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Stochastics: probability theory and statistics

▪ Stochastics [from ancient Greek: στόχαστικὴ τέχνη, (stochastike 
techne), Latin: ars coniectandi, i.e., the art of conjecture, “die Kunst 
des Mutmaßens”)  comprises, as a generic term, the fields of 
probability theory and statistics.

▪ A stochastic (or random) process is one whose behavior is non-
deterministic in that a system's subsequent state is determined both by 
the process's predictable actions and by a random element.

▪ Statistics is a mathematical science pertaining to the collection, 
analysis, interpretation or explanation, and presentation of data. 
Statisticians improve the quality of data with the design of experiments 
and survey sampling. Statistics also provides tools for prediction and 
forecasting using data and statistical models. Statistics is applicable to a 
wide variety of academic disciplines, e.g., natural and social sciences 
and business.

▪ The word statistics can either be singular or plural. In its singular form, 
statistics refers to the mathematical science. In its plural form, statistics 
is the plural of the word statistic, which refers to a quantity (such as a 
mean) calculated from a set of data (see Chap. 7)
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Content

Fundamental terms of statistics and data analysis, with examples from physics and astrophysics

1. Description of data
• data types, binning, bar charts, histograms; averages, variance and standard deviation of a data-set

2. Probabilities 
• axioms, approaches, Bayes-theorem

3. Probability distributions functions ‒ one random variable 
• discrete and continuous distributions, expectation value, central moments, variance, Chebychev’s inequality, moments, characteristic function, 

cumulants, variable transformation

4. Distributions of several random variables ‒multivariate p.d.f.s
• marginal distributions,  convolution, moments, covariance and correlation, variable transformation, variable reduction, distr ibutions with more than 

two variables 

5. Important distributions and the CLT
• binomial, multinomial, Poisson, uniform, normal, binormal, chi-squared, log-normal, central limit theorem (CLT)

6. Errors
• measurement errors, error propagation, systematic errors

7. Estimation
• random sampling, estimators (bias, consistency, efficiency), basic estimators, stratified sampling, finite population, likelihood (quotient and function), 

maximum likelihood (ML-) estimators, information inequality and minimum variance bound, minimum variance estimators, asymptotic properties of 

ML-estimators, errors on ML-estimators, covariances

8. Least squares
• chi-squared minimization, fitting to a straight line (“linear regression”), variances and correlation, binned data, goodness of fit, errors on x and y, 

outlook on arbitrary linear and non-linear models

9. MCMC (Markov Chain Monte Carlo) – sampling the posterior
• how to obtain the distribution and errors of model parameters given a set of measurements, and a corresponding example

10. Confidence intervals and hypothesis testing
• confidence intervals (classical and based on likelihood function), errors of first and 2nd kind, significance, power, F-test, Student t-test, likelihood-

ratio test, χ2-test, Kolmogorov-Smirnov-test, Spearman-rank test, Wilcoxon rank sum test (Mann-Whitney U-test) 
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1. Description of data

▪ Data types
• quantitative or numeric: can be written down as numbers

– discrete (integers; example: numbers of seats in a car) or 

– continuous (cannot be recorded exactly, affected by rounding; 

example: length and weight of a car)

• qualitative or non-numeric: cannot be written down as number (example: color of a car; 

but many qualitative data can be transformed to numeric data, e.g., the RGB values of a 

color, or ‘red=1,green=2,blue=3,etc.’)

▪ Binning 
• to display information in a clear and concise way

• easy for discrete data;

example: results of throwing 20 times a die (see also next page)

{4,3,6,1,3,4,5,2,6,2,4,3,1,2,6,5,2,4,3,5} →{2x1,4x2,4x3,4x4,3x5,3x6}

• more difficult for continuous data:

– need to group adjacent numbers using a range of values to define a bin

– further rounding and loss of precision

– usually, uniform bin size, but sometimes also different sizes

5
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Bar charts …

• bar char: displayed number proportional to length of bar

– can be used also for qualitative (non-numeric) data

6
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… and histograms
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Example:

Age distribution (in years) within a 

group of students in their 2nd student 

year. Note the effect of choosing 

different bin sizes. 

left: 0.25 yr, middle: 0.5 yr, right: 1.0 yr

• histogram: displayed number proportional to area of bin

– important if bin size not uniform 

– can be used only for quantitative data, since bin-size has a (numerical) 
meaning

• bin size

– if bins too narrow, very few events per bin, and distribution dominated by 
fluctuations

– if bins too wide, real details become obscured

– ideally, 

- at least 5 to10 events per bin

- difference between contents of adjacent bins should be small

N
u

m
b

e
r

o
f
s
tu

d
e

n
ts

Age AgeAge



USM

Averages

▪ The arithmetic mean

• best and most useful way to describe data by just one number (more later…)
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Other means

▪ geometric mean:

▪ harmonic mean:

▪ root mean square (rms):

▪ mode: most popular value in the data set 

(or ‘highest’ bin)

▪ median: point with half of the data elements below 

and the other half above it. Certain subtleties involved 

in precise definition (see Chap. 3)  
9
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Geometric mean

▪ geometric mean:
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Variance and standard deviation

▪ arithmetic mean describes data with one number

▪ need to describe the width or range of the distribution 

as well, i.e., the dispersion of the data about the mean

▪ average deviation from the mean not useful, since

▪ force deviations to be always positive by squaring → 

variance
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The standard deviation

▪ is the root mean squared deviation

▪ is the square root of the variance

▪ has similar units as x
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2. Probabilities

▪ Majority of predictions affected by uncertainties (“the only certain things in life 

are taxes and death”). 

Thus, dealing with probabilities and statistics is sensible for everybody. 

Inevitable for experimental and empirical sciences.
• accuracy of experiments restricted by precision of used devices

• underlying processes often stochastic 

• estimates for measurement quantities and their accuracy required

• estimates with errors enable to check hypotheses. Results can be improved subsequently, by 

adding new measurements and suitable averaging prescriptions.

• statistics yields mathematical algorithms to conclude, from a certain sample, on the properties of 

the underlying parent population.

▪ Difference between observation and measurement:

An observation (event) is the element of a sample (with one or more 

elements). Measurement is a parameter estimate, attributed with an 

(in)accuracy. 

• Example: Decay times for 10 pion decays (observations). 

The estimate of the decay rate is a measurement. 

• Fit to a straight line: observations are data points, slope is measurement. 
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▪ example 1: Polls allow to predict distribution of parliament seats. Parent population 

(Grundgesamtheit) is the entity of voters, the sample is a representative selection of 

them. Important to know the accuracy of the prediction.

▪ example 2: Determine the mean life time of an unstable nucleus, from the observation 

of 100 decays. Randomness induced by quantum mechanical effects. Sample 

representative for the entity of all possible decays, if experimental device able to 

measure all decay times (between zero and infinity) with sufficient precision.

▪ example 3: Determine the frequency of a pendulum, from 10 observations. The 

estimate for the actual frequency and its uncertainty are determined by suitable 

averages. It is assumed that the frequency can be determined with arbitrary precision 

for an infinite number of observations, and that a finite accuracy is the result of a 

restricted number of observations. Actual observations are a sample collected from an 

infinite number of possible observations.

▪ example 4: Test whether two experimental devices work similar. Compare samples 

from both devices. Test whether these samples originate from the same parent 

population. 
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Axioms of probability

▪ let S={E1, E2, E3, …} be the set of possible results of 
an experiment = events. 

▪ events are said to be mutually exclusive if it is 
impossible that both of them occur in one result. 

▪ For every event Ei there is a probability P(Ei) which is 
a real number satisfying the axioms of probability 
(Kolmogorov 1950): 

(simplified version of Kolmogorov’s axioms)

1 2 1 2 1 2

i

I.   ( ) 0

II.  (  or ) ( ) ( ) if E  and E  are mutually exclusive

III. ( ) 1,  where the sum is over all mutually exclusive events

i

i

P E

P E E P E P E

P E



= +

=
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▪ random events → probabilities

▪ A+B means A or B

▪ A∙B means A and B; 

• if P(A∙B) = 0, then A and B mutually exclusive

▪ random events can be described by random variables 

= variates

▪ a realization of a variate is an observation (event)

event E  complementary event E (not E)

from axiom III:  ( ) 1 ( )

and thus ( ) 1

P E P E

P E

→

= −


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Empirical (classical) probabilities

▪ Frequency definition (frequentists’ interpretation):
In a large number N of experiments the event A is observed to occur n 
times. Then

▪ The set of all N cases (N repetitions of the same experiment or N 
simultaneous identical experiments) is called the collective or ensemble

▪ In this case, the probability is not only a property of the experiment 
alone, but the joint property of experiment and ensemble
• example (von Mises, 1957): German insurance companies found that the fraction of their male clients 

dying at the age of 40 is 1.1%

• but this is not the probability that a particular man dies at this age. If data had been collected from 

other samples (all Germans, German hang-glider pilots,…), the outcome would have been different. 

Thus, the probability depends on the collective from which it has been taken.

▪ as well: experiments must be repeatable, under identical conditions.
“What is the probability that is will rain tomorrow?” 
“Will the General Motors shares raise tomorrow?”

▪ and (old example): 
are we allowed to speak about the probability that, e.g., the mass of the 
Higgs particle lies in the range of 100 to 200 GeV/c2

( ) lim
N

n
P A

N→

=
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Objective probabilities

▪ Peirce (1910): probability is a property of device/ 

experiment, e.g. a die

▪ resurrected by Popper (in connection with quantum 

mechanics): objective probability or propensity (in 

German: Hang, Neigung)

▪ seems reasonable when, e.g., considering equally 

likely cases, e.g., due to symmetry (coin, die etc.)

▪ breaks down for continuous variables

(transformation can make uniform, symmetric 

distribution non-uniform, and there is no natural 

choice for the “best” variable) 
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Subjective probability ‒ Bayesian statistics/inference

▪ definition: conditional probability P(A|B) is the probability of A
given B is true

▪ implies: P(A∙B) = P(A|B) P(B), reasonable 

▪ definition: If P(A∙B)=P(A) P(B), then the probabilities are independent of 
each other: in this case, P(A|B)=P(A)!

▪ Bayes’ theorem (published posthumously by R. Price1763), undisputed:

( )
( | )

( )

P A B
P A B

P B


=

( | ) ( ) ( | ) ( ) [ ( )]P A B P B P B A P A P A B= = 

and also

( ) ( ) ( ) ( )

(generalization of axiom II for 

  non mutually exclusive events)

P A B P A P B P A B+ = + − 
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Rule of total probability

▪ A collection of (sub-)sets or events

E1, E2, …, Ek such that 

E1 E2  E3  …  Ek = S 

(combined, ‘union’)

is said to be exhaustive

▪ Assume E1, E2, .., Ek are k mutually exclusive and exhaustive sets. Then

P(B) 

= P(B  E1) + P(B  E2) + … + P(B  Ek)          (‘intersection’)

= P(B∙E1) + P(B∙E2) + … + P(B∙Ek) 

= P(B|E1)P(E1) + P(B|E2)P(E2) + … + 

= ∑P(B|Ek)P(Ek).

