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Stochastics: probability theory and statistics

Stochastics [from ancient Greek: otoxaoTikn TEXVN, (stochastike
techne), Latin: ars coniectandi, i.e., the art of conjecture, “die Kunst
des Mutmaldens”) comprises, as a generic term, the fields of
probability theory and statistics.

A stochastic (or random) process is one whose behavior is non-
deterministic in that a system's subsequent state is determined both by
the process's predictable actions and by a random element.

Statistics is a mathematical science pertaining to the collection,
analysis, interpretation or explanation, and presentation of data.
Statisticians improve the quality of data with the design of experiments
and survey sampling. Statistics also provides tools for prediction and
forecasting using data and statistical models. Statistics is applicable to a
wide variety of academic disciplines, e.g., natural and social sciences
and business.

The word statistics can either be singular or plural. In its singular form,
statistics refers to the mathematical science. In its plural form, statistics
IS the plural of the word statistic, which refers to a quantity (such as a
mean) calculated from a set of data (see Chap. 7)
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Fundamental terms of statistics and data analysis, with examples from physics and astrophysics

9.

Description of data

. data types, binning, bar charts, histograms; averages, variance and standard deviation of a data-set

Probabilities
. axioms, approaches, Bayes-theorem
Probability distributions functions — one random variable
. discrete and continuous distributions, expectation value, central moments, variance, Chebychev’s inequality, moments, characteristic function,

cumulants, variable transformation

Distributions of several random variables —multivariate p.d.f.s

. marginal distributions, convolution, moments, covariance and correlation, variable transformation, variable reduction, distributions with more than
two variables

Important distributions and the CLT

. binomial, multinomial, Poisson, uniform, normal, binormal, chi-squared, log-normal, central limit theorem (CLT)
Errors

. measurement errors, error propagation, systematic errors

Estimation

. random sampling, estimators (bias, consistency, efficiency), basic estimators, stratified sampling, finite population, likelihood (quotient and function),
maximum likelihood (ML-) estimators, information inequality and minimum variance bound, minimum variance estimators, asymptotic properties of
ML-estimators, errors on ML-estimators, covariances

Least squares

. chi-squared minimization, fitting to a straight line (“linear regression”), variances and correlation, binned data, goodness of fit, errors on x and y,
outlook on arbitrary linear and non-linear models

MCMC (Markov Chain Monte Carlo) — sampling the posterior

. how to obtain the distribution and errors of model parameters given a set of measurements, and a corresponding example

10. Confidence intervals and hypothesis testing

. confidence intervals (classical and based on likelihood function), errors of first and 2nd kind, significance, power, F-test, Student t-test, likelihood-
ratio test, x2-test, Kolmogorov-Smirnov-test, Spearman-rank test, Wilcoxon rank sum test (Mann-Whitney U-test)
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1. Description of data

= Data types

guantitative or numeric: can be written down as numbers

— discrete (integers; example: numbers of seats in a car) or

— continuous (cannot be recorded exactly, affected by rounding;
example: length and weight of a car)

gualitative or non-numeric: cannot be written down as number (example: color of a car;
but many qualitative data can be transformed to numeric data, e.g., the RGB values of a
color, or ‘red=1,green=2,blue=3,etc.’)

= Binning

to display information in a clear and concise way

easy for discrete data;
example: results of throwing 20 times a die (see also next page)
{4,3,6,1,3,4,5,2,6,2,4,3,1,2,6,5,2,4,3,5} —{2x1,4x2,4x3,4x4,3x5,3x6}

more difficult for continuous data:

— need to group adjacent numbers using a range of values to define a bin
— further rounding and loss of precision
— usually, uniform bin size, but sometimes also different sizes



» bar char: displayed number proportional to length of bar

— can be used also for qualitative (non-numeric) data

results of 20 times throwing a dice

1 2 3 4 5 6
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color distribution of a sample of 250 cars
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... and histograms

« histogram: displayed number proportional to area of bin

— important if bin size not uniform

— can be used only for quantitative data, since bin-size has a (numerical)

meaning
* bin size

— if bins too narrow, very few events per bin, and distribution dominated by

fluctuations

— If bins too wide, real details become obscured

— ideally,

- atleast 51010 events per bin
- difference between contents of adjacent bins should be small

& [TTT T[T T[T [T TIrr o 10

Number of students

Age

v b bl e ] I

il

Ol
22.523.023524.0245750 22.523.023.524.024.525.025.5

Age

20

0

22523.023.524.024.525.025.5

Age

Example:

Age distribution (in years) within a
group of students in their 2" student
year. Note the effect of choosing
different bin sizes.

left: 0.25 yr, middle: 0.5 yr, right: 1.0 yr
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Averages

The arithmetic mean

best and most useful way to describe data by just one number (more later...)
If there is a set of data with N elements, then the mean value of x is

Analogously, the mean of any function f (x) is given by

— 1 N
f=—>» f(x).
N2 )
Don't confuse f = f (x) (the mean of the function) with f (X) (the function of the mean).
[see problem set 3]
If the data have been binned, and bin j corresponds to a value x; (where x; should be

centered) and contains n; data, the means can be written as
j max

jmax _
Yzianxj and f =ianf(xj).
N 45 N 4

Note that in the upper case one summs over elements i, and in the lower over bins j!
Note also that there will be differences between means calculated from unbinned and
binned data, mostly because of a finite bin size (different x;, in the range x; + A;,

for the individual elements, and one x; for all data in bin j).
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Other means

geometric mean: X, = VX X, .- Xy (x. >0)
inequality of arithmetic and geometrical mean (proof next slide):
Xyeom < Xaritnm» €QUAlity only for x, = x, =...=x,

N astrophys. example:
Rosseland optical depth
Ux +1/%, +...+1/ %, P P

harmonic mean:

2 2 2
X, + X5 4t Xy

root mean square (rms): \/ N

mode: most popular value in the data set
(or ‘highest’ bin)

median: point with half of the data elements below
and the other half above it. Certain subtleties involved
In precise definition (see Chap. 3)
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Geometric mean

" geometric mean: Ygeom — N/X]_ ) X2 Tt XN (XI 2 O)

inequality of arithmetic and geometrical mean:
Xoeom < X,

geo

equality only for x, = X, =... = X,

arithm?

Proof (George Polya):
Forany x>0, exp(x)>1+ x (Inequality for exp-function). Thus,

for arbitrary x. : exp(_X' -1)>—

arithm arithm

eXp
Xarlthm i=1 arlthm

. Apply for product involving all x;,

N

Z X N X N
:Hexp[ j exp —N |=exp(N-N)=1> H [_ge"mj
arlthm Xarlthm i=1 arlthm Xarithm
= Xavitnm = Xgeom» 0-€.0. (Proof for equality trivial, requires x=0 or X, = X, Vi)

10
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Variance and standard deviation

arithmetic mean describes data with one number

need to describe the width or range of the distribution
as well, I.e., the dispersion of the data about the mean

average deviation from the mean not useful, since

force deviations to be always positive by squaring —
variance

N N —
Var(x) = %fo —(%inj :since by definition Var(x) >0 — x°>X?

