \frac{p_{a}}{\Gamma a} \\
& \rightarrow \frac{d \rho a}{d r}=a^{\prime}\left(\frac{1}{r a} \frac{d p a}{d r}-\frac{p a}{\Gamma a^{2}} \frac{d r_{a}}{d r}\right)=\delta a\left(\frac{d \ln p a}{d r}-\frac{d \ln r_{a}}{d r}\right)
\end{aligned}
$$

\Rightarrow instability for

$$
\frac{1}{\sigma} \rho_{i} \frac{d \ln p_{i}}{d r}<\rho_{a}\left(\frac{d \ln p a}{d r}-\frac{d \ln T_{a}}{d r}\right), \begin{aligned}
& \rho_{i}\left(r_{0}\right)=\rho_{a}\left(r_{0}\right) \\
& \frac{d \ln p_{i}}{d r}=\frac{d \ln p_{a}}{d r}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\gamma} \frac{d \ln p}{d r}<\left(\frac{d \ln p}{d r}-\frac{d \ln r}{d r}\right) \\
\Rightarrow & \left(\frac{d \ln p}{d r}<0\right) \frac{1}{\gamma}>1-\frac{d \ln r}{d \ln \rho} \\
& \nabla_{a}=\frac{d \ln T_{a}}{d \ln p}>1-\frac{1}{\gamma}=D_{a d} \begin{array}{l}
\text { "Sch coarzschild } \\
\text { criterion" }
\end{array}
\end{aligned}
$$

convection, if $\nabla_{a}>D_{a d}$

- D_{a} : if no convection, radiative stratification

$$
\begin{aligned}
\nabla_{a}=D_{\text {Rad }}=\frac{d \ln r / d r}{d \ln p / d r} & =\frac{3}{16} \frac{\bar{x} \cdot \sigma_{\text {Rad }}}{\sigma_{B} r^{4}} / \frac{\operatorname{segj} / \mu m H}{k T} \\
& =\frac{3}{16}\left(\frac{r_{e f t}}{r}\right)^{4} \cdot \underbrace{(\bar{x} H}) \leqslant \frac{3}{16}\left(\frac{r_{\text {eff }}}{\sigma}\right)^{4}
\end{aligned}
$$

- $\nabla_{a d}=\left(\frac{d \ln T}{d \ln P}\right)_{a d}=\frac{\gamma-1}{\gamma}$
≤ 1 in photosphere
mono-atomic gas: $\nabla_{a d}=0.4$, and $\frac{3}{16} \approx 0.19$
- must include ionization effects (number of particles!) and radiation pressure (weak influence in amosph.)
- pure hydrogen, fully ionized
$D_{\text {ad }}=0.4 \gg D_{\text {rad }}$
\Rightarrow hot star atmospheres (connectively) stable!
- pure hydrogen: minimum for 50% ionization Dad $\approx 0.07<$ Dead solar convection zone, $T=9000 \mathrm{~K}$!

$\nabla_{a d}$ as function of \mathbf{T} and \mathbf{p}

Mixing length theory

- most simplistic approach, however frequently used (reality is much too complex)
- suggested by Prandtl (1925)
- idea :-if atmosplere convective unstable at r_{0}, assume mass element rises until
$r_{0}+l$ (mixing length)
-at $r_{0}+l$, excess energy
$\Delta E=c p \rho \overline{\Delta T}$
is released into ambient medium, and temperature is increased. Always valid $\nabla_{\text {ad }} \leqslant \nabla_{i}<\nabla_{a}<\nabla_{\text {Rad }}$
- bubble cools, sinks down, absorbs energy, rises, etc...
\Rightarrow Energy is transported, temperature gradient becomes smaller

Note:

- mixing length theory only Oth order approach
- modern approach: calculate consistent hydrodynamic solution (e.g., solar convective layer+photosphere, Asplund+, see 'Intermezzo')
radiative vs. adiabatic T -stratification

Model for solar photosphere

- Flux, temperature etc. calculated from simple arguments, $\quad l=\alpha \cdot H, \quad \alpha=1, \ldots 2$
- have to account for radiative losses during lifetime of element until energy is released
\Rightarrow efficiency $\gamma=\frac{\text { excessener } y \text { lost }}{\text { radiative losses }}$
- γ large $\longrightarrow \nabla_{a} \approx D_{a d} ; \gamma$ small $\longrightarrow \nabla_{a} \approx D_{r a d}$

Mixing length theory - some details

$\Delta E=\rho C_{p} \delta T$ is excess energy density delivered to ambient medium when bubble merges with surroundings.
C_{p} is specific heat per mass.
$\Rightarrow F_{\text {conv }}=\Delta E \bar{v}=C_{p} \delta T \rho \bar{v}$ is convective flux (transported energy)
with \bar{v} average velocity of rising bubble over distance $\Delta r(\rho \bar{v}$ mass flux $)$.
δT is temperature difference between bubble and ambient medium.
$\delta T=\left[\left(-\left.\frac{d T}{d r}\right|_{a}\right)-\left(-\left.\frac{d T}{d r}\right|_{i}\right)\right] \Delta r>0$ when convective instable, since then $\left[(-\Delta T)_{a}-(-\Delta T)_{i}\right]>0$

From the definiton of ∇,
$-\frac{d T}{d r}=\frac{T}{H} \nabla$, with pressure scale height H (see problem set 8),
assuming hydrostatic equilibrium and neglecting radiation pressure; (inclusion of $p_{\text {rad }}$ possible, of course)

Defining l as the mixing length after which element dissolves, and averaging over all elements (distributed randomly over their paths), we may write $\Delta r=\frac{l}{2} \cdot \bar{w}=\int_{0}^{l / 2} A \Delta r d(\Delta r)=A \frac{l^{2}}{8}=g Q \rho \frac{H}{8}\left(\nabla_{a}-\nabla_{i}\right)\left(\frac{l}{H}\right)^{2}$

Mixing length theory - some details

Let's assume now that 50% of the work is lost to friction (pushing aside the turbulent elements), and 50% is converted into kinetic energy of the bubbles, i.e.,
$\frac{1}{2} \bar{w}=\frac{1}{2} \rho \bar{v}^{2} \Rightarrow \bar{v}=\left(\frac{\bar{w}}{\rho}\right)^{1 / 2}=\left(\frac{g Q H}{8}\right)^{1 / 2}\left(\nabla_{a}-\nabla_{i}\right)^{1 / 2} \alpha$,
and the convective flux is finally given by
$F_{\text {conv }}=\left(\frac{g Q H}{32}\right)^{1 / 2}\left(\rho C_{p} T\right)\left(\nabla_{a}-\nabla_{i}\right)^{3 / 2} \alpha^{2}$.