S
B
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▪ Thus, if Ai mutual exclusive and exhaustive events

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( )

and / or

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( ) ( | ) ( )

with ( ) 1 ( )

j j j j

j

i i

i

P B A P A P B A P A
P A B

P B P B A P A

P B A P A P B A P A
P A B

P B P B A P A P B A P A

P A P A

= =

= =
+

= −


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Examples

▪ example 1: probabilities for drawing certain cards from a well-shuffled card game 

with 32 cards

P(Queen): 4/32 =1/8

P(spade):  1/4

P(spade|queen): 1/4 = P(spade)              (independent events)

P(Queen of spade): 1/8*1/4=1/32            (spade and queen)

P(Queen or spade): 1/8+1/4-1/32=11/32 (not mutually exclusive)

▪ example 2: Calculate the fraction of female students, from the fraction of women 

and students in the population, and from the fraction of students among the 

female population 

▪ P(A)=0.05             fraction of students in population

P(B)=0.52             fraction of women in population

P(A|B) = 0.07        fraction of students among female population

( | ) ( ) 0.07 0.52
( | ) 0.728

( ) 0.05

P A B P B
P B A

P A


= = =
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Examples (cont’d)

▪ example 3: Infected? (from Gigerenzer 2002, updated for actual numbers)
see also very interesting video on the general problem, https://www.youtube.com/watch?v=lG4VkPoG3ko

▪ HIV-screening for persons without risky behavior

▪ positive test-result (D) with respect to two modern tests (ELISA, Western-Blot-Test) 

▪ in Germany: H1: one of 10000 men HIV-infected (non risk-group)

▪ P(D | H1) = 0.999 that positive test (D) if man infected (“sensitivity”)

▪ P(D | H2) = 0.0001 that positive test if not infected (“false positive”)

▪ Problem: even if latter prob. is low, the total number of “false positives” can be large since majority of 
people is not infected, and can become comparable or even larger than total number of “true positives” 
(drawn from a much smaller sub-sample)

▪ Calculate P(H1 |D) that there is an actual infection if a man (non risk-group) tests positive

4

4 4
0.49

( | 1) ( 1) ( | 1) ( 1)
( 1| )

( ) ( | 1) ( 1) ( | 2) ( 2)

0.999 10

0.999 10 0.0001 (1 10 )

1
approximation: ( | 1) 1 ( 2) ( 1| ) ;               

( | 2)
1

( 1)

( | 2) ( 1) : test 

98

"O

!

K" 

P D H P H P D H P H
P H D

P D P D H P H P D H P H

P D H P H P H D
P D H

P H

P D H P H

−

− −

= =
+


= =

 +  −

   

+

( | 2) ( 1) :  prob. that actually infected = 0.5

( 1)
( | 2) ( 1) : prob. that actually infected very low, ( 1| )

( | 2)

P D H P H

P H
P D H P H P H D

P D H

=



https://www.youtube.com/watch?v=lG4VkPoG3ko
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Bayesian statistics/inference

▪ so far, so good … (if all probabilities known, not disputed)

▪ but: applied also to statements which are regarded as ‘unscientific’ in the 
frequency definition.

▪ probability of a theory (it will rain tomorrow, parity is not violated…) is 
considered as a subjective ‘degree of belief’. Subsequent experimental 
evidence then modifies this initial degree of belief.

▪ expressed as

▪ What is the probability of a theory???

▪ if complete ignorance, uniform distribution assumed …
(see example below, “The first night in paradise”)
• otherwise, suitable choice due to symmetry arguments, laws of nature, empirical knowledge, experts opinion…

▪ But: with respect to which parameter? 
(example: mass or mass2 give different priors)

(result|theory)
(theory|result) = (theory)

(result)

P
P P

P
‘prior’

‘likelihood’ (Chap. 8)

‘posterior’
‘evidence’

likelihood
posterior =  prior

evidence
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▪ example: assume you toss a coin 3 times and obtain always “head”. Calculate 

probability that coin is a phoney, i.e., has a head on each side.

▪ If you have drawn the coin from your pocket, the prior should be very small. 

Let P(phoney)=10-6.Then

P(phoney|3 heads)=8∙ 10-6, i.e., reasonably small

▪ Now assume that you have played against the car salesman Honest Eddi for a 

beer, and that Honest Eddi has given you the coin. In this case, the a priori 

probability that the coin is a phoney might be higher, you estimate 5%, and 

one finds P(phoney|3 heads)=0.3, which is a considerable chance.

3

(3 heads|phoney)
(phoney|3 heads)= (phoney)

(3 heads|phoney) (phoney)+ (3 heads| not phoney)(1- (phoney))

(3 heads|phoney)=1

1
(3 heads| not

prior ?

 phoney)= 0.125
2

: (phoney)= ??

P
P P

P P P P

P

P

P

 
= 

 
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The first night in paradise

From G. Gigerenzer 2004, “The evolution of statistic thinking”, Unterrichtswissenschaft, 32
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The game show problem

Adapted from Christian Rieck

www.spieltheorie.de/Spieltheorie_Anwendungen/ziegenproblem.htm

See also http://en.wikipedia.org/wiki/Monty_Hall_problem

▪ Das Ziegenproblem (auch game-show problem, Monty-Hall problem) ist eines der Probleme, das die 
Gemüter lange Zeit erhitzt hat und ganze Scharen von Mathematikern an den Rand der Verzweiflung 
gebracht hat (insbesondere, weil sie von ihrer Intuition irregeführt wurden und lange gebraucht haben, das 
zu bemerken). Es gibt wohl keinen Spieltheoretiker, der Ende der 1980er Jahre nicht in irgendeiner Form 
über dieses Problem nachgedacht hat. 

▪ In einer amerikanischen Quizsendung steht eine Kandidatin vor drei verschlossenen Türen, hinter denen in 
einem Fall ein Auto steht und in zwei Fällen eine Ziege. Die Kandidatin darf jetzt eine der Türen wählen; 
anschließend öffnet der Showmaster eine der verbleibenden zwei Türen, und zwar immer so, dass auf jeden 
Fall eine Tür mit Ziege geöffnet wird, sodass das Auto also hinter einer der noch verschlossenen Türen sein 
muss. Er bietet der Kandidatin dann an, jetzt noch einmal die Türe zu wechseln oder bei der zuerst 
gewählten Tür zu bleiben, bevor sie geöffnet wird. Die Kandidatin bekommt dann das, was hinter der von ihr 
endgültig gewählten Tür steht (wobei wir hier davon ausgehen wollen, dass sie das Auto der Ziege vorzieht).

▪ In einer Kolumne von Marilyn vos Savant (www.marilynvossavant.com/articles/gameshow.html) stellte 
jemand die Frage, ob es in dieser Situation besser sei zu wechseln oder bei der ursprünglichen Wahl zu 
bleiben. Die meisten Menschen dachten damals, dass es egal sein müsse. Marilyn vos Savant, die den 
höchsten jemals gemessenen IQ  hat und daher als der intelligenteste Mensch der Welt gilt, antwortete 
allerdings lapidar mit "wechseln ist besser" und löste damit die Diskussion aus, in der es Wochen dauerte, 
bis sich die Menschheit auf die bis heute akzeptierte Lösung einigen konnte. Davor bekam sie allerdings so 
nette Zuschriften wie: "Sie sind die Ziege!", oder: "Sie haben einen Fehler gemacht. ... Wenn sich all diese 
Doktoren irren würden, dann wäre unser Land in ernsthaften Schwierigkeiten." Aber wenigstens ist der 
intelligenteste Mensch der Welt dadurch berühmt geworden.

http://www.spieltheorie.de/Spieltheorie_Anwendungen/ziegenproblem.htm
http://en.wikipedia.org/wiki/Monty_Hall_problem
http://www.marilynvossavant.com/articles/gameshow.html


USM

30

The game show problem (cont’d)

Popular solution
The player has an equal chance of 
initially selecting the car, Goat A, or Goat 
B. Switching results in a win 2/3 of the 
time.

From http://en.wikipedia.org/wiki/Monty_Hall_problem

http://en.wikipedia.org/wiki/Monty_Hall_problem
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The game show problem (cont’d)

▪ Dabei lässt sich das Problem durch Anwendung des Satzes von Bayes lösen. 
Darin ist A_i das unbeobachtbare Ereignis (wo steht das Auto?) und Q_j ist die 
Beobachtung (welche Tür öffnet der Quizmaster?).
• Ai: das Auto steht hinter Tür i

• Qj: Quizmaster öffnet Tür j

• O.E.d.A. nehmen wir an, dass der Kandidat Tür 1 wählt, und der Quizmaster Tür 2 öffet (-> Q2)

• wir wollen die Wahrscheinlichkeit für den Gewinn mit Türwechsel berechnen, also

P(A3|Q2), kennen aber nur die bedingten Wahrscheinlichkeiten P(Qj|Ai). 

Mit Hilfe des Bayesschen Theorems und der „rule of total probability“ (A1,A2,A3 sind erschöpfend

und sich gegenseitig ausschließend) finden wir

• P(Ai)=1/3

• P(Q2|A3)=1  (der Quizmaster muss Tür 2 öffnen)

• P(Q2|A1)=0.5 (er könnte auch Tür 3 öffnen)

• P(Q2|A2)=0  (das ist „verboten“)

• insgesamt resultiert also

( 2 | 3) ( 3)
( 3 | 2)

( 2 | 3) ( 3) ( 2 | 1) ( 1) ( 2 | 2) ( 2)

P Q A P A
P A Q

P Q A P A P Q A P A P Q A P A
=

+ +

From http://en.wikipedia.org/wiki/Monty_Hall_problem

1
1

23( 3 | 2)
1 1 1 3

1 0.5 0
3 3 3

P A Q



= =

 +  + 

http://en.wikipedia.org/wiki/Monty_Hall_problem
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The game show problem (cont’d)

▪ Die Wahrscheinlichkeit, dass das Auto hinter der Tür steht, die 

der Quizmaster geschlossen lässt, beträgt somit 2/3, wogegen 

sie hinter der ursprünglichen Tür nur 1/3 beträgt. Somit ist klar, 

dass man seine Chancen auf das Auto verdoppelt, wenn man 

wechselt. Vos Savant hatte also Recht.

▪ Beachte: der Quizmaster verhält sich wie ein rein ausführender 

Algorithmus, der nur eine Tür öffnet, hinter der mit Sicherheit 

kein Auto steht. 

▪ Falls der Quizmaster nicht wüsste, wo das Auto steht, wäre 

P(Q2|Ai) =1/3 für alle i=1,3, und damit P(A3|Q2)=P(A2|Q2)=1/3. 

In diesem Fall würde also Wechseln nichts bringen!



USM

33

3. Probability distributions – one random variable

▪ random events are characterized by random variables 

▪ Probability distribution functions associate 
random variables with corresponding probabilities

▪ discrete and continuous random variables (r.v.)

▪ in the following, probabilities refer to one r.v. x, i.e., one property which 
can be quantified.

definition: (cumulative) distribution function (c.d.f) F(t) defines the 
probability of finding a random variable x being smaller than t,

• here and in the following we denote a random variable by non-italics and “ordinary” variables in italics

whenever a confusion might be possible (otherwise, we provide no distinction). 

▪ from the probability axioms, we obtain the following properties for F(t)
• F(t) increases monotonically with t

• F(-∞)=0

• F(∞) =1

▪ There are discrete and continuous distributions

( ) (x ) withF t P t t=  −   
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▪ describe probabilities for the occurrence of N discrete, different events, with

▪ example: die; the probability to dice a certain number xi is 
P(xi) =1/6, xi=i for i=1,6

▪ discrete distributions can be treated as continuous distributions, via the Dirac 
δ-function

Discrete distributions

(x= ) ( ) ( )i i iP x F x F x = + − −

( ) 1i

i

P x =

F(x)P(x)

probability distribution distribution function
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Continuous distributions

▪ instead of probability distribution, define probability density f(x)

(p.d.f. = prob. density function) with

( )
( )

and properties

( ) ( ) 0

( ) 1;                   thus,

( x ) ( ) ( ) ( )     and

( )  is probability that x in the interval [ , ]

b

a

dF x
f x

dx

f f

f x dx

P a b F b F a f x dx

f x dx x x dx



−

=

− = + =

=

  = − =

+




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▪ example: life-times of instable particles follow an 

exponential distribution 

0

exp( / )
( )    for t 0 and with mean life-time 

( ) ( ') ' ( ') ' 1 exp( / ),

and the probability that the particle lives longer than  is

(t ) ( ) ( ) exp( 1)

t t

t
f t

F t f t dt f t dt t

P F F










 

−

−
= 



= → = − −

 =  − = −

 
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Expectation value

▪ note: if x is a r.v., than any function u(x) is a r.v. as well

▪ distributions have characteristic parameters such as expectation value, 
width and asymmetry

▪ the expectation value or mean of a r.v. x results from averaging over x 
according to its distribution,

▪ Note that the expectation value (and similar functions) is not a random 
variable but clearly defined

-

-

(x )   discrete dist.

