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6. Errors

▪ same precision of measured value and error
• e.g. 1.5 ± 0.5 cm.

• inconsistent: x=5±0.2  or  x=1.07±0.1

▪ ideally: measurement should be free of bias (Verfälschung), i.e., the 
true value should be the mean of the measured values in the limit of 
infinite measurements (for a more precise definition, see Chap. 7)   

▪ for measurements with results which follow a known distribution,
the error is chosen as the corresponding standard deviation 
(assuming the measurement value to be the expectation value) 

▪ Examples
• Poisson-distributed events: We measure 150 photons. The result is 150±√150=150±12

• uniformly distributed processes: We measure the time with a digital clock which displays 

seconds. The error is 1/√12 s = 0.3s.

• binomial distribution: We detect N=45 from N0=60 particles which pass a detector. The 

detection rate is N/N0=0.75.

The error of the rate is δN/N0=√[N0*p*(1-p)]/N0=√[p*(1-p)/N0]=√[0.75*0.25/60]=0.06
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▪ Empirical derivation from a series of measurements

• repeat measurement and derive error from fluctuations

• for details, see Chap. 7 (parameter estimation)

• justified if purely statistical errors, i.e., the results are independent of each other and 

there are no (correlated) systematic errors (otherwise, see below)

• recipe:
2
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The (N-1)-term  in the denominator of  s  will be derived in Chap. 7. 

It is caused by the fact that we need to use the estimate for the mean, x ,  

instead of the true mean  (which is unknown).

Note th

x
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at for 1 measurements the variance remains unspecified, which makes sense.
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Averaging weighted measurements

▪ Important to combine the results of the individual measurements 

in such a way as to find the highest precision

▪ in the following, we assume independent measurements

1 2 1 2

1 2

1 1 2 2

2 2 2 2 2

1 1 2 2

 two measurements with results x ,x  and errors , . The variance of the

weighted sum (with 1)

x x x             is given by

(x

Examp
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For  measurements, we obtain the general expressions
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Error propagation

In the following, we identify the measurement error with the positive root of the

mean square deviation of the individual measurements, i.e., with the standard deviation.

Suppose that we measure the qua

x

ntity  (in the remainder of this chapter, we don't make

a distinction between x and ) which follows a certain distribution with variance

( ) and "error"  (because of the CLT, this distribution wi

x

x

Var x 

2

ll be often a normal one).

We like to find now the corresponding error of ( ),  where  is a function.

Let       with constan

1. One variable, lin

ts  and . Then,
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),  i.e.,

n

f x f
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Var f a Var x

= +

=

f x
  a =
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 Taylor expansion around the measured (mean) 

value  with  individual variance ( ) (

2. One variable, arbitrary function.
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Note that this approximation is valid for "small" errors, where "small" means that the

differential should not change much over a few .
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2 2

a) linear functi
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b) general function. Taylor expansion
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 and only if the covariance term vanishes, i.e., if the  and  are uncorrelatedx y
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Examples for error propagation

 
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2

1 1 2 1

2

2 1 2 2

2
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With covariance matrix ("error matrix") ,
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( ) ( ) ... ( )
( ) )

... ...
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( )       or in vector notation

( )

ij ij i j

n

f ij

i j i j

f

C

f f
Var f C

x x

Var f f f

  





=







=

 
= =

 

= =   



T

C

2

2 2

1

If the variables are uncorrelated, only the diagonal terms "survive", and

we obtain (again) the "standard" law of error propagation, 
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1 2 1 2
Last generalization. Suppose there are now  functions , ,...,  of   variables , ,
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Taylor expansion of the individual functions gives
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The most general law of error propagations

1 1

Note that even for uncorrelated variables, at least the term involving ,

will always be pres  the f

cov( , ) cov(

ent, i.e. un
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Denoting the matrix of partial derivatives (which is nothing else than the 

transformation matrix, see Chap. 4) by
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  

  

  

  =T
ki

1 2

,    T ,

.

...

we can write the most general law of error propagation as

                                   

with   and  . Both

mxn k

i

m m m

n

nxn mxm

f

x

f f f

x x x

 
 
 
 
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  
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Example

In a carthesian coordinate system a point ( , ) is measured, where the measurements

should be independent, and the error in  is three times larger than the one in . E.g.,

1 0
=  .

0 9

Let's calculat

x y

y x

 
 
 

x
C

2 2

2 2

y
e the errors in polar coordinates,  and =atan . 

x

The transformation matrix (matrix of partial derivatives) is

1
,     and we consider the errors at .  Then,

1

r x y

x y

r r

y x

r r

= +

 
   

= =   
−   

 
 

m

m

x=x

T x

r,

1 1

2 2
 ,  

1 1

2 2

and

1 1 41 1
5

1 0 22 22 2
C  

0 9 1 1 4 51 1

2 22 22 2

The errors in r and  are the square root of the diagonal, 5  and 5/2 ,  respectively,

and 





 
 
 =
− 

 
 

−    
      
    = = = 

−      
     
     

T

x

T

TC T

the covariance between ( , ) is cov( , ) 4 / 2.

Only if these terms are considered, the back-transformation gives the original results! 

... and any function involving both ( , ) needs this covariance ter

r r

r

 



=

m for the errors.
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Systematic errors

▪ the effect of systematic errors does not decrease with the 

number of measurements, since all measurements share the 

same effect, and thus are not independent

▪ sometimes, statistical errors and systematic ones are stated 

separately, e.g.

x=5.0±1.4±2.3

where the 2nd term is the systematic error. 

▪ since statistical errors and systematic ones are independent of 

each other, they add quadratically (see below)

▪ treatment: split errors in random and systematic ones, and 

calculate covariance matrix  
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1 2

1 2

Assume you measure two quantities  and ,  which have

a common systematic error  and individual random errors , .

you measure the length and the width of an rectangle, where 

E

t

x

he measur

ampl

ng

e: 

i

x x

S  

 

tape gives systematically too high values (the tape might be stretched). 

In this case, both measurements are affected by an individual random error 

(reading) and a common systematic one.

When calculating the area of the rectangle, the covariance term (resulting

from the systematic error) usually plays the dominating role.

1 1 1 2 2 2

1 2

1

Split up the individual measurements in two parts, 

 ,        

with corresponding random (R) and systematic (S) errors. Then,  and  are

independent of each other and of  and 

R S R S

R R

S

x x x x x x

x x

x x

= + = +

2 1 2

2 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1

1 1 1 1

,  whereas  and  are identical.

( ) ( ) ( ) ( ) (  ) (  )

             = ( ) ( ) ( ) ( ) ,

since ( ) ( ) ( )  because they

S S S

R S R S

R R S S

R S R S

x x

Var x E x E x E x E x x E x x

E x E x E x E x S

E x x E x E x



 = −  = + − + = 

   − + − = +   

 =   are independent (Chap. 4). 

The above equation proves that systematic and random errors add quadratically.
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2 2

2 2

1 2 1 2 1 2

1 1 2 2 1 1 2 2

1 2 1 2

Similarily,

( )          and

cov( , ) ( ) ( ) ( )

                 (  )(  ) (  ) (  )

                 ( ) ( )                   

     

R S R S R S R S

S S S S

Var x S

x x E x x E x E x

E x x x x E x x E x x

E x x E x E x

= +

= − =

 = + + − + + = 

 = − = 
2

1 2 1 2
             cov( , ) ( ) ( )

since all products involving  cancel, because they are independent of anything else.

S S S S

R

x x Var x Var x S

x

= = = =

2 2 2

1

2 2 2

2

Thus, the complete covariance matrix reads

    

    

S S

S S





 +
=  

+ 

C

2 2 2 2

1 1 1 2

2 2 2

1 2 2

Often, the systematic error is proportional to the measurement,

(e.g., in case of the measurement tape, if the tape is stretched). In this case, the error matrix is

  

  

S x

x x x

x x



  

  

=

+
=

+
C

2

2
   x

 
 
 
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Examples

By means of the well-known linear regression (Chap. 8), one can, e.g., fit a 

straight line  to a certain data-set. Fit-parameters are the offset  

and the slope

Ex

 

ample

,  with errors   

 1

 and
b m

y mx b b

m  

= +

1

,  respectively. As we will show, there

is (almost) always a correlation between both quantities, which 

a) is negative when the "sample" mean of the abscissae, / ,  is positive, 

b) or posi

N

i

i

x x N
=

 
=  
 


tive, when the sample mean is negative.

c) for 0,  the correlation vanishes.

If one wants, e.g., to use the derived relation for extra- or interpolation, the 

accuracy of  the extra-/interpolated value 

x =

1

1

1 1

2 2 2 2

1 1

depends on this correlation. 

Assume that we want to derive the -value for the abscissa x ,  and that 0.

;      then

2 cov( , )

which is smaller (larger) for positive (negative) 

y m b

y x

y mx b

x x m b  



= +

= + +

1
x  than if neglecting (forgetting!) 

the correlation.
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22 2 2

2 U

I

A current  is determined by measuring the voltage ,  using a meter of resolution ,

across a resistance . The error on /  results as

=   ,  i.e., 

Example 2

U

R

UI R

I U

R I U R

I U R





  


 =

+    
+ =    

    

2 2

R

2

1 2

.

If two currents,  and , are measured using the , there will be a 

error, and both currents become correlated. The covariance  can be calculated from our 

general

same resistance

 for

I

R

I I systematic



2 2 21 2 1 2 1 2

1 2 R R R2 2 2

1 2

mula of error propagation,

cov( , ) .

The errors on  and  are not influenced by this covariance, of course. However, if one

calculates functions of 

I I U U I I
I I

R R R R R

I I

  
    

= = − − =  
    

1 2

1 2

1 2

2 2 2 2 2 2 2

2 2 2 2 1 R 2 R 1 2 R

1 2 I I 1 2 2

  ,  the corresponding error  affected. E.g., the variance of

( ) is given by (again using our general formula)

2
( ) 1 ( 1) 2 cov ( , )

     

U U

I and I is

I I

I I I I
Var I I I I

R

    
 

−

+ + + −
− = + − − = =

2 2 2

1 2 R

2

2 2 2 2 2

1 2 R 1 2 R

2 ( )
            =

which can be significantly smaller than if forgetting the correlation 

( )  vs. ( )

U
I I

R

I I I I

 

 

+ −

 − + 
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1 2

2 2 2 2

1 2 2

2 2 2

2 1 2

Given are the sides of a rectangle, , ,  with reading error  and scaling error  

(stretched tape). Calculate the error on the area . The error matrix is

  

   

Example 3

 

 

a b

F

a ab

ab b

 

  

  

+
=

+
C

( ) ( ) ( )

2

2 2 22 2

2 2 2 2 2 2

2 2 21 1 2

2 2 12 2 2 2

 

. From our generalized law of error propagation, we find

2 cov( , )

cov( , ) 1 1
2 2 2

F ab

F b a a b ab a b

abF a b a b

F a b ab a b ab a b

  

    
   

 
 
 

=

= + +

          
= + + = + + + + = + +          

          

2 2

2 2

2

2

2

Due to the covariance, the relative error on the area becomes larger by 2

compared to the case of neglecting (forgetting) the correlation. Note that

also the area itself is affected by the cor





+

2

2

relation,

( ) cov( ) (1 )E F ab ab F = + = +
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7. Estimation

Distribution functions give probabilities for  < x ,  which moreover depend on 

certain parameters  which are usually unknown. To "measure" the pdf and ,  one 

Random sampling -- a few definitions

x x dx

 

 +

has 

to approximate it by a   obtained experimentally. 

The number of experiments performed, called a sample, is necessarily finite. Each sample

is obtained from a set of elements wh

frequency distribution

ich is usually of infinite size (composed of all conceivable

events), which is called the (parent) population. If a sample of  elements is drawn, the sample 

has size . The sample can be described by 

N

N

1 2 N

a dimensional random variable

(x ,x ,...,x )

N −

=x

1 2

i 1 1

The sample random variable  follows a pdf

( ) ( , ,..., ),

and has to fulfill two conditions in order to describe the process of  .

a) the x  have to be independent, i.e., g( ) ( )

N
g g x x x

random sampling

g x

=

=

x

x

x
2 2
( )... ( ),

b) the individual distributions have to be equal and identical to the pdf of the pare

A fu

nt 

    population ( ),  i.e., ( ) ( )  

nction of a sample ,  which itself is a r.v., is c

N N

i i

g x g x

f x g x f x i= 

x

i i

i=1

alled . A well known example

1
is the   defined as the arithmetic mean of

 a statistic

 the x ,  x x .
N

sample mean
N

= 
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Estimators

▪ A typical problem of data analysis is the following: 
The general pdf of the parent population is known. The numerical value 
of one or several parameters shall be obtained from a sample. Thus, we 
are dealing with the estimation of parameters. Since the estimated value 
is obtained by means of sampling, it is a statistic, called an estimator.

▪ an estimator is a statistic, 

S=S(x1, x2,…,xN)

i.e., a procedure (function) applied to the data sample which gives a 
(numerical) property of the parent population or a property or parameter 
of the parent distribution function.

▪ for a given sample, there might be different estimators.

▪ the quality of an estimator can be described in three terms, 
consistency, bias and efficiency
• a ‘good’ estimator has to be consistent, unbiased and efficient. 

• to compare two estimators which are consistent and unbiased, the better one has to be more efficient .

• a ‘bad’ estimator is inconsistent, biased and inefficient.

• estimators should be at least consistent. Some estimators are inevitably biased.
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Bias, consistency and efficiency

1 2 N

An estimator is if for any size of the sample its expectation value is equal to 

the parameter to be estimated,

(S(x ,x ,...,x ))     for any 

If a bias is found, it is often easy

unbias

 to co

ed

rr c

 

e t 

E N=

1 2 N

1 2 N

for. If , e.g., (S(x ,x ,...,x )) ,  

then S(x ,x ,...,x )  is an unbiased estimator.

E b

b

= +

−

Example for bias
The Malmquist bias is a selection effect in observational astronomy. Specifically, if a sample of objects 

(galaxies, quasars, stars, etc.) is flux (“magnitude”)-limited, then the observer will see an increase in 

average luminosity with distance. This is, of course, because the less luminous sources at large distances 

will not be detected. The solution is then to use a sample that is not magnitude limited (for example, one 

that is volume limited.)

An estimator is  if the result becomes increasingly accurate for increasing sample size,

lim (S) 0     and     lim S .

If an estimator is consistent, its bias (if any

 c

) vanishes for :  

onsistent

N N

N

 
→ →

= =

→  consistent = asympt. unbiased

2

1

2

2

To compare the of two estimators, one can use the quotient

(S )
= .

(S )

Often, the efficiency can be quantified in terms of a lower limit, the so-called mini

relat

mum

va

ive efficienc

riance bound VB

y

M

 

(






,

efficient.

 see "maximum likelihood"). If (S) ,  the estimator is

called 

Var MVB=
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Basic estimators: sample mean and variance

i 1 2 N

i=1

As already shown, the expectation value of the sample (arithmetic) mean of a r.v. x

is its expectation value,

1 1
(x) ( x ) ( (x ) (x ) ... (x )) .

Since this is true for any sample size, the s

N

x
E E E E E

N N
= = + + + =

unbiased estimator for the

expectation value of x in the parent population, 

ample mean is an 

the  . population mean

( )  ( )( ) ( )( ) 

 

2

2 22 i2

i i2 2

2

2 2

1 N2

The variance of the sample mean is

x 1 1
(x) x (x) x x

1 (x)
         (x ) ... (x ) ,   since all  mixed terms of the type

      

x x x

x x

E E E E N E
N N N

E
N N

   


 

      
= − = − = − = − =            

= − + + − =


 

 i j
       (x )(x ) ,   i.e., the covariances, vanish (independent r.v.).

(x)
Thus, consistent esti the sample mean is a  for ,   lm im (xato ) limr 0.

x x

x
N N

E

N

 


 

→ →

− −

= =

2

1

2

i

1

Now, let's estimate the variance of the population (see also Chap. 6). At first we assume that

 is known. An obvious estimator for the variance is

1
S( ) s         (x ) : which is  consiste

x

N

x

i

Var
N




=

= − =

 2

2

i

1

nt  and unbiased, since

(x )1
(x ) (x

(prove yoursel

)

f)

N
x

x

i

NE
E Var

N N




=

− 
− = = 

 

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i

2 1

i

2 2

i

1 1

Usually, however, the "true" population mean is not kown. An obvious remedy is to 

replace it by the s

1
s'

ample mean. 

(x

Let's call the corresponding estimator ',

x
1

 = x 2x   x)
N

i

N

N

i

iN

s

N N

=

==

= −− +


 

( ) ( )

2

2 2

i

1

2 2 2 2 2 2 2

i

1

2 22 2

22

x 1
   x x ,

with expectation value

1 1
(s' ) (x x ) (x ) (x ) (x ) (x )

          (x ) (x) (x) (x ).

As we have shown above, (x) (x),  and thus

(x )s' (( )

N

i

N

i

N

N N

E E NE E E E
N N

E E E E

E E

E EE

=

=

 
= − 

 

 
= − = − = − = 

 

= − + −

=

= −





( ) ( )
2 22

x) (x ) (x) (x) (x)

Thus, s' is biased, where the bias vanishes for ! The reason for this bias is that we

have not used the true but the sample mean. Since the sam

1
1 (x .

e 

)

pl

VarE E Var Var

N

N
 − − = − =
 

→ 

 
− 

 

mean, by construction, lies

somewhat closer to the data than the true mean, the corresponding variance is smaller.
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2 2 2

bias free estimator

The bias can be corrected for by applying "Bessel's correction", namely 

1 1
(s' ) 1 (x) (x)    (x) (s' ) ( s' )

1 1

by multiplying with /( 1). 

Thus, a  for 

N N N
E Var Var Var E E

N N N N

N N

− 
= − =  = = 

− − 

−

2 2

i

1

, s,  is given by

The denominator can be also understood as follows: Some information about the sample

has been used for c

1
s (x x)

1

alculat

the varianc

ing the sam

e of a sample

ple mean, which is l

N

iN =

= −
−


ost when calculating the 

sample variance. The effective number of the sample elements is thus reduced. 

   ( )
2

2
2 4 2 2 2

For large ,  the variance of these estimators can be calculated (with some effort) via

1
(s' )

Thus, both estim

(x ) (x ) ,    (s ) (s' )
1

which vanishe ats for . ors ar

x x

N

N
Var E E Var Var

N N

N

 
   − − − =
    − 

→ 

4 4 4 4

2 2

2

4

2

 For a  distribution

(conventional measurement errors), this reduces to (cf. Chap. 5)

3 2 2 ( 1)
(s' ,  large )   [for arbitrary , (s'

e consi Gausssten iat.

) ]      

2
(s )  (a b

1

n

r

N
Var N N Var

N N N

Var
N

   



− −
 = =

=
−

itrary )                   (Eq. 7.1)N
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2 2 2

1

1

So far, we have calculated various estimators for the variance, ,  '  and . 

The obvious way to estimate the standard deviation is to take the square root of these

estimates, i.e.

s

S( ) S( ) s'

s

s s s

Var = =

2 2

1

Though the law of large numbers guarantees consistency, the square root of an 

unbiased quantity (s , s ) not necessarily needs to be unbiased itself. Fortunately, in all

calculations of error pro







2
pagation or significance the standard deviation appears as .

Estimating σ

2
2

2 2

2

The variance of S( ) can be calculated from the law of error propagation,

(S( )) (S( )) 4 (S( )).

Thus, for large  and a Gaussian distribution, we obtain 

(s') ,       (s
2

d
Var Var Var

d

N

Var Var
N




   





 
= = 
 



2

s' s
)         or     ,              (Eq. 7.2)

2( 1) 2 2( 1)

If the population variance is not known or cannot be guessed, then  needs to be

replaced by the corresponding estimators from above.

N N N

  
 



=  =
− −
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Estimating the correlation coefficient

i i i i

1 1

x y 2 2

i i

1 1

A simple estimator for the correlation coefficient within a sample can be constructed

via

(x x)(y y) (x x)(y y)

S( ) r      (Pearson's r)
( 1)s s

(x x) (y y)

(independent of  v

N N

i i

N N

i i

N

N

 = =

= =

− − − −

= = =
−

− −

 

 

2

z

s. 1),  and with corresponding error   (>500)

1
.

1

For ,  it is better to transform to a variable  (Fisher's z-transformation),

1 1 r
z ln

2 1 r

which has a standard deviation 

N for large N

N

moderate N z








−

−


−

+
=

−

= 1/ ( 3).N −

Example: 13 physics students were given an essay to write. The correlation between the essay 

mark and their end-of-the-semester average physics mark was found to be S(ρ) = -0.16. If this 

correlation were really negative, this would imply that literate students are bad at physics and 

vice versa. Is there any support for this?

z

Transforming from r = S( ) to z,  we obtain

1 0.16
z 0.5 ln 0.1613.

1 0.16

The error 1/ 10 0.316. The deviation from zero correlation is only half a standard

deviation, so not significant.