NOTE : different averaging factors possible and actually found in different versions!

Remember that still $\nabla_{a d} \leq \nabla_{i}<\nabla_{a}<\nabla_{r a d}$.

The gradients ∇_{i} and ∇_{a} are calculated from the efficiency γ and the condition that the total flux remains conserved (outside the nuclear energy creating core), i.e.,
$r^{2}\left(F_{c o n v}+F_{r a d}\right)=r^{2} F_{\text {tot }}=R_{*}^{2} F_{r a d}\left(R_{*}\right)=R_{*}^{2} \sigma_{B} T_{e f f}^{4}=\frac{L}{4 \pi}$
or from the condition that
$\left(F_{c o n v}+F_{r a d}\right)=\frac{L_{r}}{4 \pi r^{2}}$ with L_{r} the luminosity at r.
Usually, a tricky iteration cycle is necessary. An example for a simple case will
be discussed in problem set 8 .

Convective vs. radiative energy transport

- major difference in internal structure at MS - convective vs. radiative energy transport:
- if T-stratification shallow (compared to adiabatic gradient) \rightarrow radiative energy transport;
- else convective energy transport
- cool (low-mass stars) during MS:
- interior: $\mathrm{p}-\mathrm{p}$ chain, shallow $\mathrm{dT} / \mathrm{dr} \rightarrow$ radiative core
- outer layers: H/He recombines \rightarrow large opacities \rightarrow steep dT/dr, low adiabatic gradient \rightarrow convective envelope - hot (massive) stars during MS:
- interior: CNO cycle, steep dT/dr \rightarrow convective core
- outer layers: H / He ionized \rightarrow low opacities \rightarrow shallow $\mathrm{dT} / \mathrm{dr}$, large adiabatic gradient \rightarrow radiative envelope

Note: (i) transition from p-p chain to CNO cycle around 1.3 to $1.4 \mathrm{M}_{\text {sun }}$ at ZAMS
(ii) most massive stars have a sub-surface convection zone due to iron opacity peak
(iii) evolved objects (red giants and supergiants) and brown dwarfs are fully convective

Chap. 7 Microscopic theory

Absorption- and emission coefficients

- can calculate now a lot, if absorption- and emission-coefficients given, e.g.

Line transitions

- Einstein coefficients
probability, that photon with energy $\sim[v, v+d v]$
is absorbed by atom in state E_{l} with resulting
transition $l \rightarrow u$, per second

$$
\begin{aligned}
& \text { atomic prop. to probability, } \\
& \text { property number of that } v \in \\
& \begin{array}{l}
\text { incident } \\
\text { photons }
\end{array} \\
& \text { prob. for } \ell \rightarrow u
\end{aligned}
$$

Ben Einstein coefficient for absorption

$$
\text { analogously } \quad \psi_{v} \neq \text { Iv }_{v} \text { without further assumpt. }
$$

$d \omega^{\text {sp }}(v, \Omega, u, l)=A_{n e} \psi(v) d y \frac{d \Omega}{4 \pi}$
$d \omega^{\operatorname{stim}}(v, \Omega, u, l)=B_{u} l I_{v}(\Omega) \psi^{(q(v)}(v) d v \frac{d \Omega}{4 \pi}$
compare absorbed energy
$d E_{V}^{a b s}=n_{l} d \omega^{a b s}, h v d V-\underbrace{n_{a} d \omega^{s t i m}} \operatorname{hydV}$
and emitted energy
$d E_{V}^{e m}=n_{u} d W^{s p} h y d V$ stimulated emission deliversupart of absorbed energy, with same angular distrib. as $I_{Y}(\Omega)$
with definition of opacity and emissivity
$\Rightarrow x_{v}^{\text {line }}=\frac{h v}{4 \pi} f(v)\left[u_{e} B_{e u}-u_{u} B_{u e} \frac{\psi(v)}{f(v)}\right]$
$\eta_{v}^{\text {line }}=\frac{h_{y}}{4 \pi} \psi(v) u_{u}$ Aus
"complete redistribution"
" for

- Einstein coefficients are atomic properties, must Nor depend on thermodynamic state of mather
Thus assume thermodynamic equilibrium
- from chap 4, we know $S_{v}^{*}=\frac{\eta_{v}^{*}}{x_{v}^{*}}=B_{v}(T)$

$$
\text { (and } \left.\psi_{v}^{*}=f_{v}\right)
$$

$$
\Rightarrow S_{V}^{*}=\frac{n_{u} A u l}{u_{l} B_{e u}-n_{u} \text { Bul }} \quad \begin{aligned}
& \text { freq. indef pendent } \\
& \begin{array}{c}
\text { also valid in (} N \text { (} \\
\text { if "complete redistribution" }
\end{array}
\end{aligned}
$$

$$
=\frac{\text { Bul }}{B u l} \frac{1}{\left(\frac{u_{l}}{n_{u}}\right)^{*} \frac{B l u}{B u l}-1}
$$

- TE : Boltzmann excitation, $\left(\frac{n_{u}}{u_{l}}\right)^{*}=\frac{g_{u}}{g_{l}} e^{-h v_{u} / k T}$
- $B_{v}=\frac{2 h_{v}^{3}}{c^{2}} \frac{1}{e^{h v V_{k} T_{-1}}}=S_{v}^{*}=\frac{\text { Annul }}{B_{u l}} \frac{1}{\left(\frac{g e B e n}{g u 3 u l}\right) e^{\text {h kT } T_{-1}}}$ stat. weights $_{\text {s. }}$
$\Rightarrow g_{\uparrow} B_{\uparrow} B_{e u}=g_{\tau} B_{\uparrow l}, \quad A_{u l}=\frac{2 h_{v^{3}} c^{2}}{c^{2}} B_{u l}$
only one einstein coff. has to becacklated!
- has to be calculated from quantum mechanics (from "dipoloperator")
- result

$$
\begin{aligned}
& \frac{h_{v}}{4 \pi} B_{l u}=\frac{\pi l^{2}}{m_{e} c} \delta l u \text { "oscillator strength", } \\
& \text { dimensionless } \\
& \text { classical result, from } \\
& \text { electrodynamics }
\end{aligned}
$$