11
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-Var(f):%Z(f(xi)—f_)Z:—zf(x) ( Zf(x)j

and for binned data

Var(x) =

Var(f):%Jixnj(f(xj)_f_)Z_ fonf (x)- ( fon f(x. )j

ji=1
Another way to force the deviations to be always positive is by using
their absolute values

. 1 _
— mean absolute deviation = = |x —X|

rarely used, since difficult to treat (e.g., derivatives are 'horrible")

12



IMU ¢ The standard deviation

* |s the root mean squared deviation
= |s the square root of the variance
= has similar units as x

o= «/Var(x)

For individual data sets (e.g., the age distribution of a group of students,
see previous example)

1 o1&, (1 & Y
o= St —Jﬁin (%)

i=1

If the data set is a sample drawn from a ‘parent distribution’, then an unbiased
estimate for the standard deviation of the parent is given by

N I N
S= \/ﬁZ(xi ~-X)? = %(x2 —~ Yz), with X and x* the 'conventional' arithmetic mean(s).
1< _

The origin of the denominator (N —1) will be explained in Chap. 7

13



LIMU ¢ 2. Probabilities

= Maijority of predictions affected by uncertainties (“the only certain things in life
are taxes and death”).
Thus, dealing with probabilities and statistics is sensible for everybody.
Inevitable for experimental and empirical sciences.
« accuracy of experiments restricted by precision of used devices
 underlying processes often stochastic
+ estimates for measurement quantities and their accuracy required

+ estimates with errors enable to check hypotheses. Results can be improved subsequently, by
adding new measurements and suitable averaging prescriptions.

« statistics yields mathematical algorithms to conclude, from a certain sample, on the properties of
the underlying parent population.

= Difference between observation and measurement:
An observation (event) is the element of a sample (with one or more
elements). Measurement is a parameter estimate, attributed with an
(in)accuracy.
« Example: Decay times for 10 pion decays (observations).
The estimate of the decay rate is a measurement.
 Fit to a straight line: observations are data points, slope is measurement.

14
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example 1: Polls allow to predict distribution of parliament seats. Parent population
(Grundgesamtheit) is the entity of voters, the sample is a representative selection of
them. Important to know the accuracy of the prediction.

example 2: Determine the mean life time of an unstable nucleus, from the observation
of 100 decays. Randomness induced by quantum mechanical effects. Sample
representative for the entity of all possible decays, if experimental device able to
measure all decay times (between zero and infinity) with sufficient precision.

example 3: Determine the frequency of a pendulum, from 10 observations. The
estimate for the actual frequency and its uncertainty are determined by suitable
averages. It is assumed that the frequency can be determined with arbitrary precision
for an infinite number of observations, and that a finite accuracy is the result of a
restricted number of observations. Actual observations are a sample collected from an
infinite number of possible observations.

example 4: Test whether two experimental devices work similar. Compare samples
from both devices. Test whether these samples originate from the same parent
population.

15
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Axioms of probabillity

let S={E,, E,, E;, ...} be the set of possible results of
an experiment = events.

events are said to be mutually exclusive if it is
Impossible that both of them occur in one result.

For every event E; there is a probability P(E;) which is
a real number satisfying the axioms of probability
(Kolmogorov 1950):

. P(E)=0
Il. P(E, or E,)=P(E))+P(E,) if E; and E, are mutually exclusive
Il Z P(E,) =1, where the sum is over all mutually exclusive events

(simplified version of Kolmogorov’'s axioms)

16
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random events — probabilities

event E — complementary event E (not E)
from axiom Ill: P(E)=1-P(E)
and thus P(E) <1

A+B means A or B

A-B means A and B;
« if P(A-B) = 0, then A and B mutually exclusive

random events can be described by random variables
= variates

a realization of a variate Iis an observation (event)

17
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Empirical (classical) probabillities

Frequency definition (frequentists’ interpretation):
In a large number N of experiments the event A is observed to occur n

times. Then N
PA=lim
N —>w
The set of all N cases (N repetitions of the same experiment or N
simultaneous identical experiments) is called the collective or ensemble

In this case, the probability is not only a property of the experiment
alone, but the joint property of experiment and ensemble
example (von Mises, 1957): German insurance companies found that the fraction of their male clients
dying at the age of 40 is 1.1%
but this is not the probability that a particular man dies at this age. If data had been collected from
other samples (all Germans, German hang-glider pilots,...), the outcome would have been different.
Thus, the probability depends on the collective from which it has been taken.

as well: experiments must be repeatable, under identical conditions.
“What is the probability that is will rain tomorrow?”
“Will the General Motors shares raise tomorrow?”

and (old example):
are we allowed to speak about the probability that, e.g., the mass of the
Higgs particle lies in the range of 100 to 200 GeV/c?

18
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Objective probabilities

Peirce (1910): probability is a property of device/
experiment, e.g. a die

resurrected by Popper (in connection with quantum
mechanics): objective probability or propensity (in
German: Hang, Neigung)

seems reasonable when, e.g., considering equally
likely cases, e.g., due to symmetry (coin, die etc.)

breaks down for continuous variables
(transformation can make uniform, symmetric
distribution non-uniform, and there is no natural
choice for the “best” variable)

19
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4 Subjective probability — Bayesian statistics/inference

definition: conditional probability P(A|B) is the probability of A
given B is true

P(A-B)
P(B)

implies: P(A-B) = P(A|B) P(B), reasonable

definition: If P(A-B)=P(A) P(B), then the probabilities are independent of
each other: in this case, P(A|B)=P(A)!

Bayes’ theorem (published posthumously by R. Pricel763), undisputed:

P(A|B) =

“Venn-diagram”

P(A|B)P(B)=P(B|A)P(A) | [=P(A-B)]

and also
P(A+B)=P(A)+P(B)-P(A-B) | |
(generalization of axiom Il for

non mutually exclusive events)

20
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= A collection of (sub-)sets or events
E., E,, ..., E, such that
E.VE,UE;U...UE=S
(combined, ‘union’)
Is said to be exhaustive

B=(BrE)U(BrE;w(BAE)UIBAE)

= Assume E,, E,, .., E, are k mutually exclusive and exhaustive sets. Then
P(B)
=PBNE)+PBNE,)+...+P(BnNE)) (‘intersection’)
=P(B-E,)+ P(B'E,) + ... + P(B-E))
= P(BIE)P(E,) + P(BIEy)P(E,) + ... +
= 2 P(BIE)P(EY.
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= Thus, if A, mutual exclusive and exhaustive events