−
= = −

+

= =

not to be confused with Fischer-Z

http://de.wikipedia.org/wiki/Fischer-Z
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151

▪ all estimators discussed so far 

• are consistent and

• do not depend on the distribution of the parent population

(except for expressions Eq. 7.1/7.2 that assume a normal distribution)

▪ furthermore, the basic estimators for the mean and 

the variance (“sample mean, sample variance”) are 

unbiased estimators of the mean and the variance of 

the parent population
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Parameter estimation: an example

Estimate the parameters of a correlated binormal distribution from random sampling

(and compare with t

Create correlated 

he parameters from

sample from uncorr

 the p

elated

arent populatio

 random numb

n)

ers:

calculate 2N independent, normally distributed random numbers (either from intrinsic 

generator if present or from uniformly distributed numbers and Box-Muller algorithm);

the generated numbers are redu i

i i i

1 2

x
ced r.v.: u       x u :

scale with individual ,  (for each of the  r.v. pairs in direction 1,2);  

rotate coordinate system to obtain correlated x,y pairs; add means ,
x y

N


 



 

 

−
=  = +

1 2

1

Here, we use the example from Chap. 5 with (2, 2) , 0.6252 and 1.6152 :

For a rotation angle of 31.6 ,  we should obtain 

=randomn(seed, N)*

=rand

=0.7, 1.0,  1.4142 and 0.86

omn(seed,

73
x y

z

 







 

= =

=

=

= =

= −

T
μ

u

v
2 1,2

i i

i i

 N)*                     2 times  independent, normally distr. r.v. with 

x ucos sin note that the rotation matrix has been inverted
             

y vsin cos (= transposed bec

N 

 

 

−    
=    
    

i i  i i

  
ause of its orthogonality)

x x              y y            add mean  (shift center)
x y

 





= + = +
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 y 

2

Calculate  and 

(by using the estimates instead of the actual, but unkno

estimates

1 1
( )                            (

wn quantities)

corre

)

sponding er

( )
( )        

rors 

   
1

x i i

i

x x

S x x S y y
N N

x x
S s

N

 



= = = =

−
= =

−

 



 y 

 y 

2

                                           

                            

( )
       ( )

1

( )( )
( )                   

      
2( 1) 2( 1)

1 (
 

( 1)

x

x

yx

y

i

y y

i i

x y

x

s s

y y
S s

N

x x y y
S

N s

ss

N N

ss

N N

S

s

 







 

 




= =

= =
− −

−
=

−
= =

−

− −
=

−



 ( )
2

z
                      

all sums extend from 1,

1
 :  All errors scale with , k [0,3], i

1 1 ( )
ln              

2 1 (

)

1

.e

)
1

.

/

 

)

,

( 3
S

N

N

i N

k

N

z
S






=

−

=
+

=
−

−


−

NOTE again all estimators are consistent  
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binormal distribution

with correlation, for 

parameters as 

described before 

(N=1000 x,y-pairs)

Compare with the 

covariance ellipses 

from Chap. 5
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Results for the sample estimates for different N

N=10

mu_x:   1.74463  +/- 0.301419

mu_y:      1.69644  +/- 0.340753

sig_x:     0.95317  +/- 0.224664

sig_y:     1.07756  +/- 0.253982

rho:       0.649858 +/- 0.192562

z:         0.775052 +/- 0.377964

N=100

mu_x:      1.81596  +/- 0.100339

mu_y:      1.80564  +/- 0.145755

sig_x:     1.00339  +/- 0.0713076

sig_y:     1.45755  +/- 0.103584

rho:       0.631415 +/- 0.0604344

z:         0.743767 +/- 0.101535

N=1000

mu_x:      2.00010  +/- 0.0306488

mu_y:      2.05395  +/- 0.0419521

sig_x:     0.969200 +/- 0.0216828

sig_y:     1.32664  +/- 0.0296795

rho:       0.682793 +/- 0.0168885

z:         0.834329 +/- 0.0316703

N=10000:

mu_x:      2.00184  +/- 0.00989791

mu_y:      2.00837  +/- 0.0140576

sig_x:     0.989791 +/- 0.00699923

sig_y:     1.40576  +/- 0.00994069

rho:       0.700583 +/- 0.00509210

z:         0.868444 +/- 0.0100015

to be compared with the population

parameters

mu_x:      2.0

mu_y:      2.0

sig_x:     1.0

sig_y:     1.4142

rho:       0.7

z:         0.8673

note that all errors decrease with ≈ N-0.5.

Even for N=10, there is a significant indi-

cation that the (x,y) data are correlated!



USM

Stratified sampling (‘beating’ 1/√N)

▪ suppose you want to estimate a certain quantity of a parent population 
based on a smaller sample, e.g., the average weight of students at your 
university.

▪ the most simple method is to make N measurements from a random 
sample, and to quote your results as                  

156

/ , with sample mean  and sample standard dev. 
x x

x s N x s

▪ but, you can do better, exploiting the fact that male and female students 

have different average weights, and if you know the relative proportions of 

male and female students at your university (consult the corresponding 

records!)

▪ If you perform the simple estimate from above, the ratio of male to female 

students in your sample will scatter about the actual ratio 

(e.g., if you have bad luck, your sample contains much more male than 

female students), and this scatter adds to the scatter in the average weight.

▪ This can be avoided by measuring the average weights in a male and 

female subsample, and adding up the results accounting for the specified 

ratio. In this way, the error on the total average can be significantly reduced!

▪ This method is called stratified (or partitioned) sampling (‘geschichtetes

Stichprobenverfahren’)
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1

1

Let's consider the more general case that the parent population  can be divided into 

 (exhaustive!) subpopulations ... .

The quantity x shall be described by correponding pdf's ( )... ( ),  wit

k

k

T

k T T

f x f x

( )

h distribution function

( ) ( ) (x | x ) 

that is a conditional probability x has to be part of a certain subpopulation . 

x

i i i
F x f x dx P x T

−

= =  

1

1

We now use the rule of total probability (Chap. 2) to obtain the distribution function 

for the total population ,

( ) (x | x ) (x | x ) (x )

Denoting (x ) : , we find

( ) ( ) 

k

i i

i

i i

k

i i

i

T

F x P x T P x T P T

P T p

F x p F x

=

=

=   =   

 =

=




1

1 1 1

, and likewise ( ) ( ) 

Thus, the population mean can be expressed by

ˆ ˆ(x) ( ) ( ) ( )            (Eq.7.3)

k

i i

i

k k k

i i i i i i

i i i

f x p f x

x E xf x dx xp f x dx p xf x dx p x

=

  

= = =− − −

=

= = = = =



    

The mean of the total population is the mean of the subpopulations, weighted by their probabilities 

of occurring. 
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 

2 2 2

1

2

1

The variance of the population can be calculated from its definition

ˆ ˆ(x) (x) ( ) ( ) ( ) ( ) 

ˆ ˆ ˆ         ( ) ( ) ( )

Since the  are independent,

k

i i

i

k

i i i i

i

i

Var x x f x dx x x p f x dx

p x x x x f x dx

x



 

=− −



= −

= = − = − =

= − + −

 

 

2 2 2

1

2 2 2

1

 all mixed terms (covariances) vanish, and we obtain

ˆ ˆ ˆ(x) ( ) ( ) ( ) ( ) ,

ˆ ˆ(x) ( )                                                           

k

i i i i i

i

k

i i i

i

p x x f x dx x x f x dx

p x x



 

 

= − −

=

 
= − + − 

 

 = + − 

  

      (Eq. 7.4)

The variance of the total population is the weighted variance of the subpopulations,

plus the weighted variance of the subpopulation mean about the popu

(The latter term correspon

lation

ds to 

 

t

mean 

he 'additional' scatter mentioned earlier)

( )

2
2 2 2 2 2 2

1 1 2 2 1 2 1 2

1

2 1

For 2 (corresponding to the previous example), we can express this alternatively as

ˆ ˆ ˆ ˆ(x) ( ) ( )

accounting for prove yoursel (1 ) in this case . f

i i i

i

k

p x x p p p p x x

p p

   
=

=

 = + − = + + − 

= −



2

2 2 2

1

Thus, if we draw a random sample from the total population of size ,  the variance 

of the corresponding sample mean, ,  will be

( ) 1
ˆ ˆ( ) ( ) ( )                            

k

i i i

i

N

x

x
Var x x p x x

N N


 

=

 = = = + −      (Eq. 7.5)
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1

Alternatively, we can perform a  . In this case, we estimate

the total population mean from the estimates of the subpopulation means

ˆ(

,

                                )  
k

i i

i

stratified samp

S

ling

x x p x
=

= =                                                   (Eq. 7.6)

(Remember that the 's need to be known from external resources or from preliminary

sampling). This is an unbiased estimator, since (cf. Eq. 

i
p

1 1

7.3)

ˆ ˆ( ) ( )
k k

i i i i

i i

E x p E x p x x
= =

= = = 

1

So far, the subsample sizes , with ,  did not play any role (though they

should be large enough to ensure low errors on ). Let's assume now that the

 's are arbitrary, and that we want to c

k

i i

i

i

i

n n N

x

n

=

=

1 1 1

1

ˆalculate  from the arithmetic mean of the

total  sample, without using the 's. In this case,

1 1
,

ˆwith expectation value ( ) .  Comparison with Eq. (

i

i

nk k

ij i i

i j i

k

i

i

i

x

partitioned p

x x n x
N N

n
E x x

N

= = =

=

= =

=

 

 7.6) shows that only for

 the correct result is obtained, whereas otherwise the arithmetic mean cannot 

ˆbe used as an estimator for

 

 .

i

i

n
p

N

x

=
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2

2 22

1 1 1

The variance of the estimator for the population mean (Eq. 7.6) can be calculated 

from the usual calculation rules,

ˆ ˆ( )       ( ( )) ( ) ( ) .( )

 w)  i If

k

i

i

k k

i i i

i ii i

i
Var xS x x p x Var S x

n
V pxx p ar




== =

= =  == == 

2 2

1

e would sample according to the ratios, ,  this would result in

1
( ) ,                                                                                 (Eq. 7.7)

which indeed is lower th

i i

k

i i

i

n Np

x p
N

 
=

=

= 

an the variance resulting from a 'simple' sampling from the

total population, Eq. (7.5).

ˆ ˆOnly if the indiviual means  differ largely from the total mean , however, the 

difference is significant, and stratified sampling is worth doing. Otherwise, much 

time (for defining the  and est

i

i

x x

p imating the individual ) is spent for almost nothing.
i

x

2

2 2

1 1

i=1

Interestingly,  we can reduce ( ) even further, by choosing optimum 's.

To this end, we minimize 

( ) ( )

with respect to  and the condition  by m

ii

ea  o

)

ns

 

f 

i

k k

i

i i i

i i i

k

i i

Var x n

Var x p Var x p
n

n n N



= =

= =

=

 

 the method of 

Langrangian multipliers.
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i=1

2 2

2

i=1 i=1 i=

We define the function to be minimized as

( ) ,

and solve for 0 and 0 in parallel.

0      

0         

k

i

i

i i i i

i

i i

k k

i i

i i

L Var x n N

L L

n

p pL
n

n n

pL
n N n





 






 

  
= + −  

  

 
= =

 


= − + =  =



  
= − =  = 

  



 

i=

1 i=1

2

opt

1

opt

i=

i

1

=1

 

1
       

1
  and   ( ) , i.e.,      (Eq.(  ) 7.8)

k k

i i

k

i i

k

i i

i i

i k

i i

N p
N

Var x

p
Np

n x
N

p

p
N








 



=  = 

 
= == 

 






 

Thus, the   and ( ) depend on the  AND on the variance of the 

individual subsamples. If all  are identical, then ,  and we rec

For

over Eq. (7.7). 

 significantly different ,  on the 

i

i i

i

i

i

optimum n x p

n Np





 →

other hand,   with  

according to Eq. (7.8)  reduces the fluctuations of   consid

Note: The individual  within the subpopulations need to be known or have to

be es

er

timate

ably.

d in

i

i

stratified sampling n

x



 parallel with the estimates  .
i

x
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1 1 1

2 2 2

The parent population shall consist of two Gaussian subpopulations, with

ˆ0.8,   1,     0.5

ˆ0.2,   10,  4.0

According to Eq. (7.3),   ˆ 2.80.8 1 0.2 10 ,  

and the variance of the total sam

p x

p x

x





= = =

= = =

= = + 

( ) ( )2 2 2 2

2 2 2

ple is (Eq. 7.4 and below) 

0.8 0.5 (1 2.8) 0.2 4.0 (10 2.8)   or

( ) 0.8 0.5 0.2 4.0 0.8 0.2 (10 1) 16.36

NOTE: Variance dominated by the fluctuatio

( ) 16

ns of the individual means ab t

.36

ou

Var x

Var x =  + − +  + −

=  =

=

+  +   −

 

            the total mean 

Let's simulate this now, by sampling from a population of Gaussian random numbers. 

For a parent sample size of 800000 + 200000 numbers, we obtain 2.7998 and

( ) 16.3245,  very close to the theore

p

p

x

Var x

=

= tical values.

1 2

1

2

For stratified sampling, the optimum  are 

0.8 0.5 0.2 4 2
0.8 0.5 0.2 4 1.2     ,   ,

1.2 3 1.2 3

1
i.e., 

2

i

i i

n

N N
p n N n N

n

n


 

=  +  =  = = = =

=


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2 2

From  sampling of the parent population with 300,  we  estimate

,  i.e., the estimated variance of the parent population  

( ) ( ) 300 0.25 18.75,  to be compared with 16.36  (

3.20 0.25

p p

p

simple N

Var x

x

N x

=

 =  =

= 

not too bad)

1 2

1 1

2 2

From  sampling with 100 and 200,  on the other hand, we find

0.976,  s(x ) 0.456
 in agreement with the parameters for the subpopulations

9.960,  s(x ) 4.305

and thus

0.8 0.976 0.2
p

stratified n n

x

x

x

= =

= = 


= = 

  +

Eq. 7.8
2 2 2

2

opt

9.96 2.77

(0.8 0.456) (0.2 4.305) (0.8 0.456 0.2 4.305)
( ) 0.005,  resulting in

100 200 300

  (Note: Equality in the two expressions abov2.77 0.07 e is only achieved if )
p

p

x

x

s





 =

   + 
 + =

=



=

1 2 1 2

1 2

1 2 1 2

Other subsample sizes gave the following results

: 1,  i.e., 150 and 150 :  2.85 0.08
larger error than for : =0.5, 

: 4,  i.e., 240 and 60 :   2.78 0.12

but still better compa

p

p

n n n n x
n n

n n n n x

= = = =  


= = = =  

Obviously, the result from stratified sampling has a much better quality than from 

simple sampling, thou

red to simple s

gh the total sample size is

ampl

 identical

ing   

.

 

 
 
 
 
 
  

( )

1 2
For comparison, the results for 3000 ( 1000 and 2000) are

simple sampling:     2.876 0.076  
 1/ N   scaling of error in both cases

stratified sampling:  2.807 0.023

p

p

N n n

x

x

= = =

=  


=  
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Sampling from finite populations without replacement

▪ finite (i.e., also discrete) population: independence of consecutive 

drawings is lost when individual elements are not replaced

▪ thus, no genuine random sampling 

• should be no problem when number of elements, N, is very large compared to 

sample size n

164

1

2

1

Let the population be composed of  elements, ... . At first, we need to define the population 

ˆmean  and the variance ( ). Since each element has the same probability to be drawn,

1
ˆ

N

N

i

i

N y y

y y

y y y
N



=

= = 

( )
2

2

1

.

ˆThus,  is just the arithmetic mean of the population elements. 

Here (but see also Chap. 1), we define the population variance as

1
 ( ) ,

1

since the number of degrees of freedom (  Chap.

N

i

i

y

y y y
N


=

= −
−

→



 8) of the sum of squares is ( 1).  

In  the above sum, the first term can take any value, the 2nd one as well and so on until  the 

( - 1)th term. The th term, however, is completely determined, due t

N

N N

−

1

1
o the restriction .

N

i

i

y y
N =

 
 



= 



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( )

1  1

1

2
2

1

Now, we draw a sample ... from the population ... ,  with ,

1
and determine sample mean, ,  and sample variance,

1
.

1

n N

n

i

i

n

x i

i

x x y y n N

x x
n

s x x
n

=

=



=

= −
−





( )Without proof see Brandt, Chap. 6.4 ,  we quote the following properties

(remember: finite parent population, no replacement)

i)    ( )

      The sample mean is an unbiased estimator of the population m

E x y=

2 2

2

ean.

ii)    ( ) ( )

       The sample variance is an unbiased estimator of the population variance.

( )
iii)   ( ) 1

       For ,  similar to the case of an infinite population.

      

x
E s y

y n
Var x

n N

n N





=

 
= − 

 

 For ,   smaller than for the case of an infinite population.

       For  n=N,    the variance of the mean becomes zero, since sample and population mean

                          are identical.

n N

mean and variance for a sample drawn from a finite population without

replacement have similar properties as if drawn from an infinite population. 

 mean of  'Lotto' numbers, 'Feynman

SUMMA

's r

RY: 

estau→ rant problem'
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Likelihood

▪ What has been discussed so far, can be generalized 

as follows

• Given a sample of observations/measurements, we like to find the 

appropriate theoretical description of the properties of the underlying 

population.

• Examples 

case 1 given:

wanted:

N alternative hypotheses Hi

relative probabilities for the validity of the Hi

case 2 given:

wanted:

one hypothesis Ho

a statement about the validity of Ho → (Chap. 10)

case 3 given:

wanted:

a valid hypothesis H(λ), 

where λ is a set of unknown, continuous parameters

“best” value for λ and error
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The Bayes theorem revisited

▪ discrete hypotheses
• Bayes theorem (see Chap. 2)

• apply to an observed value k(1) and hypotheses Hi . Here and in the following, variables with 

superscripts denote observed/measured quantities, and the “1” denotes that it is the first (and only) 

measurement of the r.v. k. (from here on, we don’t distinguish k(1) from k(1) ).

• Let’s assume that there is a restricted number of hypotheses which can explain the observation, and 

that we know the probability distribution P(k| Hi) for the r.v. k. The probability for the validity of Hi

given k is 

and for the specific observation k(1)

• P(Hi| k
(1) ) is the a posteriori probability (briefly called posterior) for the validity of the hypothesis i 

after the event k(1) has occurred, and is the quantity we are interested in. 

• What can be easily calculated is the probability P(k(1) |Hi), since the hypothesis (theory) is known. 

• P(Hi) is the probability for the validity of the hypothesis i before the observation, the prior. Generally,

this is the cumbersome quantity. 

( ) ( | ) ( ) ( | ) ( )P A B P A B P B P B A P A = =

(1) (1)

(1)

(1) (1)

 

( | ) ( ) ( | ) ( )
( | k )

( ) ( | ) ( )

The 2nd equality follows from the rule of total probability, or  (if the are not exhaustive

 and not mutually exclusive), from nor

i i i i

i

j j

j

i

P k H P H P k H P H
P H k

P k P k H P H

H

= = =


(1)

(1)

malizing  ( | ) in such a way that the probability 

for the validity of any of the hypothesis is equal to unity, i.e., ( | ) 1

i

i

i

P H k

P H k =

( | ) ( )
( | )

( )

i i

i

P k H P H
P H k

P k
=
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(1) (1)

(1) (1)

( | ) ( | ) ( )

( | ) ( | ) ( )

i i i

j j j

P H k P k H P H

P H k P k H P H
=

• The relative probabilities for two hypotheses i and j for a specific measurement k(1) is 

given by

• Note: this ratio does not depend on P(k(1)) [which can be also very cumbersome, even

if all priors were known, due to a large number of potential hypotheses or parameters]

• In MCMC (Markov Chains Monte Carlo, see Sect. 9), this ratio plays a crucial role.

The decay probabilities, ,  of pions and kaons into myons in a detector are 

( | ) 0.02 and ( | ) 0.10,  respectively. The relative abundances of 

pions and kaons  are 3:1. 

A 

examp

myon has been et

l

d

e: 

P P K



  = =

ected. Does it originate from a pion or a kaon?

( | ) ( | ) ( ) 0.02  3
= =0.6 

( | ) ( | ) ( ) 0.10  1

A decay from a pion is 60% as probable as a decay from a kaon.

P P P

P K P K P K

    

 


=


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▪ Continuous parameters
• Now, we investigate the case that a parameter λ of a hypothesis is looked for. 