"strong" transitions have $f \approx 0.1 \ldots 10$
and "selection rules", e.g. $\Delta l= \pm 1$
"forbidden transitions": magnetic dipole, elect. quadrupol: f very low,

- Thus $x_{v}=\frac{\pi e^{2}}{v_{e c}} f_{e r e}\left(n_{e}-\frac{g e}{g_{u}} \cdot n_{u}\right) \cdot y_{v}$

$$
\begin{array}{r}
=\frac{\pi l^{2}}{m_{e} c}(g f)_{l u} \cdot\left(\frac{u_{e}}{g_{e}}-\frac{n u}{g_{u}}\right) \cdot g_{v} \\
\text { "gf-value" }=g_{e} \cdot f_{l u}
\end{array}
$$

$$
\text { with } \int_{-\infty}^{\infty} f(v) d y=1
$$

$$
\frac{\pi e^{2}}{m_{e} c} \approx 0.02654 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}
$$

Profile function?

Line broadening

1. Radiation damping ("natura l"line broadening)

- heuristic finite lifetime with respect to spontaneous emission
$\tau=\frac{1}{A_{u l}} \quad\left(e_{-g}, 10^{-8} \mathrm{~s}\right.$ for $\left.H 2 \rightarrow 1\right)$
and uncertainty principle $\Delta E \cdot \tau \gtrsim \hbar$

$$
\Rightarrow \text { broadening (classical theory: damping }
$$

\rightarrow dispersion (Lorentzian) profile $\frac{1 / 4 \pi^{2}}{\text { half intensity }}$ $f(v)=\frac{\Gamma / 4 \sigma^{2}}{\left(v-V_{0}\right)^{2}+\left(\Gamma / 4 \sigma_{0}\right)^{2}}$

- of primary importance
for strong lines (res. lines) in low density
environment (no other broadening mechanisms),
egg. L_{α} in interstellar medium

2. Collisional broadening

- radiating atoms perturbed by passing particles
- brief perturbation, close perturbers
"impact theory"

ᄃ(t) $\longrightarrow \underline{\text { atom }}$
$\Delta E(t) \sim \frac{1}{r^{n}(t)}$
$n=2$ linear stark effect
for levels with degenerate angular momentum,
e.g., HI, He II
$\Delta E \sim F=\frac{q}{r^{2}}$
very important, if many electrons:
photospheres of hot stars, he $\approx 10^{12} \mathrm{~cm}^{-3}$
$n=3$ resonance broadening
atom A is perturbed by atom A^{\prime} of same species in "cool" stars, e.g. Palmer lines in sun
$n=4$ quadratic Stark effect
instal ions in photospheres of hot stars $\Delta E \sim F^{2}$
$n=6$ van der Vaals broadening
atom A perturbed by atom B
in cool stars, e.g. Na perturbed by It in sun
resulting profiles are dispersion profiles!

- impact theory fails for (far) wings \Rightarrow statistical description (mean field of ensemble of + q.m. perturbers)
approximate behaviour for linear Stark broadening $f(\Delta v \rightarrow \infty) \sim \frac{1}{(\Delta v)^{5 / 2}}$ (instead of $\left.\frac{1}{(\Delta v)^{2}}\right)$

3. Thermal velocities: Doppler broadening

- radiating atoms have thermal velocity (so far assumed as zero)
Maxwellian distribution

$$
P\left(v_{x}, v_{y}, v_{z}\right) d v_{x} d v_{y} d v_{z}=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-\frac{m}{2 k T}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)} d v_{x} d y d v_{z}
$$

- Doppler effect

$$
V \approx V^{\prime}+v_{0} \frac{n-\underline{v}}{C}
$$

atom with $三$
$\mu=\cos (k, n) \xrightarrow{\text { atom wits photon with }}$
\uparrow
observer's atomic frame into died. $\underline{v} \underline{n}_{i}$ observer measures v
\Rightarrow convolution; as long as isotropic emission:

$$
\begin{aligned}
\phi(v)=\frac{1}{\pi^{1 / 2}} \int_{-\infty}^{+\infty} e^{-v^{2}} y\left(v-v_{0}-\Delta v_{D} v\right) d v \\
\text { profile function } \frac{v_{0} v_{+h}}{c} \text { "Doppler width" } \\
\text { in atomic frame } v_{+h}=\left(\frac{2 k T}{m_{A}}\right)^{\frac{1}{2}} \text { therm. velocity }
\end{aligned}
$$

i) assume sharp line, ie. $f\left(v^{\prime}-v_{0}\right)=\delta\left(v^{s}-v_{0}\right)$ $\rightarrow \phi(v)=\frac{1}{\Delta v_{0}} \frac{1}{\sqrt{\sigma}} e^{-\left(\frac{v-v_{0}}{\Delta v_{0}}\right)^{2}}$

Doppler profile, valid in line cores
ii) assume dispersion (Lorentzian) profile with r
$\rightarrow \phi(y)=\frac{1}{\Delta \nu_{0}-\sqrt{\pi}} \frac{a}{\omega^{*}} \int_{-\infty}^{+\infty} \frac{e^{-y^{2}} d y}{\left(\frac{v-v_{0}}{\Delta v_{0}}-y\right)^{2}+a^{2}}$

$$
\begin{gathered}
=\frac{1}{\Delta v_{0} \sqrt{\pi}} H\left(a, \frac{v-v_{0}}{\Delta v_{0}}\right), a=\frac{\Gamma}{4 \pi \Delta v_{0}} \text { damping } \\
\downarrow \\
\text { parameter } \\
H\left(a, \frac{v-v_{0}}{\Delta v_{0}}\right) \approx e^{-\left(\frac{v-v_{0}}{\Delta v_{0}}\right)^{2}}+\frac{a}{\sqrt{\pi}\left(\frac{v-v_{0}}{\Delta v_{0}}\right)^{2}} \\
\prod \text { hume calculated } \\
\text { line core wings }
\end{gathered}
$$

iii) assume other "intrinsic" profile functions
$\phi(v)$ from (numerical) convolution
(egg., with fast Fourier transformation)

fully drawn: Voigt profile $\mathrm{H}(\mathrm{a}, \mathrm{v})$ dotted : $\exp \left(-v^{2}\right)$, Doppler profile (core) dashed: a / ($\left(\mathrm{m} \mathrm{v}^{2}\right)$, dispersion profile (wings)