_ P(BIA)P(A)  P(B[A)P(A)
PATE T T > P(BIA)P(A)
and /or
P(A|B) = P(BIA)P(A) _ P(B|A)P(A)
P(B) P(B|A)P(A)+P(B|A)P(A)

with P(A) =1-P(A)
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Examples

example 1: probabilities for drawing certain cards from a well-shuffled card game
with 32 cards

P(Queen): 4/32 =1/8

P(spade): 1/4

P(spade|queen): 1/4 = P(spade) (independent events)

P(Queen of spade): 1/8*1/4=1/32 (spade and queen)

P(Queen or spade): 1/8+1/4-1/32=11/32 (not mutually exclusive)

example 2: Calculate the fraction of female students, from the fraction of women
and students in the population, and from the fraction of students among the
female population

P(A)=0.05 fraction of students in population
P(B)=0.52 fraction of women in population
P(A|B) = 0.07 fraction of students among female population
P(B[A) - P(A|B)P(B) _0.07-052 _ .
P(A) 0.05

23



MU ﬁ Examples (cont'd)

= example 3: Infected? (from Gigerenzer 2002, updated for actual numbers)

see also very interesting video on the general problem, https://www.youtube.com/watch?v=IG4VKkPoG3ko

= HIV-screening for persons without risky behavior

»  positive test-result (D) with respect to two modern tests (ELISA, Western-Blot-Test)
= in Germany: H1: one of 10000 men HIV-infected (non risk-group)

=  P(D|H1)=0.999 that positive test (D) if man infected (“sensitivity”)

=  P(D|H2)=0.0001 that positive test if not infected (“false positive”)

= Problem: even if latter prob. is low, the total number of “false positives” can be large since majority of
people is not infected, and can become comparable or even larger than total number of “true positives”
(drawn from a much smaller sub-sample)

= Calculate P(H1 |D) that there is an actual infection if a man (non risk-group) tests positive

o(H1| D) — PRIHDP(HY) _ P(D| HDP(HY)
" P(D)  P(D[HDP(HL+P(D|H2)P(H2)
0.999-10~ — 0.4998!

0999107 +0.0001-(1-10)

1 .
. P(DH2)’
P(HY)

approximation: P(D|H1) ~1~P(H2) = P(H1|D)=~

P(D|H2) < P(H1): test "OK"
P(D|H2)=P(H1): prob. that actually infected = 0.5
P(H1

P(D|H?2)> P(H1):prob. that actually infected very low, P(H1|D) r ————~2—
(D|H2)> P(H1):p y y (I)P(D|H2)

24
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ﬁﬂ Bayesian statistics/inference

so far, so good ... (if all probabilities known, not disputed)

but: applied also to statements which are regarded as ‘unscientific’ in the
frequency definition.

probability of a theory (it will rain tomorrow, parity is not violated...) is
considered as a subjective ‘degree of belief'. Subsequent experimental
evidence then modifies this initial degree of belief.

" expressed as likelihood” (Chap. 8)
P(resTJAIt|theory) posterior = likelihood
P(theory|result) = P(resul P(theory) evidence
‘posterior’ / o ({ , ‘prior’
eviaence

What is the probability of a theory???

if complete ignorance, uniform distribution assumed ...
(see example below, “The first night in paradise”)

otherwise, suitable choice due to symmetry arguments, laws of nature, empirical knowledge, experts opinion...

But: with respect to which parameter?
(example: mass or mass? give different priors)

25



LMU ﬁﬂ

= example: assume you toss a coin 3 times and obtain always “head”. Calculate
probability that coin is a phoney, i.e., has a head on each side.

P(3 heads|phoney)
P (3 heads|phoney)P(phoney)+P(3 heads| not phoney)(1- P(phoney))
P(3 heads|phoney)=1

P(phoney|3 heads)= P(phoney)

3
P(3 heads| not phoney):[%j =0.125

prior : P(phoney)=77?

= |f you have drawn the coin from your pocket, the prior should be very small.
Let P(phoney)=10°%.Then
P(phoney|3 heads)=8- 10, i.e., reasonably small

= Now assume that you have played against the car salesman Honest Eddi for a
beer, and that Honest Eddi has given you the coin. In this case, the a priori
probability that the coin is a phoney might be higher, you estimate 5%, and
one finds P(phoney|3 heads)=0.3, which is a considerable chance.

26
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From G. Gigerenzer 2004, “The evolution of statistic thinking”, Unterrichtswissenschaft, 32

The first night in paradise

Der erste Tag im Paradies geht zu Ende. Adam und Eva legen sich zur Ruhe. Sie hatten am Tag
die Sonne aufgehen schen und sie bewundert, wie sie am Himmel ihre Bahn zog und all die
herrlichen Biume, Blumen und Végel beschien. Irgendwann wurde es aber kiihler, wihrend die
Sonne unter dem Horizont verschwand. Wiirde es jetzt auf ewig dunkel bleiben? Adam und Eva
fragen sich sorgenvoll, welche Chance sie wohl haben, dass die Sonne wieder aufgeht?

Im Nachhinein kénnten wir vermuten, dass Adam und Eva sicher waren, dass die Sonne
wieder aufgeht. Aber sie hatten die Sonne ja erst cinmal am Firmament emporsteigen schen. Was
also konnten sie erwarten? Die klassische Antwort auf dieses Problem wurde im Jahre 1812 von
dem franzésischen Mathematiker Pierre Simon de Laplace gegeben.

Wenn Adam und Eva die Sonne niemals hitten aufgehen schen, wiirden sie fiir beide mog-
lichen Ercignisse (das Wieder-Aufgehen und das Dunkel-Bleiben) gleiche Wahrscheinlichkeiten
ansetzen. Daher wiirden sie — fiir das Wieder-Aufgehen der Sonne — einen weiffen Stein in einen
Beutel stecken, aufSerdem einen schwarzen Stein fiir das Dunkel-Bleiben. Aber sie hatten ja
schon cinmal geschen, wie dic Sonne aufging, und legten deshalb cinen weiteren weiflen Stein in
den Beutel. Dort lagen jetze also zwel weifle Steine und ein schwarzer. Das bedeutet, thr Uber-
zeugungsgrad, dass die Sonne wieder aufgehen wird, war von 1/2 auf 2/3 gestiegen. Nach dem
folgenden Tag — also nach dem zweiten Sonnenaufgang, den sie erlebten — gaben sie einen dritten
welllen Stein hinzu; nun war fiir sic die Wahrscheinlichkeit fiir einen Sonnenaufgang von 2/3 auf
3/4 angewachsen. Laplaces Sukzessionsregel (Regel der Folge) gibt allgemein die Wahrscheinlich-
keit p(E| n) an, dass ein Ereignis E wieder auftritt, nachdem es # mal eingetreten ist:

PEIR =(n+ 1)/(n+2).