In this case, we deal with probability densities, and for two r.v., the Bayes theorem 

reads (see Chap. 4)

• If the observation gives the result x(1) and the parameter of the hypothesis (theory!) is λ, 

the corresponding probability density reads

• see also “conjugate priors”

(1)

(1)

(1)

| ) ( )
( | )

( )

(x h
f x

g x

f  
 =

| ) ( ) ( | ) ( )( , ) (

where  and  are the marginal distributions of   ( ) ( , )d ;    ( ) ( , )d .

h f x g xf x f x

h g f h f x x g x f x

  

   

==

 = =
  

(1)

(1)

Thus, the probability density for the parameter  given a measurement  (wanted) depends 

on the probability density for the measurement of   given the parameter  (calculatable) 

times the prior

x

x





(1)

(1)

(1)

( ) (cumbersome), divided by a normalization factor (the )

| )

evide

( )
(

nc

| )

| ) ( )

e 

(

(

h

f x h
f x

f x h d



 


  



−

=


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(1)
We measure the time  when a particle has decayed. The measurement error should be

Gaussian, with resolution . Thus,  the probability to measure an arbitrary t for an actual 

decay time   i

Example:

t

s

T

2

2

( )
s ( | ) exp . The pdf for the decay time before the measurement 

2

exp( / )
(the prior) follows from the decay law, ( ) .

t T
f t T

s

T
h T





 −
 − 

 

−
=

(1)

(1) 2

2

(1)

Because of the normalization, constant factors can be neglected. The probability density that

the actual decay time is  when we measure  is thus given by

( )
exp exp

2
( | )

T t

t T T

s
f T t



 −  
− −  

  
=

(1) 2

2

0

( )
exp exp

2

t T T
dT

s 





=
 −  
− −   

  

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Example evaluated with Mathematica

171

(1)

0

|( ) ( )Tf t h T dT



= 

(1)
derivative of  ( | ) with respect to Tf T t

(

(

1)

1)

determine maximum of  ( | ) by solving 
( | )

f  0or

T

df T t

d
t

T
f T =

2

(1)

most prob.
,

s
T t


= −

nominator

denominator
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(1)

most prob.

(1)
Given an observed decay time ,  the highest probability density for  the actual decay 

time is located at earlier times,  due to the exponential prior. E.g., if 1,  1, then

1.

s

T t

t

= =

= −

Observed time t(1)=2

largest

pdf at T=1

f(T|t(1)=2)

T
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Likelihood quotient and function

▪ usually, the probability (density) for the prior is unknown.
• What are the prior probabilities for two alternative hypothesis?

• What is the pdf for a certain parameter? (As outlined in Chap. 2, this is often assumed 

as being uniform, but then, e.g., f(m) and f(m2) give different results for f(m|x). )

• Thus, for alternative hypotheses i,j or distinct parameters λi, λj, one usually quotes the 

“likelihood ratio” 

which contains the full information of the observation. Neyman (1937, “Outline of a 

Theory of Statistical Estimation Based on the Classical Theory of Probability”, Phil. 

Trans. A236, 333) has shown that to discriminate between two alternative hypotheses 

there is no other parameter which is more effective.

• The result of the measurement can be (very loosely) expressed by saying that the 

hypothesis/parameter i is Q times more probable than the hypothesis/parameter j 

(strictly speaking, such a statement of absolute probabilities assumes equal priors).

• Better to quote “only” the likelihood ratio, i.e., by saying that the likelihood of 

hypothesis/parameter i is Q times larger than the likelihood of hypothesis/parameter j. 

(1) (1)

(1) (1)

( | ) ( | )
      or   

( | ) ( | )

i i

j j

P k H f x
Q Q

P k H f x




= =
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▪ definition: likelihood 

(in German: “Wahrscheinlichkeit”, same word as for “probability”. Thus, 

also in German called “likelihood”, to allow for a discrimination)

i

(1) (1)

(1) (1) (1)

The likelihood  for a hypothesis H  with pdf  ( ) or a discrete probability 

distribution ( )  and observations  or  ,  respectively, is given by

( ) ( )          or      ( )

i i

i

i i i

L f x

P k x k

L x f x L k=
(1)

(1)

(1)

(1) (1) (1) (1)
| |

( ).

For probability densities ( | ) or probabilities ( | ) and observations   

or  , the likelihood is given by

( | ) ( )     or ( | ) ( ).

i
P k

f x P k x

k

L x f x L k P k 

 

 

=

= =

The likelihood quantifies the validity of a hypothesis ,

whereas the pdf relates the r.v. with the hypothesis. The consideration of a 

likelihood makes only 

for a

sense

 given observa

 if more than

tion

 one hypothesis is given, or if the 

hypothesis depends on parameters. If the likelihood depends on parameters, 

likelih

it

is ca ood funl cled a tion.
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▪ The likelihood is an a posteriori probability, in contrast 

to “normal” a priori probability, and must not be 

confused with a conventional pdf.

▪ The likelihood is large when the occurrence of a 

specific observation for a given hypothesis is likely. 

The likelihood quantifies in how much a hypothesis is 

supported by the data.

▪ If a specific observation is extremely unlikely (i.e., L is 

very small), the validity of the hypothesis is more than 

doubtful, but only if other hypotheses with larger L are 

available: 

→ for parameter estimation, maximize L(λ)
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Likelihood for a sample

▪ Usually, an experiment results in a sample of N independent values 

x(j),j=1,N, which are independently, identically distributed (i.i.d.), 

following the pdf f(x). 

1 j

1

(1)

The combined pdf is then the product of the individual pdfs,

( , ..., ) ( )         (here, th

evaluated for the observed sampl

e x  are still r.v.)

whereas   is the sample likelihood,

( . .

e

, .

N

N j

j

g x x f x

g

L x

=

=

( ) ( ) ( )

1 1

(1) ( ) ( ) ( )

1 1

, ) ( ) ( )

For discrete variables, we have

( , ..., ) ( ) ( | ),

N N
N j j

j j

N N
N j j

j j

x L x f x

L k k L k P k H

= =

= =

= =

= =

 

 

(1) ( ) ( )

1

(1) ( ) ( ) ( )

( )

1

1

1

and for pdf's which depend on a parameter  (or parameter-set )

( | )

( | ,..., ) ( | ) ( | )

( | ,..., ) ( | ),
N

j

j

N N
N j j

N
N

j

j j

j
LL x x x

L k k L k P k

f x



= =

= =

=

=

=

=



 

λ λ

λ

λ

λ λ λ
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log-likelihood

▪ in the following, we will concentrate on the last case, i.e., 

probabilities/probability densities which depend on a parameter

(1) ( ) ( )

1

( | , ..., ) ( | ).

Since for many reasons (e.g., to find the maximum of the likelihood) one has 

to calculate the derivative of , it is convenient to consider the log-likelihood, 

ln  (

N
N j

j

L x x f x

L

L 

=

=λ λ

( )

1

 ) ln ( | )
N

j

j

f x 
=

 
 

=



USM

178

log-likelihood ‒ example

In two equidistant time-intervals, we detect 5 and 10 X-ray photons from an X-ray

source. Two competing theories predict a mean number of either 2 or 12 photons

per interval. Which  theory is "more like

( ) ( )

- 2
(1) (2)

1

ly"?

( , ) ;  ln  ( | , ) ln ( ) 2 ( ln ln !)
!

ln (2) 4 5 ln 2 ln 5! 10 ln 2 ln10! 13.49;    ln  (12) 6.82

The log-likelihood for =12 is much larger than the one for =2, with a l

k

j j

j

e
P k L k k L k k

k

L L




    

 

=

= = = − + −

= − + − + − = − = −  



ikelihood 

ratio of

(2)
exp( 13.49 6.82) 0.001.

(12)

L

L
= − + =

The observed sample indicates that hypothesis 1 might be excluded. (The significance 

of such results will be discussed in Chap. 10). 

Remember that to obtain actual probability (density) ratios, one would have to multiply 

with the prior ratios. If both hypotheses were equally probable, then one could say that 

hypothesis/theory 1 is a factor of 0.001 less probable than hypothesis/theory 2. 
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Maximum likelihood

▪ Generalizing the foregoing concept, a variation of the (set of) 

parameter(s) in the likelihood function allows for infinite hypotheses.

▪ Highest confidence should be in that set λ̃ which has the maximum 

likelihood, which is then the best estimate of λ (“most likely value 

of λ”, but actually the value of λ which makes the data most likely). 

▪ The error of  λ̃ can be derived from the distribution of L about  λ̃ . 

▪ for many parameters, maximum needs to be derived numerically

▪ if more than one maximum, prefer the one with the largest L

▪ caution if several maxima with almost equal L are present 
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Let's first consider the case with a single parameter, . Since the maxima of  and ln  occur at the same ,

the "most likely value of "  can be calcul likelia hte ood by d eq solving uation th  

ln
0

e

d

d

L L

L



 



==

( )

( )

( ) ( )

(

( )

1 1 1

( ; ) / '
;

( ; )

[Here and in the following, we write for brevity ( ; ) : ( | ),  where this (conditional) pdf 

is normalized with respect to all 

ln ( )

j

j

j j

N N N
j

j j j

d f x d f

ff x

f x f x

x

d
f x

d

 



 


= = =

 
   = =

 

=

  

)

(1) (2) ( ) (1) (2) ( )

 (see Chap. 4), i.e. 

( , , ... ; )d d ...d 1]

j

N N
f x x x x x x =

In the general case of  parameters, the likelihood equation is replaced by a system of  equations w

ln
0,   

hich

have to be solved simultaneously

[evaluated at the 1,  p     aramete          r 

i

L
i p

p p





= =


1

set ( , ... ),  see below]
p

 =λ

( ) ( )

 

Consider now the same measurements, but without a given hypothesis for the mean value. Instead, derive

the "most likely value of "  given the data.

ln

continue with la

(

st exam

) ( ln ln

ple:

j j
L N k k



  = − + −

( )

( )

1 1 1

ln 1
!)    0      

The maximum likelihood value for the mean is the sample mean (which was to be expected)

5+10
For the actual example, we find 7.5. For this v

2

jN N N
j

j j j

d L k
N k

d N


 



= = =

 = = − +  =

= =

  

alue, ln (7.5) 4.66L = −
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( )

( )

Assume that a quantity is measured repeatedly, but with Gaussian errors of different variance, where the

mean is unknown. The likelihood function for measurement  is thus

( | ) (

Another example

j

j

x

L x f =

( ) 2

( )

2

( ) 2

2

1

1 ( )
; ) exp .

22

The combined likelihood for  measurements is the product of the individual likelihoods, and the 

log-likelihood function becomes

1 ( )
ln ( )    + 

2

j

j

jj

jN

j j

x
x

N

x
L f









=

 −
= − 

 
 

−
= −  , 1, , 1,

1

( )

2

1

2

1

ln
0

( )  with ( ) ln(2 ) ln( )
2

The solution of the likelihood equation,  results in ,  
1

which is just the "addition theorem" for calculating me

,

ans f

N

j j N j j N j

j

jN

j j

N

j j

N
f

x

d L

d


   








= =

=

=

=

= − −

==







rom weighted measurements (see Chap. 6).

log-likelihood function ln L(λ) for the previous 

example (Poisson-dist, observed values kj=(5,10)).
The maximum of the function is located at  λ̃ =7.5
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Conjugate priors play an important role for analytic solutions, parameter studies and test cases

(e.g., for MCMC simulations, see Sect. 9).

Example 1: the prior from page 170 is NOT conjugate.

Conjugate priors

182

  

normal likelihood with known  + normal prior for   normally distributed posterior, ( | data, )

In particular: likelihood for a dataset distributed according to ( ,N

   



→

Example 2 for a conjugate prior :

( )

( )

2

2
1

2

2

2 2

2 2 2 2

) , i.e.,  exp   
2

                      normal prior with  and , i.e.,  ( ) exp
2

1

  posterior  ( | , ) ( , ) with     and 
1 1

 

n
i

tot t

i

o tot t t
p x N

x
L

M
M S p

S

n

S
M x

n n

S S









  

 

 

=

 −
  −
 
 

 −
  −
 
 

 =

+ +

= +



2

2 2

2

2

ot

n
S

S
n




=

+

Remember (once more) Bayes theorem:

(data| , model) ( )
( | data,model) ,  where data are the measured quantities and 

(data|model)

                                                                      (

p p
p

p

p

 
 =

For  priors (conjugate to the specific likelihood  funct

data| , model) ( | data, model) is the likelihood function

ion), the  posterior follows the same distribution

 as the prior.

L =

conjugate



USM

Conjugate priors

183

Note:

• the mean is a weighted average of the prior mean M and the data mean ͞x.
The weight on the prior mean is inversely proportional to the variance of the prior
mean ( 1/S2), and the weight on the data mean is inversely proportion to the

variance of the data mean ( n/σ2).

• if the prior mean is very precise relative to the data mean (low n), then it is highly

weighted. Alternatively, if the data mean is more precise (large n), then it is

assigned a larger weight. Thus, μtot varies from M to ͞x for increasing n.
• the variance of μ|x,σ is smaller than the variance of the prior mean (S2) and

smaller than the variance of the data mean (σ2/n), but varying between both limits

if n= 0 → ∞

2

2 2
2 2

2

2

2 2 2 2

posterior  ( | , ) ( ,

1

  with     and 
1

) 
1

tot tot tot tot

n

S
p x

n
M x S

n n
S

S S

N

n

   



 


 

= + =

+ +

=

+

Example on the left: Posterior distribution for the following scenario:

data sampled from a normal distribution with a mean of 80 and a

standard deviation of σ=10. The sample size n varies from 0 to 128.

The prior distribution is assumed to be normal, with a mean M = 50,

and a standard deviation, S = 25. Obviously, the posterior

distribution for μ varies from the prior one (n=0) over some

“compromise” solution for small n, to the distribution estimated from

the sample, with mean ͞x, and variance of the mean σ2/n. Note that

the pdfs have been renormalized to a max. of unity.

Example taken from Robert Jacobs, lecture notes on Bayesian Statistics: Normal-
Normal Model, based on Lynch, S. M. (2007), Introduction to Applied Bayesian
Statistics and Estimation for Social Scientists. New York: Springer

http://www2.bcs.rochester.edu/sites/jacobslab/cheat_sheet/bayes_Normal_Normal.pdf
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Information inequality and minimum variance bound

(Schranke minimaler Varianz)
Having defined the concept of likelihoods, we reconsider the problem of constructing 

estimators S with desirable properties. A "good" estimator for the parameter  should 

be unbiased,

( ) (S) 0,

and

B E



 = − =

2
 should have a variance (S) as small as possible. 

We will now show that there exists a relation bet

information inequalit

ween both quantities, the so-called 

, such that frequently a compromise ey betw



2

en the requirement of 

minimum bias and variance has to be found.

(E.g., an estimator with (S) 0 can be always constructed, by choosing S const, 

but this estimator will be strongly biased).

 = =

(1) (2) (N)

(1) (2) ( ) (1) (2) ( )

(1) (2) ( ) (1) (2) ( ) (1)

We consider an estimator S(x ,x ,...,x ),  with a joint pdf for the sample

( , ,..., ; ) ( ; ) ( ; ) ( ; ).

Then,

(S) ( , ,..., ) ( ; ) ( ; ) ( ; )d

N N

N N

f x x x f x f x f x

E S x x x f x f x f x x

   

  

=   

=   
(2) ( )

d d ( ) .
N

x x B     = +
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(1) (2) ( ) (1) (2) ( ) (1) (2) ( )
(S) ( , ,..., ) ( ; ) ( ; ) ( ; )d d d ( ) .     (Eq. 7.9)

We now assume that we can differentiate under the integral w.r.t.  (S is independent of ), 

and obtain

N N N
E S x x x f x f x f x x x x B    

 

=       = +

( )

(1) (2) ( ) (1) (2) ( )

( )

1

( )

( )

1

'( ; )
1 '( ) ( ; ) ( ; ) ( ; )d d d

( ; )

'( ; ) ln ( )
1 '( ) S S .                                           

( ; )

jN
N N

j

j

jN

j

j

f x
B S f x f x f x x x x

f x

f x d L
B E E

f x d


   



 


 

=

=

 
+ =       

 

     
+ = =    

    



                    (Eq. 7.9a)

(1) (2) ( )

(1) (2) ( ) (1) (2) ( )

( )

(1) (2) ( )

( )

1

The normalization of ( , ,..., ; ) reads

( ; ) ( ; ) ( ; )d d d 1,    and the derivative with respect to 

'( ; )
( ; ) ( ; ) ( ;

( ; )

N

N N

jN
N

j

j

f x x x

f x f x f x x x x

f x
f x f x f x

f x



   


  

=

      =

 
   

 




(1) (2) ( ) ln ( )

)d d d 0 .    (Eq. 7.10)
N d L

x x x E
d





 
   = =  

 


Multiplying Eq. (7.10) with (S) (the product is still zero), and subtracting from Eq. (7.9a), we obtain

ln ( ) ln ( )
1 '( ) S (S) .

E

d L d L
B E E E

d d

 


 

   
+ = −   

   
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 
ln ( ) ln ( ) ln ( )

1 '( ) S (S) S (S) ,      (Eq. 7.11)

which is of the type (xy). 

d L d L d L
B E E E E E

d d d

E

  


  

     
+ = − = −     

     

( )

 2 2 2 2

2 2 2
To proceed further, we invoke the Schwarz inequality,        (Eq. 7.12)          

Proof:  

( x y) (x ) 2 (xy) (y ) 0 is a non-negative number for  values of 

To fullfil

(xy

 

) (x ) (y

t

)  

h

E a a E aE E al

E E E

l a+ = + + 





 ( )

( )

 

2

1,2

2 2 2

2

is condition,  the discriminant regarding the solution  of  ( x y) 0 ,

2 ( ) 4 ( ) ( ),

(i) must be either 0 (unique solution, since only for 0 we have  ( x y) 0,

(ii)  or 0 (no rea

a E a

D E xy E x E y

D ax y E a

D

+ =

= −

= + = + =

  

( )

2

2 2 2

l solution for ( x y) 0)

 together: 0,  i.e.,

4 (xy) 4 (x ) (y )  0, which proves the inequality.

E a

D

E E E

 
 
 
 
 


+ =

 




− 


 
 
 
 
 
 
 
 
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( )     

  
( )

( ) 

Schwarz
inequality2 2

22

2

2

2

ln ( ) ln ( )
1 '( ) S (S) S (S) .

S (S)

The quantity in the denominator is information

1 '( )

called t

(S)
l

he  of the sa

n ( ) /

mple

B
Var

E d L d

d L d L
B E E E E E

d d

E E
















       
+ = −  −     

       

 − =
+



 w.r.t. , which is 

a non-negative number that vanishes if the likelihood-function does not depend on , 

and the inequality is called the Cramer-Rao- or Frechet- or information inequality. 

The r.h.s. 





minimum varian is called the ce boun d, MVB.

( )

(1) (2) ( ) (1) (2) ( )

( )

1

(1) (2) ( )

( )

Since

ln ( ) '( ; )
( ; ) ( ; ) ( ; )d d d 0,

( ; )

further differentiation w.r.t.  yields (in obvious notation: d d d )

'( ;

jN
N N

j

j

N

j

d L f x
E f x f x f x x x x

d f x

dX x x x

d f x

d

 
  

 







=

  
=       =   

   

=   



(1) (2) ( ) (1) (2) ( )

( )

1

2 2

2 2

) ln
( ; ) ( ; ) ( ; )d d d 0

( ; )

ln ln ln ln
0

N
N N

j

j

d d L
f x f x f x x x x LdX

f x d d

d L d L dL d L d L dL
L dX LdX

d d d d d Ld

  
  

     

=

 
      = = 

 

   
 + = = +   

   

 

 
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( ) ( )
2

2 2

2 2

22

2

2

ln ln ln ln
0

ln ln
,  so that an alternative formulation for the MVB is 

given by

1 '( ) 1 '( )
( )

( ) ln ( )

B B
Var S

I E d

d L d L dL d L d L dL
L dX LdX

d d d d d Ld

d L d L
E E

d

L

d

 

 

     

 

   
+ = = +   

   

     
 = −    

 

+ +


    

=

 

( ) 
( )

 

2

2 2 2

The larger the information in the sample, the smaller the variance of the estimate!

 (Eq. 7.13)

N

(i

1 '( )
                      

ln ( ) //

) the nominator of the above equation depends on 

ote: 

B

E d L dd



 

− +
=

,  whilst the denominator depends on the pdf and 

(ii) for estimators with '( ) 0 (e.g. unbiased, o  

     estimator-indep

r constant bias), the MVB provides an

 lower limit, and is partend icent ularly u

S N

B  =

seful to evaluate the efficiency of a specific S

2 2

2

2 '

ln ln
The information ( )  can be also written in terms of the

individual,  probabilities

'(x, ) '(x, )
( )

(x, ) (x, )

d L d L
I E E

d d

independent

f f
I NE NE

f f


 

 


 

     
= = −    

     

       
= = −     

      

,                                                             (Eq. 7.13a)

if the expectation value is defined in analogy, (x) ( , ) .E xf x dx



−




 

= 
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Example

(

( ) ( )

For a sample resulting from a normal distribution (identical mean and variance), the individ

Efficiency

ual likeli

 of the sample mean for a Gaussian distribu

hoods are

1 (
( | ) ( ; ) exp

2

tion

j

j j x
L x f x 


= = −

( )

) 2

2

( ) 2

2

1

2 2 2

2

2 2 2

)
,

2

and the combined log-likelihood for a sample of size  becomes

( )
ln ( ) ln 2

2

ln (1 '( ))
  MVB = (1 '( ))  with ( ) ( )

( / )

jN

j

N

x
L N

d L N B
B B E S

Nd E N






  



 
  

  

=

 −
 
 

−
= − −

− +
 = −  = + = −

−



2

On the other side (from previous considerations), we also know that the variance of the sample mean is

(x)

which shows that this estimator has a variance according to the MVB (remember that the s

Var
N


=

ample mean 

is an unbiased estimator, (x) 0).