Curve of growth method

Theoretical curve of_growth-

- standard diagnostic tool to determine metal abundances in cool stars in a simple way
- cessumptions pure absorption line
Milne Eddington model, LTE, $\varepsilon_{v}=1$ (noscablering)

$$
x_{v}=x_{c}+\underbrace{\bar{x}_{L} \phi_{v}}_{x_{v}^{\text {Line }}}=x_{c}\left(1+\beta_{v}\right),{\underset{\sim}{\gamma}}_{\beta_{v}}=\frac{\bar{x}_{L}}{x_{c}} \phi_{v}
$$

$B_{v}(\tau)=a+b \tau_{c}$ defined on continuum scale

$$
=a+b \frac{x_{c}}{x_{v}} \tau_{v}=a+\underbrace{b \frac{1}{1+\beta v}} \tau_{v}
$$

\cong Suv in Milue-Edd.model

- From Milue Edd. model we have (result of advanced reading)

$$
\begin{aligned}
& H_{v}^{\text {line }}(0), \varepsilon_{v}=1=\frac{1}{\sqrt{3}} J_{v}(0)=\frac{1}{\sqrt{3}}\left(a+\frac{\frac{1}{1+\beta v} \sqrt{3}-a}{2}\right) \\
& H_{v}^{\text {cont }}(0), \varepsilon_{v}=1=\left(\beta_{v}=0\right)=\frac{1}{\sqrt{3}}\left(a+\frac{b / \sqrt{3}-a}{2}\right)
\end{aligned}
$$

\Rightarrow residual intensity ("line profile"

$$
\begin{aligned}
& R_{v}=\frac{H_{v}^{\text {Line }}}{H_{v}^{\text {cont }}}=\frac{b \frac{1}{1+\beta v}+\sqrt{3} a}{b+\sqrt{3} a} \\
& \beta_{v}=\frac{\pi e^{2}}{m e c} f_{l u} \frac{n_{e}}{x_{c}}\left(1-e^{-h v / k t}\right) \phi(v)=\beta_{0} \phi(v)
\end{aligned}
$$

line depth

$$
\begin{aligned}
A_{v} & =1-R_{v} \\
& =\frac{\beta_{0} \phi_{v}}{1+\beta_{0} \phi_{v}} \underbrace{\left.\frac{b}{b+\sqrt{3} a}\right)}
\end{aligned}
$$

AD central depth of line with $\beta_{0} \rightarrow \infty$

$$
A_{y}=A_{0} \beta_{0} \frac{\phi_{v}}{1+\beta_{0} \phi_{v}}
$$

equivalent width $w_{v}=\int_{0}^{\infty} A_{v} d v \quad \begin{aligned} & \text { area below } \\ & \text { continuum }\end{aligned}$

w_{λ} width of line in \&, if line would Lave depth "A"

$$
\Rightarrow \omega_{v}=A_{0} \beta_{0} \int_{0}^{\infty} \frac{\phi_{v}}{1+\beta_{0} \phi_{v}} d v
$$

$$
w_{\lambda}=\int_{0}^{\infty} A(\lambda) d \lambda \pi\left(\int_{0}^{\infty} A_{v} d v\right) \frac{\lambda_{0}^{2}}{c} \quad w_{\lambda}=\frac{\lambda_{0}^{2}}{c} \cdot w_{v}
$$

with Voigt profile H (Doppler core + Lorentz wings)

$$
\begin{aligned}
w_{v} & =A_{0} \beta_{0} \frac{1}{\Gamma_{\pi} \Delta v_{D}} \int_{0}^{\infty} \frac{H\left(\frac{v-v_{0}}{\Delta v_{0}}\right) d v}{1+\frac{\beta_{0}}{\sqrt{\pi} \Delta v_{D}} H\left(\frac{v-v_{0}}{\Delta v_{D}}\right)} \quad v=\frac{v-v_{0}}{\Delta v_{D}} \\
& =\cdots
\end{aligned}
$$

C) damping (square-root) part

$$
\omega v=\frac{A_{0} \beta_{0}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{H(v) d v}{1+\frac{\beta_{0}}{\sqrt{\pi} \Delta v_{D}} H(v)}
$$

3 regimes
a) linear regime: Doppler core not saturated,

$$
\begin{aligned}
\Rightarrow \omega_{v} & \approx \frac{A_{0} \beta_{0}}{\sqrt{\sigma}} \int_{-\infty}^{+\infty} \frac{e^{-v^{2}} d v}{1+\frac{\beta_{0}}{\Gamma_{\sigma} \Delta v_{D}} e^{-v^{2}}} \\
& \rightarrow\left(\beta_{0} / \Delta v_{D}<1\right) \quad \frac{A_{0} \beta_{0}}{\Gamma_{D}} \int_{-\infty}^{+\infty} e^{-v^{2}}\left(1-\frac{\beta_{0}}{\Delta_{v_{D}} \Gamma_{F}} e^{-v^{2}}+\cdots\right) d v
\end{aligned}
$$