Ein 27-Jihriger hat in seinem Leben ungefihr 10.000 Sonnenaufginge erlebt. Daher betrdge fiir
thn der Uberzcugungsgmd, dass die Sonne auch am nichsten Tag wieder aufgehe, 10.001/10.002.
Diese Anwendung von Laplaces Regel ist auf Kritik gestoflen. Da die Regel von Laplace aus der
Regel von Bayes hergeleitet ist, zeigt diese Kriuk zugleich Probleme mit der Anwendung der
Regel von Bayes auf. Anders als bet dem HIV-Screening, wo der Grundanteil der Infektion in
der betreftenden Population bekannt ist, konnten Adam und Eva anfangs keinen Grundanteil

der Sonnenaufginge kennen. Siec konnten also nicht wissen, wie viele weiffe oder schwarze Steine

27
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sie am ersten Abend in den Beutel stecken mussten. Als Pessimisten hitten sie vielleicht einen
welllen und zehn schwarze Steine genommen, als Optimisten dagegen zechn weiffe und nur elnen
schwarzen. Wenn man keine Informationen zum Abschitzen der Wahrscheinlichkeiten hat, kann
man den méglichen Ereignissen oder Ergebnissen gleich hohe Wahrscheinlichkeiten zuschreiben.
Diese Faustregel nennt man Indifferenzprinzip. Seine Befiirworter verteidigen es damit, dass die
anfingliche Annahme gleicher Wahrscheinlichkeiten umso geringere Auswirkungen hat, je mehr
Beobachtungen man cinflieflen lisst. Beispielsweise erhilt man fiir die Wahrscheinlichkeit, dass
die Sonne morgen aufgeht, nach zchn Jahren, also nach tiber 3.650 Sonnenaufgingen, praktisch
denselben Wert, unabhingig davon, ob man als Pessimist oder Optimist begann.,

Die problematische Annahme der Indifferenz hat Laplace tatsichlich an zwei Stellen ge-
macht, und man kann das schen, wenn man die Regel von Bayes verwendet. Ay und Hj stehen
fiir die Hypothesen, dass die Sonne jeden Morgen aufgeht bzw. nicht jeden Morgen aufgeht,
und D dafiir, dass Adam und Eva einen Sonnenaufgang beobachtet haben. Dann ergibe sich die

gesuchte Wahrscheinlichkeit p(H; | D) wie folgt:
pH)p(DIHy)

HH,ID) =
pH)HDIH,) + p(Hy)p(D! Hy)

Nun kennen aber Adam und Eva die Grundrate nicht. Die Faustregel, das Indifferenzprinzip,
nimmt an: p(Hj) = p(H) = 1/2. Damit vereinfacht sich die Regel von Bayes zu:

pDIH,)

AHID) =
H(DIH,) + p(D| Hy)

Die Wahrscheinlichkeit p(DI Hj) ist per Definition 1, aber die Wahrscheinlichkeit p(DI H,) 1st

nicht bekannt. Hier wird das Indifferenzprinzip nochmals angewandt: p(D| Hy) = 1/2. Daraus
erhilt man schliefSlich:

p(H D) = 213,

Die erste Nacht im Paradies illustriert die Problematik, die Regel von Bayes in Situationen anzu-
wenden, in denen keine oder unzureichende empirische Daten vorliegen.

28
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The game show problem

USM

Adapted from Christian Rieck
www.spieltheorie.de/Spieltheorie  Anwendungen/ziegenproblem.htm

See also http://en.wikipedia.org/wiki/Monty Hall problem

. Das Ziegenproblem (auch game-show problem, Monty-Hall problem) ist eines der Probleme, das die
Gemuiter lange Zeit erhitzt hat und ganze Scharen von Mathematikern an den Rand der Verzweiflung
gebracht hat (insbesondere, weil sie von ihrer Intuition irregefihrt wurden und lange gebraucht haben, das
zu bemerken). Es gibt wohl keinen Spieltheoretiker, der Ende der 1980er Jahre nicht in irgendeiner Form
Uber dieses Problem nachgedacht hat.

. In einer amerikanischen Quizsendung steht eine Kandidatin vor drei verschlossenen Turen, hinter denen in
einem Fall ein Auto steht und in zwei Féllen eine Ziege. Die Kandidatin darf jetzt eine der Turen wahlen;
anschlie3end 6ffnet der Showmaster eine der verbleibenden zwei Tlren, und zwar immer so, dass auf jeden
Fall eine Tur mit Ziege getffnet wird, sodass das Auto also hinter einer der noch verschlossenen Tlren sein
muss. Er bietet der Kandidatin dann an, jetzt noch einmal die Ture zu wechseln oder bei der zuerst
gewéhlten Tur zu bleiben, bevor sie gedffnet wird. Die Kandidatin bekommt dann das, was hinter der von ihr
endglltig gewahlten Tur steht (wobei wir hier davon ausgehen wollen, dass sie das Auto der Ziege vorzieht).

. In einer Kolumne von Marilyn vos Savant (www.marilynvossavant.com/articles/gameshow.html) stellte
jemand die Frage, ob es in dieser Situation besser sei zu wechseln oder bei der urspringlichen Wahl zu
bleiben. Die meisten Menschen dachten damals, dass es egal sein musse. Marilyn vos Savant, die den
hdchsten jemals gemessenen IQ hat und daher als der intelligenteste Mensch der Welt gilt, antwortete
allerdings lapidar mit "wechseln ist besser" und l6ste damit die Diskussion aus, in der es Wochen dauerte,
bis sich die Menschheit auf die bis heute akzeptierte Losung einigen konnte. Davor bekam sie allerdings so
nette Zuschriften wie: "Sie sind die Ziege!", oder: "Sie haben einen Fehler gemacht. ... Wenn sich all diese
Doktoren irren wirden, dann ware unser Land in ernsthaften Schwierigkeiten." Aber wenigstens ist der
intelligenteste Mensch der Welt dadurch beriihmt geworden.
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Popular solution

The player has an equal chance of
initially selecting the car, Goat A, or Goat
B. Switching results in a win 2/3 of the
time.

LMU # The game show problem (cont'd)

q”
1 . : Host reveals .\/
- ithel t | oA
either goa _}
CL o
Player picks car Switching loses.
(probability 1/3)
| Host must N
. .
reveal Goat B "
2. “HoRg
Player picks Goat A Switching wins.
(probability 1/3)
Host must F
3 reveal Goat A
Player picks Goat B Switching wins.
(probability 1/3)

From http://en.wikipedia.org/wiki/Monty Hall problem
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mu € The game show problem (cont'd)

= Dabei lasst sich das Problem durch Anwendung des Satzes von Bayes losen.
Darin ist A_i das unbeobachtbare Ereignis (wo steht das Auto?) und Q _j ist die
Beobachtung (welche Tur 6ffnet der Quizmaster?).