Such estimators with (S)=MVB are efficient, efficalled otherwise their  is given by the ratio 

MVB
=

(S)

ciency

 

B

Var

Var


=

We might now ask under which general conditions an estimator is efficient, 

i.e., when do we find the equal sign in the information inequality?  



USM

190

Minimum variance estimators

 2

To obtain equality in the Schwarzschild inequality Eq. (7.12) , we must have

0,  because only then ( ) 0.

This implies that (cf. Eq. 7.11)

ln
(S (S)) 0,    or generally

ln
( )(S (S)),  

ax y E ax y

d L
a E

d

d L
A E

d






+ = + =

− + =

= −

(1) ( )

                                                                                      (Eq. 7.14)

where  must not depend on the sample ,..., ,  though it might depend on . 
N

A x x 

 

 

min
By integration (between  and ) and noting that (S) ( ) ( ),

ln ( ) ( )S ( ) ( ) ( )S ( ) const

( ) exp ( )S ( ) ,                                                                       

E B f

L A A f d C D

L d C D

    

      

  

= + =

= − = + +

= +



              (Eq. 7.15)

where  does not depend on . Estimators accompanied with likelihood functions of 

this type attain the MVB, and are called minimum variance estimators. In case of 

unbiased mini

d 

( )      22 2 2 2 2

, we then have

1 1 1 1 1
( )  =

( )

mum estima

( ) (S)(

tors, 

1
( )

(

) (S (S)) ( ) (S )ln ( ) /

( )

)

0

Var S
I A VarA E E A EE d L d

Var
A

B

S

    





=

= = = 
−

=

=
−
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 

(1) ( )

If instead of exp ( )S ( )  only the weaker condition

(S, ) ( ,..., )                                                                          (Eq. 7.16)

holds, the estimator (statistic) is

N

L d C D

L g c x x

 



= +

= 

 called . It can be shown that no other 

estimator can contribute knowledge to  that is not already contained in S if this 

condition is

 suffic

 fulfil

ien

.

t

led


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Example

( )

( ) ( )

1

( )

1

For a sample drawn from a Poisson distribution, we had

ln ( ) ( ln ln !),     i.e.,

ln k
k ,  which is of the form

ln
( )(S (S))

when the estimator for the me

N
j j

j

jN

j

L N k k

d L k N N
N N

d

d L
A E

d

  


   




=

=

= − + −

= − + = − + = −

= −





an is the sample (=arithmetic) mean. Thus, the sample 

mean k for a Poisson distributed sample is a minimum variance estimator, and, since 

it is unbiased, its variance is given by 

1
(k)

( )

whic

Var
A N




= =   

h we have already derived previously.
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Bias for ML estimators

( )

,

ML estimators for the mean and the standard deviation of a normally 

distributed sample.

For a normally distributed sample, the likelihood equations for the ML estimators 

ln
0   (

Example: 

jL
x

 



= 

 1

( ) 2

3

1,

( )

1

( ) 2

1

) 0

ln ( )
0    0

1
result in the well known ML estimates for ,  the sample mean, and

1
( ) s'

N

j

jN

j

N
j

j

N
j

j

L x N

x
N

x
N

 





  



 

=

=

=

=

− =

  −
=  − = 

  

=

= − =









2

2

(

2

,

From our previous considerations, we know that the latter estimator is biased, by a factor

of  ( 1) / .

Now, calculate the ML estimator for the variance, ( )     2nd ML equation

ln (
0    

N N

S

L x

 





−




= 

 ( )

) 2

2 ( ) 2 2

2 2
21 1

) 1
0      ( ) !!!

22

jN N
j

j j

N
x

N


  

= =

 
 −

− =  = − = 
 
 

 
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ML: consistency, bias and invariance

▪ ML estimators are usually consistent (see below)

▪ but ML estimators are also biased (in most cases)

▪ bias becomes small for large samples (see below)

▪ bias is the price one has to pay for an advantageous property of 
ML estimators, namely that they are invariant under parameter 
transformations (see example above, 
ML estimator for σ2 = (ML estimator for σ)2

▪ Thus, we have generally, 

SML(f(λ)= f ̃=f(λ̃)

▪ Note: other, non-ML estimators preserve the difference

▪ Invariance under transformation is incompatible with lack of bias

( )

If the maximum of  occurs at some particular value , 0,  

then the maximum of  w.r.t an alternative parameter ( )

occurs at ( ),  since   0 because of    0

dL
L

d

L f

dL dL dL d
f

d d d d



   




 


 

   

=

=

= = = =
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Asymptotic properties of L and ML estimators

In the following, we investigate important properties for  and ML-estimators in the case 

of big samples, i.e., . The estimator  was found from the solution of the likelihood

equation(s), 

ln

L

N

d L

d 





→ 

( )

( )

2 2

2 2

( )

1 1

'( ; )
; 0.

( ; )

Let's  develop the derivative of the likelihood function into a Taylor series about ,

ln ln ln ln
( ) ... ( )

ln ( )
j

j

N N
j

j j

f x

f x

d L d L d L d L

d d d d

d
f x

d
 

 







   
   


= =

 
 = = =  

 

= + − + = −

 

'
2 ( )

2 ( )

1

...  (first term vanishes, see above)

ln '( ; )
,          which has the form of a sample mean (times N).

( ; )

j

j

N

j

d L f x

d f x



 



 =

+

 
=  

 


For large ,  sample means can be replaced by the expectation value (since their variance

decreases with 1/ ),  and sums of random variables can be replaced by their expectation value,

since their relativ

N

N

2
2 2

2 2

e uncertainty, ( ) / ( ),  decreases with 1/ ( ) / ( )

ln ln ln
( ) :

i i

N

t E t N t E t

d L d L d L
E E I a

d d d  

 


  

→

 

       
⎯⎯⎯→ = − = − = −    

       
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2
2 2

2 2

ln ln ln
( ) :

NOTE

1. To be consistent with the fact that the likelihood (the sum) is evaluated at ,  also its expectation value

    needs

Nd L d L d L
E E I a

d d d  


  



→
       

⎯⎯⎯→ = − = − = −    
       

( )  ( ) ( ) (1) ( ) (1) ( ) (1) (2) ( ) (1) (2) ( ) (1) ( )

2 2

2 2

 to account for a distribution with ,  

... ; ... ; ( ; ) ( ; ) ( ; ) ... ; ,  

ln ln ln
i.e.,  and  

N N N N N
E g x x g x x f x f x f x dx dx dx E g x x

d L d L d L
E E E

d d d



 



     

  

=    =

    
=   

    



2 2

2

ln

ln
2. When calculating ,  the argument is NOT generally zero

ln
    since speci0 results from the , "observed" sample-valuefic s 

d L
E

d

d L
E

d

d L

d














        
=      

       

   
  
   

=
(1) (2) ( )

(1) (2) ( )

, , , and the corresponding 

    estimator derived from these values,  

    whereas for the expectation value we need to integrate over  variatesal ,l possible   , , .

N

N

x x x

x x x

  

  
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(1) ( )

In other words, we have replaced the 2nd derivative of the likelihood function (which depends

on the specific ... ) by a (negative) number   ( ( ) 0),  which depends "only" on

the pdf   and th

N
x x a I

f

− 

e estimator  . (Note that only here we require the asymptotic limit ).N → 

2 2

ln
To first order,  we thus have for the Taylor expansion ( ),     which by integration results in

ln ( ) const   ( ) exp  ( )       [with constant ]
2 2

d L
a

d

a a
L L k k

 


    

= − −

 
= − − +  = − − 

 

Thus, for large  the likelihood function ( ) has the form of a normal distribution, with

mean  and variance    (standard deviation ).

ln
Now, since  S, we can rewrite the above equation as 

N L

1/a 1/a

d





 =

the estimator is asympt

(S ). With  ( ln

otically unbia

/ ) 0 generally, 

ln
( (S) ) 0     (S) ( ) ,   , sed and

ln
(S ) (S (S))

Comparing further with the expression (7.14

L
a E d L d

d

d L
E a E E E

d

d L
a a E

d

 


  





= − =

 
= − =  = = 

 

= − = −

 is a minimum variance estimator for large 

)

ln
( )(S (S)) valid for minimum variance estimators,

,  and,  since it is asymptotically unbiased, 

1
(S) ( ) .

S N

d L
A E

d

Var Var
a








= −

= →

=



USM

198

asymptotically unbi

Thus, we conclude that the ML estimator  has the following properties  

i) it is ,  (Sased

aymptotically efficie

) ( ) . 

ii) it is  (i.e., a minimum variance estimatornt ), with

   

E E



 = →

2 2 2 '

2

1 1
 ( )

( )

1 1 1 1
                    

Note:

  (Eq. 7.17)
ln ln '(x, ) '(x, )

(x, ) (x, )

     The asymptotic var

Var
a I

d L d L f fE E NE NE
d d f f

  




 

   

→ = =

= − = = = −
                
           
                

iance corresponds to the MVB (Eq. 7.13), evaluated at   and with ' 0!

iii) since ( ) 0 for  and  is asymptotically unbiased,  consistentis also 

iv) the likelihood function is 

.

asymptoti

B

Var N

 

  

= =

→ → 

and the log-likelihood ical s aly normal,  parabola.

2

2

Remember: The expression for  ( ),

1
( )

ln

is not only (generally) valid for large ,  but also in those cases where we know 

(from explicit calculation) that the ML estimator is u

Var

Var
d L

E
d

N









= −
 
 
 

nbiased and efficient, e.g., for the

sample mean from a Poisson distribution (see previous example).
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Errors on the ML estimators

(1) ( )

As we have argued at the begin of this section, the likelihood function 

( | ... )

can be transformed into a conventional pdf for ,  if the prior ( ) [corresponding to the 

marginal distribution 

N
L x x

h



 

( ) ( )

( )

( ) ( )

|

( , ) ] is known and the distribution can be normalized,

( ) ( ) ( | ) ( )
( | ) .

( | ) ( ) ( | ) ( )

j j

j

j j

f x dx

f x h L x h
f x

f x h d L x h d



   


     
= =



 

constant prior,  nor

Though the prior is usually unknown, the (normalized) likelihood function corresponds

directly to a pdf for  if the prior is constant (all parameter values equally probable), 

( )
L

L




malized

( )

which is assumed (and justified) in most cases. 

From the previous considerations, we know the the likelihood function is asymptotically

normal, with mean  [the ML estimator obtain

f 



⎯⎯⎯⎯⎯⎯⎯⎯→

ed from the solution of the likelihood 

equation(s)] and variance 1/ ( ) [the information of the sample w.r.t. ].I  
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Thus, the standard approach to define the errors of the estimated parameter

= : ( )

refers to the usual confidence intervals for a Gaussian:

in the 1-  interval, the probability has decreased b

     



  = 

-1/2

-4/2

-9/2

y e ln  has decreased by 0.5

in the 2-  interval, the probability has decreased by e ln  has decreased by 2.0

in the 3-  interval, the probability has decreased by e ln  has decreased by 4.5

L

L

L











with respect to the maximum, i.e, ( ) or ln ( ),  respectively (independent of the dimension of )L L  

When the large  limit has not been reached,  will not be a Gaussian, and ln  not a parabola.

Presumably, however, there will be an alternative parameter '  which transforms the shape to a 

parabola. 

N L L



For this parameter then, the corresponding 1-  limits can be derived from the values of

'  where ln ( ' ) has decreased by 0.5 below its maximum, and one can calculate the corresponding

limits w.r.t. 

L



 

 . These, by the invariance property of the likelihood, are just those values of  where

ln ( ) has decreased by 0.5. Thus, we can completely skip the transformation to ' and read off the 

-  limits fr

L

n



 



+0.27

-0.15

om ln ( ), both for finite as well as for large .

For finite ,  the -distribution is asymmetric about ,  such that asymmtric errors have to be quoted, 

in the form of, e.g., =1.51 .

:  fo

L N

N L

Note







r asymmetric distributions, the 2-  limits are  the double of the 1-  limits!not 
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Examples

Log-likelihood functions ln L(λ) 

for the mean λ, calculated for 3 

different samples with sizes N=5 

(top),15 (middle) and 50 

(bottom), drawn from a Poisson 

distribution with λ=10 (dashed).

The 1-,2- and 3-σ limits of the 

ML-estimator (corresponding to 

ln L values which are 0.5, 2.0 

and 4.5 smaller than the 

maximum) are indicated in red, 

green and blue.

The corresponding estimate for 

the mean (including error), as 

calculated from the sample 

mean, is indicated by the 

horizontal black line.

Note that the shape of ln L 

becomes more and more 

symmetric (and converges to a

parabola) when N increases, in 

parallel with decreasing errors 

on the estimated parameter. 
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Iso-contours of the log-likelihood 

ln L(μ,σ) for the mean and 

standard deviation of 3 different 

samples with sizes N=10 (top), 

20 (middle) and 100 (bottom), 

drawn from a normal distribution 

with μ=-3 and σ=2 (red plus).

The iso-contours denote the 1-,

2- and 3-σconfidence regions of 

the ML-estimators (corres-

ponding to ln L values which are 

0.5, 2.0 and 4.5 smaller that the 

maximum), indicated in red, 

green and blue.

The corresponding estimates for 

the mean and  standard 

deviation (including errors), as 

calculated from the sample 

mean and variance, are 

indicated by the black crosses. 

The small difference between

ML- and sample estimates is 

related to the bias in the ML-

values.

Note that the shape of the ln L

iso-contours  becomes more 

and more symmetric (and 

converges to an error ellipse) 

when N increases.
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Several parameters - covariances

To obtain a set of parameters ,  1, , the set of likelihood equations has to be solved 

simultaneously. In the large  limit, the likelihood function becomes a Gaussian, and the

variances of the ML-e

i
i M

N

 =

2

2

stimators are

1
( ) , 1,  

ln

i

i

i

Var i M
L

E







= − =
 
 

 

2 2 2

2

1 1 2 1

2

2 1

From a Taylor expansion of the likelihood function, one then obtains the covariance matrix

regarding the estimators

ln ln ln
...

ln

,

M

L L L
E E E

L
E

    

 
−

       
− − −     

         

 
− − 

= =   
1

C B B

( )

2 2

2

2 2

2 2 2

2

1 2

1 2

ln ln
...

... ... ... ...

ln ln ln
...

i.e., ,  with ( ) ( )   and cov( , )

M

M M M

ij i i ii i j ij
ij

L L
E E

L L L
E E E

Var

  

    

    
−

 
 
 
 

    
 −   

      
 
 
        
 − − −                

= = = =

λ=λ

C B C C

Fisher-matrix
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Example

( )
( ) 2

2

1

2 2 2

2

2 2

,

Calculate the variances and covariance of the mean and  estimates for a Gaussian

( )
ln ( , ) ln 2

2

x,   (x ) x    ( s', see previous example) 

ln
;

jN

j

x
L N

L N
E

E

 




   



   

 

=

−
= − −

= = − = − =

 
− = 

 


−



2 ( ) 2 2

2 4 2 4 2 2

1, ,,

2 ( )

3

1, ,

ln ( ) 3 2
3

ln ( )
2 0

jN

j

jN

j

L x N N N N
E

L x
E E

    

   

 

     



  

=

=

    − −
= − − + = − + =     

    

   −
− = − − =   

    





2

2

2 2

0

Thus, ,  and we obtain the estimates for the errors,
2

0

Var( ) ,  Var( )  and cov( , ) 0.
2

Estimates of mean and standard deviation are uncorrelated, which is also obviou

N

N

N N





 
   

 
 

=  
 
 
 

= = =

B

s

from the position of the covariance ellipse in the previous figure.
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Final comments on ML estimators

▪ For large samples, λ̃ is a consistent, unbiased and efficient 
estimator, so the best thing one can obtain

▪ for smaller samples, however, this is not true: in these cases, ML 
estimators are (often) biased

▪ advantages of ML: 
• easy to calculate estimators and corresponding errors

• invariance under parameter transformation

• very suitable if several parameters to be estimated in parallel

▪ major disadvantage: 
• one has to know the parent distribution. If the assumption on f(x;λ) is wrong, there is no way of 

telling this from the results, since there is no quality factor or goodness of fit number

▪ minor problem: 
• to interpret L(λ) as a pdf (which is required to estimate the errors of the estimates), one has to 

assume a uniform (constant) prior for the distribution of λ. 

• for non-uniform priors, one can use the MCMC method (Sect. 9) to obtain the (distribution of the) 

posteriors and thus the errors on the parameters

▪ Besides the basic estimators (sample mean and sample variance) 
and the ML estimators, there are other estimators as well, e.g., the 
method of moments (see literature) and the chi-squared 
minimization (next section).
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8. Least squares

( ) ( ) ( ) ( )
Suppose a data sample of pairs ( , ),  where the  are precisely known and the  

have been measured, with individual errors . A theory predicts that  should be a function 

( , ),  where t

j j j j

j

x y x y

y

x



  he parameter(s)  need to be estimated. The "ideal" values are assumed to be 

smeared out by measurement errors alone, and we further assume these errors to be normally

distributed (invoking  the CLT)

y −

( ) ( )

2
( ) ( )

( ) ( )

2

. Thus, the pdf to measure a certain  for a given  is given by

( , )1
( | ) exp : ( | )

22

j j

j j

j j

jj

y x

y x
f y L y

 
 



   −   = − = 
    

( )
2

( ) ( )

1 1

2
( ) ( )

2

1

The combined log likelihood function is then

1 ( , )
ln ( ) ln 2

2

and in order to maximize ln ( ) one has to minimize the quantity

( , )
,

i.e., 

j jN N

j

j jj

j jN

j j

y x
L

L

y x

 
  





 




= =

=

 −
= − − 

 
 

 −
=  

 
 

 



22
one has to minimize the  ( ) or, in other words, 

the (weighted) sum of the squared differences (=

= minimization

least squares minimizati .n )o

  −
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▪ Though the method of least squares can be ‘derived’ from the ML principle, many 
people regard this method (and the corresponding estimator) to exist in its own 
rights, being obviously sensible and empirically tested.

▪ The predicted values are adjusted in such a way as to be close to the 
measurements; by squaring the differences, larger effort is spent on removing 
the larger deviations.

▪ Firstly published by Legendre in 1805 and by Gauss in 1809.The term “least 
squares” is from Legendre’s term, “moindres carrés”. However, Gauss claimed 
that he had known the method since 1795. Legendre and Gauss both applied the 
method to the problem of determining, from astronomical observations, the orbits 
of bodies about the Sun.

▪ The minimization problem can be condensed in the form

▪ Since the estimator λ̃ is a function of the yi, and the corresponding errors are 
known, the laws of error propagation can be used to calculate the error of the 
estimator (if we consider the least square method as being independent of the 
ML principle, we don’t have to worry about  uniform priors here)

▪ If there are M parameter to estimate, a set of M simultaneous equations has to 
be solved. 

2 ( )

( )

2

1

1 ( ; )
0 ( ; )

jN
j

j

j j

d d x
y x

d d
 

  
 

  =

 
 = = −   

 

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Fitting to a straight line  

▪ most common application of least square fitting

▪ y=φ(x;m,b)=mx+b
with slope m and intercept (offset) b =φ(x=0)

▪ often denoted by “linear regression” 
• but note the difference between a straight line fit and regression: 

• regression is a statistical term related to “non perfect” laws, resulting in the 

formulation of a “trend” or correlation 

• firstly introduced by Francis Galton (1885), a cousin of Charles Darwin, to 

describe the biological phenomenon that the heights of descendants of tall 

ancestors tend to “regress down” towards a normal average 

• in the context considered here, we deal with the problem of parameter 

estimation, since we assume the law to be perfect (i.e., better measurements 

should lead to data very close or indistinguishable from a straight line) 
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Identical σ

Let's first assume that all measurement errors can be described by the same ,

: ,   1,  

(which is frequently done, particularly if the errors are unknown). In this case, the "original"

least square

j
j N



 = =

( )
2

1

( )

s problem needs to be solved, namely the sum

is to be minimized w.r.t.  and . (Here and in the following, we abbreviate  by  etc.).

N

j j

j

j

j

y mx b

m b y y

=

− −

( )
1

1 1 1

2

Differentiating w.r.t.  and setting to zero yields

2 0,

1 1 1
or, dividing by  and in terms of sample means x  , y  , xy    etc.,

xy x x 0

N

j j j

j

N N N

j j j j

j j j

m

x y mx b

N x y x y
N N N

m b

=

= = =

− − − =

= = =

− − =



  

( )
1

Likewise, differentiating w.r.t. to ,

2 0

y x 0.