$\approx A_{0} \beta_{0} \sim \beta_{0}$, independent on ΔV_{D}
b) Saturation part: line reaches maximum depth ($=A_{0}$), however wings still unimportant as above, ie. $\phi_{v} \sim e^{-v^{2}}$, however $\beta_{0} / \Delta_{v_{D}}>1$
\Rightarrow (integration tricky)

$$
\omega_{v}=2 A_{0} \Delta_{\nu D} \sqrt{\ln \beta^{*}}\left(1-\left(\pi^{2} / 24\left(\ln \beta^{*}\right)^{2}-\ldots\right)\right.
$$

with $\beta^{x}=\beta_{0} / \Gamma_{\sigma \pi} \Delta v D$
flat growth with $\sqrt{\ln \beta^{x}}, \omega_{V} \sim \Delta U D$
line wings dominate equivalent width

$$
\Rightarrow \omega_{v} \approx \frac{A_{0} \beta_{0}}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{a /\left(\Gamma v^{2}\right) d v}{1+\frac{\beta_{0}}{\Gamma \pi} A_{v D}} \frac{a}{\Gamma \pi v^{2}} \quad \text { a clamping } \quad \text { parameter }
$$

$$
=\frac{A_{0} B_{0}}{\pi} a \int_{-\infty}^{+\infty} \frac{d v}{v^{2}+\frac{\beta_{0} a}{\sigma A v_{0}}}
$$

$=A_{0}\left(a \varpi \Delta v_{0} \beta_{0}\right)^{\frac{1}{2}} \quad$ (attention: typo in mihalas)
growth with $\beta_{0} \frac{1}{2}$
in total, we have $\omega_{v}=f\left(\beta_{0}\right)$ or $f\left(\frac{\beta_{0}}{\Delta V_{D} \sqrt{x}}\right)=f\left(\beta^{*}\right)$

Development of a spectrum line with increasing number of atoms along the line of sight. The line is assumed to be formed in pure absorption. For $\beta_{0} \lesssim 1$, the line strength is directly proportional to the number of absorbers. For $30 \leq \beta_{0} \leq 10^{3}$ the line is saturated, but the wings have not yet begun to develop. For $\beta_{0} \gtrsim 10^{4}$ the line wings are strong and contribute
most of the equivalent width. most of the equivalent width.

$$
\begin{aligned}
& \text { Now. } \\
& \beta^{*}=\frac{\overline{e^{2}}}{m_{e} c} f l_{u} \frac{u_{e}}{x_{c}}\left(1-e^{-h v / k T_{e}}\right) \frac{1}{\Delta u_{D} \sqrt{\sigma}} \\
& x_{c}=\chi_{c}^{0}\left(1-e^{-\ln v / L r_{e}}\right) \quad L T E \text {, next section } \\
& n_{l}=n_{1} \frac{g_{l}}{g_{1}} e^{-h v_{l A} \mid k T_{e}} \text { Boltamane excitation, } \\
& \Delta v_{D}=\frac{v_{0} v+h}{c}=\sqrt{\frac{2 k T}{m}} \frac{1}{\lambda} \\
& \Rightarrow \log \beta^{x}=\log \left(g_{l} f_{\ell u} \cdot \lambda\right)+\log \left(e^{-E_{1 l} / k^{T} e}\right) \\
& +\log \left(\frac{n_{1}}{g_{1} x_{i}^{0}} \frac{\sqrt{k e^{2}}}{m_{e} c} \sqrt{\frac{m}{2 k_{e}}}\right) \\
& =\log \left(g_{e} f_{\ell u} \cdot \lambda\right)-\frac{5040 \cdot E_{1}}{V_{e}}+\log C \\
& \text { in one ionization stage and if } E \text { in } \mathrm{eV} \\
& \text { - in one ionization stage, } C \approx \text { cons } \\
& \rightarrow \text { lines belonging to one ionization stage should } \\
& \text { form curve of growth, since } \beta^{*} \text { varies as } \\
& \text { function of considered transition }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \text { if ie and } x_{c}^{0} \text { known } \\
& \rightarrow \text { shift "observed" } \omega_{v} \text { (} \beta_{\omega}^{*} \text {) horizontally } \\
& \text { until curve matches theoretical curve } \\
& \rightarrow n_{1} \Rightarrow \text { (using Saha-Bottzmann equation } \\
& \text { for ionization, next section) } \\
& \text { abundances }
\end{aligned}
$$

Curves of growth for pure absorption lines. Note that the larger the value of a, the sooner the square-root part of the curve rises away from the flat part.
measure $\mathrm{W}(\lambda)$ for different lines (with different strengths) of one ionization stage plot as function of $\log \left(g_{l} f_{l u} \lambda\right)-\frac{5040 E_{1 l}}{T_{e}}+\log C, \quad$ with "C" fit-quantity shift horizontally until theoretical curve of growth $\mathrm{W}\left(\beta^{*}\right)$ is matched $=>\log C=>\frac{n_{1}}{\chi_{c}^{0}}=>n_{1}$

Emnirical curve of growth for solar Fe I and Ti I lines. Abscissa is based on laboratory f-values. From (686).
Ti I lines shifted horizontally to define a unique relation

Continous absorption/emission and scattering "bound-free" "Sree-free"

$$
h v=h v_{0}+\frac{1}{2} m_{e} v^{2}
$$

- bound free processes

$$
\begin{aligned}
& \text { "one" transition : } \quad x_{v}^{6 t}= n_{l} \sigma_{l k}(v), \quad v>v_{0} \\
& \uparrow \quad \uparrow \\
& \\
& \text { absorption } \\
& \text { cross section }
\end{aligned} \quad \text { threshold }
$$

in total: many processes at one frequency

$$
x_{v}^{b f}=\sum_{\text {elements }} \sum_{i o u s} \sum_{l} u_{l} \sigma_{l k}(v)
$$

hydrogenic ions $\quad \sigma_{e k}(v)=\sigma_{0}(l)\left(\frac{v_{0}}{y}\right)^{3} \cdot g_{\text {bf }}(v)$

EINSTEIN-MILNE relations

$$
\begin{aligned}
& x_{v}^{b f}=\sum_{\substack{\text { elements, } \\
\text { ions }}} \sum_{l} \sigma_{l k}(v)\left(n_{l}-n_{l}^{*} l^{-h v / k^{r}}\right)_{\text {stim. emission }} \approx 1 \\
& \eta_{v}^{b f}=\sum \sum_{l} \sigma_{l k}(v) \frac{2 h w^{3}}{c^{2}} u_{l}^{*} e^{-h v / k T}
\end{aligned}
$$

spontaneous emission

$$
\begin{aligned}
& n e^{x}=L T E \text { value } \\
& \text { VOTE: } n_{c}=n_{l}^{*} \rightarrow S_{v}^{b f}=\frac{4_{y}^{b f}}{x_{v}^{8 f}}=B_{v}(T)!
\end{aligned}
$$

free-free processes
(emission process: "bremsstrahlung", decelerated charges radiate!)

