
Radiative processes, stellar atmospheres and winds

(WS 2021/2022)

LAST Problem set (9)

Problem 1 [3 points] Natural line width

One can show (e.g., in the classical approach by using the equation of motion for an
oscillating electron inclusive damping), that the radiated power from an excited atom
decays with exp(−Γt).

a) Interpret this as a probability distribution function, p(t) ∝ exp(−Γt), and show that
the mean life time of an excited atom, τ = < t > =

∫
tp(t)dt = 1/Γ.

b) Assume a transition between two excited states with energies Ei and Ef , and mean
life times τi and τf . Calculate the corresponding line-width (with respect to fre-
quency and wavelength) from the uncertainty principle.

c) Compare the result from 1b) with the full-width at half maximum from a corre-
sponding Lorentz profile.

d) Calculate the natural line-width (see 1b/c) for the Balmer-α transition of hydrogen
in units of Å, assuming τn=2 = τn=3 = 10−8s.

Problem 2 [3.5 points] Doppler broadening

For the following problem and nomenclature, see script page 119.

In order to account for the thermal velocities of the radiating atoms, we have to convolve
the ‘atomic’ profile function with the corresponding velocity distribution, P (vx, vy, vz)
(Dopplershifts!). Thus, if the emission is isotropic, we need to evaluate

Φ(ν) =

∫ ∫ ∫
P (vx, vy, vz)ϕ(ν

′ − ν0)dvx, dvy, dvz.

Φ(ν) is the resulting profile function at observer’s (rest) frequency ν, and ϕ is the intrinsic
(‘atomic’) profile in dependence of (ν ′ − ν0), with ν ′ = ν ′(ν, n⃗ · v⃗) the frequency in the
atomic frame and ν0 the transition frequency.

a) Derive the equation for Φ(ν) as quoted on page 119.

Hint: Assume (without loss of generality) that the x-axis of the v⃗ coordinate system
is aligned with n⃗ (direction from atom towards observer), and that in this geometry
only the vx components contribute to the Dopplershifts (no transversal Dopplershift,
because v ≪ c).

b) Assume that the intrinsic profile, ϕ(ν ′ − ν0), is a delta function, and derive the
Doppler-profile quoted on page 120.

1



c) Assume now that the intrinsic profile, ϕ(ν ′ − ν0), is a Lorentzian, and derive the
Voigt-profile quoted on page 120.

d) Compare the natural line-width from problem 1d) (actually, half of this width)
with the corresponding thermal Dopplerwidth, ∆λD (also in Å), assuming a thermal
speed of 10 km/s. In view of this result, interpret the parameter a appearing in the
Voigt-profile.

Problem 3 [3 points] Electrons in the solar photosphere

According to the Holweger-Müller model of the solar photosphere, at τ5000 = 0.04 (the
optical depth at 5,000 Å) there is a temperature of 5,000 K, and a gas pressure of 2.63·104
dyn/cm2.

Adopt LTE conditions, and calculate the corresponding electron-density ne, by assuming
that the photosphere consists of hydrogen and helium only (NHe/NH = 0.1), and that
Helium is completely neutral. Adopt a partition function for neutral hydrogen, U(Hi) =
2 (why?). Note: the statistical weight of a proton, gp = 1.

If you have made no error, you should have obtained ne ≈ 7.52 · 1011 cm−3. Calculate the
corresponding electron pressure, Pe, and compare it with the value of 2.54 dyn/cm2 from
the Holweger-Müller model. Try to explain the discrepancy.

Problem 4 [2.5 points] Approximate rate equations

NOTE: The following nomenclature refers to the script, page 133/134.

a) Detailed balance in the resonance lines of a stellar wind

To estimate the occupation numbers (particularly, the ground-state) of an ion in the
supersonic part of an expanding hot-star atmosphere (wind), one might apply the following
approximations

(i) Because of the low densities, all collisional rates can be neglected.

(ii) The resonance lines (radiative transitions connected to the ground state) are opti-
cally thick throughout the wind, and the corresponding radiative bound-bound rates
(upwards and downwards) cancel each other, i.e., n1R1j = njRj1. In other words,
these rates do not appear in the rate equations.

Write down the corresponding approximate rate equations for an ion with four bound
levels, in the form

matrix · (n1, n2, n3, n4)
T = b⃗,

assuming that the ground-state population of the next higher ion, nk, is known, and that

b⃗ is a vector containing all rates proportional to nk.

Which processes control the ground-state population of the considered ion, and what is
the result for n1?
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b) Nebular approximation

The situation in a Planetary Nebula or an Hii region illuminated by a hot star is similar
to the conditions from a), except that because of the much lower densities the radiative
bound-bound rates for the resonance lines do no longer cancel each other, and that gen-
erally (i.e., for all lines) only the spontaneous emission terms ‘survive’. With respect to
page 133/134, in this situation we then have

niRij → 0, and njRji → njAji, (1)

with Aji the Einstein coefficient for spontaneous decay. Moreover, the ionization rates,
niRik, can be neglected for all excited levels, because of the very small dilution factor
(sizes of order 0.1 to 1 pc for PNe, and 10 to 100 pc for Hii regions).

Formulate the corresponding approximate rate equations similar to problem 4a), and
compare the structure of both systems.

Have fun, and much success!

3