(x) x

( )    continuous dist.

( ) (x )   discrete dist.

(u(x)) u

( ) ( )    continuous dist.

i i

i

i i

i

x P x

E

xf x dx

u x P x

E

u x f x dx

 







 =


= = = 



 =


= = 










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▪ calculation rules: let α, be constants and u and v 

functions of x

▪ the expectation value is the centre of gravity of the 

distribution

the expection value is a linear opera

indepen

( ) ; ( (u)) (u)

( u v) (u) (v);

if x,y are r.v., then

(u(x)v(y))

tor!

de

= (u) (v)      (see Chap. 

n  

)

t

4

E E E E

E E E

E E E

 

   

= =

+ = +
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Central moments of a r.v.

▪ Let’s choose especially

0 1

about 

u(x) (x )  with (u(x)) : ' {(x ) }

which is called the n-th central moment or 

the n-th moment (the latter fact denoted by the prime).

Lowest order central moments are

' 1 and 

the mean 

' 0

n n

nE E  

 

= − = = −

= =

2 2

2

The quantity 

' (x) (x) {(x ) }

is the lowest central moment which contains information about the

average deviation of x from the mean. 

It's called the of x, andvariance standard d  is the evia

Var E  



= = = −

tion
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Variance

▪ the variance measures the mean quadratic deviation from the mean.

▪ the standard deviation σ=√ Var has the same units as x, will be 

identified with the errors of measurements

▪ the mechanical analogue to the variance is the moment of inertia

▪ calculation rules

▪ different representation

2

2 2   if x,y are independent

( ) 0, ( x) (x)

( x y) (x) (y) (see Chap. 4  )

Var Var Var

Var Var Var

  

   

= =

+ = +

2 2 2

2 2 2

2 2 2 2

(x) {(x ) } (x 2x )

           (x ) 2

            = (x )    or   x x

centThe variance (and all o ralther  moments) 

is invariant to translations of the r.v.!!!

Var E E

E

E

  

 



= − = − + =

= − + =

−   −  
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▪ We measure a quantity x with pdf g, and the measurement is 
‘smeared out’ according to a pdf h (→ convolution, see Chap. 4). 

▪ We look for the variance of the (‘combined’) measurement x’. 

▪ Alternative interpretation: x’ is the sum of two r.v., x’=x+u, 
where x is distributed according to g(x), and u according to h(u). 

▪ Then, x’ is distributed according to (see page 73) 

with (see also problem set 2)

▪ The variance of x’ is the sum of the variances of the distributions g 
and h. For sequential measurements of a quantity the individual 
errors add quadratically (see Chap. 6)

( ') ( ) ( ' ) .f x g x h x x dx= −

41

Variance of a convolution

consistent wit
(

h

independen

x') x' x u
 "calculation rules"

and  
for  variates

(x') (x) (u)
t

g h

g h

E

Var Var Var

= =  +   
 

  
 = + 
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Skewness

▪ measures the asymmetry of a distribution

3 33
1 3

3 2 3

3

2

1 1

'
{(x ) }/ ...

E(x ) 3
    =

sometimes one finds ( )

a p

skewness is 

ositive skew

invariant to translation

 describes a distributio

s and elongat

n with a tail

ions

 which extends to the 

E


  


 



 

= = − =

− −

=

right. 
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Curtosis/Kurtosis

▪ measures how pronounced the tails of the distribution are

4 44
2 4

4 3 2 2 4

4

2 2

2

'
{(x ) }/ ...

(x ) 4 (x ) 6 (x ) 3
    =

3 is defined in such a way as to be z

positive  implies a relatively higher, narrower peak and wid

no

ero for a

 distributionrmal=Gaussian

E

E E E


  



  



 



= = − =

− + −

= −

2

er wings

than the normal distribution , 

and vice versa (wider peak, shorter wings

with same mean

) for negative

 and 

 .




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Examples

3 different p.d.f, all with zero mean and unit variance, but different skewness and curtosis. 

Left: linear scale; right: logarithmic scale.  

2

2 2

x 1
Let u(x) .  Then   (u) 0  and  (u) (x ) 1

The r.v. u has particularly simple properties, 

and is called reduced (normalized) va a riable 

E Var Var
 


  

−
= = = − = =
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Examples (cont’d)

n

0

2 2

13 3

24 4

<t > exp( / ) !

<t>=

<t >=2
2,  skewed, with tail to the right

<t >=6
6,  higher peak and wider wings 

<t >=24
            than 

life-time (exponen

no

tial) distributio

m

n

r al

n
nt

t dt n 


 


 










= − =

=


=

 =

 =





 dist.









life-time (blue, τ=1) and normal (red, µ=σ=1) distribution, 

both distributions have identical mean and variance (indicated by dotted lines)
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Other parameters of a distribution

2

2

(x ) max

if distribution has a differentiable probability density, then the mode is determined via

( ) 0, ( ) 0

if one maximum, distr. unimod

mod

al, multimodal otherwise 

e : mm P x

d d
f x f x

dx dx

x = =

= 

0.5

0.5 0.5

-

0.5

a) continuous data: F( ) (x ) 0.5,        i.e.,        ( ) 0.5

    For a continous distribution, the median divides the total range of x into two regions 

   

median  :

 of equal pro

 

x

x

x P x f x dx


=  = =

0.5

0.5

bability.

     half-live  of a radio-active nucleus, which yields the time after which 

    50% of the nuclei have decayed. With respect to the exponential distribution, ln 2

b) discrete

t

t =

Example :

0.5

0.5 0.5

1 2

 data: The value  is the median of a data set if at most half of the events 

     have a value < , and at most half of the events a value > . 

     After sorting the data { , ,..., }

    

N

x

x x

x x x

x

1

2

0.5

1
2 2

                    if N odd

1
    if N even (sometimes also differently defined)

2

 

N

N N

x

x x

+

+




=   
 + 
  
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Other parameters of a distribution (cont’d)

0.5

1 1

Big advantage 

The median minimize

of the med

s the mean absolute deviation (Chap. 1), i.e.,

1 1
     

The median preserves its meaning even for (strictly) monotonic non-linear 

tr

ian:

N N

i i

i i

x x x x
N N= =

−  − 

0.5

0.5 0.5

ansformations of  the r.v. (later in this chapter). E.g., if   is the median

with respect to the distribution of x, then 

( )

is the median of the distribution of  y(x). 

This property is us

x

y y x=

ually  valid for the mean [see problem set 3] or the mode!not

1

1

0.5 ,

,

Median from a histogram by linear interpolation:

/ 2

where N is the total number of events in the histogram,  is the index of the bin

which corresponds to / 2,   is the x

j

kk

j low j

j

j low

N n
x x

n

j

N x

−

=
−

= + 


-value of the lower boundary of bin 

(usually - /2  when the x-values of the bins are centered),  the number of

events in bin ,  and  its size. 

j j j

j

j

x n

j




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Other parameters of a distribution (cont’d)

0.25 0.75lower and upper quartiles:

full width of half maxim

 F( ) 0.25; F( ) 0.75

is independent of 

the tails;

for a Gaussian distributio

um 

n, 2.35

(FWHM) 

x x

FWHM 

= =

=

Example: Age distribution (in years) within a group of students in their 2nd 

student year, with bin sizes 0.25 yr and 0.5 yr (see histogram in Chap. 1)

bin 1 2 3 4

xj,low 23.0 23.5 24.0 24.5

nj 8 9 5 3

1

1

0.5 ,

0.5

0.5

/ 2

5 3 4 5 3 2 3
0.25 : / 2 12.5

2

4

12.5 12
23.75 0.25

5

8 9 5 3
0.50 : / 2 12.5

2

2

12.5 8
23.5 0.5

9

j

kk

j low j

j

N n
x x

n

N

j

x

N

j

x

−

=
−

= + 

− − − − − − − − − − − − − − − − − − − − − − − − − − − −

+ + + + + +
 = = =

=

−
= +  =

− − − − − − − − − − − − − − − − − − − − − − − − − − − −

+ + +
 = = =

=

−
= +  =



23.775

23.75

bin 1 2 3 4 5 6 7

xj,low 23.0 23.25 23.5 23.75 24.0 24.25 24.5

nj 5 3 4 5 3 2 3

Original, sorted, unbinned data: N=25, x0.5=23.8

23.0, 23.1, 23.1, 23.2, 23.2, 23.3, 23.4, 23.4, 23.5, 23.5, 

23.7, 23.7, 23.8, 23.8, 23.8, 23.9, 23.9, 24.0, 24.1, 24.2, 

24.4, 24.4, 24.5, 24.5, 24.7
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Chebychev’s inequality

The values of a r.v. are somewhere in the neighbourhood of the mean μ. 

Deviations from the mean are less probable the larger they are compared with σ. 

This fact is expressed by Chebychev’s inequality (which is generally very weak): 

2 -2

"The probability of x being  and more standard 1
(| x | ) , 1    

 deviations away from the mean is lower/equal than "

k
P k k

k k
 


−    



2 2

2 2

2 2

2 2 2

2

2 2

0

for a continuous r.v.

(| x | ) ((x ) )

( )    with  the p.d.f. of  ( )

{(x ) } (t) ( ) ( ) ( )

Since integration over

P

 positive values o

r o  

n

o f

k

k

k

P P k P k

P g t dt g t x

E E tg t dt tg t dt tg t dt







   



 



 

−

= −  = − 

= = −

= − = = = +



  

2 2

2 2 2 2 2

2

ly and g(t) positiv definite (p.d.f), 

the integral can be approximated ( ) ( )  as

1
0 ( ) ,  i.e.,           q.e.d.

b b

a a

k

tg t dt a g t dt

k g t dt k P P
k



  


 
 

 

 + = 

 


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50

2

2

2

2

(| x | ) , 0

(| x | ) 1 , 0

P

P


  




  



−   

−   − 

Example 1: Let‘s assume that an A&A (Astronomy & Astrophysics) article has an

average length of 10 pages, with a standard deviation of 2 pages. By means of

Chebychev’s inequality, we find a lower limit for the probability that an A&A article

has a length between 6 and 14 pages, which is 75%:

Example 2: Another implication is that for any probability distribution with

expectation value μ and finite standard deviation σ at least half of the values are

located within the interval

2

2

2
(| x 10 | 4) 1 0.75

4
P −   − =

2

1 1
2 2     since  1

2
x

k
   

 
−   + − = 

 
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Examples (continued)

Example 3

When applied to the arithmetic mean of N independent, identically distributed r.v.’s

x1 … xN, we find one of the weak laws of big numbers. 

Later, we will see that the expectation value of such an arithmetic mean is just the 

actual expectation value of the distribution, and that the variance of the arithmetic 

mean is the variance of the distribution, divided by N, i.e.

and the r.h.s. becomes arbitrarily small when N→∞. In other words, the arithmetic 

mean converges stochastically  (i.e., w.r.t. probability) towards the expectation 

value of the distribution.

2
1

1 ( )
,    ( ) ( ) ,    ( ) ( ) / . Thus,  ( )

N

i

i

Var x
x x E x E x Var x Var x N P x

N N
  

=

= = = = −  
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Moments of a distribution

▪ remember central moments (of r.v. or distribution)

▪ analogue definition: moments of distribution (without prime)

▪ remember as well

▪ the probability density function is uniquely defined by its 

moments, as we will show now 

n' {(x ) } ( ) ( )n nE x f x dx  


−

= − = −

n n

1

1

(x ) ( )   or  (x ) (x )

(: x x)

n n n n

k k

k

E x f x dx E x P x

E

 



 

=−

= = = = =

= ==



1

2

2

3

3 1

4

4 2

' 0

' (x)

'

' ( 3)

Var



 

  

  

=

= =

=

= +
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Characteristic function

▪ definition: The characteristic function of a p.d.f. f(x) is

▪ for a continuous distribution, the characteristic function is the Fourier 

transform of f(x) (Note the (missing) normalization). Thus, the transform 

is invertible

▪ … and the characteristic function defines the p.d.f.

x

k=1

( ) ( ) ( )   or   (x )   Note: the lower summation

                                                                                   index might be also 0 

kitxit itx

kt E e e f x dx e P x
 

−

= = =

x‘- x

x‘- x
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Characteristic function and moments

0 0

The n-th derivative of the characteristic function is

( )
( ) ( ) .