$$
x_{v}^{f t}=n_{e} n_{k}^{i o n} \sigma_{k k}(y)\left(1-e^{-\operatorname{hv}(k T)}\right)
$$

$\sigma_{k x} \sim \frac{\lambda^{3}}{\sqrt{r}}$, important in \mathbb{R} and radion.emission $\eta_{v}{ }^{d t}=u \varepsilon u_{k}^{i o n} \sigma_{k k}(v) \frac{2 h v^{3}}{c^{2}} e^{-\operatorname{hy}(k T}$
NOTE $S_{y}^{d t}=B_{v}(r)$ always!
Scattering

1. electron scattering

- important for hot stars
- difference to $f-t$ processes
f-f: photon interacts with e^{-}in ion's central field \Rightarrow absorption \Rightarrow photon destruction, ie. true "process scattering: without in fluence of central field, ie., no "third" partner in collisional process
\Rightarrow no absorption possible, since energy and momentum conservation cannot be fulfilled simultaneously
\Rightarrow scattering
- Very high energies (many MeWs) Klein Nishina (Q.E.D.)
- high energies

Compton l inverse Compton scattering

e^{-}has low / has high kinetical energy

- low energies $(-12.4 \mathrm{keV} \hat{=} 18)$ Thomson scattering classical e^{-}radius

$$
\begin{aligned}
\sigma^{\pi H}=\text { he } \sigma_{r} ; \quad \sigma_{r} & =\sigma_{\text {class }}=\frac{8 \pi}{3} r_{0}=\frac{8 \pi}{3} \frac{e^{4}}{m_{e}^{2} c^{4}} \\
& =6.65 \cdot 10^{-25} \mathrm{~cm}^{2}
\end{aligned}
$$

2. Rayleigh -scattering
actually: line absorption lemission of atoms/ molecules far from resonance frequency
\Rightarrow from qum., Lorentz profile with $\left|v-v_{0}\right|>v_{0}$

$$
\sigma(v)=f \ln \sigma_{T} \cdot\left(\frac{y}{v_{0}}\right)^{4} \sim \lambda^{-4} \quad \text { for } v \ll v_{0}
$$

- if line transition strong, λ^{-4} decrease of far wing can be of major importance example: Rayleigh wings of Ly-alpha in metal-poor, cool stars (G/K-type, few electrons, thus few H^{-}, see next paragraph) become important opacity source, even in the optical

The H^{-}ion

- for cool stars (e.g., the sun), one bound state of $\mathrm{H}^{-}\left(1 p+2 e^{-}\right)$
\qquad $\} 0.75 \mathrm{eV} \approx 18550 \mathrm{R}$
- deuninant of-opacity (also $f f$ component)
- only by inclusion of H^{-}(Pannekoek + Wildt, 1935) the solar continuum could be explained
$\sigma(\lambda)$

Total opacities and emissivities

$$
\begin{aligned}
& x_{v}^{\text {tot }}=x^{\text {Line }} \phi(v)+\sum x_{v}^{6 t}+\sum x_{v}^{d t}+n_{e} \sigma_{r} \\
& \left.\eta_{v}^{\text {tot }}=x^{\text {Line }} \phi(v) S_{L}+\sum \varphi_{v}^{6 f}+\sum \eta t+\eta_{v}+n_{r}\right] v \\
& \text { NOTE: for LTE }\left(n_{i}=u_{i}^{*}\right) \text { aud } J_{v}=B_{v}
\end{aligned}
$$

we have always

$$
\frac{y_{v}^{\text {tot }}}{x_{v}+o t}=B_{v}(T) \text {, good test! }
$$

Ionization and Excitation
had

$$
\begin{aligned}
x_{v}^{\text {Line }} & =\frac{\pi l^{2}}{m_{e}} g f l u\left(\frac{n_{l}}{g l}-\frac{u_{u}}{g u}\right) \phi(v) \\
\tau_{v}^{6 f} & =\sum_{l}\left(n_{l}-u_{l}^{*} e^{-h_{v} / k T}\right) \sigma_{l k}(v) \\
\sigma^{r_{H}} & =n_{e} \sigma_{T}
\end{aligned}
$$

How to determine occupation numbers and electron densities?

Local Thermodynamic Equilibrium (LTE)

- each volume element in $V E$, with temperature $r_{e}(r)$
Hypothesis: collisions ($e^{-} \leftrightarrow$ ions) adjust equilibrium
problem: interaction with non-local photons LTE valid, if
- influence of photons small or
- radiation field Planckian at $T_{e}(r)$ (and isotropic)

Excitation

- Fermistatistics \rightarrow low density, Yig\}temperat.
\rightarrow Bolts mannstatistics
- distribution of level ocenption nj (per dU, ionizationstage j)
\qquad
\qquad $i=2$

$$
\frac{n_{i j}}{n_{1 j}}-\frac{g_{i j}}{g_{1 j}} e^{-E_{i j} / k T}
$$

\qquad

$$
i=1 \quad\left(\text { if } E_{1}=0\right)
$$

- gi statistical weights (number of degen.states)
- for hydrogen $g i=2 i^{2}, \quad i=$ princ.quant.unmber "LS coupling $g=(2 \delta+1)(2 L+1)$
- if E_{i} excitation energy with resp. to ground state

$$
\frac{n_{u}}{n_{l}}=\frac{q_{u}}{g_{l}} e^{-E_{u e} / k T} \quad \text { with } \quad E_{u e}=E_{u}-E_{l}
$$

Ionization

- from generalization of Boltzmann formula for ratio of two (neighbouring) ionic species j and $j+1$

$$
n_{1 j} \text { with } g_{i j} \rightarrow n_{\text {trice } e^{-}}^{n_{1+1} \text { with } \underbrace{g_{1 j 1} \cdot g_{e l}}_{\text {weight of final state }}}
$$

gel: Number of available elements in phase space for dree e^{-},

$$
\begin{aligned}
& \frac{d^{3} I d^{3} f}{\eta^{3}} \cdot \sum_{\substack{\text { spin }}}, \quad d^{3} I=d V=\frac{1}{u_{e}}
\end{aligned}
$$