N

j j

j

b

y mx b

m b

=

− − − =

− − =


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2

2 2 2 2

Combining both equations, we obtain

xy x y x y x xy
,            y x .

x x x x

The first expression for   shows that the line goes through the center of gravity, (x,y),  since

(x) x y.

m b m

b

y m b

− −
= = − =

− −

= + =

( )2 2 2 2

The errors on the parameters follow from the law of error propagation. Writing the expression

for  in the alternative way

xxy x y
,

x x x x

j

j

j

m

x
m y

N

−−
= =

− −


( ) ( )
( )

( )

2

2
2

2

2
2 2 2 2

2

2 2

2

2 2x x

we immediately find (for identical errors in )

x 1
( ) x

x x x x

( )
x x

In case we have no info on ,  we approximate this quantity from the re

j

j

j

j j

y

x
Var m x

NN N

Var m
N








−

 
− = = − 

 
−  −

 

=
−

 

2
sulting  (see below)
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( ) ( )

2

2 2 2

2 2

2 2 2 2

Likewise

x x x
( ) x ( ).

x x x x

j

j

x
Var b Var m

N N




 
− = = =

 
− − 

 



, 1

2

The general law of error propagation was

Applic

cov( , ) cov( , )

ation to our case of     (i.e., cov( , ) ),  we obtain

cov( ,

.

)

j i j

n

k l

k l i j

i j i

ij

j

j

independent y y y

f f
f f y y

m
y

y

b

y

m

 

=

   

=

 

=       


=  




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
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2
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2
2 22 2 21

x x x x
x ( ).
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j jj
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Var m

y NN
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 

=

− −  −
= = = − 

  −  −
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( )

2

2

2

min 2

1

Before we give further comments on the error of the fit parameters, let's calculate the 

resulting (minimized) ,  which we will need later on to assess the fit quality.

(y)N
j j

j

y mx b Var
N




=

− −
= = ( )

( )

( ) ( )

2

,2

2

2 2 2

,
2 2 2 2

2

min

1 ,    if we use the abbreviations 

xy xy
(y) y y   and   .

x x y y

Note that as long as the scatter in the values is on the order of ,  is ( ).

x y

x y

j

Var

y O N






 

−

−
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( )

2

2 2 2

Summarizing the previous results, the error matrix for (m,b) is given by

1 x( ) cov( , )
( ) ,  with ( ) ,

x xcov( , ) ( ) x x

and the correlation coefficient is

Var m m b
Var m Var m

m b Var b N





−   
= = =      − −  

C

m,b
2

cov( , ) x

( ) ( ) x

Obviously, the errors on the parameters and their correlation depend exclusively on the

abscissae of the measurements. The larger the spread of these values, the smal

m b

Var m Var b

−
= =

ler the

variances and the correlation. This is reasonable, since measurements which cluster around

a certain -value allow for a lot of freedom in slope and intercept.x

Variances and correlation

m,b

Interestingly, however, the covariance and the correlation is proportional to the sample mean

of the -values, and  0,  0 and 0  for x 0,  <0 and 0  (see the example in Chap. 6).
j

x    =  =

2 2 2

ˆIn so far, the correlation can be simply avoided if one uses shifted -coordinates , and fits

ˆ( x)      instead of     .

ˆWith these new coordinates, ( ) /( ),   ( )

x x x x

y m x b mx b y mx b

Var m N x Var b 

= −

= − + = + = +

= =
m,b

/ ,  and 0.N  =
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Inter-/Extrapolation ‒ individual σj

2

If one inter-/extrapolates a value of  for a given value ,  in the conventional coordinates we

find

( ) ,       ( ) ( ) ( ) 2 cov( , )     (see Chap. 6)

Y X

Y X mX b Var Y X Var m Var b X m b= + = + +

( )
( ) ( )

2 2
2 2 2 2

2

2 2 2 2

ˆ ˆwhereas in the new coordinates  x   (with x 0 and cov 0) we obtain, after inserting

the corresponding values for ( ) and ( ),

x x
( ) x 1 1

ˆ ˆx x x x

x x

Var m Var b

X X
Var Y X

N N NN

   

= − = =

   − −
= − + = + = +  

   −  

which of course has the same numerical value as the expression above.

Large errors are induced if  is far from x,  whereas for  x (i.e., close to the center of

gravity), the variance is reduced by 

X X







a factor of 1/N compared to the intrinsic scatter.

2

j
Finally, we assume that the measurements have individual errors . Now,  has to be

minimized, and the individual errors have to be accounted for. All derived equations remain

valid, if we replace the

 

2

2

2 2

2 2

2 2 2

 sample means by the corresponding, weighted means, 

and the quantity  occuring in the error matrix likewise, e.g.,

y ,              
1 1 1

j j

j

j jj j j

j j jj j j

y
y

N

N





 
 

  

= → → = =

 

  
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Example

sample 1                                                                               sample 2

1 2 3 4 5 6 7

1.2 1.9 3.1 4.2 2.0 6.5 6.8

0.5 0.5

Four slightly different samples (figures next page), all with 7

j

j

j

x

y

N



=

1 2 3 4 5 6 7

        1.2 1.9 3.1 4.2 2.0 6.5 6.8

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

sample 3                                                                                sample 4

1 2 3 4 6 7

1.2 1.9 3

9.5

5 .1 4

2.0

j

j

j

j

j

x

y

x

y



−

−

9.5 1 2 3 4 6 7

.2 6.5 6

0

.8        5 1.2 1.9 3.1 4.2 6.5 6.8

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.52.0.5

Sample 1/2 and 3/4 differ in one point at either 5 or 9.5. All following results

have been calculated

j

j

j j

x

y

x x

 

−

−

= = −

2

m,b min

 from the previous expressions. 

Results

sample cov( , ) ( 8) ( 5.5)

1 0.889 0.094 0.114 0.423 -0.0357 -0.894 7.00 1.15 5.01 0.24

2 0.992 0.096 0.114 0.423 -0.0357 -0.877 7.82 1

33.16

3.6 .16 5.573

m b m b Y X Y X  = − =

  −  

  −  

2

min

 

11.13

4

0.26

3 0.721 0.037 1.282 0.202 -0.0027 -0.356 4.48 0.42 5.24 0.23

4 0.905 0.081 0.513 0.363 -0.0244 -0.829 6.73 0.97 5.49 0.25

The relevance of the obtained  will be discussed later on.

.6

 ( ) are 

1

extY X

  −  

  −  

ra-/interpolated values.



USM

215

Examples

sample 1 sample 2

sample 3/4

sample 1 vs. 2: 
a) Note the influence of the measurement 

error σ for y(x=5)

b) extrapolated values have a larger error 

than values close to the center of gravity

c) Though the fit to sample 1 looks 

reasonable, the large χ2 makes it rather 

unlikely (see later on)

red data: inter-/extrapolated values with error-bars

sample 3/4 vs. 1/2
Note the strong influence of a data point far 

away from the center of gravity (and the 

influence of the corresponding error)
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Binned data

▪ least squares fitting also possible for binned data (histograms)
- assume data can be binned (without significant loss of information)

- suppose there are N events, and the pdf is ( ; )

- the events are sorted into  bins, centered on point  and with width  (of
B j j

f x

N x W



(here we use  for the expectation value to avoid confusion with the parameter  of the distribution)

ten uniform)

- the  number of events in bin  is ( ; )expe

 

t

 

c ed
j j j

j NW f x

 

 =

2

- the actual, observed number is , and can be described by a Poisson statistics (see page 96)

- thus, the error on the events in bin  is  

- the total  summed over all bins sometimes c l e Pea l d 

j

j j

n

j  



=

( )
2 2

2

2

1 1

2

2

1

2
 results in

( ) ( )
 

- for  probabilities with individual probability ( ) for bin ,  we likewise obtain

arson's

( )
  

The parameter  ca

d

n be 

  

isc

c

r e

a

et

B B

B

N N
j j j j

j jj j

j

N
j j

j j

n n

p j

n Np

Np

 


 









= =

=

− −
= =

−
=

 



2
lculated from the usual minimization of  

(i) the bin width should be not too small (see (ii)) and not too large (such that ( ; ) 

                does not vary too much over the bin )

          (ii) the  numb

Note:  

er of eexpected vents (  o
j

f x

j



 r ) should be at least 5 per bin. If this constraint 

                is not fulfilled, the number of events  or the bin-width needs to be increased.

         (iii) since the  are Poisson distribu

j

j

Np

N

n
2

2

ted, Pearson's  as defined above follows the actual 

               distribution (based on a Gaussian) only for large N



 −
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Example

right panels: histograms with 

different bin-widths 

(Wj = 0.5, 1, 2) resulting from 

a normal distribution with μ=3 

and σ=2, for N = 200

left panels: corresponding χ2

as a function of σ. A fit to the 

binned data using

σ( Min(χ2 )) is displayed in 

green on the right.
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Goodness of fit (Fitgüte)

▪ So far, we have minimized χ2 and obtained estimates (incl. errors) for 
the parameter(s) λ of the function φ(x; λ) used to fit the measured data. 

▪ From this approach, however, it is not clear whether the function itself 
(or the assumed errors) is/are reasonable.

▪ A suitable test can be found from the goodness of fit, which uses the 
properties of the χ2 -distribution. 

▪ Remember the basic assumption of the least squares method: 
the differences between theory (φ(xi; λ)) and observations (yi) are due to 
measurement errors alone.

▪ In so far, different samples (different series of measurements) will give 
different yi and thus different minimized χ2

min and different parameters λ.

▪ If we now assume that the measurement errors are Gaussian distributed 
(CLT), the (minimized) χ2 is just a sum of squares of normally distributed 
reduced variables,

and thus should follow the corresponding χ2 -distribution introduced in 
Chap. 5.

2

2 2

2

1 1

( )
         with ( ; )

N N

i i

i i i

i ii

y
u x


   

= =

−
= = = 
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2
2 2 / 2 1 / 2

/ 2

2 2

2

with Gamma-function  and

where  denotes the so-called number of degrees of freedom.

For 

1
( ,

a s

) ( ) ,   
( / 2)2

( ) ,   

um of   r.v. ,  the number of 

  (

de

) 2 ,  

g

 

r

f

f

f

N inde

P f e
f

E

pen

f Var f

dent u


 

 

− −
=



= =

ees of freedom is  (Chap. 5).f N=

2
If, however,  has been calculated after the minimization, not all terms in the sum are 

statistically independent, since they are subject to homogeneous linear constraints, at

li

 

n

le

ea

ast 

r mofo sr del



1

,  ( ; ) ( )

In this case, the number of degrees of freedom is reduced by the number of constraints 

(= number of parameters to be fitted),

M

k k

k

y x f x

f N M

 
=

−

=

=

=λ

1 2

1 1 2 2

(i) for a fit to a straight line, the linear model is ,  i.e., 

2 with , ( ) 1,  , ( )

(ii) for non-linear models, e.g., ,  this is no longer strictly valid, but might b

te

e 

No :

y mx b

M b f x m f x x

y x x
 

 

= +

= = = = =

= +

applied if the non-linearity is not too drastic or if N M
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Example

▪ consider a fit to a straight line with 10 measurements und two 
parameters, m, b:

yi = b + mxi + noise (Gaussian) (i = 1, 10);

▪ because of the Gaussian noise, all requirements to apply the 
least squares method are exactly fulfilled

▪ we calculate 10,000 different samples created in this way and 
calculate the corresponding minimized χ2

min.

▪ the corresponding distribution is shown in the next plot, and 
compares  very well with the theoretical χ2 -distribution with 
f=10-2=8 degrees of freedom

▪ mean value and standard deviation of the experimental 
distribution, 8.07 and 4.03, respectively, are in good agreement 
with the theoretical prediction, E(χ2)=f=8 and σ(χ2 )=√(2f)= 4
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histogram of “measured” distribution of minimized χ2min (10,000 measurements);

grey curve: theoretical pdf p(χ2,f) for f=8
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▪ Thus, a first simple test to decide whether all assumptions made 
(reasonable model, Gaussian errors of “correct” size) are fulfilled is to 
check the magnitude of the minimized χ2

min . If it is in the range

χ2
min ≈ f±√(2f),

then there is no obvious problem. 

▪ a better quantification is the calculation of the goodness of fit, Q

▪ Q describes the probability that any another χ2 ≥ χ2
min could have 

occurred by chance, i.e.,

Q(χ2
min,f)=P(χ2≥ χ2

min)

▪ if, e.g., Q≈1, then the minimized χ2
min is most likely too small (see below)

2
min

2

2

2 2 2 min

min

1

0

 can be calculated from integrating the pdf of the -distribution:

( / 2, / 2)
( , ) ( , ) . Note the argument.. 1      ( )

( / 2)

with incomplete Gamma

s!

-function ( ,

!

)

!

x

a t

Q

f
Q f P f d

f

a x t e dt





 
  





− −

= = = −


=



1

0

 and 

(complete) Gamma-function ( )  
a t

a t e dt



− −
 =




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▪ The calculation of the goodness of fit allows to determine 
whether the model and/or the assumed errors comply with the 
measurements.

▪ In dependence of the value of Q, we can make the following 
statements  

( ) if  0.05 0.95,  the fit is OK at least in principle . 

   In terms of hypothesis test

fit cannot be reje

ing (Chap. 10), 

   the at a two-sided 10% significanccted e level.

Q•  

 if 0.001 Q 0.05, the fit  OK, but one should perform an

   additional measurement series.

maybe• 

2 2

min

-3

 if 0.001,  is too large (the probability to obtain any other, larger   

   is less than10 ),  and the  at a 0.1% significance level.

   Either, the model is "wrong", o

fit has to be rejected

r c

Q  •

ertain errors have been 

   assumed as too small, or the errors are not normally distributed

2

min
 if  is close to unity,  is too low! Either, the errors have been adopted as

   too large, or we have encountered a case of data-faking!

   There is, of course, a (quite) low probability that we 

Q •

were simply lucky. Again, 

   an additional measurement series might be helpful.
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Example

▪ continuation of example from page 214
2

min

2

min

The minimized  for sample 1,2,3,4 were 

=33.16, 3.63, 11.13, 4.61,

respectively. The number of data was 7,  and the number of fit-parameters was 2

5 (number of degrees of freedom)

N M

f





= =

 =

2

min
Thus, we expect a minimized 2 5 3.16

From this expectation, we conclude that the fits to sample 2 and 4 are OK. The fit to 

sample 1 can be discarded (obviously), whereas the fit to sample 3 li

f f =  = 

es within the 2-  region

and needs to be reinvestigated.



2 6

min

Quantitatively, we find goodness of fit parameters

( ,5) 3.52 10 , 0.604, 0.049, 0.465

which are consistent with our above expectations. Note that the value for sample 3 lies just

slightly below th

Q 
−

= 

2

min

e 5% margin and might be OK indeed, since there is still an almost 5% chance 

that other experiments would have yielded a higher ! 
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Unknown errors

2

min
In order to calculate  and the goodness of fit, ,  but also the errors of the fitted 

parameters, one needs to know the individual errors  (which may be identical for all 

data-pairs)

Sometimes, w

i

Q



e do not know these errors. In this case, we may proceed as follows:

2

( )

1

We  that the errors are identical, i.e.,  ,  and determine the set of parameters 

from minimizing the quantity

( ; ) .        (Formally, we use the general algorithm a

assu

nd set 

me
i

N
j

j i

j

y x

 

  
=



 −  

2

min

2
( )

2 2

min min 2

1

( )

1

1)

Then, we that the fit is OK, and derive the value of  from the corresponding 

expectation value of . 

( ; )
: ( ,

assume

)      

( ; )
  =

 

j
N

j

j

j
N

j

j

y x
E f N M

y x

N M





 
 



 


=

=

 −
 

 = = − =

 −
 


−





Note that this approach does not allow to assess the quality of the fit, since we assume the 

fit to be perfect. However, the derived value of  allows for a rough estimate on the errors 

of the paramet



ers. 
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Errors on x and y

▪ Until now, we have assumed that the x-values are 

error-free. 

▪ Often, one needs to perform a straight line fit to a 

data-set where both the x and the y data are affected 

by measurement errors. (Even worse, sometimes the 

x and y data have been calculated from other data 

and are correlated!) 

▪ In this case, we have to minimize the quantity
2

2

2

1 ,

,

( )
  

where  is the  measurement errortota .l  

N
j j

j tot j

tot j

y mx b






=

 − + 
=
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To calculate this error, we consider a certain residuum (see figure),

( ) ( )

It is the error of this quantity which needs to be considered in the regression.

(Note that for the convention

j j j j j
l y f x y mx b= − = − +

al case of 0 we obtain :   as usual).
jx j j j

l y = =  = 

y(x,m,b)

( )

2 2

2 2 2 2

,

2 2 2

For errors on both axes, we find from the law of error propagation

  2 cov( , )

         = 2 ( , )  

j j j j

tot j j j j j j

j j j j

j j j j j j

l l l l
l y x x y

y x y x

y m x m x y y x





         
 =  =  +  + =     
               

 +  −      (with correlation coeff. )
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2

2 2 2

, 2
= 1   2 ( , )

Obviously, errors in the x-data become of strong impact if the relation is steep.

j j

j

j j

x x

tot j y j j

y y

m m x y
 

  
 

  
  +  − 

    

2

,

The estimate for the intercept  still follows from the equation 

(because  does not depend on ),  i.e., 

the line goes through the center of gravity (w.r.t. weighted means) as usual. 

tot j

b y mx b

b

m



= +

,  on the other hand, has to be calculated by numerical minimization method 

(or from an MCMC method, see next section),

unless the errors in x direction are identical, as well as the errors in y-directi

( )
2 2

2 2 2 2

2

on, and

the x and y data are uncorrelated. In that case, one obtains

(y y ) (x x )
1    with   .

2 (xy x y)

The positive sign is taken if the denominator of  is positive, and vice v

y x y

x x y

m A A A

A

  

  

− − −
=  + =

−

ersa.
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Example

continuation of example from 

page 214/215
data and y-errors (σy =0.5, blue) as in 

sample 1; regression accounting for y-

errors only in black:

m=0.89, b=0.09, χ2min = 33.16

additional errors on the x-data (σx, green) 

and regression accounting for x- and y-

errors in red

upper and lower panel, from left to right:

σx =0.01, m=0.89, b= 0.11, χ2min =33.15

σx =0.50, m=1.05, b=-0.53, χ2min =17.15

σx =1.00, m=1.16, b=-0.96, χ2min =  6.48

σx =1.50, m=1.19, b=-1.09, χ2min =  3.15

Formally (from χ2min), fit 3 and 4 are OK.
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To be continued …

▪ Least squares fitting/ χ2 minimization

• arbitrary linear models: “normal equations”, orthogonal transformations

• non-linear models: Gauss-Newton method, minimization methods, 

particularly Levenberg-Marquardt method and genetic algorithms

→ lecture notes “Numerik für Physiker” (in German), Chap. 5.5/5.6

(http://www.usm.uni-muenchen.de/people/puls/lessons/Numerik/Numerics.pdf)

http://www.usm.uni-muenchen.de/people/puls/lessons/Numerik/Numerics.pdf
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▪ Often, the knowledge of the distribution of the parameters obtained from a “fit” is as (or 
even more) important as the knowledge of the parameters themselves.

▪ Well-known examples are the constraints on the cosmological parameters derived from 
various experiments (see next page)

▪ As we have seen in Sect. 7 (ML estimators), a direct interpretation of the likelihood as the 
distribution of the estimated parameters requires to assume that the priors are uniformly 
distributed, an assumption which often cannot be justified.

▪ Even if the assumption of uniform priors would be true, the calculation of errors on the 
derived parameters and their correlation (Fisher-matrix) becomes quite cumbersome if the 
model is complex and/or involves many parameters that need to be estimated in parallel. 

▪ The major issue here is that the likelihood method provides us with a distribution of 
likelihoods (probability for the observed model given a set of parameters), but not with the 
distribution of the parameters themselves. This could be found – if at all, and then only for 
constant priors -- only by marginalization, i.e., integration over the complete set of all other 
parameters. 

▪ Thus, a method which provides the distribution of the parameters themselves would be 
highly welcome, and indeed such a method exists, called Markov Chain Monte Carlo 
(MCMC), suggested (and used) first by Metropolis et al. (1953), and improved in a number of 
subsequent studies.

▪ In the astrophysical community, one particular implementation (in Python) is frequently used, 
since it’s easy to use, quite fast and reliable, namely emcee
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232From Simard et al., 2018, arXiv:1712.07541

Distribution of parameters required,

enabling to investigate uncertainties

and correlations
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For simplicity, and in view of the example discussed below, we assume a dataset ,  and a  model with 

three parameters, , ,   that should describe the dataset 

Again, we make use of Bayes theorem, wher

x

m b f

e the posterior, i.e., the distribution of , ,  given the data ,  

is expressed via 

( | , , ) ( , , )
( , , | )

( )

with "evidence" ( ) [marginal likelihood for the data], ( | , , ) the likelihood 

m b f x

p x m b f p m b f
p m b f x

p x

p x p x m b f

=

of the "observed" dataset 

given a model with parameters , , ,  and ( , , ) the prior for the parameters, which are usually thought

to be independent, i.e.