At 0 one obtains

( ) ( )
( ) ( ) ,   i.e.,     

n
n itx

n

n n
n n

nn n

t t

d t
ix e f x dx

dt

t

d t d t
ix f x dx i

dt dt



 




−



−= =

=

=

= =





0 0 10

Thus, the Taylor expansion of ( ) around 0,

1 ( ) 1 1
( ) ( ) 1 ( )

! ! !

depends on the moments alone. Since the Fourier transform can

be uniquely inverted and the Tay

n
n n n

n nn
n n nt

t t

d t
t t it it

n dt n n




  

  

= = ==

=

= = = +  

lor expansion of the characteristic 

function consists of the moments, w

the moments define the p.

e conclude that indeed 

, as stated abd.f. ove.

(x ) ( )

0

2
2

2 2

0

For the central moments, we find in analogy

1
'( ) ( ) ( )   ( ) '

!

'( )
Note in particular that ' (x)

it it x n

n

n

t

t E e e f x dx it
n

d t

dt

  


 

 
− −

=−

=

= = →

= = −


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Example

▪ characteristic function and moments of the exponential 

distribution.

( )

0 0

1
( )   for 0   (e.g.,  for the life-time distribution)

( )

x

itx x it x

f x e x

t e e dx e
it it



 

 


 
 

 

−



− − +

=  =

= = =
− + −

2

1

0

n

By differentiation,

( )

( )

( ) !

( )

( ) !
,  we obtain the moment

(compare Fig. page 45)

s

! !    

without explicitly calculating the integrals defining the ex

n n

n n

n n

n n

t

n n

d t i

dt it

d t n i

dt it

d t n i

dt

n n

 



 







  

+

=

−

=
−

=
−

=

= =

pectation values!
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Sum of two independent r.v.

The pdf of the sum of two independent r.v. is the 

(inverse) Fourier-transform of the product of the two 

corresponding characteristic functions!

x,y independent
(x+y) x y x y

Let z x y with independent r.v. x,y and corresponding p.d.f.s  ( ),  ( ).

Calculate the distribution ( ).

( ) ( ) ( ) ( ) ( ),   i.e.,

( ) ( ) ( )

and thus

(

it it it it it

h

h f g

f x g y

h z

t E e E e e E e E e

t t t

h z



  

= +

= = =

=

1
) ( )

2

itz

he t dt




−

−

= 
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Example

 
1

Calculate the distribution ( ) of the sum z x ,  

with x  uniformly distributed (see Chapt. 5) in the interval 0,1  :

1  for 0 1
( )

0  el

(for other solution methods, see Chap. 4)

se

( ) exp

n

i

i

i

i

i

f

h z

x
f x

t E

=

=

 
= 


=



( ) ( )

( )

1

0

( x) ( ) exp( ) 1 exp( ) 1 exp( )

( ) ( )
n

h f

i
it f x itx dx itx dx it

t

t t 



−

= =  = −

=

 

( )

2 2 2

3

1 exp( )
( ) exp( )   (mathematica, maple...)

2

1
 2 2 1    for 0 1 and 2  for 1 2
2

1 1 1
  for 0 1,  ( 2 6 3) for 1 2 and ( 3)  for 2 3
2 2

2 :

3 :

4

2

1
 4 4
12

:

nni it
h z itz dt

t

z z z z z z z

z z z z z z z

z z

n

n

n





−

− 
= − = 

 

− − − +   −  

=   − + −   −  =

−= − −

=



( )3 3 3 33 6 2 4 1z z z









+ − − − +

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Example (cont’d)

Distribution h(z) (with z 

the sum of n uniformly

distributed numbers  

within [0,1]), for 

different n:

black: n=1 (=f(xi))

blue: n=2

green: n=3

red: n=4

The distributions have 

been calculated via 

Fast Fourier transform 
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1

( )
Characteristic function defined by moments, ( ) 1 ,  with (0) 1

!

Often, ( ) has exponential character, e.g., for Poisson (p. 101) and  distribution (p. 108). 

Thus, expand ( ) :

n

n

l

l

n

n

n

it
t

n

t normal

t

  







=

= + =

1 0

1 1

( ) 1 ln ( )
( )   with  ( 0 term vanishes since ln (0) ln(1) 0)

!

 'cumulants' of the distribution, can be expressed in terms of (central) moments.

First four cumulants:

;   

n n

n n n n
n t

n

it d t
t n

n i dt


   



 



= =

= = = = =

=



( )
22 3

2 2 1 2 3 3 1 2 1 3 4 4 2  ' ;      3 2 ' ;      ' 3 '            = − = = − + = = −

1 1

Can be shown: 

If x is a random variable, (x) the corresponding cumulant (w.r.t. to ln ( )), and , then 

(x ) (x) ;       (x ) (x)  for 2  ('almost' translation-invariant)

( x) (x

n x

n n

n

n n

t c

c c c n

c c

 

   

 



+ = + + = 

= ( ))   homogeneous of degree    [ ( x) is the cumulant for y= x w.r.t. to ln ( )]

If x and y independent random variables and z = x + y, then

(z)

For

(x) (y)

Note   distributions, only f: th  i e

n y

n n n

n

n

ormal

c c t 

  = +

rst two cumulants are different from zero!!!
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Transformation of variables

▪ given a p.d.f. f(x), we’d like to know the p.d.f. g(u),
when u is a (invertible) function of x, u(x)

▪ example: given a distribution of velocities f(v), we 
want to calculate the distribution of energies, ½mv2

▪ for discrete distributions, this is trivial. The probability 
for the event u(xk) (where u is a function of x) is the 
same as for the event xk itself, 

P(u(xk))=P(xk)

▪ for continuous distributions, we have to invoke 
calculus
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2

1

1 2 1 2 2 1 1 1 2 2

Given: pdf  ( ) and uniquely invertible + differentiable (implies strictly monotonic) function ( ). 

Calculate g(u).

( x ) ( u ) or ( u )  with ( ) and ( ).

( ) ( )

x

x

f x u x

P x x P u u P u u u u x u u x

P f x dx g u d

  =     = =

= =
2

1

min max

( ) ( )   and thus                ( ) ( )

The absolute sign garantuees that the pdf is positive. Integrating this equation yields 

( )        for ( ) ( ),  i.e., ( ) mono
( )

u

u

dx
u g u du f x dx g u f x

du

G u u x u x u x
F x

 = =


=



min max

tonically increasing
 

1 ( )   for ( ) ( ),  i.e., ( ) monotonically decreasingG u u x u x u x



− 

Calculation of the transformed p.d.f.

Transformation of a p.d.f. 

f(x) to g(u) via u(x). The

indicated areas are equal.

Transformation via a parabola. 

The sum of the  indicated 

areas under f(x) are equal to the 

area under g(u).

If  ( ) is invertible, but no longer uniquely, and thus ( ) is multi-valued, one has to sum 

over all contributing branches (within the branches, the derivative must not change its sign).

( ) ( )

u x x u

dx
g u f x

d
=

branch 1 branch 2

( ) ...
dx

f x
u du

   
+ +   

   
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Examples

m

2

 calculate the pdf for the area of a circle from a (see Chap. 5)

distribution of radii between 0 and r .

1
p.d.f.  

uniform 

for : ( )  for 0 ; ( ) 0 else.
0

( ) ( )  with

ex

     

amp 1:

(

le 

m

m

r f r r r f r
r

dr
g A f r A r r A

dA


=   =
−

= =  

1

2

0 0

) single-valued, since   > 0

1
2 ; ( )

2

1 1 1
( ) ;   Test: ( ) 1!

2 2

m m

m

A A

m m

r

dA
r g A

dr r r

g A g A dA A dA
A A A




−

= =

= = = 

2

2

2 ( )

2

 Calculate the distribution for the  of a reduced r.v. 

where the original r.v. should be normally distributed. 

(x ) 1
  and  ( ) e    (see Chap. 5)

2

example

The function 

square 2:

(

x

u f x

x






  

−
−− 

= = 
 

) has two branches [since ( ) positive or negative]!u x −
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Examples (cont’d)

2 2

branch 1 branch2

/ 2

2

1 1
; ( )

2 2 2 2 2

Since the contributions from branch 1 and 2 are identical, we obtain

1
( ) ,

2

which is the so-called -distribution for one degr

u u

u

dx
g u e e

du u u u

g u e
u

  

   





− −

−

   
=  = + −   

   

=

ee of freedom (see Chap. 5)

2

2

 kinetic energy for a 1-D ideal gas. The pdf of the velocity 

of a particle into direction  is

( ) .  Calculate the corresponding energy distribution.
2

As above [two branches, 

examp e

in

 3:

s

l

mv

kT

x

m
f v e

kT

−

=

/ /

ce  positive or negative]

1
;  both branches have similar contributions, thus

2

2 1
( )

22

E kT E kT

v

dv

dE mE

m
g E e e

kTmE kTE 

− −

= 

= =
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Calculation of the transformation

▪ Now, the original and the transformed p.d.f., f(x) and g(u), are 

given, and the transformation u(x) needs to be calculated. 

▪ This situation is frequently met in Monte-Carlo simulations. 

Random number generators usually create uniformly distributed 

r.v., and we look for the transformation law which transforms 

these uniformly distributed r.v. into others which are distributed 

following a given p.d.f. (defined by the process to be 

investigated).

1

Note 1: no problem with abs-value here, since  and  positive by definition (pdf)

Note 2: If ( ) has been de

( ') ' ( ') ';   integration yields the c.d.f.s

( ) ( ) and thus ( ) ( ( ))

x u

f g

g u

f x dx g u du

F x G u u x G F x

− −

−

=

= =

 

rived from a transformation as described before, via '( ), and ( ') 

was multi-valued, the transformation law ( ) can be different from '( ),  but delivers the same 

transformed distribution  proble

u x x u

u x u x

→ m sheet 4
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▪ The problem can be solved analytically only if both p.d.f.s f and g can 

be integrated analytically, and if the inverse of G can be calculated.

▪ in other cases (which are the majority), numerical methods have to be 

applied. Most powerful is the rejection method by von Neumann (see, 

e.g., “Numerical Recipes” and 

http://www.usm.uni-muenchen.de/people/puls/

lessons/numpraktnew/montecarlo/mc_manual.pdf

'

0

uniformly distr. x in unit interval

 Create exponentially distributed r.v. from a uniform distribution.

( ) ;

( ) ' : ( ) ;

1 ; ( ) ln(1 ) / ln(

exampl

) /

e:

u

u

u

u

g u e

G u e du F x x

e x u x x x











 

−

−

−

=

= = =

− = = − − −



1

In the former case of   being a uniform distribution over the unit interval, i.e., 

( ) 1 for 0 1   and ( ) 0 else   [random number generator],

we obtain ( )  and thus ( ) ; ( ).           

f

f x x f x

F x x G u x u G x−

=   =

= = =  

In this case,  needs to be calculable and inverto inly ble.G

http://www.usm.uni-muenchen.de/people/puls/lessons/numpraktnew/montecarlo/mc_manual.pdf
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P.d.f.s for a uniform distribution (black), generated by a random number generator from N=103 (left) and 

N=106 subsequent numbers. The corresponding exponential distribution (λ=2, blue) has been created 

from these numbers using the  transformation method as described above. Displayed are (normalized) 

histograms with bin size 0.02. Analytical p.d.f.s in green and red. IDL (interactive data language) code below.
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▪ until now, univariate distributions: one r.v.

▪ generalization to several r.v. “easy”: multivariate  

(also: more-dimensional) distributions

▪ in the following, only continuous distributions

▪ definition of prob. distribution for two r.v., x,y:

▪ corresponding joint p.d.f.