Sahaeq., 1920

- ratio (i.e., ionization) grows with T (clear!) falls with be (recomb!)
- all levels

$$
N_{0}=\sum_{i=1}^{\infty} u_{i j} \quad, \quad N_{j+1}=\sum_{i=1}^{\infty} n_{i j+1}
$$

- Boltzmann excitation

$$
\sum_{i=1}^{\infty} n_{i j}=\frac{n_{i j}}{g_{1 j}} \underbrace{\sum_{i=1}^{\infty} g_{i j} e^{-E_{i j} / k T}}_{u_{j}(\nabla) \text { partition function }}=N_{j}
$$

$$
\begin{aligned}
& \Rightarrow \frac{n_{i j}}{g_{i j}}=\frac{N_{j}}{u_{j}(T)}, \quad \frac{u_{i j+1}}{g_{1 j+1}}=\frac{N_{i+1}}{u_{j+1}(T)} \\
& \Rightarrow \frac{N_{j+1 \cdot u_{e}}}{N_{j}}=\left(\frac{2 \sigma m k T}{h^{2}}\right)^{3 / 2} 2 \frac{u_{j+1}(T)}{u_{j}(T)} e^{-E_{i m} / k T}
\end{aligned}
$$

Note: Summation in partition function until finite maximum, to account for extent of atom

$$
\frac{4 \pi}{3} \sigma_{\text {mar }}^{3}=\Delta V=\frac{1}{N}
$$

example hydrogen $r_{i}=a_{0} i^{2}=r_{\text {max }} \Rightarrow$ iran

- generalization for arbitrary levels:
calcultate $u_{1 j}$, then $n_{i j}=n_{1 j} \frac{g_{i j}}{g_{i j}} e^{-E_{n} \mid k T}$

An Example: Pure Hydrogen Atmosphere in LTE given: temperature + density (here: total particle density)

- $N=n_{p}+n_{e}+\sum_{i=1}^{i \max } n_{i}$

$$
=u_{p}+u_{e}+\frac{m_{1}}{g_{1}} u(T)
$$

- only hydrogen: $n_{p}=n_{e}$

$$
\begin{aligned}
& \frac{n_{e} \cdot n_{p}}{n_{1}}=\left(\frac{2 \pi m_{k} r}{h^{2}}\right)^{3 / 2} \frac{2 \cdot g_{p}}{g_{1}} e^{- \text {EionlkT }} \\
& \Rightarrow \frac{n_{1}}{g_{1}}=\frac{n_{e}^{2}}{2}\left(\frac{h^{2}}{2 \pi m k r}\right)^{3 / 2} e^{\text {Eioulkr }}
\end{aligned}
$$

$\Rightarrow n_{\mathrm{e}}=-\frac{1}{\alpha(T)}+\sqrt{\frac{1}{\alpha^{2}(T)}+\frac{N}{\alpha(T)}}$

$$
=u_{p} \xrightarrow{\text { sola }} n_{1} \xrightarrow{\text { Boltzmann }} n_{i} \text { i finis\}ed! }
$$

- for mixture of elements, analogously!

LTE bf and ff opacities for hydrogen

figure 4-1
Opacity from neutral hydrogen at $T=12,500^{\circ} \mathrm{K}$ and $T=25,000^{\circ} \mathrm{K}$, in LTE; photoionization edges are labeled with the quantum number of state from which they arise/neutral atom Ordinate: sum of bound-free and free-free opacity in $\mathrm{cm}^{2} /$ atom; abscissa: $1 / \lambda$ where λ is in microns.

LTE and NLTE

(L)TE: for each process, there exists an inverse process with identical transition rate

LTE = detailed balance for all processes!
processes $=$ radiative + collisional

- collisional processes (and those which are essentially collisional in character, e.g., radiative recombination, ff -emission) in detailed balance, if velocity distribution of colliding particles is Maxwellian (valid in stellar atm., see below)
sradiative processes: photoionization, photoexcitation (= bb absorption) in detailed balance only if radiation field Planckian and isotropic (approx. valid only in innermost atmosphere)

radiative processes couple regions with different temperatures, as a function of frequency: $\Delta \tau_{v} \leq 1$

Question: is $f(v) d v$ Maxwellian?

- elastic collisions -> establish equilibrium
- inelastic collisions/recombinations disturb equilibrium inelastic collisions: involve electrons only in certain velocity ranges, tend to shift them to lower velocities
recombinations : remove electrons from the pool, prevent further elastic collisions
- can be shown: in typical stellar plasmas, $\mathrm{t}_{\mathrm{el}} / \mathrm{t}_{\mathrm{rec}} \approx 10^{-5} \ldots 10^{-7} \approx \mathrm{t}_{\mathrm{el}} / \mathrm{t}_{\text {inel }}$ => Maxwellian distribution
- under certain conditions (solar chromosphere, corona), certain deviations in highenergy tail of distribution possible

Question: is T (electron) $=\mathrm{T}$ (atom/ion) ?

* equality can be proven for stellar atmospheres with $5,000 \mathrm{~K}<\mathrm{Te}<100,000 \mathrm{~K}$

```
When is LTE valid???
roughly: electron collisions >> photoabsorption rates
    \proptone
    LTE: T low, n nigh dwarfs (giants), late B and cooler
    NLTE: T high, n}\mp@subsup{\textrm{n}}{\textrm{e}}{}\mathrm{ low all supergiants + rest
```


TE - LTE - NLTE : a summary

	TE	LTE	NLTE
velocity distribution of particles Maxwellian $\left(T_{e}=T_{i}\right)$	\checkmark	\checkmark	\checkmark
excitation Boltzmann	\checkmark	\checkmark	no
ionization Saha	\checkmark	\checkmark	no
source function	$B_{v}(\mathrm{~T})$	$B_{v}(T)$, except scattering component	only $\mathrm{S}_{v}{ }^{\text {ff }}=\mathrm{B}_{v}(\mathrm{~T})$
radiation field	$J_{v}=B_{v}(T)$	$J_{v} \neq B_{v}(T),$ equality only for $\tau_{v} \geq\left(\frac{1}{\varepsilon_{v}}\right)^{1 / 2}$	$J_{v} \neq B_{v}(T)$ dito