. Ai: das Auto steht hinter TUr i
. Qj: Quizmaster 6ffnet Tar |
O.E.d.A. nehmen wir an, dass der Kandidat Tur 1 wahlt, und der Quizmaster Tir 2 offet (-> Q2)

wir wollen die Wahrscheinlichkeit fiir den Gewinn mit Tirwechsel berechnen, also

P(A3]|Q2), kennen aber nur die bedingten Wahrscheinlichkeiten P(Qj|Ai).

Mit Hilfe des Bayesschen Theorems und der ,rule of total probability” (A1,A2,A3 sind erschopfend
und sich gegenseitig ausschlie3end) finden wir

P(Q2| A3)P(A3)

P(A3|Q2) =
P(Q2| A3)P(A3)+ P(Q2| AD)P(AL) + P(Q2| A2)P(A2)
P(AI):1/3 Car Host Total .
loc ation: opens.  probability: Stay:  Switch:
P(Q2|A3)=1 (der Quizmaster muss Tir 2 6ffnen)
. " . U2 . poor2 U6 Car | Goat
P(Q2|A1)=0.5 (er kénnte auch Tiir 3 6ffnen) Door 1 <
P(Q2|A2)=0 (das ist ,verboten) - yonar3 I Car | Gost
insgesamt resultiert also X —Door2 ——poor3  us Goat | Car
1
1' § 2 us 1
P(A3 | Qz) — 1 1 1 — 5 Door 3 Door 2 y3 Goat | Car
1. 5 +0.5- 5 +0- 5 Tree showing the probability of every possible outcome if the =

player initially picks Door 1

From http://en.wikipedia.org/wiki/Monty Hall _problem
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The game show problem (cont'd)

Die Wahrscheinlichkeit, dass das Auto hinter der Tur steht, die
der Quizmaster geschlossen lasst, betragt somit 2/3, wogegen
sie hinter der urspringlichen Tar nur 1/3 betragt. Somit ist klar,
dass man seine Chancen auf das Auto verdoppelt, wenn man
wechselt. Vos Savant hatte also Recht.

Beachte: der Quizmaster verhalt sich wie ein rein ausfiihrender
Algorithmus, der nur eine Tur offnet, hinter der mit Sicherheit
kein Auto stent.

Falls der Quizmaster nicht wisste, wo das Auto steht, ware
P(Q2|Ai) =1/3 fur alle i=1,3, und damit P(A3|Q2)=P(A2|Q2)=1/3.
In diesem Fall wirde also Wechseln nichts bringen!
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3. Probability distributions — one random variable

random events are characterized by random variables

Probability distribution functions associate
random variables with corresponding probabilities

discrete and continuous random variables (r.v.)

in the following, probabilities refer to one r.v. x, i.e., one property which
can be quantified.

definition: (cumulative) distribution function (c.d.f) F(t) defines the

probability of finding a random variable x being smaller than t,
F(t)=P(x<t) with —co<t<oo

here and in the following we denote a random variable by non-italics and “ordinary” variables in italics
whenever a confusion might be possible (otherwise, we provide no distinction).

from the probability axioms, we obtain the following properties for F(t)
F(t) increases monotonically with t
F(-)=0
F(e) =1

There are discrete and continuous distributions
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Discrete distributions

P(x=x.)=F(Xx +¢&)—F(x —¢&)

describe probabilities for the occurrence of N discrete, different events, with
D P(x)=1
i

example: die; the probability to dice a certain number ¥; is
P(x;) =1/6, x;=i for i=1,6

discrete distributions can be treated as continuous distributions, via the Dirac
oO-function

— 1/6

P(X) F(x)

2 3 4 5 2] 0 1 2 3 4 5 6 7
Die Score Die Score

probability distribution distribution function 34
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fi(x)

Continuous distributions

Instead of probabillity distribution, define probability density f(x)
(p.d.f. = prob. density function) with
(%) = dF (x)
dx
and properties

f (=)= f(+0)=0

o0

j f(x)dx =1 thus,

—0o0

P(a<x <b)=F(b)— F(a)zj'f(x)dx and

f (x)dx is probability that x in the interval [Xx, x + dx]

\ 1.0 .

| =1 Y ?_‘_._ I

f (o, < x<x) = 05 :

_/ e [
X, IH

0.0

35
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= example: life-times of instable particles follow an
exponential distribution

f (0 = &REL)

T
—

for t > 0 and with mean life-time ¢

t t

F(t)= j f(t')dt'—)_[f(t')dt':l—exp(—t/r),

—00

and the probability that the particle lives longer than 7z is
P(t>17)=F(x©)-F(r) =exp(-1)
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LIMU 4 Expectation value

= note: if xis ar.v., than any function u(x) is a r.v. as well

= distributions have characteristic parameters such as expectation value,
width and asymmetry

= the expectation value or mean of a r.v. x results from averaging over x
according to its distribution,

(Y xP(x=%) discrete dist.
E(X)=<X>= = |

_[ xf (x)dx continuous dist.

(> u(x)P(x=x) discrete dist.

E(u(X)) =<u>=1 «
Iu(x) f (x)dx continuous dist.

\_-00

Note that the expectation value (and similar functions) is not a random
variable but clearly defined
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= calculation rules: let a,3 be constants and u and v
functions of x

E(a) =a; E(E(u))=E(u)
E(au+ fpv) =aE(U)+ SE(V);
the expection value is a linear operator!

If X,y are independent r.v., then
E(u(X)v(y))=E(U)E(v) (see Chap. 4)

= the expectation value is the centre of gravity of the
distribution
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4 Central moments of a r.v.

= Let's choose especially

u(x) = (x —u)" with E(u(x)) = ¢, = E{(x — )"}
which is called the n-th central moment or

the n-th moment about the mean (the latter fact denoted by the prime).

Lowest order central moments are
u'y=1and ¢’ =0

The quantity

p', =Var(x) = o (x) = E{(x — 1)’}

IS the lowest central moment which contains information about the
average deviation of x from the mean.

It's called the variance of X, and o Is the standard deviation
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ﬁM Variance

the variance measures the mean quadratic deviation from the mean.

the standard deviation o=V Var has the same units as x, will be
identified with the errors of measurements

the mechanical analogue to the variance is the moment of inertia
calculation rules

Var(a) =0, |Var(ax) = a’Var(x)
Var(ax + By) = a’Var(x) + p?Var(y) if x,y are independent (see Chap. 4)

different representation
Var(x) = E{(x — )"} = E(X* = 2xu + 1*) =
=E(X*)-2u°+u° =
=E(X*)—u® or <X’ >-—<x>°
The variance (and all other central moments)
IS invariant to translations of the r.v.!!!
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ﬁﬂ Variance of a convolution

= We measure a quantity x with pdf g, and the measurement is
‘smeared out’ according to a pdf h (— convolution, see Chap. 4).