4. Distributions of several random variables ‒ multivariate p.d.f.s

( , ) (x , y ) with

(- ,- ) 0, ( , ) 1

F x y P x y

F F

=  

  =   =

2 ( , )
( , ) ( , ) 1  and

( x , y ) ( , )  

b d

a c

F x y
f x y f x y dxdy

x y

P a b c d f x y dxdy

 

− −


=  =

 

    =

 

 



USM

68

Marginal distributions

▪ following problem: sometimes the c.d.f. F(x,y) is 

approximately determined (by many measurements), but 

only the probability distribution of x (irrespective of y) is 

of interest. 

▪ example: the appearance of a certain disease is known 

as a function of location and date. For a certain 

investigation, the dependence on date is without 

interest. 

▪ In this case, we marginalize the distribution, i.e., we 

integrate over the whole range in y

( x , y ) ( , )  ( )

b b

a a

P a b f x y dy dx g x dx



−

 
  −    = = 

 
  
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( ) ( , )  is a p.d.f. of , called the marginal distribution of .

The corresponding distribution of  is

( ) ( , )  

Marginal distributions are "projections" of the joint p.d.f. onto the 

g x f x y dy x x

y

h y f x y dx



−



−

=

=





Two r.v. x,y are independent if

axes.

( , ) ( ) ( )f x y g x h y=

Now, we can define the conditional probability for y given that x is known:

( y | x ).

The corresponding p.d.f. is given by

( , )
( | ) ,

( )

and the above probability results as (

N

| ) .

ote

P y y dy x x dx

f x y
f y x

g x

f y x dy

  +   +

=

conditional probabilities as defined above are normali: zed!
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k k k

k k

P(B) = P(B E ) P(B|E )P(E )

(see Chap. 2) is then expressed by

( ) ( , )  ( | ) ( )  .

If the variables are independent, then

( , ) (

The rule of total proba

) ( )
( | )

(

bili

) ( )

ty 

h y f x y dx f y x g x dx

f x y g x h y
f y x

g x g x

 

− −

 =

= =

= =

 

 

( )

Any constraint on one variable cannot contribute information about

the other, if the variables ar

Bayes theorem for two-dimensional d

e independent!

( | ) ( ) ( | ) ( ) ( , )

N

istribut

OTE: o t

ns

f

io :

h y

f x y h y f y x g x f x y

=

= =

en, this theorem is used to  ( , ) 

from the conditional and the marginal pro

cons

babi

truc

lit s.

t

ie

f x y
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Example

▪ superposition of two normal-distributions, with 

corresponding marginal and conditional p.d.f.s

g

h

f 0.6672

( , 1) / (1);   Remember that this conditional pdf is normalized, i.e.,

 and  not independent,No  ste: ince ( | ) depends on !

 | 1

 

( 1)f y x g f y

x y f y x

x

x

dy= = = =

( , )f x y dy= 

( , )f x y dx= 
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Example (cont’d)
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Convolution

A

y

x

Let z=x+y the sum of two independent r.v. x,y,  with a joint pdf

( , ) ( ) ( )

The (cumulative) distribution function of z is

( ) (z ) (x+y )

and given by the integration of the joint pdf over the

x yf x y f x f y

F z P z P z

=

=  = 

 shaded area in the 

right hand figure.

( ) ( ) ( ) ( ) ( ) ( ) ( )

The probability density is found by differentiating ( ),

( )
( ) ( ) ( )

z yz x

x y x y y x

A

x y

F z f x f y dxdy f x dx f y dy f y dy f x dx

F z

dF z
f z f x f z x dx f

dz

− − 

− − − −



−

= = =

= = − =

    

 ( ) ( )

This is a of the two pdf's [sconvol ee alsu o Chap. 3, p.tion  . 41]

y xy f z y dy



−

−

▪ In Chap. 3, we alternatively proved that the p.d.f. of the sum of two independent 
r.v. is the (inverse) Fourier-transform of the product of the two corresponding 
characteristic functions, where the characteristic functions themselves are the 
Fourier transforms of the individual p.d.f.’s (except for a different normalization)

▪ As we will show now, this is nothing else than a convolution, in agreement with 
the above result
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Convolution
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Convolution

Since the Fourier-transformation via 

FFT costs roughly N log2 N operations, 

the total number of essential operations 

is of the order of 

N · (1 + 3 log2N). 

The first part results from the multipli-

cations Gk · Hk, and the second part 

from two forward and one backward 

transformations.

Thus, if (1 + 3 log2N) < M (with M the 

original number of grid points for the

response function), the convolution by 

FFT is faster than the “simple” method

by conventional integration. 

If, e.g., N = 1000 frequency points, for 

all M > (1 + 3 log2N) ≈ 30 there would 

be a gain in computation time.
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Moments

▪ in analogy to univariate distributions, we define

20

02

11

'

'

'







=

=

= =

  cov(x,y)

  (xy

"covariance"  

) x yE  = −

=

=
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▪ similarly, we define

▪ examples

      ( )
222 2

(u(x,y)) ( , ) ( , )

(u(x,y)) u(x,y) (u(x,y)) u (x,y) u(x,y)

E u x y f x y dxdy

E E E E

=

= − = −



( )

( )

22

2

2 2 2 2

2 2

u(x,y) x y  ( x y) (x) (y)

( x y) ( x y) ( x y)

                   = (x ) (y )

                   = (x ) (y ) 2 (x )(y )

                   = 

x y

x y x y

a b E a b aE bE

a b E a b E a b

E a b

E a b ab

a



 

   



= +  + = +

 + = + − + =
 

 − + − =
  

 − + − + − − = 
2 2(x) (y) 2 cov( , ()    cf. Chap. 3)b ab x y+ +

( )( )
u(x,y) xy  and x,y independent, i.e., ( , ) ( ) ( )

i)  (xy) ( , ) ( ) ( ) ( ) ( )

            = (x) (y)   (cf. Chap. 3)

ii) cov(x,y) ( )( ) ( ) ( ) 0 !!!x y

f x y g x h y

E xyf x y dxdy xyg x h y dxdy xg x dx yh y dy

E E

x y g x h y dxdy 

= = 

= = = =

= − − =

   


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Covariance, correlation coefficient

▪ from definition of covariance, we see that 

• cov(x,y) is positive if values x>μx (x<μx) appear preferentially together with values y>μy (y<μy).

• cov(x,y) is negative if values x>μx (x<μx) appear preferentially together with values y<μy (y>μy).

• if the knowledge of x does not give information about the probable position of y, the covariance 

vanishes (see Fig. below)

▪ if cov(x,y) ≠0, the variables x,y are called correlated. 

▪ correlation is quantified by the dimensionless correlation coefficient

cov(x,y)
(x,y) ,   1 (x,y) 1;  

(x) (y)

the limiting values are reached when y x  and  b>0 ( 1)  or  b<0 ( 1)                                 a b

 
 

 

= −  

= + = = −

f(x,y)=const for different correlation coefficients

2 2 2 2

 calculate cov(x,y) (xy) (x) (y)

with y x and then 11
                   or cov(x,y) (x y) (x) (y)

proof:

2

E E E
b

a b
b


  

= − 


= + → = 
 = + − −  

(linear dependence: f(x,y)=f(y|x)f(x) with f(y|x)=δ(y-(a+bx))
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▪ Note: for independent (uncorrelated) variables → cov(x,y)=0

▪ But: cov(x,y)=0 does not necessarily imply that x,y are independent, 

since covariance detects only linear dependencies.

▪ Example: let x be uniformly distributed between [-1,1], and y=x2

• Then: y depends on x, but cov(x,y)=E(x3)-E(x)E(x2)=0, since expectation values

of odd quantities=0 for symmetric intervalls!

▪ In other words: there are cases when cov(x,y)=0, but the conditional 

p.d.f. f(y|x) depends on x. 

▪ Independence is only warranted if f(y|x) = f(y)  [or, equivalently, 

f(x,y)=g(x)h(y) ]!
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Transformation of variables

▪ analogous to 1-D (univariate) case

• given f(x,y) and u(x,y), v(x,y)

▪ example
absolute value of 
Jacobi-determinante

,
Then: ( , ) ( , ) ( , ) ( , )

,

x y
g u v dudv f x y dxdy g u v f x y

u v

 
=  = 

 

2 2

2

( ) / 2

/ 2

2

0

1
Transform 2-D  distribution   into polar coordinates cos , sin

2

cos sin,

sin cos,

1
( , ) ,with marginal distributions 

2

( , )

x y

r

r

normal e x r y r

x y

x y r r
r

x y r rr

g r re

g g r d



 


 

 

 




 

− +

−

= =

 

   
= = =

  − 

 

 =

= =
2 / 2

0

1
 and ( , ) ,  i.e.,

2

the distribution factorizes into the marginal distributions (independent variates!)

rre g g r dr 




− = =
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Reduction of variables

▪ problem: we have f(x,y), and need g(u) with u(x,y).

▪ solution: use standard transformation, by introducing a 2nd variable 

v(x,y) (usually, choose v=x)

▪ example: given 2-D uniform distribution

( , ) ( , )

and marginalize with respect to 

( ) ( , )

f x y h u v

u

g u h u v dv

→

= 

2 see next page, left figure

Calculate ( )! (see also Chap. 3, page 57/58 and Chap. 4, page 73)

Not

1
 if [0, ] and [0, ]

( , )   

0    else 

( , ) already normalized

,
         

e: 

x y
f x y

f x y

u x y x y

v x

y

u

g x


   

=

+





= +  

=  2

1 1 1
1   ( , ) ( , )   

1 0,

x y

u u
h u v f x y

x yv

v v

 

 
= = =  = =
  

 
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max max

min min

( ) ( )

max min2

( ) ( )

2 2

1
( ) ( , ) ( , ) ( ( ) ( ))

From above figure (middle): ( ) ( ) [ , ],  since [0, ]

1 1
              ( ) (: ( ) [0, ] (sl

: ( )

ope=1) 0)

v u x u

v u x u

g u h u v dv h u x dx x u x u

u x x y x x y

u x u

u x uu uu g u 

= = = −


= +  +   

 = − =
 

  



 

2 2

max

The distribution of the sum of two uniformly distributed quantitie

1 1
                       

s is triangular-shaped, 

s

[ ,

ee above figure (right)

( ) ( ( ))

. See also

(2 )

1
(

]

 p

)

Cha .

gu u u u

g g

−    =  − −  =  −
 

=  =


 3, page 57/58

 the distribution of  looks similar, when the abscissa is shifteNote d by : -x y− 
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Calculation of the transformation

▪ as in the 1-D case: integration and inversion of primitive function

▪ important example: Box-Muller algorithm to create normally

distributed variates from uniform distribution (random number 

generator)

 

2

2

2

/ 2

' / 2

1 1

0

' / 2

remember 2-D  distribution in polar coordinates

1
( , )   (factorized in  and )

2

distribution  in r: 

( ) ' ' ( )   (uniform distribution w.r.t. 0,1 )

( )

r

r

r

r

normal

g r drd re drd r

G r r e dr F x x

G r e

   


−

−

−

=

= = =

= −



0 1 1

2 2

0

2 2

| ;     2 ln(1 )

distribution  in : 

1
( ) ' ( )   (uniform distribution )

2

( ) ;     2
2

r x r x

H d F x x F

H x x





 



  



= = − −

= = =

= = =


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1 2 1 2

1 2 1 2

in Carthesian coordinates:

cos  2 ln(1 ) cos(2 ) 2 ln( ) cos(2 )

sin  2 ln(1 ) sin(2 ) 2 ln( ) sin(2 )

These variables are independent and  distributed with expectation 

value ze

x r x x x x

y r x x x x

normally

  

  

= = − − −

= = − − −

2 2 2 2( ) / 2 / 2 / 2

1 2two uniformly distributed

ro and unit varian

 variates x ,x  Thu  two  distributed vari

c

ate

e.