Statistical equilibrium

NLTE - statistical Equilibrium

- do NOr use Saha-Doltzmanu, However calculate occupation numbers by assuming statistical equilibrium
- for stationarity $(d / d t=0)$ and as long as kinematic time-scale $>$ atomic transition time scales (usually valid)

$$
\sum_{j \neq i} n_{i} P_{i j}=\sum_{j \neq i} n_{j} P_{j i} \quad \forall i
$$

ni occupation number (atomic species, ionization stage, level)
Pij transition tate from level $i \rightarrow j\left(\operatorname{dim}_{i j} P_{i j}=s^{-1}\right)$

- in words: the number of all possible transitions from level into other states j is balanced by the number of transitions from all other states j into level.
\Rightarrow linear equation system for n_{i}, Gas to be closed by abundance equation

$$
\sum_{n_{i k}}=u_{k}
$$

if nix the occupation numbers of species k and u_{k} the total particle density of k

Transition rates

- collisional processes bb, ionization/rec.
- radiative processes 66, ionization/rec.

Radiative processes depend on radiation field radiation field depends on opacities opacities depend on occupation numbers Iteration required!
... no so easy, however possible
Note: to obtain reliable results, order of
30 species
3-5 ionirationstages 1 species
20... 1000 level/ion
$100,000 \cdots$ some 10^{6} transitions to be considered in parallel
requites large data base of atomic quantities (energies, transitions, cross sections) fast algorithm to calculate radiative transfer!

LMU
 Solution of the rate equations - a simple example

HAD: for each atomic level, the sum of all populations must be equal to the sum of all depopulations (for stationary situations)
example: 3-niveau atom with continuum
assume: all rate coefficients are known (i.e., also the radiation field)
\Rightarrow rate equations (equations of statistical equilibrium)

$$
\begin{gathered}
-n_{1}\left[R_{1 k}+C_{1 k}+R_{12}+C_{12}+R_{13}+C_{13}\right]+n_{2}\left(R_{21}+C_{21}\right)+n_{3}\left(R_{31}+C_{31}\right)+n_{k}\left(R_{k 1}+C_{k 1}\right)=0 \\
n_{1}\left(R_{12}+C_{12}\right)-n_{2}\left[R_{2 k}+C_{2 k}+R_{21}+C_{21}+R_{23}+C_{23}\right]+n_{3}\left(R_{32}+C_{32}\right)+n_{k}\left(R_{k 2}+C_{k 2}\right)=0 \\
n_{1}\left(R_{13}+C_{13}\right)+n_{2}\left(R_{23}+C_{23}\right)-n_{3}\left[R_{3 k}+C_{3 k}+R_{31}+C_{31}+R_{32}+C_{32}\right]+n_{k}\left(R_{k 3}+C_{k 3}\right)=0 \\
n_{1}\left(R_{1 k}+C_{1 k}\right)+n_{2}\left(R_{2 k}+C_{1 k}\right)+n_{3}\left(R_{3 k}+C_{1 k}\right)-n_{k}\left[R_{k 1}+C_{k 1}+R_{k 2}+C_{k 2}+R_{k 3}+C_{k 3}\right]=0
\end{gathered}
$$

with
$R_{i j}$, radiative bound-bound transitions (lines!)
$R_{i k}$ radiative bound-free transitions (ionizations)
$R_{k i}$ radiative free-bound transitions (recombinations)
$C_{i j}$ collisional bound-bound transitions
$C_{i k}$ collisional bound-free transitions
$C_{k i}$ collisonal free-bound transitions
in matrix representation =>
 rate matrix, diagonal elements sum of all depopulations
$P *\left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3} \\ n_{4}\left(=n_{k}\right)\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$
Rate matrix is singular, since, e.g., last row linear combination of other rows (negative sum of all previous rows)

THUS: LEAVE OUT arbitrary line (mostly the last one, corresponding to ionization equilibrium) and REPLACE by inhomogeneous, linearly independent equation for all n_{i}, to obtain unique solution
particle number conservation for considered atom:
$\sum_{i=1}^{N} n_{i}=\alpha_{k} N_{\mathrm{H}}$, with α_{k} the abundance of element k

NOTE 1: numerically stable equation solver required, since typically hundreds of levels present, and (rate-) coefficients of highly different orders of magnitude

NOTE 2: occupation numbers n_{i} depend on radiation field (via radiative rates), and radiation field depends (non-linearly) on n_{i} (via opacities and emissivities) => Clever iteration scheme required!!!!

Example for extreme NLTE condition Nebulium (= [OIII] 5007, 4959) in Planetary Nebulae

mechanism suggested by I. Bowen (1927):

* low-lying meta-stable levels of OIII(2.5 eV) collisionally excited by free electrons (resulting from photoionization of hydrogen via "hot", diluted radiation field from central star)
- Meta-stable levels become strongly populated
- radiative decay results in very strong [OIII] emission lines
- impossible to observe suggested process in laboratory, since collisional deexitation (no photon emitted)) much stronger than radiative decay under terrestrial conditions.
- Thus, after detection new element proposed , "nebulium"

Fig. $1 a$

Condition for radiative decay

NOTE: $\mathrm{A}_{\mathrm{ml}} \leq 10^{-2}\left(\right.$ typical values are $\left.10^{7}\right)$
$n_{m} A_{m l} \gg n_{m} n_{e} q_{m l}\left(T_{e}\right)$, with metastable level m
$\rightarrow n_{e} \ll n_{e}$ (crit),
$n_{e}($ crit $)=\frac{A_{m l}}{q_{m l}\left(T_{e}\right)}, \quad \mathrm{q}_{\mathrm{ml}}=8.63 \cdot 10^{-6} \frac{\Omega(l, m)}{g_{m} \sqrt{T_{e}}}$
$\Omega(l, m)$ collisional strength, order unity
for typical temperatures $T_{e} \approx 10,000 \mathrm{~K}$ and [OIII] 5007,
we have n_{e} (crit) $\approx 4.9 \cdot 10^{5} \mathrm{~cm}^{-3}$,
much larger than typical nebula densities