= We look for the variance of the (‘combined’) measurement x'.

= Alternative interpretation: x’ is the sum of two r.v., X’=x+u,
where X is distributed according to g(x), and u according to h(u).

* Then, X’ is distributed according to (see page 73)
f(x)= j g(X)h(x'= x)dx.

with (see also problem set 2)
E(X) =<X'>=<X>, +<U>|
and

(consistent with "calculation rules"j
\
Var(x’) =Var, (x) +Var, (u)

for independent variates

* The variance of x’ is the sum of the variances of the distributions g
and h. For sequential measurements of a quantity the individual

errors add quadratically (see Chap. 6) A1
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QM Skewness

= measures the asymmetry of a distribution

n=%= E{(x— 1)} o° =..

3

_ E(x®)-3uc’ — u

3
o)

skewness is invariant to translations and elongations

sometimes one finds 4, = (1,)°

a positive skew describes a distribution with a tail which extends to the right.
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ﬁM Curtosis/Kurtosis

= measures how pronounced the tails of the distribution are

b, :Iu_ljz E{(X—,LI)4}/G4 =...
(o)

_E(x*)—4E(C)u+6E(X*) u* —3u"

4
O

v, = B, —3 is defined in such a way as to be zero for a
normal=Gaussian distribution

positive y, implies a relatively higher, narrower peak and wider wings
than the normal distribution with same mean and o,
and vice versa (wider peak, shorter wings) for negative ..
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MU ¢ Examples

0.8

0.6

0.4

0.2

0.0

0.1k

0.01 E

I 1E-3

-5

3 different p.d.f, all with zero mean and unit variance, but different skewness and curtosis.
Left: linear scale; right: logarithmic scale.

2
Letu() = *=#_ Then E(u)=0 and Var(u)=—Var(x— )= =1
o 0_2 2

The r.v. u has particularly simple properties,

q

and is called a reduced (normalized) variable
44



MU Q Examples (cont'd)

life-time (exponential) distribution
n T tn n
<t"> = [ exp(-t/7r)dt =nlz

0 7

<t>=7r H=T ]

o __ <t’>=27? ¢ —_ _ ) )
L 5 > = 1 7, = 2,7skewed, with tail to the right
7, = 6,1higher peak and wider wings

0.6 - <t*>=24r* - _
L\ t>=247"] \ 1than normal dist.

<t°>=67°

| 2 1 5
life-time (blue, 7=1) and normal (red, y=o0=1) distribution,
both distributions have identical mean and variance (indicated by dotted lines) 45
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ﬁﬂ Other parameters of a distribution

mode X, : P(X = X,) = max
if distribution has a differentiable probability density, then the mode is determined via

2
if(x):O, d—zf(x)<0
dx

dx

If one maximum, distr. unimodal, otherwise multimodal

median X, ; :

a) continuous data: F(x,:) = P(X < X,5) = 0.5, le., j f (x)dx=0.5

=00

For a continous distribution, the median divides the total range of x into two regions

of equal probability.

Example : half-live t, of a radio-active nucleus, which yields the time after which

50% of the nuclei have decayed. With respect to the exponential distribution, t,, =z1In2
b) discrete data: The value X, is the median of a data set if at most half of the events

have a value < X, ., and at most half of the events a value > x,..

After sorting the data {x;, X,,..., Xy }
Xy if N odd

Xo5 =9

%[XN + Xy J iIf N even (sometimes also differently defined)
2" 46
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The median minimizes the mean absolute deviation (Chap. 1), i.e.,

N N
%iz:l]xi —Xos| < %izﬂ]xi —X|
Big advantage of the median:
The median preserves its meaning even for (strictly) monotonic non-linear
transformations of the r.v. (later in this chapter). E.g., if X, is the median
with respect to the distribution of x, then
Yos = Y( Xg5)
IS the median of the distribution of y(x).
This property is usually not valid for the mean [see problem set 3] or the mode!

Median from a histogram by linear interpolation:

N/2-3n
n

X5 = X + -A

- M low

j
j
where N is the total number of events in the histogram, j is the index of the bin

which corresponds to N /2, x. .. IS the x-value of the lower boundary of bin j

j,low

(usually x;-A;/2 when the x-values of the bins are centered), n; the number of
events in bin j, and A, its size.

ﬁﬂ Other parameters of a distribution (cont'd)
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ﬁM Other parameters of a distribution (cont'd)

Example: Age distribution (in years) within a group of students in their 2nd
student year, with bin sizes 0.25 yr and 0.5 yr (see histogram in Chap. 1)

Original, sorted, unbinned data: N=25, x, ;=23.8 N/2_— Z i1
23.0,23.1,23.1, 23.2, 23.2, 23.3, 23.4, 23.4, 23.5, 23.5, Xos = X 1ow + k=t K ‘A
23.7,23.7,23.8, 23.8, 23.8, 23.9, 23.9, 24.0, 24.1, 24.2, ‘ ' n;

24.4,24.4,245,245,247

A=0.25:N/2= 5+3+4+2+3+2+3 ~125
Xjow 230 2325 235 2375 240 2425 245 | =4
n. 5 3 4 5 3 2 3 Xos = 23.75+ 125212 4 55— 23.775

J

8+9+5+3

Xow 230 235 240 245 A=050:N/2= — 5
n, 8 9 5 3 I=2
Xo5 = 23.5+ 125-8 45-23.75
lower and upper quartiles: F(x,,:) =0.25;, F(X,;5) =0.75
full width of half maximum (FWHM) is independent of 0 -
the tails; oL _
for a Gaussian distribution, FWHM = 2.35¢ 1/2* fax /\ .......




LIMU ¢ Chebychev’s inequality

The values of ar.v. are somewhere in the neighbourhood of the mean p.
Deviations from the mean are less probable the larger they are compared with o.
This fact is expressed by Chebychev’s inequality (which is generally very weak):

1 "The probability of x being k and more standard
P(x—ul> ka)sp, k>1

deviations away from the mean is lower/equal than k™"

Proof for a continuous r.v.
P=P(x—ul>ko)=P((x-u)’=k’c?)

P= j g(t)dt with g the p.d.f. of t=(x— u)?
k?c?
) k?c? o0
o2 = E{(x - x)*}=E(t) = j tg(t)dt = j tg(t)dt + j tg(t)dt
—00 k20'2

0
Since integration over positive values only and g(t) positiv definite (p.d.f),

b b
the integral can be approximated { j tg(t)dt > a j g(t)dt) as

o’ >0+k’c? j g(t)dt =k2c?P, ie., Psiz g.e.d.
2 2 k 49
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ﬁﬂ Alternative formulations and examples

2

qu—ykﬂ)ggp A>0

2
(o)
2 ]

P(x—ul<A)>1- A>0

Example 1: Let's assume that an A&A (Astronomy & Astrophysics) article has an
average length of 10 pages, with a standard deviation of 2 pages. By means of
Chebychev’s inequality, we find a lower limit for the probability that an A&A article

has a length between 6 and 14 pages, which is 75%:
2

PQX—10k4)21—§5=075

Example 2: Another implication is that for any probability distribution with
expectation value p and finite standard deviation ¢ at least half of the values are
located within the interval

,u—\/§0'<x<,u+\/50' (since 1—%:%j
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LMU Q Examples (continued)

Example 3
When applied to the arithmetic mean of N independent, identically distributed r.v.’s
X; ... Xy, We find one of the weak laws of big numbers.