1 1 1
( , )   = 

2 2 2

s: s x ,y

x y x yf x y e e

normally

e
  

− + − −



=

P.d.f.s for a uniform distribution (black), 

generated by a random number generator 

from N=105 subsequent numbers. The 

corresponding normal distribution (blue) has 

been created from these numbers using the  

Box-Muller algorithm. Displayed are 

histograms with bin size 0.02. Analytical 

p.d.f.s in green and red.
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Distributions with more than two variables

 

1 2 3

1

i j i j

( , , ,... ) ( )  (in vector notation)

(u) ...

proba

( ) ( )

partic

bility de

ularly im

nsity

expectation valu

portant is 

e

covariance ,

cov(x ,x ) (x )(x )     (see 

matrix

al

 

s

N

N

i

i

ij i j

f x x x x f

E u f dx

C

C E µ µ

 

=− −

=

=

= = − −

 

x

x x

 

2

i i

1

2

1 2 3

o Chap. 6)

The covariance matrix is symmetric, and the diagonal elements

are the variances: (x ) (x )

Matrix notation: with ( , , ,... ) and ,
...

( )( )

ii

N

N

C Var

x

x
x x x x

x

E

= =

 
 
 = =
 
 
 

= − −

T

T

x x

C x µ x µ
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1

1

transformation of variables

independent, identically distributed (i.i.d.) var

 with Jacobi determinant

...
g( ) ( )

...

  

(u.i.v. = unabhängig, identisch verteilt)

For p

iabl

arameter estim

es

ates,

N

N

x x
f

y y

 
=

 
y x

1

 sample of  independent measurements might 

be used. The joint p.d.f.   for  independent variables which are identically 

distributed according to ( ) is given by

( ) ( )
N

i

i

N

f N

f x

f f x
=

=x
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5. Important distributions and the CLT

Binomial distribution

▪ experiment with two mutually exclusive outcomes, i.e.,

▪ calculate the probability that n experiments have k times the outcome A.

• What is the probability to obtain (exactly!) 4 times the six when rolling the die 10 times? Answer: ≈0.054

• What is the probability to toss “number” only one time in 20 trials? Answer: ≈1.91 ·10-5

     with ( )      and ( ) 1S A A P A p P A p q= + = = − =

1 5
10,     4,     ( )       ( )

6 6
n k p A p A= = = =

1 1
20,     1,     ( )       ( )

2 2
n k p A p A= = = =

let's assign the random variable x  to the outcome of experiment .

x 1 if the result  occurs, and x 0 if  occurs. Our above question 

can be rephrased then to the question regarding the probability

i

i i

i

A A= =

1

 distribution 

of the random number

x x ,

and, particularly, to the probability P(x )

n

i

i

k

=

=

=


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▪ answer depends on two factors

i) What is the probability to obtain the result  in the   experiments 

and to obtain  in the remaining ?

Since the experiments are independent, this probability is given by the

product of the 

A first k

A n k−

probabilities of the individual events, i.e.,

(1 )k n kp p −−

( )

ii) How many possibilities for the event "  times result  in  experiments"

do exist? This is given by the binomial coefficients,

!

! !

Thus, the probability (x ) is given by 

!
( )

!

n

p

k A n

n n

k k n k

P k

n
B k

k n

 
= 

− 

=

=
−( )

(1 )
!

k n kp p
k

−−
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▪ expectation value and variance

( )

i

22 2 2 2

i i i

n

i=1

expectation value and variance of  experiment

(x ) 1 0 (1 )

(x ) (x ) (x ) 1 0 (1 ) (1 )

The corresponding values for the random variable x= x  are 

(exploiting the

i

single

E p p p

Var E E p p p p p pq

=  +  − =

 = − =  +  − − = − = 



2

 calculation rules for independent variates)

(x) k      "mean number of successes"

(x) (x) (1 )

E np

Var np p npq

= =

= = − =

( )

1 1
' '

' 0 ' 0

(cumulative) distribution function

!
( ) (k ) ( ') (1 )

'! ' !

k k
n k n k

p

k k

n
F k F k B k p p

k n k

− −
−

= =

=  = = −
−

 
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Binomial distribution, ( ),  as a function of . Top panel: fixed , different ; 

middle: fixed , different ; bottom: different values of  and , but =const

n

pB k k p n

n p n p np
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▪ Example: Detector efficiency

• spark chambers (95% efficient) are used to measure the tracks of cosmic rays. At least three 

points are needed to define a track. How efficient is a stack of three chambers? Would using 4 or 

5 chambers give significant improvement? 

3 3 0 3

0.95

The probability of three hits from three chambers is

3!
(3;3,0.95) (3) (1 ) 0.95 0.857

3!0!

For four chambers, the probability of three or four hits is

P(3;4,0.95)+P(4;4,0.95)=0.171+0.815=0.986

P B p p= = − = =

For five chambers, the probability of three, four or five hits is

P(3;5,0.95)+P(4;5,0.95)+P(5;5,0.95)=0.021+0.204+0.774=0.999!
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A weak law of big numbers

▪ Application of Chebychev’s inequality (page 49/50) to the binomial 

distribution results in a weak law of big numbers: 

The expectation value for the frequency of an event A (n experiments 

with k times event A occuring) is given by E(k/n)= p, with variance 

Var(k/n)=1/n2 Var(k)=p(1-p)/n. Thus,

and the frequency  converges stochastically towards its expectation 

value.

2 2

(1 ) 1

4

applying the inequality of arithmetic and geometric mean (Chap. 1) for n=2

,(1 ) 1
(1- ) =

2 2

k p p
P p

n n n

p p
p p


 

  −
−   

 
 
 




+ −




 

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Multinomial distribution

▪ binomial distribution: 2 different outcomes

▪ multinomial: more than 2 different outcomes, mutually exclusive!

1 2 3

1 2 3

1

, , ,..., 1 2 2

1

1

+ + +...+     with ( )    and 1

When  experiments are performed, the probability of finding  events  is given by

!
( , , ,..., )

!

j

l

l

l j j j

j

j j

l
kn

p p p p l jl

j
j

j

S A A A A P A p p

n k A

n
M k k k k p

k

=

=

=

= = =

=






1

j

We define x 1 if experiment  yields ,  and 0 otherwise. Then

x x        and

(x ) ,    with covariance matrix 

( )       (  Kronecker ), i.e.,

(1 ) as before, but nonv

ij j

n

j ij

i

j

ij i ij j ij

ii i i

i A

E np

C np p

C np p

  

=

=

=

=

= −

= −



anishing, negative covariance ij i jC np p= −

j

i

j

That there  a correlation was to be expected, since the x  are not independent due to 

the constraint 1. I.e., if there are more successes for class  than expected ( (x )), 

the values of x  for 

j

is

p i E=

j
all other classes  are smaller t

negati

han (x )

 correlat !e ov i n

j E


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Frequency; law of big numbers

▪ probabilities, e.g., pj in case of the multinomial distribution, are usually 

not known a priori but have to be obtained from experiments. The 

frequency of event Aj in n experiments is given by

▪ This frequency is a random number, since it depends on the results of 

the particular n experiments.

1

1 1
h x x

n

ij j

in n=

= =

j

j

x 1
(h) (x ) ,

i.e., the expectation value of the frequency of an event is the corresponding

probability 

jE E E p
n n

 
= = = 

 

j

j2

the law of big number

                  , and

x 1 1 1
(h) (x ) (1 ) (h)

This is ! For large , the standard deviation of the 

frequency vanishes below any given limit, which "j s

s

u t

j jVar Var Var p p
n n n n

n


 

= = = −   
 

ifies" the frequency

definition of probability (cf. Chap. 2, p. 18).
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Poisson distribution

▪ The study of the lower panel of the last figure (binomial distribution) 

suggests that this distribution approaches a fixed distribution if n tends 

to infinity but the product (the expectation value) np=λ is kept constant.

▪ Indeed, 

( )

( )

!
( ; , ) ( ; , / ) 1

! !

!
( 1)( 2) ( 1)  for 

!

1 1  for    (definition of the exp function)

k n k

k

n k n

n
P k n p P k n n

k n k n n

n
n n n n k n n

n k

e n
n n



 


 

−

−

−

   
= = −   

−    

= − −   − + → →
−

   
− → − → →   

   

Thus, 

( ; , / ) ( , )  which  Poisson

c

is the
! !

start with P(0)= ,  alculation: 

-distribut n 

an

io

n kk kn e
P k n n P k e

k n k

and describes the probability of  obtaining k events if  the expected number is

e






 
 



→ −
−

−

 
→ = = 

 

d then successively multiply by  

and divide by 1,2,3,4,.... to obtain P(1), P(2) etc.


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Interpretation

▪ Suppose λ events are expected to occur in some interval. Split up this 

interval into n very small sections, so that the chance to find two events 

in one section is negligible. The probability that one section contains 

one event is then p=λ/n. 

▪ The probability of finding k events in the n sections is given by the 

binomial distribution,

P(k;n,p=λ/n)

which approaches the Poisson distribution for large n.

▪ Note: the Poisson distribution is defined only for integer values of k!
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Poisson distribution for different

expectation values

0

2

Total probability

expectation value and vari

( , ) 1

(k)  

ance

(k) (k)

k

P k

E

Var





 



=

=

=

= =



[this is consistent with the binomial distribution: 

(k)  and 

Var(k) (1 ) (1 )  for ]

E np n
n

np p n n
n n




 


= = =

= − = − → →

3

1/ 23

3 3/ 2

'  (third central moment)

'
= , 

i.e., the distribution becomes increasingly symmetric 

for incre

skew

asin

ne

g 

ss

 

 
 

 



−

= →

= =

all cumulants are

identical (=λ)!
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▪ application: 

Poisson distribution describes asymptotic behavior of binomial distribution 

with constant λ=np, i.e., with a (very) low probability for the individual 

process. Thus, it should be applied when there are many trials but only 

few successes, and the mean (expectation value) is known. Since one has 

no idea on the number of trials (only that there are many), it describes the 

cases of sharp events occurring in a continuum.

▪ examples: 

• the number of flashes of lightning in a thunderstorm (it is meaningless to ask 

how often there is no flash) when the mean is known

• the number of clicks in a Geiger counter (meaningless to ask about “non-

clicks”) when the mean is known

• the actual number of photons from an average signal/background 
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A historical example

▪ Statistics on the numbers of Prussian soldiers kicked to death by 

horses. In the 19th century is was reported that there were 122 deaths 

in ten different army corps over twenty years, i.e., the mean number of 

deaths per corps and per year is λ=122/200=0.61.

▪ The probability of, e.g., no death is then

P(0,0.61)=0.5434  per year and corps. 

▪ In twenty years and ten corps, there should be 108.7 cases where no 

death should have happened. Actually, 109 such events have been 

reported.

▪ (1*65+2*22+3*3+4*1=122) 

Number of deaths 

per year and corps

actual number

reported for 20 

years and 10 corps

predictions from 

Poisson statistics

0

1

2

3

4

109

65

22

3

1

108.7

66.3

20.2

4.1

0.6
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Supernova 1987A

▪ The following table gives the numbers of neutrino events detected in 

10 s intervals by the Irvine-Michigan-Brookhaven experiment on 

Feb. 23rd 1987 (around which time SN1987A has been firstly seen)

▪ The average number of events per interval (ignoring the interval with 9 

events) is 0.77

▪ The Poisson predictions agree well with the data, except for the interval 

with the 9 events. Thus, the background due to random events is 

Poisson and well understood, and the nine events cannot be due to 

fluctuations, but must have come from a different event (the supernova).

no. of events 0 1 2 3 4 5 6 7 8 9

no. of intervals 1042 860 307 78 15 3 0 0 0 1

prediction 1064 823 318 82 16 2 0.3 0.03 0.003 0.0003
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Two Poisson distributions

▪ If there are two separate types of Poisson distributed events, and we do 

not distinguish between the two, then the probability of k=k1+k2 events is 

also Poisson, with mean equal to the sum of the two individual means.