( , , ) ( ) ( ) ( )

m b f p m b f

p m b f p b p m p f=  

The procedure is now as follows:

(i) define the (log) likelihood for the observed dataset, in dependence of the (model) 

parameters

(ii) define the (log)  prior (see below)

(iii) start the MCMC-”engine”. The output from the engine is a (large) sample of the 

posterior (the parameter set given the data), enabling to quickly perform any 

kind of marginalization and correlation analysis. 
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Inside the MCMC algorithm, the following steps are performed
[description partly taken from “MCMC sampling for dummies - While My MCMC Gently Samples”]

• initialize the parameter-set, here θ1:=(m1,b1,f1)

• calculate the combined “probability” (not normalized), likelihood times prior, p(x|θ1)p(θ1)

(in this calculation, any factor that does not depend on the parameters can be omitted, 

since later on only relative probabilities will play a role)

• use a Markov process (“chain” if many such processes) to proceed from parameter θi to 

θi+1. Markov processes are stochastic processes where the r.v. θi+1 depends 

only on θi, and not on the previous history i-1, i-2, .... 

• The actual realization of this Markov step (direction, length) is the major difficulty in this 

method, since it must be warranted that the complete parameter space w.r.t. θ is efficiently

sampled (→ literature)

• for the new “proposal” θi+1, calculate p(x|θi+1)p(θi+1), and the probability ratio

• This so-called acceptance ratio is the ratio of the posteriors for the proposed θi+1 and the 

current θi (since the evidence and any constant factor neglected above cancels out). 

• By means of r, we check whether the proposed θi+1 is a “good place” to jump to or not. 

1 1

1 1 1

( | ) ( )

( | ) ( ) ( | )( )

( | ) ( )( | ) ( ) ( | )

( )

i i

i i i

i ii i i

p x p

p x p p xp x
r

p x pp x p p x

p x

 

  

   

+ +

+ + += = =

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwic9suYhsPZAhXEbVAKHaVxDOkQFggoMAA&url=http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/&usg=AOvVaw0YPeVNUfmzBNDFXWBoGZ8b
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• If r>1, the proposed parameter set θi+1 is better supported by the data than the current θi, and 

θi+1 is definitely a place to go.

• If we would only accept a jump when r>1, at some step we would reach the point of maximum 

posterior probability, from where no more moves would be possible. However, since we want 

to obtain the distribution of the posterior (and not only the optimum parameter set), we 

sometimes have also to accept proposals with r<1. E.g., if p(θi|x) is twice as large as 

p(θi+1|x), there is a 50% chance of moving towards θi+1.

• Thus, the typical MCMC strategy reads:
provide new proposal θi+1 [Markov step]

calculate r(θi+1, θi)

accept = random_uniform(seed) < r 

#always true for r>1, sometimes true for r<1 (in relation to prob.)

if accept then  θi = θi+1 # update position

save θi for the sample    # either the proposed or the current θ is saved

That way, we are visiting regions of high posterior probability relatively more often than those of 

low posterior probability, and this simple procedure gives us meaningful samples from the 

posterior. Note that the cumbersome quantity p(x) (many integrals → “nested sampling”) does not 

need to be calculated. Note also that in the output chain certain parameter sets will sometimes 

repeat themselves (whenever r < random_uniform).
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General note: when applying the MCMC algorithm, consult the literature, talk to

experienced colleagues, and perform a couple of tests before relying on the results!

The MCMC method is also well-suited for (linear and non-linear) regressions

involving errors on x and correlations between the x- and y-data (see Chap. 8)

Notes on the prior:
Often, it is a good idea to use either

• uniform (“flat”)  priors (if one has only an idea about the potential range of parameters, or 

• normally distributed priors (if one has an idea about the typical value and it’s uncertainty, or

• specific distributions resulting from previous experience (cf. Sect. 2, “The first night in 

paradise”

• when adequate, or for tests of the method, one might also use conjugate priors (see 

Sect. 7), which result in the same posterior distribution as the prior.

Note that uniform priors are sometimes not the most “non-informative” ones. E.g., using 

symmetry and scaling invariance arguments, it turns our that the most non-informative prior

for the standard deviation in a model is p(σ) ~ 1/σ (the so-called Jenkins-prior), whilst for a linear 

model with slope m and  offset b the most uninformative choice is a uniform prior for b and 

p(m) ~ (1+m2)-3/2 , corresponding to a uniform distribution in sin(θ) where θ is the angle between

the x-axis and the model line.
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Notes on the sampled chain

• Because the initial samples are drawn from a specific start-point (e.g., from the prior, or from a 

Gaussian “ball” around the maximum likelihood), it can take time for them to converge on the 

desired sampling from the posterior distributions. One might try to estimate this first “burn-in” 

period (e.g., by eye-inspection of the “trace”, see example below, or by inspecting the auto-

correlation time), and simply ignore all samples created during this phase. 

• Because of the Markovian process, there is a certain (auto-)correlation between the drawn 

samples θi and θi-N, and it is worthwhile to estimate the autocorrelation time (e.g. by using the 
tool provided by emcee, sampler.get_autocorr_time).

[briefly: test whether there is a significant correlation between θi and θi-N, N = 1,..., and provide 

the value for the maximum (auto-)correlation, Ncorr]. 

• Then, the output-sample might be thinned by about half the autocorrelation time, i.e., only each 

(Ncorr/2)th sample point would be finally considered. However, thinning is debated, and 

according to Link & Eaton (2011) “On thinning of chains in MCMC”, doi: 10.1111/j.2041-

210X.2011.00131.x, thinning of chains is not usually appropriate when the goal is precise 

estimates from an MCMC sample. Anyhow, from the auto-correlation analysis, at least an 

estimate of the burn-in time might be obtained, namely a few times Ncorr.

http://onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2011.00131.x/abstract
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A worked out example: 

Fit to a straight line with unknown systematic error

▪ The following example bases (in part) on the 

tutorial for the emcee-sampler.

▪ for other samplers and a comparison, see, e.g., 

samplers-samplers-everywhere by Matt Pitkin.

238

obs

2 2

obs

"Observations" (data): 20 data points in x-y, errors only on y

model: linear, 

 errors: (i) Gaussian, with known 

              (ii) systematic, proportional to | |;

               

y mx b

y

y

f



 

= +

→ = + ( )
2

y

obs, obs,

simulations: 20 x-values uniformly distributed in (0,10]:     10 Random_uniform(seed)

with  Random_normal(seed)  and (0.1 0.2 * Random_uniform(seed))

 

i

i i i i

i i i

x

y mx b yerrobs yerrsys

yerrobs  

= 

→ = + + +

=  = +

and    abs ( ) Random_normal(seed)
i i

yerrsys f y=  

Actually, we are only interested in the 

model parameters, m and b.

f is a so-called nuisance parameter, 

which has an influence on these 

values, but is of no further physical 

interest. I.e., the  distributions of m an 

b have to be derived by marginalizing 

p(m,b,f | x) over f.

http://dfm.io/emcee/current/user/line/
http://mattpitkin.github.io/samplers-demo/pages/samplers-samplers-everywhere/
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( )

 

2

( ) 2

2

1 i

22 2

obs,

loglikelihood

( )1
ln ( , , | ) ln   + const

2

with   ( )

n
i ii

i

i

i i i

y m x b
L m b f x

f m x b




 

=

 −  +
= − + 

  

= +   +

 cf. page 181

without systematic error

with systematic error

mtrue= -0.9594

btrue = 4.294

ftrue = 0.534

from max.

loglikelihood:

mML= -0.806

bML = 3.649

fML = 0.690

What about

errors?
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errors on the parameters from ML (flat priors)
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true true

true true

true true

 -- in order to compare with the likelihood method, we use flat priors:

1 for 10

pri

10
( )

0 else

1 for b 10 10
( )

0 else

1 for ln 10 ln ln 10       
(ln )

ors

m m m
p m

b b
p b

f f f
p f

−   +
 


−   +
 


−   +


            (remember: likelihood invariant 
        

0 else                                                                     to parameter transformations)





Assuming flat priors, we can estimate the errors on the parameters from

the condition that the 1-σ error is located at the (hyper-)surface for Lmax-0.5

In this way, we find (by evaluating ln L on a dense grid and locating the iso-contours)

0.120

ML -0.140

0.650

ML -0.550

0.200

ML -0.200

m = 0.806

b   =     3.649

ln f 0.371

+

+

+

−

= −



USM

Example: fit to a straight line – MCMC 

241

▪ Now MCMC (using emcee) with 32 “walkers” and 5000 steps  
per walker
• walkers: in order to more efficiently sample the parameter space, many samplers run in parallel 

and periodically exchange states

burn in

ln f

b

m

First 400 steps (samples) from walker #0. Obviously, certain samples appear

repeatedly (whenever r < random_uniform, e.g., around step 100, dotted blue line)
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All 5000 steps (samples) from all 32 walkers; the burn-in phase is still visible.

The following results have been produced by neglecting the first 100 steps, and by 

thinning the samples so that only each 15th is used.

“trace” produced by emcee
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MCMC: distribution and errors
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Marginalized distributions as obtained from the 

corner.corner Python-module (“true” values indicated in 

blue). The diagonal consists of the marginalized 

distribution of the individual parameters, and mean and 

errors can be easily calculated.

Since the trace (in case, thinned) is just a sample of the 

posterior (an array with dimension Nstep x Npara), 

marginalization and histogram-plotting can be performed 

without any effort.

+0.120 +0.136

ML -0.140 MCMC -0.149

+0.650 +0.675

ML -0.550 MCMC -0.618

+0.200 +0.263

ML -0.200 MCMC -0.217

m = 0.806 ,             m = 0.829

b   =     3.649 ,            b   =     3.754

ln f 0.371 ,           ln f 0.341

− −

= − = −
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In the following, we marginalize the likelihood (L as a function of m, b, ln f calculated on a dense 

grid) by “brute force” trapezoidal integration, assuming flat priors for m and b,  and p(f) ∝ 1/ f 

(consistent with a flat prior in ln f) . We don’t care for pre-factors, since the normalization could be 

done in the end. What we want to show here is that the distribution from the marginalized 

likelihood is (and should be) quite similar (theoretically: identical) to the distribution from the 

MCMC, when the priors are identical. 

Formally, we look for the marginalized distribution of the posteriors, 

p(m, b | x) = p(m, b, x) /p(x),

where p(x) is the evidence, i.e., just a number -- though difficult to calculate if many parameters 

are present. Now

p(m, b, x) = ∫ p(m, b, f , x) df = ∫ p( x | m, b, f) p (m) p(b) p(f) df

and thus (for flat priors in m and b)

p (m, b | x) ∝ ∫ p(x | m, b, f) p(f) df,

where p(x | m, b, f) is just the likelihood L for the dataset. Hence, to obtain the marginalized 

distribution of the posterior, we just have to integrate the likelihood over p(f) df ∝ df / f = dln f. 

[For more complex problems, the corresponding integration is the major problem.]

Moreover, the marginalized posteriors for p(m | x) and p(b | x) are obtained  (without any 

additional assumptions) via

p (m | x) = ∫ p(m, b | x) db and   p(b | x) = ∫ p (m, b | x) dm.
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MCMC vs. marginalized likelihoods
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Marginalized distribution for m (left) and b (right), normalized to a maximum of unity.

Note that the distributions resulting from MCMC and the integrated likelihood

are consistent, as required!

m b
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10. Confidence intervals and hypothesis testing

A few remarks on confidence intervals

▪ Measurements (in a statistical sense) are obtained from estimates of 
one or more parameters. 

▪ The corresponding measurement error(s) are obtained from estimates 
of the confidence interval(s).

▪ not evident how to define these intervals. Various philosophies/methods 
are present, based on the “school” the author is belonging to.

▪ a small list of wishes for appropriate properties:
• confidence interval(s) should contain the actual parameter(s) with a certain (pre-defined) probability 

(confidence level)

• for a given confidence level, the interval should be small

• independent of subjective assumptions

• the definition should be consistent, i.e., observations with similar information content regarding the 

parameter should yield similar intervals.

• method to derive intervals should be simple and transparent 
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▪ From Chap. 7, we know that it is impossible to obtain the pdf for a 
certain parameter from a sample alone, unless the prior’s pdf is known. 
Thus, in most cases one should restrict oneself to the likelihood 
function. 
• if the prior is known with sufficient knowledge, the pdf of the parameter can be derived, and the 

corresponding confidence interval defined from the variance of this pdf. 

• for unknown prior, we use 

– the errors derived from the variation of the likelihood function around its maximum 

– in the large N limit (→ Gaussian likelihood function), the variances of the estimator(s) from

– if possible, the limits as implied by a likelihood ratio (Chap. 7)

• sometimes, one needs to integrate over the possible parameters. In this case, we assume constant 

priors (maximum ignorance in most cases). Remember, however, the inherent problem regarding 

parameter transformations

The latter problem can be circumvented by using “Bartlett’s S-function”, see Brandt, Chap. 7.8

2 2 2

1 1 1

1 2

( )d ( ( )) d ( )d

( )     

( )d ( )d ( )d

when ( ) is a non-linear function.  

L L L

P

L L L

  

  


      


  

     

 

  

− − −




  = = 

  

  

2

2

1
( ) , 1,  for  parameters

ln

i

i

i

Var i M M
L

E







= − =
 
 

 
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Classical confidence intervals

▪ “frequentist” interpretation, introduced by Pearson, difficult and 
sometimes problematic (not recommended, except for Gaussian case)

▪ Definition: The confidence interval with confidence level p contains all
those values of the parameter X, for which the probability to obtain a 
measurement (estimate) x=S(X) within a certain interval is given by p.

▪ Before the measurement, one defines, for each value of X, an interval, 
which in the one-dimensional case is defined by

P(x- < x < x+ | X)= p

▪ For a given X and p, a measurement of x is thus expected within the 
interval [x-(X), x+(X)]. 

▪ For an actual measurement of x0, the confidence interval of X comprises 
all those X-values for which the above condition with x= x0 is fulfilled.

▪ In the univariate case, usually central probability intervals are chosen, 
i.e.,

P(x < x- | X)= P(x > x+ | X)= (1 – p)/2
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Classical confidence intervals, : 

the confidence belt (i.e., the region in between  and )

is constructed from the condition ( x | ) ,

as a func

general cas

tion of the true parameter . For a  

e

 n

x x

P x x X p

X

− +

+ −
  =

0

actual measure-

ment (estimate) x ,  the confidence interval [ ] 

is derived from inverting the relations as indicated. Note that 

in general the classical confidence interval is not (directly) 

rela

X X X
− +
 

0
ted to the errors of x . 

Poisson distribution, with mean  and measurement

. Here, the width of the distribution depends on  via (k)

. E.g., for large ,  ,  and the confidenc

Exam

e 

belt

ple: 

o

X

k X

X X x X n X




= = 

 diverges with increasing  (compare with right panel). X

Classical confidence intervals, : 

Here, the confidence belt lies inside the region confined by 

 and . Both relations are parallel to 

th

normal distr

e one-to-one

ibutio

 relation . Th ,

n

us

x X n x X n

x X

 
− +
= − = +

=

0

0

 the confidence interval 

[ ]  derived from  an actual measurement x  is 

given by x   (see figure), which justifies the "usual" 

approach of identifying the confidence region of  with the 

u

X X X

X n

X



− +



 

= 

0
ncertainty of  x  (which  for the general case would be a 

misinterpretation and wrong.)
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( )

The discussed property for normal distributions can be generalized to such distributions 

that are symmetric with respect to parameter ,  and their width etc. does not depend 

on ,  i.e.

( ) .

Proof:

X

X

f x f x X= −

( )

( )

( ) ( ) ( )

0

( )

 ( ) can be derived from the condition if the central probability is 

' ' (1 ) / 2

Now substitute ' :     '   and ' .

(1 ) / 2 ' '

o

o o o

o

x X

X

x x X

x X p

f x X dx p

x X x y dx dy y x x X

p f x y dy f y x dy f x x dx

−

+

+

+



−

− −− + +

− = −

− = −  = − = − + +

− = − − = − = −



 

Note: , see previous sketch

Thus, the role of  and  are interchanged, while the integrals have the same values.

Consequently, the integration range must be the same, and because of

o

o

X

x x X X

X x

−

+ −



 − + + = 



 the symmetric

pdf we find that if ,  then ,  q.e.d.
o

x X X x
+ −
= +  = − 
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▪ in the multivariate case, probability regions are chosen which are 

enclosed by a curve or surface of equal probability.

confidence region

probability region      

A given set of parameters (here: 2), A, 

will provide measurements in the region 

a with a probability p. The probability 

region for another parameter set B (with 

same probability) is b, and so on.

The set of all parameters with probability 

limits which cross the measured value 

(thick dot) comprises the confidence 

region (grey).
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Upper (lower) boundaries

▪ Sometimes there is the problem that a parameter cannot be 
measured accurate enough as to obtain a value which is 
significantly different from zero. In this case one might like to 
provide an upper boundary.
Example: the life-time of a short-lived particle might be quoted as 
“with 90% confidence, the mean lifetime is smaller than …”

▪ In this example, the probability aspect is the dominating one, and 
one invokes a constant prior. In other words, one calculates the 
normalized likelihood for the considered parameter λ and 
interprets this as a pdf for the parameter (since we assume a 
constant prior, this cancels in the nominator and denominator, 
see Chap. 7) . 

▪ The integral over the allowed range [−∞, λ0 ] yields the 
confidence level C for the upper limit λ0.

0

0

( )

( )

( )

L d

C

L d



 



 

−



−

=




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Upper Poisson limit

▪ If, in a certain experiment, one is looking for a specific event (reaction, number of 
photons, particles etc.), but does not find any, it is appropriate to cite an upper 
limit instead of the measured value, again using a corresponding probability. 

▪ In this case, the result might be quoted in the form “the number of events, 
photons … is smaller than λ0 with p*100% confidence (p=0.90, 0.95 …)

▪ Again, the upper limit λ0 is found by integration of the likelihood function 
assuming a constant prior.

▪ Example: We observe k events. Calculate the upper limit λ0 for the expectation 
value with C = 90% confidence. 

• The normalization integral w.r.t. the Poisson distribution is unity, and thus we obtain

0 0

0 0

0

partial 0 00 0
integration

0

0

( ) ( ; ) ( | );

exp( )1
( | )d exp( ) d 1 1 ( | )

! !

In particular, if no event has been found ( 0), we obtain

1 exp( ) and thus

ln(1 )

For 

jk k
k

j j

L L k P k

C P k P j
k j

k

C

C

 

  

 
     





= =

= =

−
= = − = − = −

=

= − −

= − −

  

0
0.9,  the upper limit for the expectation value is =2.3 events C =
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Unphysical parameters

▪ Sometimes, the allowed parameter range is restricted by 
physical laws (e.g., masses should be positive, though a 
specific experiment might yield a negative one).

▪ In this case, the prior is a step function, 
P(λ)=0 for λ<0 and constant for λ>0, 
and we have to adapt (restrict and to renormalize) the likelihood.

▪ For confidence levels/regions for parameters derived from χ2-
minimization (in particular, parameter sets of higher dimension), 
see Numerical Recipes.

0

min

min

0

( )

( )

( )

L d

C

L d







 



 


=




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Tests of hypotheses

▪ So far, we have concentrated on the determination of unknown parameters from 
a sample (“measurement”, estimation). 

▪ Often, one has an expectation on the values of these parameters (e.g., from 
previous results or from models/theories)

▪ Then, the purpose of the sample is to test this hypothesis (see also Chap 7, 
section “likelihood”, page 166 ff), 

▪ Example:
• In production control, one assumes that certain parameters are distributed normally about their nominal value. We consider 

the case of bread production. A certain type of bread should have a weight of 2kg, with a standard deviation of 20 g. From 

the daily production, we draw a random sample of ten breads, which display an arithmetic mean value of 1.99 kg, i.e., 0.01 

kg below the nominal value. 

• If we assume the hypothesis to be true, then the mean difference (w.r.t. the nominal value) should be normally distributed, 

with mean 0 and standard deviation 20g/√10.

• We now ask: What is the probability of “observing” a mean difference, |δx|,  ≥ 0.01 kg in our distribution?  From Chap. 5, 

page 110, the corresponding probability is

( x 0.01) 1 (2 ( ) 1) 2(1 ( ))

with ( ) the cdf of the normal distribution and u the reduced random variable, u (x ) / .

1
Since we are dealing with mean values, the corresponding  is a factor of 

o o

o

P u u

u

  

  



 = − − = −

= −

 smaller than the 
N

individual one, and we have u 0.01/(0.02 / 10 ) 10 / 2 1.58

Thus, ( x 0.01) 2(1 (1.58)) 0.114
o

P  

= = =

 = − =
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• Therefore, even is our hypothesis is true (i.e., that the weights are normally distributed around 2 kg 

with the given standard deviation), there is a probability of 11% that a sample of size 10 yields a mean 

that deviates by 0.01 kg or more from the nominal value (i.e., from the population mean)

▪ difficult to answer the simple question whether the hypothesis is true of 
false. 

▪ but: all results in statistics are probability results. Therefore, we can 
improve the situation by introducing the concept of a significance level.

▪ We fix a certain (small) probability α (preferentially, before the sample 
has been analyzed). 