Later, we will see that the expectation value of such an arithmetic mean is just the
actual expectation value of the distribution, and that the variance of the arithmetic
mean is the variance of the distribution, divided by N, i.e.

Y=%ZN:X“ E(X)=E(x)=u, Var(X)=Var(x)/N. Thus, P(|y_ﬂ|2/1)SV;r/g)

i=1

and the r.h.s. becomes arbitrarily small when N—<. In other words, the arithmetic
mean converges stochastically (i.e., w.r.t. probability) towards the expectation
value of the distribution.
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Moments of a distribution

remember central moments (of r.v. or distribution)
'y = B =)'y = [ O £ 00

analogue deflnltlon moments of distribution (without prime)
i =E(X" )_jx f(x)dx or u =E(X") = Zka(x X, )

Ly = 1 =<X>=E(X)

remember as well
p#1=0
u', =oc’ =Var(x)
My :7/10-3
= (7, +3)o*

the probability density function is uniquely defined by its

moments, as we will show now
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Characteristic function

definition: The characteristic function of a p.d.f. f(x) is
$(t) = E(E™) = Ie"x f(x)dx or > e™P(x=x,) Note: the lower summation
—0 k=1

index might be also 0

for a continuous distribution, the characteristic function is the Fourier
transform of f(x) (Note the (missing) normalization). Thus, the transform
IS invertible

ot) = / ¢ f(a') da

/ o(t)e dt = / '”zdf/ ’”f ) da’
= / f(2) (/ eitx=x (h‘) dz’
= 2% / f(z

= rf(z

1 () —ilT
flz)= g/o(t)c dt

.. and the characteristic function defines the p.d.f.
53
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Characteristic function and moments

The n-th derivative of the characteristic function is

d"g(1) T(IX)n £ 0

dt"

At t =0 one obtains

d"9() _j(ux) fodx, e, SO g,
d t=0 dt t=0

Thus, the Taylor expansion of ¢(t) around t =0,

St) = inu d¢(t)

=0

0

Z ("4, —1+Z 04,

t=0 n=0 N

depends on the moments alone. Since the Fourier transform can

be uniquely inverted and the Taylor expansion of the characteristic
function consists of the moments, we conclude that indeed

the moments define the p.d.f., as stated above.

For the central moments, we find in analogy

FO=EE)= [0 10 >3 (0w,

d*¢'(t)

t=0

Note in particular that x', =|o*(x) = -
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ﬁM Example

= characteristic function and moments of the exponential
distribution.

f(x)=1e™ forx>0 (e.g., A= 1 for the life-time distribution)
T

0

T A i A
t) = eltxle—/lxdx — e(—/1+|t)x —
o) ! —A+it A—it

0

By differentiation,
dgt)  iA

dt (A -it)?
d"¢(t)  nli"A
dt"  (A-it)™

n 1"
ddfft) — n/li , We obtain the moments

t=0

. =n!A"" =nlz"  (compare Fig. page 45)

without explicitly calculating the integrals defining the expectation values!
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Sum of two independent r.v.

Let z = x + y with independent r.v. X,y and corresponding p.d.f.s f(x), g(y).
Calculate the distribution h(z).

X,y independent

¢ (1) =E@E"*)=E@E™e") = E(™)E(E"Y), ie,

¢h (t) = ¢f (t)¢g (t)

and thus

h(z) = % [ e, 0at

The pdf of the sum of two independent r.v. is the
(inverse) Fourier-transform of the product of the two
corresponding characteristic functions!
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ﬁﬂ Example

Calculate the distribution h(z) of the sum z =" x;,

i=1
with x; uniformly distributed (see Chapt. 5) in the interval [0,1] :
1 for0<x <1
f () =
0 else

(for other solution methods, see Chap. 4)

© 1

$; (1) = E(exp(itx)) = | f(x)exp(itx)dx =[1-exp(itx)dx :%(l—exp(it))

¢ (1) = (¢f (t))n

=n o0

h(z) = ! Nl—exp(it)j” exp(—itz)dt = (mathematica, maple...)
27 t

—00

n=2: %(\z—Z\—Z\z—le\) 2 zfor0<z<land2-zforl<z<?2

={n=3: %zz for0<z<1, %(—222+6z—3) for1<z<2and %(2—3)2 for2<z<3

h=4: é(\z_zﬁ_4\2_3\3+6\z_z\3_4\z_1\3+\z3\)
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0.8

—

M6

0.4

0.2

0.0 ||| 1

Example (cont'd)

n

Distribution h(z) (with z
the sum of n uniformly
distributed numbers
within [0,1]), for
different n:

black: n=1 (=f(x;))

blue: n=2
green: n=3
red: n=4

The distributions have
been calculated via
Fast Fourier transform
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ﬁﬂ Cumulants

Characteristic function defined by moments, ¢(t) =1+Z (|t)| ., With ¢(0) =1
=~ n!

Often, ¢(t) has exponential character, e.g., for Poisson (p. 101) and normal distribution (p. 108).
Thus, expand Ing(t) :

= %% (n =0 term vanishes since In¢(0) =In(1) =0)
i

(it) x, With x,
nl

Ing()) =3

t=0

x, ‘cumulants' of the distribution, can be expressed in terms of (central) moments.

First four cumulants:
2

K=y K== =M K= =3, v 28 = Yy K= =3
Can be shown:

If X is a random variable, x, (X) the corresponding cumulant (w.r.t. to Ing, (t)), and c € R, then
K(X+c)=x(X)+c;, &, (x+c)=x,(x) forn>2 (‘almost translation-invariant)

x,(cx) =c"x,(x) (homogeneous of degree n) [x, (cx) is the cumulant for y=cx w.r.t. to Ing, (t)]

If x and y independent random variables and z = x +y, then

K, (2) =, (X) + &, (Y)
Note: For normal distributions, only the first two cumulants are different from zero!!! 59
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Transformation of variables

given a p.d.f. f(x), we’'d like to know the p.d.f. g(u),
when u is a (invertible) function of x, u(x)

example: given a distribution of velocities f(v), we
want to calculate the distribution of energies, Y2mv?

for discrete distributions, this is trivial. The probabllity
for the event u(x,) (where u is a function of x) is the
same as for the event x, itself,

P(u(x,))=P(x,)

for continuous distributions, we have to invoke
calculus
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ﬁﬂ Calculation of the transformed p.d.f.

g(u)

Given: pdf f(x) and uniquely invertible + differentiable (implies strictly monotonic) function u(x).