P

0 0 0

Proof via characteristic function of Poisson distribution

( )
( ) ( , ) exp( ) exp ( 1)

! !

 characteristic function of sum of indepenRemembe dentr:  va

k it k
itk itk it it

k k k

e e
t e P k e e e e e

k k


  

   
−  

− −

= = =

 = = = = = −   

1 2

1 2

sum P( ) P( ) 1 2

1 2 P( )

riables is product

of their characteristic functions (Chap. 3) 

( ) ( ) ( ) exp ( 1) exp ( 1)

exp ( )( 1) ( ).

Thus, the sum of two independent, Poisson

it it

it

t t t e e

e t

 

 

    

   +



   = = − − =   

 = + − = 

1 2

 distributed variables is Poisson-

distributed as well, with =  +

1

1 1 1 2 1 2

0

( ) ( , ) ( , ) ( , )   
k

k

P k P k P k k P k   
=

= − = +
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▪ can be generalized to any number of Poisson processes

▪ example: signal with background

• expected are S signals with an average background B. The average 

fluctuation (standard dev.) of the observed number of events k is thus

• If we subtract the average background from the signal, this fluctuation 

remains conserved, of course.

• If the exact expectation value of the background is not known, the 

uncertainty is even larger (error propagation)

(S+B) S B = +

For an expected signal =100 and background 50 we observe

on average 150 events with a standard deviation of 150. After 

subtracting the background, the average signal is =100 150

S B

S

=


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Uniform distribution

▪ so far, only distributions of one or more discrete variables discussed

▪ will now turn to continuous distribution functions

▪ most simple case: the uniform distribution (already mentioned before):

constant probability density in a certain interval, elsewhere 0.

( )       

( ) 0      ,  

From the normalization, ( ) 1,  we obtain

1
,  

f x c a x b

f x x a x b

f x dx

c
b a



−

=  

=  

=

=
−



and the distribution function becomes

1
( )        

-

( ) 0                              

( ) 1                               

x

a

x a
F x dx a x b

b a b a

F x x a

F x x b

−
= =  

−

= 

= 


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▪ uniform distributions with a=0, b=1, i.e., f(x)=1 and F(x)=x, 
created by random number generators (RNGs).
Note: in many RNGs, “0” not included, i.e., lowermost value 
=ε (machine dependent)

▪ important for Monte Carlo methods

▪ different distributions obtained from transformation methods 
(see Chap. 3/4)

2

1 1
(x) ( )

2

1
(x) ( )

12

b

a

E xdx a b
b a

Var b a

= = +
−

= −


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Gaussian (or normal) distribution

▪ assume binomial distribution with random variable k

use reduced variable 

k k k
u

( ) exp exp (1 )     (see exercises)

n

u

np

itnp it
t p p

 


 

− −
= =

    
 = − + −    

    

( )

 
0

!
( ; , ) (1 )

! !

characteristic function (see exercises):

( ) ( ; , ) exp( ) (1 )   

k n k

n
nitk

k

n
P k n p p p

k n k

t e P k n p it p p

−

=

= −
−

= = + −

( )

consistent with charact. function of Poission distribution: ( ) 1 exp( )

(e 1)
1 exp (e 1) ,    cf. page 101

n

n nit
it

p t it
n n n

n

  





→

 
= → = − + = 

 

 −
+ →

 
 
 
 
 
  

− 
 
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( )

2
2 2

2

2

2

2

2 3

3

1 1 1
ln ( ) ... ... ...

2 2 2

1 1
               

ln 1 ..

  ( )
2 2

   

.

 

2 3

u

itnp it t it t
t n p p

itnp itp t t
n p p O


    


  

 
 



−

         = − + − + − − + + =                 

     
= − + − +

 
+ = − + −

+      




    





( )
2

2 3

2 3

2

1
             ( )

2

1 (1 )
                 ( )

2

itnp itp t
n p p O

np p
t n O


  




−

−

  
= − + − − + =     

−
= − + 
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Gaussian (or normal) distribution

( ) exp exp (1 )

ln ( ) ln 1 exp 1

n

u

u

itnp it
t p p

itnp it
t n p


 


 

    
= − + −    

    

   
= − + + −    

   

( )
2

1
l

Expand in /    / (1 - ),   small quanti

n ( ) ln 1 ..

ty for larg

.
2

e 

u

i

t t np p n

tnp it t
t n p



  

   
= − + + − +       



 
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2

2

Thus, accounting for (1 ) and in the limit of n ,  we find

1
( ) exp

2

This is the characteristic function of a binomial distribution, using a reduced

random variable, in the limit of  lar

u

np p

t t





= − →

 
= − 

 

2

ge  [ , contrasted to Poisson]

Back-transformation yields the corresponding p.d.f.,

1 1
( ) exp

22

which is called the Gaussian or normal distrib

no assumption regard

ution.

ing n p

f u u


 
= − 

 

2

(u) 0
2 2

2 2

0 0

Since u is a reduced variable, (u) should be 0 and (u) should be 1.

Test:

1 1
(u) exp 0

22

'( ) ( )
(u) 1,        q.e.d.

E

t t

E Var

E u u

d t d t
Var

dt dt



 



−

=

= =

 
= − = 

 

= − = − =


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2

2

2

2

2

A more general form of the normal distribution is

1 ( )
( ) exp .

22

Since (x)  and (x) ,  the conventional representation is

1 ( )
( ) exp

22

The inflection points of this di

x a
f x

bb

E a Var b

x
f x







 −
= − 

 

= =

 −
= − 

 

stribution (zero curvature) are located at .  

Once again, this is the limit of a binomial distribution with the above 

expectation value and variance, in the limit .n

 

→

( )2 2

The corresponding characteristic function is  (with x= u )

1
( ) ( ) exp( )exp    see exercise

2

The characteristic function of a normal distribution with

zero mean is itse

Theor  

l

em:

itx

x t e f x dx it t

 

  

+

 
= = − 

 


f a normal distribution with zero mean. The product

of the variances of both distributions is one.
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2 2

n

0

2 4

1 2 3 4

The characteristic function transformed to y x  is

1
'( ) exp

2

1 '( )
With '  (Chap. 3), we find the central moments

' 0,    ' ,    ' 0,    ' 3  (remember curtosis, Chap. 3

n

n n

t

t t

d t

i dt



 




     

=

= −

 
= − 

 

=

= = = =

2 1

2

2

),

and

' 0,  0,1, 2,3,...

(2 )!
' .

2 !

k

k

k k

k

k

k



 

+ = =

=

2

( ) /2
2

2

Corresponding cumulative distribution functions are

1 1
( ) exp

22

1 ( ) 1 1
( ) exp exp

2 22 2

x

o

xx

o

x x dx

x x
x dx u du

 




 
 

  

−

−

− −

 
= − 

 

 − −   
= − = − =     

    



 

1

2

2 n

Cumulants: 0 (here; otherwise = ),  

                    , 0 for n 3

 

  

=

= = 
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( )  

( )

0

0

0

0

The probability of observing t within a band width 2  around 

the expectation value zero is

t ( ) ( ) ( )    

2 ( ) 2 ( ) 2 ( )

( ) (

2

)

1

x x

x x

x x

o

f u f u

x

P x f u du f u du f u du

f u du f u du f u du x

− −

− −

 = = + =

= = − −

= −

=

  

  

“3σ-error“

( ) ( )

and

the  probability of a random variable being observed within an 

integer multiple of the standard deviation from the mean

x 2 1 2 1

                                                 

o o

n
P n n


   



 
−  = − = − 

 

( ) ( ) ( )

( ) ( ) ( )

                                         from Chebychev inequality (Chap. 3) 

x  0.682          x  0.318              x  1.0

x 2 0.954          x 2 0.046             x 2 0.25

P P P

P P P

P

     

     

−  = −  = −  

−  = −  = −  

( ) ( ) ( )x 3 0.998          x 3 0.002              x 3 0.11P P     −  = −  = −  
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Multivariate normal distribution

1 2 nThe joint normal distribution of  variables (x ,x ,...,x )  is defined as

1
( ) e

symmetric

xp
2

with  a ,  Matrix. Since ( ) symmetric about ,

( ) ( )d ,  i.e.,   i.e., 

n

k

n n








−

=

 
= − 

 



− =

T

T

x

x (x - a) B(x - a)

B x a

x a x x 0

1 1

1 2 1 2

0

...    ... ( , ,..., )d d ...d ...

0

           .      

n n

n n

x a

x x x x x x

x a

E



 
 

−   
   

=
   

  −   

 
 
 

 

(x) = a = μ

( )
vector

1 2

Differentiating w.r.t.   (=0),  we find for the  th component

1
( ) ( )d ( ) +( ) ( ) 2 ( ) d ,

2

and for all components (  columns   matrix)

, ,..

i ik k

i

i

B x a
a

n n n

a a

  
 

− −

   
− = − − − − − =  

   

→ 

 

 

 

a

x a x x x e x a x x 0

 ( )

( )

( )

 matrix

., ( ) ( )d ( )d ,  which implies that

   (  symmetric) and thus

The Matrix  in the exponent of the inve ( ) is just rse 

n n

n

E

E

a
 



 

− −

−



 
− = − 

 

= =

 

T 1

T

T

C (

x a x x I - (x - a) B(x - a) x x = 0

(x - a)(x - a) B = I

x - a)(x

x

B

B

- a)

B of the covariance matrix,

the vector formed by the ex

 

and th pectatie ve on vcto alr  ues.a
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Binormal (or bivariate normal) distribution

2

1 1 2

2

1 2 2

2

2 1 2

2 2 2 2

1 2 1 2 1 2 1

cov(x ,x )
With  ,  we obtain

cov(x ,x )

cov(x ,x )1

cov (x ,x ) cov(x ,x )







  

−
 

= =  
 

 −
=  

− − 

1
C B

B

( ) ( )
2 22

1 1 1 2 2

1 2 2 2

1 2 1 2

2

2

1
0

1 1 1
( , ) exp exp ,  i.e.,

1 2 2 2
0

 becomes the product of two normal distributions (

Case 1: independent variables

the leading factor from n

x x
x x

  


   





→

 
     − −
 = → = − −   

    
   

 
 

B

( ) ( )
/ 2 / 2

ormalization)

det( )1
(for  variables with vanishing or non-vanishing covariance, one obtains 

2 det( ) 2
n n

n k
 

= =
B

C

( )

( ) ( )
2 2

1 1 2 21 1 2 2
1 2 2 2 22

1 1 2 21 2

i 1 2
i

1 1
( , ) exp 2

2(1 )2 1

x cov(x ,x
Let's use reduced variables, u , 1,2   and  correl

Case 2: dependent variable

ation coefficients 

s

i

i

x xx x
x x

i

  
 

      






  − −− −
 = − − + 

 − −   

−
= = = 1 2

1 2

)
cov(u ,u )

 
= →
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ellipses of covariance for

various binormal distributions, 

with different ρ (all other para-

meters identical)

113

1 2

1 1 2 2

The  of  and  are located at 

 and     ( ), 

i.e., the ellipse fits exactly into the rectangular box between these limit

indep

s. 

The total probability of observ

endent o

extrem

ing 

e values

f !

x x

     

1 2a pair of  and  inside the ellipse is 1 exp( 1/ 2),

see below.

x x − −

1 2

2

2 2

1 2 1 22

det 1
( , ) exp( ),    with

2 2

11

11

Lines of constant probability density result from constant exponent

1 1 1
( 2 ) const

2 1 2

u u

u u u u











= −

− 
=  

−−  

   
+ − =   

−   

TB
u Bu

B

(This corresponds to the  1-D case where at 1 (i.e., ( - ) ) 

the prob. density has 

Let const=1,       i.e., the prob. density has decreased by a factor of

 exp( 1/2)=1/ e  from the maximum, (0,0). 

u x  



=   =

−

( ) ( )
2 2

1 1 2 2 21 1 2 2

2 2

1 1 2 2

1 2

decreased by the same factor. )

In the original variables, we then have

2 1 ,

which is the equation of an ellipse with center at ( , ) and is called the

ellipse of 

 

x xx x  
 

   

 

− −− −
− + = −

covariance (Fehlerellipse). 
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1 2

By a simple rotation, the correlation can be put to zero 

(diagonalization by orthogonal transformation).