▪ We then ask: Assuming the hypothesis to be true, is the probability of 
finding a sample  with the observed properties larger or smaller than α? 
In the above example, our question would be whether

▪ If the probability is indeed smaller, we would conclude that it is unlikely 
for the assumed population to yield a sample as observed, and we 
would reject the hypothesis.

▪ Unfortunately, the reverse is not possible. If the probability exceeds α, 
one cannot say that the hypothesis is true, but only that it is not 
inconsistent with the result from the sampling and that there is no 
reason to reject it.

▪ Typical values of α are 10, 5,1 or 0.1%

( x 0.01)P   
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One-tailed and two-tailed tests

▪ In some cases, the sign of the quantity in question is relevant. In our example, an 
underweight might be illegal and an overweight results in profit losses. 

▪ Thus, we might test in one direction only and ask if 

▪ This is called a one-tailed test, contrasted to the two-tailed test 
from the example above

'
(x )P x


 

α
α/2α/2

''
( x )P x


 

α= 0.05

x’αx’’α-x’’α



USM

258

▪ Generally, quantities different from the mean might be 
tested. 

▪ Then we define a corresponding test statistic T (i.e., a 
suitable function of the sample), and fix a significance 
level, α. For this level, we determine a sub-region, the 
co-called critical region Sc, within the complete 
definition region of T such that

▪ We draw a sample which yields a certain value for the 
test statistic. If this value falls inside Sc, we reject the 
hypothesis H (at a significance level α).

▪ more later on (page 270 ff)

(T | )
c

P S H  =



USM

259

F-test on equality of variances

▪ A quantity should be measured with two instruments which should have no 
systematic errors. We ask whether the measurements have the same variance 
(i.e., quality).

▪ We assume the populations to be normally distributed, and draw samples of size 
N1 and N2.

▪ Our hypothesis is that the variances are equal. 

▪ We calculate the empirical variances (i.e., the bias-free estimators) s2 for each 
sample, and consider the variance ratio.

2

1

2

2

2 2 2

2 i i

i 2 2 2

1

2

s
F

s

If our hypothesis is true, 1. If the population is normally distributed, the quantities

( x) ( 1)s s
X ,     1, 2

follow the distribution with 1 degrees of 

iN
j i i

j i i i

i i

F

x N f
i

f N

  



=

=



− −
= = = =

− = −



1

1

1 2

2 2

2 1 1

2 2

1 2 2

2

/ 2

/ 2 11 1 2 1

2 1 2 2

freedom. Assuming our hypothesis

is true, ,  and

X s
F .

X s

Using the distributions of , the pdf of  can be calculated as

(( ) / 2)
( ) 1

( / 2) ( / 2)

i

f

f

f

f

X F

f f f f
f F F F

f f f f

 

−

=

= =

    +
= +  

    

1 2( ) / 2f f− +


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2

1

2

2 0

1 2

The corresponding cdf 

s
( ) ( ) ( ') '

s

is called Fisher's F-distribution (sometime also Snedecor or variance-ratio distribution),

and depends on ,  and . 

Tables and programs to evaluate 

F

W F P F f F dF

F f f

=  = 

W(F) can be found in (almost)  any textbook on statistics

and within mathematical/graphical program packages, respectively.

The shaded areas corresponds to a one-tailed significance level of 0.05, i.e., those variance 

ratios with P(s1
2/s2

2 > Fα=0.05)=0.05, where Fα=0.05 is indicated by the arrows. By comparison with 

above, we have 

Fα=0.05 = F0.95 = F1-α and

1-W(F1-α)=α or W(F1-α)=1-α 

Note that f(F) is asymmetric.
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' ''

2

'1

2

2

Since we are testing for the  of two test statistics, we have to perform a two-tailed 

test, i.e., we have (in principle) to calculate two cut-off values  and  with

eq

s
( ) / 2   and 

ua ty

s

li

F F

P F P =

2

''1

2

2

' ''

obs

' ''

/ 2 1 2 1 / 2 1 2

s
( ) / 2
s

We then would NOT reject the hypothesis of equal variances if   .

Generally, ( , ) and ( , )

F

F F F

F F f f F F f f
 



−

 =

 

= =

' ''

/ 2 1 2 1 / 2 1 2 1 2
( , ) 0.511 and ( , ) 1.955  with =0.1, =25, 25F F f f F F f f f f

 


−
= = = = =

5% 5%

F’ F’’

not

rejected
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1 2 1 2 1 1 1 2

Because  is a ratio and because of certain properties of ( )

without proof : ( , ) 1/ ( , )   and ( , ) 1 for 0.1 ,

for typical 's the two-tailed test ca

[ ]

n one rusbe performed in , bh

F W F

F f f F f f F f f
  





− −
=  

2

L

1 / 22

S

1 2

y testing whether

s
( , )            ( 0.2)        ,

s

where  and  are the indices of the larger and smaller value of (s ,s ). 

If the observed ratio is actually larger than the cutoff, th

L S
F f f

L S




−
 

'' '

1 / 2 1 / 2

en the hypothesis of equal variances 

needs to be rejected at a significance level of ,  and we have actually performed a two-tailed 

test in the above sense, with ( , ) and 1 / ( ,
L S S

F F f f F F f
 



− −
= =

1 1 1

2 2 2

2

2

obs 0.952

1

 )

repeated measurements

Instrument 1 mean = 99.

Example                           

100 101 103 98 97 98 102

97 1

86 s 2.268 7 1

Instrument 2 mean = 99.60 s 3.050 5 1

   

s
F

02 1

1.81   <  
s

03 96 100

L
f

f

f

F





= = −

= = −

= =
obs 0.05 0.95

(4,6) 4.53 ''     (F ' (4,6) 1/ (6, 4) 0.16 

                                                                       simultaneously fulfilled)

Thus, the hypothesis that both samples have equa

F F F F= =  = = =

l variances cannot be rejected at a

10% significance level. 

We have no reason to believe that both instruments have a different quality.
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Student’s test ‒ comparison of means

▪ Let’s consider a normally distributed r.v. x.

▪ We draw a sample of size N with mean x, which has a variance of σ2(x)= σ2(x)/N, 
which is unknown.

▪ The corresponding estimator is s2/N.

We ask how much the reduced (random) variable

(x )
y

(x)

deviates from the Gaussion when (x) is replaced by the empirical standard deviation s(x)=s(x)/ .

Let's shift coordinates to obtain =0 (always p

N









−
=

2 2 2

2

ossible). We consider the distribution of

x x
t

s(x) s(x)

Since (as in the previous section) ( 1) (x ) (x) is -distributed with 1 d.o.f., we write

t x  , with a distribution
 

( ) (t< ) (x

N

N s fs f N

Nf

Nf
F t P t P





= =

− = = −

=

= =

( )

2

( 1) / 2
2

).
 

After some calculations, it turns out that

( ) ( ) ,    with Student's distribution        published by W.S. Gosset under the pseudonym "Student"

(( 1) / 2)
( ) 1

( / 2)

t

f

t

F t f t dt

f t
f t

ff f





−

− +



=

  +
= + 
  


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Student’s distribution

probability densities for

Student’s distribution with

f=2, 10, 100, compared to

a standardized Gaussian

(red curve)

▪ symmetric, bell-shaped, wider wings than Gaussian, core narrower

▪ f(t)→ Gaussian for d.o.f.→∞

▪ tabulated in all text-books etc.

▪ P(|t|≤t)=2F(t)-1, as for Gaussian
'

'

'

0

' '

1 / 2

1
bounds  from ( ) (1 ) for a given significance level ,

2

1 1
i.e., ( ) ( ) (1 ) 1  

2 2 2

t

t

t f t dt

F t f t dt t t







  

 




−

−

 = −

= = + − = −  =




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Student’s test: testing the mean

▪ A hypothesis predicts a certain expectation value µ.

▪ example (continuation from page 262)

▪ hypothesis: the parent distribution has an expectation value 

µ=100 (use data from instrument 1)

▪ The hypothesis cannot be rejected at the 10% level.

▪ If the hypothesis were µ=102, → t=2.50, and the hypothesis 

would need to be rejected.

2

'

1 / 2

A sample of size  is drawn, and x and s  calculated

If the inequality

x
t

s

is fulfilled, the hypothesis must be rejected at the -level.

t

N

N
t

 





−


−
= =

0.95

99.86 100 7
t 0.163 1.94   (for 6 d.o.f.)

2.268
t

−
= =  =
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Student’s difference test: comparing  two means

▪ From two populations samples of size N1 and N2 have been drawn. We like to 
test whether the population means are equal, i.e., whether <x> = <y>.

2 2 2 2

1 2
As  before, the empirical variances are s (x)=s (x)/  and s (y)=s (y)/ .

Because the sum of two normally distributed r.v.s is normally distributed as well (see

exercises),  also the difference x y s

N N

 = −

2 2 2

hould be (nearly) normally distributed, with

s ( ) s (x) s (y).

( 0)
Our hypothesis of equal means implies E( ) 0,  and we have to test for t= .

s( )

Usually the hypothesis of equal means also implies that 

 = +

 −
 =



2 2

2

p 1

the samples have been drawn from

the same parent population, thus ( ) ( ),  and the best estimator for the common

( ) empirical variance, s  is the weighted average [with weights "  ( 1) anpooled" d

x y

N

 =

 −
2

2 22 2
p p2 2 21 2

p p

1 2 1 2 1 2

p

1 2

1 2

 ( 1)],

s s( 1) s (x) ( 1)s (y) 1 1
s     s( ) s (x) s (y) s

( 1) ( 1) N N

The quotient 

x y
t

s( ) 1 1
s

N N

follows the Student distribution with 2 degrees of freedom.  If th

N

N N

N N N N

f N N

−

− + −
=   = + = + = +

− + −

 −
= =


+

= + − e hypothesis

of equal means needs to be rejected, one can assume that ( ) ( ) or ( ) ( ),

depending on the sign of x y.

E x E y E y E x 

 = −
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▪ Note: even if the distributions are not accurately Gaussian, Student’s 
difference test works remarkably well, i.e., it is a robust test

▪ example (continuation from page 262)

▪ hypothesis: the two samples measured by instrument 1 and 2 are drawn 
from the same population.
• equal variances could not be rejected (Fisher test)

• test now equal means

2 2

2

p p

0.95

6 2.268 4 3.05
s = 6.8073,   s 2.609

6 4

99.86-99.60
t 0.17 1.81  

The hypothesis cannot be reject

 for 10 d.

ed at a si

o.f.
1 1

2.609
7

gnificance level of 10%

5

.

t

 + 
= =

+

= =  =

+
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( )

( ) ( )

2
2 2

2 22 2 2 2

1 2

2 2

2 2

1 2

For unequal variances, the  t-test needs to be applied:

s (x) s (y)x y
t   with      d.o.f

s( ) s (x) s (y) s (x) s (y)

N 1 N 1

s (x) s (y)
a

un

nd  s (x) ,    s (y)

poole

N N

For the previous example (as

d

f
+ −

= = =
 +

+
− −

= =

0.95
2 2

suming now unequal variances), we obtain

99.86 99.60
t = 0.161,   7(.05),  ( 7)

Even if the variances were different, a hypothesis of equal means ca

1.89
2.

nn

268 3.05

7

ot 

be rejected at 0.1.

5

f t f



−
= = = =

=

+
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General aspects ‒ the null hypothesis

▪ Any hypothesis consists of an assumption on the pdf
f(x;λ1, λ2, λ3,…, λp) = f(x; λ)

▪ A hypothesis is called simple if the pdf f is completely specified (i.e., 
regarding all parameters λi ).

▪ A hypothesis is called composite if the form of f is known but at least 
one of the parameters remains unspecified.

▪ The hypothesis to be tested is called the null hypothesis, H0. 
• Remember that we can only reject a hypothesis (at a given significance). If we actually want to confirm

a specific hypothesis, the null hypothesis must be the opposite and needs to be rejected by the test.

• example: We want to show that λ1 ≠ λ2 . Thus, H0 is λ1 = λ2 . If we can reject  H0, we can “confirm” our 

actual hypothesis.

• This approach has been/is criticized by different groups, particularly from the Bayesian school.

• Also publication bias: journals and reviewers have developed a bias against articles that do not reject 

the null hypothesis. In connection with the file drawer problem, other researchers might waste their 

time by examining questions that have already been examined. 

• The file drawer problem exists due to the fact that academics tend not to publish results that indicate 

the null hypothesis could not be rejected. These results mostly end up unpublished, in file drawers.
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( )

0 0 0

1 1 1 0

0

A reasonable H  should (but not necessarily needs to) be simple, i.e. H ( ).

Any other hypothesis is called  hypothesis, and can be simple

H ( ) or composite e.g., H ( ) .

H  predict

alternative

s 



λ = λ

λ = λ λ λ

(1) (2) (3) (N)

the probability distribution in sample space, i.e., the probability

of "observing" a point X (x , x , x ,..., x ) in any region of the possible

sample s critical pace. We region define a   at a sig
c

S

=

0

0

nificance level  by requiring

(X | H ) ,

i.e., that the probability of observing a point X inside  under the condition

that H  is true is equal to . If in a specific experiment X actually falls in

c

c

P S

S







 =

0

side 

,  we reject H .  Note that the above requirement does not  determine

 [simple example: two-tailed vs. single-tailed (upper, lower tail)].

For actual tests, we form a test sta

uniquely

tistic,

T T(

c

c

S

S

=
(1) (2) (3) (N)

X) T(x ,x ,x ,...,x ),

and determine the corresponding critical region by mapping

X T(X),    (X) (X).

In this case, the null hypothesis is rejected if T .

c
S U

U

=

→ →



Critical region
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Errors of first and second kind

0

error of the first kind

 might be true even if the hypothesis was rejected because of X . This is called 

an  (or ), and its probability is equal to  by definition.

There

type I er

 is anoth

r

er poss

or

c
H S





0 1

ibilty to make a wrong decision, namely  to reject the hypothesis, 

because X ,  although  is false and an alternative  is true. This is call

not

error of the seco

ed 

an   (nd kind type II eor ), rror

c
S H H

1

1

1

with probability ("false negative rate")

(X | ) ,

which depends on the particular . Thus, for a meaningful ,   should be small, or,

the other power of th ewa  ty ro estund, the ,

1 (X | ),

sho

c

c

c

P S H

H S

P S H







 =

− = 

0

. If there is only one alternative hypothesis, the power is the probability of

correctly rejec

u

t

ld be l

ing 

a ge

  

r

.H

▪ A simple example
An accused in front of a law court proclaims that he is innocent
• H0 : the accused is innocent

• H1 : the accused is guilty

• Both the null and the alternative hypotheses are simple ones

▪ if the accused is innocent but wrongly convicted, this is a type I error

▪ if he is declared innocent but actually is guilty, this is a type II error
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0

1

normal distribution, 

with 4, 2 (black)

normal distribution, 

[ 2, 3, 6], 4   

(from left to right)

significance level, two tailed

=[0.2,0.05]    (top and bottom)

indicated are the critica

(blue)
i

H

H

 

 



=

= − =

=

= − =

/ 2 1 / 2

0

1

l regions 

= ([ ,  ] [ , ]),

bounds displayed by vertical lines

with corresponding probability

(x | ) :

significance, black shaded

and

(x

powe

| ) 1 :     

The false negative 

r, blue shaded

c

c

c

S x x

P S H

P S H

 





−
− 

 =

 = −

rate, 

(= prob. of type II error) corres-

ponds to the area under the blue 

curve within the vertical lines



Significance and power

a simple null hypothesis and a simple alternative
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Summary of definitions

▪ significance (level) of a test, α: probability of type I errors 
(reject true H0)
• upper bound of probability for composite hypotheses

• should be small, usually needs to be defined by the person who performs the test (typical value: 0.05)

• a result is significant if the prob. that it could have arisen by chance from H0 is small

▪ region of rejection / critical region, Sc

• the set of values of the test statistic for which the null hypothesis is rejected (at a certain significance 

level)

▪ region of acceptance 
• the set of values of the test statistic for which we fail to reject the null hypothesis (at the above 

significance level)

▪ false negative rate, β: probability of (specified) alternative H1 outside 
rejection region of H0 = probability of type II error w.r.t. H1 (accept H0  
though H1 is true) 
• should be small

▪ power of test, 1-β: probability of alternative (H1) in rejection region of  
H0 

• probability of correctly rejecting H0  (if only one alternative hypothesis exists)

• should be large
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Power function etc.

0

Once the critical region has been specified, one can calculate the probability of rejecting

 as a function of the "true" hypothesis or the parameters decribing it. This probability

is called the r powe

H

0

 of the test and is given by

( , ) (X | ) (X | ).

The complementary probability of "accepting" (i.e., not rejecting)  as a function of the "true" 

hypothesis or its parameters is calle

 function

c c c
M S P S H P S

H

=  = λ λ

0 1

0 1

d the  or the  

of the test,

( , ) 1 ( , ).        

acce

      Obviously,

( , )                     ( , ) 1

  ( , ) 1                 

ptance probab

 ( ,

ility operational characteristi

)

c

c c

c c

c c

L S M S

M S M S

L S L S

 

 

= −

= = −

= − =

λ λ

λ λ

λ λ

1 0 1

Some possible test properties:

( , ) 1  max  (when testing a   relative to a  alternative ,

                                  

most powerful:

              

   

                 implies

c
M S simple H simple H= − =λ

 an optimum ). 

the test is most powerful w.r.t.     (particularly also 

                                                                 composite 

uniformly most powerful:    

on

c
S

any possible alternative

0 0

0

es). 

( , ) ,        reasonable since the probability of rejecting  should be smallest when

                                                          

unbi

         is tru

ased:  

e.

c
M S H

H

 λ λ λ
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The Neyman-Pearson theorem

0

(1) (2) (3) (N)

We define a conditional pdf 

( | )

where X is a "point" in sample space with coordinates (x ,x ,x ,...,x )

(in the case of one random variable. Generalization to multi-variate processes is obvi

f X H

0 0

0 1

0

ous).

Then we have

( | ) (X | )

A test of the  hypothesis  relative to the  alternative  is

Neyman-Pearson th

   if

the critical region  is such that

( | )

eorem:

c

c

S

c

f X H dX P S H

simple H simple H most powerful

S

f X H

f

=  =

1

1 1

 for each X

 for each X( | )

where  is a (positive) constant depending on the significance level.

Proof: e.g., Brandt, Chap. 8.4. 

Idea: show for arbitrary  that ( , ) ( , ),  using

c

c

c c

c S

c SX H

c

S S M S M S

 

 

 λ λ  the above relations.
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Example

▪ From Barlow, Chap. 8.2:
The density of opal is 2.2 g/cm3, and for quartz it is 2.6 g/cm3. Various sites produce small quantities of 
crystals which could be either, since their density is measurable with a resolution of 0.2 g/cm3 only. Which 
are worth the expense of further excavation?

▪ In formal terms, we have to perform a test on the hypothesis that a normal population of a given variance σ2

has the mean µ=µ0  instead of µ=µ1, from a sample of size N=1 (see next figure).

▪ Both hypotheses are simple, so the Neyman-Pearson theorem can be applied

(1)

(1) 2

0

0 02

(1) 2

1

1 12

The conditional probabilities of the drawn sample point X x  are

( )1
( | ) exp(     for  and

22

( )1
( | ) exp(    for the alternative hypothesis with = .

22

The quotient bec

x
f X H H

x
f X H



 


 

 

=

−
= −

−
= −

( )
(1)

2 2 (1)0 0 1

0 1 0 12 2

1

(1)

0 1 0 1

omes

( | ) ( )1
exp ( ) 2 ( ) exp   with 0

( | ) 2

Note that this ratio increases monotonically with  for  and decreases monot. for  .

Thus, it is al

f X H x
x k k

f X H

x

 
   

 

   

 − 
= − − − − =   

   

 

(1)

0 1

2

ways possible to find a region where the ratio will remain below a certain threshold. 

In particular, the Neyman-Pearson condition takes the form 

 for  X( )
exp   

 for  X

c

c

c Sx
k

c S

 



   −
 
  
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(1)

0 1

(1)

which is equivalent to

'  for  X
( )

'  for  X

This places the required condition on ,  and suggests that a suitable test statistic is x  itself.

: Show that for the same probExercise

c

c

c

c S
x

c S

S

 
 

− 
 

(1)

lem but a sample size 1 one obtaines a similar inequality,

with  x  replaced by the mean x (which then would serve as the test statistic).

From above, we find that the critical region corresponding 

N 

0 1

(1)

0 1

0 1

to a  test depends

on the sign of ( ).

For  ,  the critical region is "on the left", ''   [quotient montonically increasing],  and 

for  ,  the critical region is "on the

most powerfu

 r

l

ig

x c

 

 

 

−

 


(1)

0 1

ht", ''  [quotient montonically decreasing].

Thus, the most powerful test on the above hypothesis is a one-tailed one, with  depending 

on wether ( ) 0 or <0, respectively. 

In so far, a ifo un 

c

x c

S

 



− 

 most powerful test does  exist for this problem.

Note, however, that a two-tailed test can deal fairly well (i.e., with not significantly less power) 

with both possibilities (see figure n

rml

ex

y not

t page).



