Radiative processes, stellar atmospheres and winds $(WS \ 2021/2022)$

Problem set 8

Problem 1 [2 points] Adiabatic temperature gradient

Derive, from $\nabla_{\rm ad} = 1 - 1/\gamma$, the corresponding spatial temperature gradient $(dT/dr)_{\rm ad}$, for an atmosphere in hydrostatic equilibrium and neglecting radiative acceleration. Your result should depend, among other factors, on g, μ , and γ .

Problem 2 [2 points] Ratio of ∇_{rad} and ∇_{ad}

Derive (within the standard convection scenario) the following result for the ratio

$$\frac{\nabla_{\rm rad}}{\nabla_{\rm ad}} = \frac{3}{16} \left(\frac{T_{\rm eff}}{T}\right)^4 \frac{\bar{\chi}_{\rm Ross} H}{1 - \frac{1}{\gamma}},$$

by explicitly using the corresponding spatial temperature gradients (cf. problem 1).

Problem 3 [2 points] Pressure scale height and opacity

Show that the product $\bar{\chi}_{\text{Ross}}H$ (script page 110) is on the order of τ_{Ross} , i.e., of order unity or below in a stellar photosphere. Assume that the Rosseland opacity depends linearly on density, i.e., $\bar{\chi}_{\text{Ross}}(r) = \text{const} \cdot \rho(r)$. Hint: consider the dependence of density vs. column density in a hydrostatic atmosphere.

Problem 4 [6 points] Convective flux at the base of the solar convection zone

On page 113 of the script we have seen that the convective flux depends on the difference $(\nabla_a - \nabla_i)$, where 'a' denotes the ambient medium and 'i' the bubble(s). We ask now how large the difference in ∇ needs to be that the *total* energy flux is transported by convection under typical conditions. Normalized in terms of ∇_{ad} , this would measure the required degree of 'superadiabaticity' of the ambient medium, if we approximate $\nabla_i \approx \nabla_{ad}$.

- a) Derive $(\nabla_a \nabla_i)$ from the condition that the convective flux is the total energy flux, and that the total 'luminosity' at r is given by L_r .
- b) Calculate $(\nabla_a \nabla_i)$ at the base of the solar convection zone, from the condition outlined in problem 4a), and from the following parameters:

 $L_r = L_{\odot}, r = 0.82R_{\odot}, M_r = 0.9965M_{\odot}$. The density is 0.036 g/cm³, and the temperature $T = 1.13 \cdot 10^6$ K (all this from stellar structure calculations). Mean molecular weight, μ (measured in units of $m_{\rm H}$), from a solar H/He mixture (cf. problem set 7). To calculate the thermodynamical quantities, assume a mono-atomic ideal gas, and no ionization effects.

Note that C_p needs to be defined per unit mass, and thus $C_p(\text{per unit mass}) = C_p(\text{per mol})/\mu$. Show that under these conditions $C_p(\text{per unit mass}) = 3.41 \cdot 10^8$ in cgs-units. What are these units?

Finally, assume a mixing length parameter of unity.

Hint: Try to calculate all quantities (for this and the following problems) by using an adequate program code/script, and print out important intermediate results. This diminishes potential error sources quite a lot.

- c) Determine the required degree of superadiabaticity, $(\nabla_a \nabla_i)/\nabla_{ad}$. What do you conclude?
- d) Calculate the average convection velocity, \bar{v} , and convince yourself that the resulting value makes sense. Otherwise, you made some error, presumably in the conversion of units.
- e) Finally, convince yourself that at the considered location (base of convection zone) $\nabla_{\rm ad} \approx \nabla_{\rm rad}$, when $\log_{10}(\bar{\chi}_{\rm Ross}/\rho) = 1.28$ (in cgs) and $\bar{\chi}_{\rm Ross}$ increases strongly with height, thus enabling convection.

Have fun, and much success!