The corresponding transformation for = =0 

(in case, correct for non-vanishing expectation val

 

1 1

2 2

1 2

2 2

1 2

1 2

1

ues) is

' cos sin
  , with

' -sin cos

2
tan 2 ,    

and new semi-major and semi-minor axes (corresponding 

to the variances of  th uncoe variables '  and 'rrelated )

x x

x x

x x

 

 

 


 



    
=    
    

=
−

2 2 2

'2 1 2

2 2 2 2

1 2 1 2

2 2 2

' 2 1 2

2 2 2 2 2

1 2 1 2

2

1

1 2 ' ' '2

1 2 1

(1 )

sin cos 2 sin cos

(1 )

cos sin 2 sin cos

In the  coordinate system, the distribution has the simple form

'1 1
( ',

rot

') exp
22

ated

x
x x

  

       

  


       


  

−
=

+ −

−
=

+ +

= −
2

2

' 2

2

1 2

'
,

and is also centered at '= '=0. 

x



 

   
+  

   

1 2

'

'

1

'

2

'

2

1=0.7        (green) = 31.60 ,  0.62

=0.0    

covariance ellipses centered at (2,2), with 1,

        (red) =    0.00 ,  1.0000,  

52,   1.6152

= 0.3       (blue) =  20.

 2  , a

1

d

2

n

 

 

6 

   

 

   

→ = =

=

→ − = =

− →

=

' '

1 2

' '

1 2= 0.999 (black) =  35.26 ,

,  0.9188,   1.

 0.0365,   1.7316

4683

   

 = =

− → = =

1 1  =  2 1  

1 1 2 2

' '

1 2

All ellipses fit into the rectangular box  and !

In the rotated coordinate system  (by ),  x  and x  are uncorrelated!

   



 
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' '

1 2

The probability enclosed by the covariance-ellipse can be calculated as follows:

Consider the rotated coordinate system, and work in  variables. In this case, the p.d.f. reads

1
( , )  exp(

2
u u


=

reduced

' 2 ' 2

1 2

2 1

' ' ' ' 2

1 2 1 2

circle 0 0

1
( ),

2

and the total probability inside the covariance-ellipse (which in the transformed variables is the unit circle) 

can be calculated from

1
( , )  exp( / 2)

2

u u

u u du du d r r dr 


− +

= − 

1

2

2

1

0

This is the probability that any ( , ) pair is located within the covariance-ellipse, 

and applies for all binormal distributions, in

exp( / 2) 1 exp( 1/ 2) 0.

dependent of their specific co r

93

r

3

x x

r



= − − = − − =

(distribution in transformed coordinate system independent of c

elation

orrelat

 

i

term 

on).

The area inside the covariance ellipse is called the "1-  confidence region", since it comprises 

the region where the p.d.f. has decreased from the maximum by a factor of exp( 1/ 2),

in analogy to the 1



−

1,2 -D case (independent of correlation and the specific ).

2 2

Similarly, one can calculate the 2-  confidence region (where the probability density has decreased by 

a factor of exp( (2 ) / 2 ) exp( 4 / 2),   with a total probability inside the corresponding ellipse



 − = −  of 

1 exp( 4 / 2) 0.865                

(in the above integral, replace the upper limit by r=2), and so on for the n-  interval.

Finally, one can generalize this consideration to arbitrary dimensions. 



− − =
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Generally, the 1-  confidence interval denotes the region where the probability density has decreased by the factor of exp( 1/ 2) −

binormal distribution as before, 

with 0.9, and contour plots 

for the 1-,2- and 3-  covariance ellipses

In the lower panel, the coordinate system 

has been transformed (rotated, streched)

and displays 





= −

the transformed binormal 

distribution (with unit variances and =0) 

and corresponding covariance "ellipses" 

for =1,2,3

Note that the volume (corresponding to 

the total probability inside the contour l





evels) 

remains preserved under the transformation

(e.g., for thin ellipses with large 

the probability densities are larger)


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covariance ellipses for σ=1,2,3, 

corresponding probabilities and

standard-deviations with respect

to the two directions

2σ1

2σ2

left: probability inside n-σ confidence region; right: interval limits in units of σ,

for a given confidence level (probability)

deviation      confidence-

level [%] 

≈ ≈
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χ2-distribution

2

Remember from Chap. 3, "calculation of the transformed p.d.f.": 

Calculate the distribution for the  of a reduced r.v. 

which itself should be normally distributed. 

(x -

square

example 

)
u  

2 

 and 




 
=  
 

2

2

( )

2

2

2

/ 2

1
 ( ) e

2

,

which is the so-called -distribution for one degree of freedom.

For convenience, we denote  by u in 

1
( )

2

(u) 1,    

the following.

Now, let's add  square

 (u)

s of

2

u

x

f x

g u e
u

E Var

f





 







−

−

−

=



=

=

=

2

2 i

2
i=1

 independent, normally distributed and reduced 

random variables 

(x - )
u

f
i

i





= =
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2This results in the , and plays an 

important role in the comparison of measurements and theoretical predictions

(e.g., line

-distribution for  degrees o

ar regressions). In this cas

f fre

e (e.

ed

g v

o

 

m

.,

f

/ 2 1 / 2

/ 2

1
( ) ,   

( / 2)2

(u) ,     (u) 2  

ia the charact. function)

with Gamma-function  and

(from the definition and using the calculation rules

                                       

   

     

f u

f
g u u e

f

E f Var f

− −=


= =



2

max

2

for expectation value and variance)

Maximum (mode) of  -distribution for 2 at 2. 

For 2,  we obtain an exponential distribution

For large ,  -distribution approaches normal distribution.

The

f u f

f

f





 = −

=

 role of the degrees of freedom will be discussed in Chap. 8
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The central limit theorem (CLT)

 

i

1

i i

Remember: Normal distribution was derived as the asymptotic distribution for

x  lim x

when x  describes the outcome of an experiment with two possible results, x 0,1 .

Let's now investigate more 

n

n
i

→
=

=

=



general sums of this type.

i

2

same, arbitrar

 

We assume that the x  are independent r.v. and originate from the  distribution 

with  mean  and variance . The char

y

well-defin acteristic 

"Classical" theorem

function  of this d

:

ed istr 

 

i
'

'

'

i i

2
(x ) 2

2

0 0

2 2 3

ibution 

(for x x ) is 

( ) ( )
( ) ( ),  with 0 and 

Thus, the Taylor expansion is given by  (0) 1

1
( ) 1 ( )

2

i

i

it

x
t t

x

d t d t
t E e

dt dt

t t O t





 
 



 

−

= =

= −

= = = −

=

= − +
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i
'

'

i i
i

u i

2

We introduce now a new variable

x x
u ,  which simply contracts the scale. The corresponding charact. function is

x
( ) ( ) (exp( )) ( ),  and therefore

( ) 1 ....     
2

i i

i

it

u x

u

n n

t
t E e E it

n n

t
t

n



 


 

 



−
= =

−
= = =

= − + 3/ 2             with higher terms at most of order ( )O n−

i

Making use of the fact that the characteristic function of the sum of  independent 

r.v. is given by the product of the individual charact. functions, and going to the limit ,

we find for

u lim u
n

i

n

n

→

→

=

( )

i

1 1

2

2

x
lim      that

( ) lim ( ) lim 1 ....
2

1
( ) exp( ),

2

which is just the charact. function of the standardized normal distribution, 

with expectation value 0 and va

i

n n

n
i

n
n

u u
n n

u

n

t
t t

n

t t





 



→
= =

→ →

−
=

 
= = − + 

 

= −

 

riance 1.
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1

1 1

2

In terms of the  of the original variables x  then, 

x 1
x lim ( u + ) l

ari

im u lim u ,

(x) ,   (x) /

the back-transformed distribution is normal,

thmetic mean

n

n n
i

i i
n n n

i i

n
n n nn n

E Var n


 

  

 

=

→ → →
= =

 
= = = + = + 

 

= =


 

i

For a corresponding (easier) proof using the 

 with mean  and standard deviation / .

Thus, the "classical"  reads:

If the x  are a set of

properties of , see exercises

i

.

 nd

cumulants

n 

central limit theorem

2

i

1

2

ependent r.v. each distributed with (existing) mean  and variance ,

then in the limit of  their arithmetic mean 

x 1
x x

is normally distributed with mean  and variance / .

n

i

n

n n

n

 

 

=

→

= = 

Under certain assumptions 

[see, e.g.,                   : the Lyapunov criterium ("weak" asymmetry) o

"generalized" 

r the

even weaker Lindeberg condition], a central limit theorem can be formulated.

If t

2

1 1

hese conditions apply, the sum of arbitrary (i.e., not identical) distributed r.v converges

to a normal distribution, with mean  and variance  .
n n

i i

i i

 
= =

 

Wikipedia
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theorem not valid for “pathologic“ 

distributions with undefined/non-

existing mean or variance, e.g., 

the Cauchy (Lorentz) distribution

http://en.wikipedia.org/wiki/Central_limit_theorem
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Examples for the CLT

CLT for several cases:

upper panel: arithmetic 

mean of  n=1, 2, 30 

uniformly distributed r.v.

Overplotted is the 

corresponding Gaussian

with μ= 0.5 and 

variance =1/(12*n)

middle panel: arithmetic

mean of  n=1, 2, 30 

exponentially (λ=1)

distributed r.v.

Overplotted is the 

corresponding Gaussian

with μ= 1 and 

variance =1/n

lower panel: sum 

of  n=1, 2, 30 

exponentially (λ=1)

plus n=1,2, 30 

uniformly 

distributed r.v.

overplotted is the 

corresponding Gaussian

with μ= n*1+n*0.5 and 

variance =n*1+n/12.

sample size =1e6, bin size=0.005
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▪ The CLT in its generalized form is the base of 

assuming experimental errors as being normally 

distributed:

▪ each measurement error is assumed to consist of an 

accumulation of small individual errors (with unknown 

distribution), whereas their sum (the measured error) 

can be described by a Gaussian.
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log-normal distribution

▪ single-tailed probability distribution of a random variable whose 
logarithm is normally distributed. If y is a random variable with a normal 
distribution, then x = exp(y) has a log-normal distribution 

▪ likewise, if x is log-normally distributed, then log(x) is normally 
distributed. (The base of the logarithmic function does not matter) 

▪ a variable might be modeled as log-normal if it can be thought of as the 
product of many independent factors which are positive and close to 1. 
(see figure next page)

▪ log (x) = log of product = sum of log’s -> CLT ->  log (x) normally 
distributed

▪ plays an important role in, e.g., economy, biology, mechanics and 
astrophysics

2

2

2

2

1 (ln( ) )
( , , ) exp( )      or

22

1 (ln )
(ln , , ) ln exp( ) ln     ln  is normally distributed 

22

                                                                                   

x
f x dx dx

x

x
f x d x d x x


 




 



−
= −

−
= − →

2

2 2

/ 2

2

         (of course, w.r.t. ln )

(x)    

(x) ( 1)

d x

E e

Var e e

 

  

+

+

=

= −
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pdf (left) and cumulative distribution function (right) for a log-normal distribution with μ=0 and different σ

as a function of x (linear scale) 

5

7

i i

i=1

i

Left: simulation of a log-normal distribution from a

sample of 10  r.v. which are distributed according to

x= x     with independent x ,

where the x  are uniformly distributed within 

the interval 0.4



 ,1.6 .

The estimators (Chap. 7) for  and  are

ˆ ˆ=-0.47 and =1.01

Overplotted is a theoretical log-normal distribution 

with these parameters

 

 

http://upload.wikimedia.org/wikipedia/commons/4/46/Lognormal_distribution_PDF.png
http://upload.wikimedia.org/wikipedia/commons/e/e6/Lognormal_distribution_CDF.png