USM

278

most powerful test according to

the Neyman-Pearson theorem

(see previous example)

0

1

:  the sample is opal

normal distribution, 

with 2.2, 0.2 (black)

: normal distribution, 

1.8, 0.2 upper panel,

                       

(blue, 

)    for comparison  

2 (.6, 0.2 lower paneblu l,

   

e, 

H

H

 

 

 



= =

= =

= =

/ 2 1 / 2

1

                        corresponding to quartz

significance level =0.05

from left to right: critical regions for

1. two-tailed test,  = ([ ,  ] [ , ])

2. one-tailed test,  = [ , ]  

3. o

)

c

c

S x x

S x

 





−

−

− 



0 1

power 1- , blue shade

ne-tailed test,  = [ ,  ]

bounds displayed by vertical lines

significance, black shaded

For  (upper panel),  the most powerful 

test comprises a critical region acc

d

ording to 

c
S x





 

−



0 1

3.

For  (lower panel),  the most powerful

test comprises a critical region according to 2.

 
0

1

( | )
quotient  monotonically increupper panel: lower paneasing;  quotient monotonically decreasing.

( | )
l:

f x H

f x H

Opal or quartz?
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▪ If we allow for a rejection of 5% of genuine opals (type I error), 

the most powerful test gives 1-β=0.64, i.e., a 36% probability of 

type II errors: 36% of the quartz deposits will be needlessly 

investigated.

▪ In this case, we reject all samples with a measured density of

larger than 2.53 g/cm3, which is 1.64σ above the opal density.

▪ In reality, one has to make a compromise regarding the 

importance of type I (ignoring valuable resources) vs. type II 

(needless expenses) errors.

▪ If, e.g., the costs for test excavations are very high, one might 

want to reduce β at the expense of discarding more genuine opal 

sites. E.g., for α=0.15 (corresponding to an upper bound of 

2.41 g/cm3 (= 1.04σ), β is reduced to 17%
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Likelihood ratio test

▪ The Neyman-Pearson theorem gives a condition for a most powerful test when 
comparing two simple hypotheses.

▪ In general such a test does not exist if the alternative hypothesis is composite 
and comprises parameters which are both smaller and larger than the one of H0
(no uniformly most powerful test possible).

▪ There is, however, a method which yields tests with desirable properties, based 
on a specific likelihood ratio.
• Note that the quotient entering the Neyman-Pearson theorem is nothing else than the likelihood ratio Q defined in Chap. 7

(page 173) for the comparison of two simple hypotheses.

0

0

The null hypothesis shall be defined by a certain range of parameters, .  The most 

general alternative is then described by that part of the total parameter space  which

does not contain ,  i.e.,







λ

1 0

(1) (2) (3) (N)

(1) (2) (3) (N)

0

0

 =  . The  defines a statistic 

(x ,x ,x ,...,x ; ( ))
T

(x ,x ,x ,...,x ; ( ))

where ( ) and ( ) are the maximum likelihood estimates (Chap. 7) for th

f

f

  − 


=



 

likelihood ratio test

λ

λ

λ λ

0 1 0

(1) (2) (3) (N)

e parameter set ,

evaluated for the parameter regions  and , respectively. 

Note 1: sometimes, T is defined by the inverse ratio.

Note 2:  (x ,x ,x ,...,x ; ) is the joint probability f

 =  +  

λ

λ
(1) (2) (3) (N)

(1) (2) (3) ( )

density of the sample X (x ,x ,x ,...,x ) 

              ,  i.e., the likelihood function ( | , , ,..., ),  and the values entering

             the quotient are the correspondi

N
given L x x x x

=

λ λ

 maximum likeling hoods.
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max

max 0 0

0

Thus, we can alternatively (and briefly) write 

( ) ( )
T

( ) ( )

If, e.g., the overall maximum of  lies inside ,  we have T 1. In this case, the null and the alter-

native hypothesis h

L L

L L

L


= =



 =

λ λ

λ λ

0 0

0

ave an equal likelihood, and we cannot define a rejection region.

If, on the other hand, the null hypothesis is simple, ,  the parameter space  degenerates into 

the point ,  and the statistic b

= 

=

λ λ

λ λ

1

max

0

0 1

1 0 0

0

| |

|

ecomes

( )
T .

( )

Within the likelihood ratio test, we now reject  if  T , with

(T ) ( )d

and ( ) the conditional pdf of the statistic T.

 (1938). For la' rge 

T

Wilks theor

L

L

H T

P T H g T H T

g T H

em







−

−



−


=



 = 

λ

λ

2

0

 ,  the statistic T' 2 ln T follows a -distribution, with 

max(1, ) d.o.f., when  is the number of parameters and  out of those have been 

specified in .

Usually, T is easily determined, and the 

N

f p r p r

H

=

= −

only problem is to derive its distribution, if one does

not rely on the asymptotic behaviour of 2 ln T. For further details, see Brandt, Chap. 8.5.
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Example 1

2

0

2 2

Test the hypothesis that a normal population with variance  has the mean =  via the 

likelihood ratio test.

Parameters for  : ( ) =x   (maximum likelihood estimator, Chap. 7)       ( )= 

Param

H

  

   

2 2

0 0 0 0

2 2

0

02 2

1 1

2 2

2 2 0 0

0 1

2 2

1

eters for : ( )= ,     ( )=

( x) ( )1 1
( ) exp ;      ( ) exp

2 22 2

2( x) (x )
( x) ( )1 1

T exp exp
2 2

N N
N N

i i

i i

N

iN

i i i

i

H

x x
L L

x N
x x

   



    

 


 

= =

=

=

 

   − −   
 = − = −      

      

− + −
 − −

= − − = − 
 

 




λ λ

2

0

2 2

2 2

20 0

2 2

0

2

( x)1
exp

2

( x) (x )
2 ln T u

/

Since the  are normally distributed, also the mean x is normally distributed, with (x)=   and 

(x) / .

Thus, u is the square of

i

N

N

N

x E

Var N



 

 

 





 
   −
  =  
   
 
 

− −
= = =

=

2

2

 a normally distributed reduced variable, and thus -distributed with 1 d.o.f.

In this case, Wilks' theorem (2 ln T is -distributed with max(1, 2 2) 1) is valid even in the non-

asymptotic case, i.e

f

f





=

= − =

., for all 1.N 
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Example 2

Wilks’ theorem for example 2:

histogram of the distribution of 2lnT, for 50000 

samples with sizes N=5 (left panel) and N=30 

(right panel). 

Overplotted in blue is the χ2 distribution with 

(p-r)=2-1=1 degree of freedom. For large N, 2lnT 

becomes χ2 distributed. 

0

2 2 2

1

Test the hypothesis that a normal population of  variance has the mean =  via the 

likelihood ratio test.

1
Parameters for  : ( ) =x,        ( )=s' ( x)

 unknow

,  maximum likelihood t t

n

es ima
N

i

i

H x
N

 

 
=

  = −

2 2

0 0 0 0 0

1

/ 2 / 2

2

2 2 21

1 1 1

0

ors (Chap. 7)

1
Parameters for : ( )= ,     ( )= ( )

( x)
( ) exp exp

2 2
2 ( x) ( x) 2 ( x)

( )

2

N

i

i

N N

N
i

N N N
i

i i i

i i i

H x
N

xN N N
L

x x x
N

N
L

   

 


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=
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  −
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=




  

λ

λ

/ 2 / 2

2

0

2 2 21
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1 1 1

/ 2

2 2 2

0 0

1 1

2 2

1 1
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exp exp

2 2
( ) ( ) 2 ( )

( ) ( x) (x )

T

( x) ( x)

N N

N
i

N N N
i

i i i

i i i

N
N N

i i

i i

N N
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x N N
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N
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x x


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=
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   
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  
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 

( )

/ 2

/ 2
2

0

t
1    with

1

x
t  the Student's test statistic. To test the null hypothesis, we can either (for large )

s

compare the sample's value of 2 ln T with the bound from the corresponding 

N

N

N

N
N






 

 = + 
−  



−
=

2

1 / 2

-distribution (left fig.). 

Alternatively, we can use t instead of T  (since t(T) is a monotonic function of T, T 0),  and reject the 

null hypothesis for a specific sample if   t .

In so far, the g

t
−





eneral likelihood ratio test is consistent with our former t-test on the mean of normal 

samples with unknown variance.

2

0

2

0

2

0

Ex Show that to test the hypothesis that a normal 

population of  mean has a variance , 

the appropriate test statistics is 

s'
T= exp 1          ( : error

s

ercis

 unknown

e

' 2

: 

N

N
Note







   
−     

    

 in Brandt)
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Goodness of fit  (Fitgüte)

▪ So far, we have discussed parameter tests, i.e., tests on 

hypotheses which specify one or more parameters of a 

population.

• Many more tests can be found in the literature, e.g.,

• the analysis of variances (ANOVA): comparing parameters from several samples

• “contingency table” analysis (particularly suited for non-numeric data) 

▪ Null hypothesis is accepted or rejected on the basis of one single 

number, the test statistic, determined from the sample.

▪ Now: tests of fit. Here, we compare the distribution function of 

the sample directly with the (supposed) distribution of the 

population, or the distributions of two samples.

▪ The χ2-test described in the following is a generalization of what 

has been already discussed in Chap 8 (Goodness of fit, binned 

data)
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The χ2-test for data pairs

▪ Assume that the data consist of a set of data xi and yi, where the xi are 
exact and the yi have measurement errors σi. The hypothetical function 
y=f(x) claims to predict the actual relation between x and y.

( )

2

2

i2

2

1

2 1

To test the hypothesis, we calculate  the test statistic X ,

y ( )
X             for independent measurement errors, and

X ( ) ( )          for correlated errors, with  the 

        

N
i

i i

T

 

f x

=

−

−
=

=



y - f V y - f V

                                       corresponding covariance matrix (Chap. 6).

If the hypothesis is true, the differences in the nominators should be only due to

measurement errors. Then, the quantit
2

2

2 2

1

y X  is the sum of  squares of reduced, 

normally distributed  variables,  and should be distributed according to the 

-distribution (Chap. 5 and 8). The hypothesis has to be rejected if

X ,

wher

N






−



2
1

2 2

1

2

2 2

1

e (X ) ( , )d

with ( , ) the probability density of the -distribution with  d.o.f.

The so-called -probability  is tabulated in most text-books (as a function of

 and ), a

P g u f u

g u f f N

f









 



 



−



−

−

 = =

=



nd included in various program-packages.
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2
If  X  is too large to be accepted, there might be three reasons for this:

i)    ( ) is not the correct description for ,  i.e., the "theory"  is wrong 

      (this disproof is the original intention o

f x y

i

2

f the test)

ii)  the errors  might have been underestimated (check!)

iii) the errors are not Gaussian (seldom, but small samples!)

Additionally, one needs to check whether the obtained X  is not too sm



2

2 2 3

0

i

all

(typically, when (χ ) ( , )d 10     see Chap. 8).

In this case, there is the possibility that either the  have been overestimated, or that the data have

been faked. If possible, one shou

X

P X g u f u



−
 = 

ld analyze a second sample.

If  ( ) depends on  parameters which have been  from the sample, these leads to constraints

in the above sum of squares, and the number of d.o.f. has to be reduced by

f x p fitted

2

 ,  i.e., .

It is recommended to always carry out such a  -test after relations have been fitted from a sample,

e.g., after a straight line fit has been performed (in the latter case,  2),  an

p f N p

f N



= −

= −

2 

d the variances  are 

due to real measurement errors and not estimated from the fit itself  (otherwise, the  will be 

always OK, see Chap. 8)


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The χ2-test for binned data

1 2 3 k

We like to test whether the population is distributed with a probability density ( ).

The total range of the r.v. x is binned into r intervals , , ,..., ,..., . Hypothetically, the 

probability o

r

f x

    

k

k

k

1 

k

1

f observing x in a specific  is given by

(x )= ( )d ,      with  1 

We draw a sample of size , with  the number of elements of the sample which fall inside .

Obviously, 

r

k k

k

k

r

k

k

p P f x x p

N n

n N









=

=

=  =

=





( ) ( )

k

2 2

k2

2

1 1k

.

From the hypothetical probability density, we expect 

(n ) . 

As a measure for the deviation of the sample distribution form the hypothetical one, we use

(n )
X

(n )

The t

k

r r
k k k

k k k

E Np

n E n Np

Np= =

=

− −
= = 

2 2
est statistic X  is asymptotically distributed, with 1  d.o.f.

idea of proof: The population probability of the individual channels can be either described

by a multinomial process (Chap. 5), or 

f r − = −

by  independent variables following a Poisson distribution

with mean  variance  (Chap. 5). Both processes give identical population probabilities, 

independent from the sample size. 

k

r

and Np
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2
Now, by virtue of the CLT, in the asymptotic limit X  is just the sum of squares of reduced

random variables which follow a normal distribution. 

Poisson distribution with 'large' mean  normal di[ stribu→

2 2

tion (see exercise)

Consequently,   X  is asymptotically distributed, and the d.o.f. are 1 because of the 

additional constraint .

If the function depends on  parameters fitted from the ob

]

ser

k

r

n N

p

 − −

=

ved sample, there are additional

 constraints, and the d.o.f are 1.

The distribution of the bins have to be carefully chosen (sometimes, one has to accept intervals

which are not equidistant). 

Rule 

p r p− −

k

of thumb to ensure that the Poisson distribution can be approximated by a normal: 

In each bin, at least (n ) =5 events have to be expected (this gives a constraint

on the size of the sample, ), an

k
E Np

N

=

d there should be also at least 5 events present in each bin.
k

n =
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The Kolmogorov-Smirnov (KS-)test

KS-test on a sample of size N=5.

Theoretical distribution (cdf): normal, µ=2,σ=0.5

sample drawn from same population

green asterisks: sample data

step function: cdf for sample data, with steps of 1/N=0.2

red line: max deviation D

The significance of the test is α= 0.91.

▪ provides a possibility to test the hypothesis that 

• a sample has been drawn from a given theoretical distribution

• the distributions of two samples are equal 

▪ is an alternative to the χ2-test when the data 

sample is so small that binning becomes 

impossible. 

▪ is applicable only to univariate distributions, 

which are fixed beforehand, i.e., not fitted to 

the data sample.

• a generalization of the original KS-test for 2-D distributions can 

be found in Numerical Recipes, Chap. 14.7 and references 

therein

x

i

i

In the KS-test (one sample), we compare the hypothetical cdf

( ) ( )d

with the observed one,

number of events with x
( ) .

total number of events 

If the events are located at x ,  then ( ) gi

N

N

F x f t t

x
S x

N

S x

−

=


=



i

ves the fraction of data 

points "to the left" of a given . This function is constant between

consecutive x  (which have to be sorted into ascending order before

the test can be performed), and jumps by

x

i

 the same constant  at 

each x . See figure on the right. Thus, 

1/N

( ) ,    1,

which is an unbiased estimator for the cdf of the distribution from 

which the sample was drawn.

N i

i
S x i N

N
= =
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The KS-test measures the maximum value of the absolute difference between two cdfs. 

If we compare a sample's ( ) with a given theoretical distribution, the KS  is 

max( ( ) ( ) ),

while fo

N

N

S x statistic

D S x F x= −

1 2

i

r comparing two cdfs, the statistic is

max( ( ) ( ) )

Note that in both cases the differences have to be evalutated only at the data points x  (see figure).

The distribution of the KS-statistic giv

N N
D S x S x= −

K

en the null hypothesis (samples drawn from the same 

distribution) can be calculated, and gives the significance of any observed value of .  The central 

function entering the significance is the sum

D

Q

( )

1 2 2

S * *

1

KS KS

KS *

( ) 2 ( 1) exp( 2 ),

which is a monotonic function with (0) 1 and ( ) 0,  and the significance level of an 

observed value of  is

(D> )  ( ) .

Fo r  sensible sample sizes 4,  one can

N
k

k

D k D

Q Q

D

P D Q D D

N

−

=

= − −

=  =

=





( )* eff eff

eff 1 2

1 2

 approximate 

( ) 0.12 0.11/               with 

 for the case of one distribution

 
 for the case of two distributions

D D D N N

N

N N N

N N

= + +




= 
 +

Critical value 

D*

Significance 

QKS(D*)

1.63 0.01

1.36 0.05

1.22 0.10

1.07 0.20
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KS-test on samples of size 

N=10 (left panels)

and N=30 (right panels).

Outline as in previous figure.

Theoretical distribution: 

normal, µ=2,σ=0.5

Upper panels: sample drawn 

from same population, 

hypothesis can be accepted.

Lower left panel: sample 

drawn from population with

different mean, µ=3. 

Significance level very low, 

hypothesis needs to be 

rejected.

Lower right panel: sample 

drawn from population with

larger variance, σ=1.0.

Note that the significance is 

reasonable though the 

variances of theoretical 

distribution and sample are 

different, and N is quite large. 

In this case we would accept a 

wrong hypothesis (type II 

error).

Examples
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Nonparametric tests

▪ Tests of hypothesis are usually classified into parametric and 
nonparametric methods. 
• Parametric methods make assumptions about the underlying distribution from which 

sample populations are selected. 

• Nonparametric methods make no assumptions about a sample population's distribution 

and are often based upon magnitude-based ranking, rather than actual measurement 

data. 

▪ In many cases it is possible to replace a parametric test with a 
corresponding nonparametric test without significantly affecting 
the conclusion. 

▪ In Chap. 7, we provided an unbiased estimator for the linear 
correlation coefficient, Pearson’s r.

▪ Unfortunately, r is a rather poor statistic for deciding whether an 
observed correlation is statistically significant, or whether one 
observed correlation is stronger than another. 

▪ Nonparametric or rank correlation can improve the situation.
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Rank correlation

▪ We consider N data-pairs (xi,yi).

▪ We replace the values of xi by the value of its rank among all other xi’s in the 
sample, that is by a number in between 1 and N.

▪ If there are some ties, they will be assigned a midrank which is the mean of the 
ranks they would have had if their values would have been slightly different.

▪ Example for ordered data:
• x=[-1,4,4,8, 20, 50,50,50,100,100, 100]

• if slightly different, we would obtain rank (x)=  [1,2,3,4,5,6,7,8, 9,10,11], where bold face ranks indicate ties.

• averaging over ranks from ties results in rank (x)= [1,2.5,2.5,4,5,7,7,7,10,10,10]. 

• due to this procedure, the rank sum will be just the sum of all integers between 1 and N, namely 1/2N(N+1) [=66 for our 

example].

▪ example for unordered data (same values, other order)
• x=[100, 20,-1,50,8,50,4,100,100,50,4]

• rank (x)=[10,5,1,7,4,7,2.5,10,10,7,2.5]

▪ The same ranking process is applied to the yi-data, replacing each value by its 
rank among all other yi’s

▪ Finally, we have mapped (xi,yi) pairs to [rank (xi), rank (yi) ] pairs.

▪ Now we can develop/use statistics for detecting correlations between uniform 
sets of integers/ half-integers in the range 1 to N.

▪ Due to ranking, there is some loss of information, …

▪ … but nonparametric correlation is (much) more robust than linear correlation:
If a correlation has been detected by nonparametric methods (at a certain signifi-
cance, of course), then it is really present. 
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Spearman rank-order correlation coefficient

1

S

2 2

1

Let  be the rank of  and S  be the rank of . The rank-order correlation coefficent is then

the linear correlation coefficient w.r.t. the ranks, 

( R )( S)

r = 

( R ) ( S)

The signifi

i i i i

N

i i

i

N

i i

i

R x y

R S

R S

=

=

− −

− −





S S

S 2

S

cance of a nonzero value of r  (i.e., that r  deviates from zero) is tested by computing

2
t r

1 r

which is approx. distributed as Stundent's distribution with 2 d.o.f.

Most importantly, this appr

N

f N

−
=

−

= −

oximation does not depend on the original distribution of the

 and .
i i

x y



USM

295

The Wilcoxon rank-sum test

▪ (also known as Mann-Whitney U-test) tests (loosely spoken) the hypothesis that two sample 
populations X and Y have the same mean. X and Y may be of different lengths, Nx and Ny.

▪ More precisely, the null hypothesis in this test is that the two samples are drawn from a single 
population, and therefore that their probability distributions are equal. 

▪ somewhat similar to t-test on equal means. It does not require, however, assumptions about 
the form of the distribution of the parent population (contrasted to the t-test, which assumes 
normal distributions).

▪ to be used whenever the distributional assumptions that underlie the t-test cannot be 
satisfied.

▪ The Mann-Whitney statistics for X and Y are defined as

where Wx and Wy are the rank sums for X and Y within the combined sample, respectively.

▪ for small samples, compare Min(Ux, Uy) with critical values from tables, Ucrit(Nx,Ny,α)

▪ for larger samples, calculate the test statistic Z,

which follows closely a standardized normal distribution for sample sizes Nx, Ny ≥10, and 
evaluate the significance.

1
( 1)

2

1
( 1)

2

   (good test whether everything is OK)

x x y x x x

y x y y y y

x y x y

U N N N N W

U N N N N W

U U N N

= + + −

= + + −

+ = 
 

/ 2
Z

( 1) /12

x x y

x y x y

U N N

N N N N

−
=
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