Calculate g(u).

P(x, <X<X,)=P(u,<u<u,)orP(u, <u<u,) with u =u(x) and u, =u(x,).

P:Tf(x)dx:

X

uJZQ(U)Olu = |g(u)du|= f (x)dx and thus g(u) = f(x)

U

The absolute sign garantuees that the pdf is positive. Integrating this equation yields
F () = G(u) for u(X.,,) <U(X..) i-., u(x) monotonically increasing
~|1-G(u) for u(X.;,) > Uu(x.,), 1.e., u(x) monotonically decreasing

dx
du

If u(x) is invertible, but no longer uniquely, and thus x(u) is multi-valued, one has to sum
over all contributing branches (within the branches, the derivative must not change its sign).

g(u)={f(x)°'—X %} +

+ < f(x
dU }branchl { ( )dU

u

J 1.0k u
| 6L
J 1 u(x)
i 4k
- 05¢ ]
= H =] / 2

' T 0.0 ] — I O //
o - 0 10 X 1.0 0.5 0 B 5 B
v 1 /—
o Transformation via a parabola
Transformation of a p.d.f. Th fthe indi pt q " 02}
f(x) to g(u) via u(x). The € sum ot the indicate fx)
indicated areas are equal. ™| areas under f(x) are equal to the
" oal area under g(u). 04l
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Examples

example 1: calculate the pdf for the area of a circle from a uniform (see Chap. 5)

distribution of radii between O and r_ .

p.d.f. forr: f(r)= forO<r<r; f(r)=0else.

r.—0
g(A) = f(r) 3—;‘ with A=r’z  [r(A) single-valued, since r > 0]
dA 1
— =27xT; A) =
dr o 9(A) r 2zr

m

g(A)=l 1. Test:Tg(A)dA:LTA‘idAﬂ!
2\ AN TS 2JA 3

example 2: Calculate the distribution for the square of a reduced r.v.
where the original r.v. should be normally distributed.

u:{(x_ﬂ)} and f(x) =

(x=p)®

e 2°  (see Chap. 5)

o)

1
o227

The function x(u) has two branches [since (x — z) positive or negative]!
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dx

=+ gu)= E Al e
du 2\/6 2\/7 0\/7 branch 1 2\/6 0\/% branch2

Since the contributions from branch 1 and 2 are identical, we obtain

-u/2
e,

9(u)= 27U

which is the so-called y*-distribution for one degree of freedom (see Chap. 5)

example 3: Kinetic energy for a 1-D ideal gas. The pdf of the velocity
of a particle into direction X is

mv?

f(v)= %e_m. Calculate the corresponding energy distribution.
T

As above [two branches, since v positive or negative]

v 1
d . both branches have similar contributions, thus

+

aE/KT _ o E/KT

E —
9(E)= J2mE 27rkT 7sz
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Calculation of the transformation

Now, the original and the transformed p.d.f., f(x) and g(u), are
given, and the transformation u(x) needs to be calculated.

This situation is frequently met in Monte-Carlo simulations.
Random number generators usually create uniformly distributed
r.v., and we look for the transformation law which transforms
these uniformly distributed r.v. into others which are distributed
following a given p.d.f. (defined by the process to be
iInvestigated).

_[ f(x)dx'= j g(u’)du'; integration yields the c.d.f.s

—0o0

Note 1: no problem with abs-value here, since f and g positive by definition (pdf)
F(x) = G(u) and thus u(x) = G*(F(x))
Note 2: If g(u) has been derived from a transformation as described before, via u'(x), and x(u ")

was multi-valued, the transformation law u(x) can be different from u'(x), but delivers the same

transformed distribution [— problem sheet 4|
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The problem can be solved analytically only if both p.d.f.s fand g can
be integrated analytically, and if the inverse of G can be calculated.

In other cases (which are the majority), numerical methods have to be
applied. Most powerful is the rejection method by von Neumann (see,
e.g., "Numerical Recipes” and
http://www.usm.uni-muenchen.de/people/puls/

lessons/numpraktnew/montecarlo/mc manual.pdf

In the former case of f being a uniform distribution over the unit interval, i.e.,
f(x)=1for0<x<1 andf(x)=0else [random number generator],

we obtain F(x) = x and thus G(u) = x; |u=G*(X).
In this case, only G needs to be calculable and invertible.

example: Create exponentially distributed r.v. from a uniform distribution.
g(u)=2e"
G(u) :Iﬂe‘“du':: F(x) =X
0
uniformly distr. X in unit interval

1-e™=x; u(x)==In(L-x)/A L —In(x)/ 2
65
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LMU| Y,

P.d.f.s for a uniform distribution (black), generated by a random number generator from N=102 (left) and
N=108 subsequent numbers. The corresponding exponential distribution (A=2, blue) has been created
from these numbers using the transformation method as described above. Displayed are (normalized)

histograms with bin size 0.02. Analytical p.d.f.s in green and red. IDL (interactive data language) code below.

2.0

.\.. T

|\||‘|||\_|

OO0l v v by

0.0 09 0.4 0A
IRV W2 L4 U,

g

o

f]
[e4]
o

pro uniform2exp,sample size,ps=ps

;creates uniformly distr. r.v., §

;transforms them to be exponentially distributed, §

;and plots both distributions as histograms.

ss=sample_ size

if keyword_set (ps) then begin
setvplct, ‘pst ‘
device, file="umformlexp_‘+strtrim({string(ss),b2)+’ps’, /color

endif

loadct, 12

dist=randomu (seed, ss)

bins=0.02
xmax=1.5

—— — T T T ——— —

2.0 T _

15 —

R _

0.5 =

OOl v vy PTI R T
0. 0.2 0.4 0.6 0.8 [ 2 |

h=histogram(dist ,binsize=bins,min=0., ,max=1.,6 locations=x)
h=h/(ee*bins) ;normalization

plot,x+0.5*bins,h, psym=10, yrange=[0,2.2] ,xrange= [0, xmax] ,ys=1,xs8=1
;add of half binsize important
plots, [0.,1.],[1.,1.] ,c01l=50 ; analytic p.d.f.

; exponential distribution with lambda=2

dist=-alog(dist) /2.
h=histogram(dist ,binsize=bins,min=0. max=xmax+bins, locations=x)
h=h/(ee*bins) ;normalization

oplot,x+0.5*bina h,peym=10, color=100
oplot,x,2.%exp(-2.*x),col=200; analytic p.d.f.

if keyword set (ps) then begin
device, /close
set_plot, 'x’

endif

return 66

end
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4. Distributions of several random variables — multivariate p.d.f.s

until now, univariate distributions: one r.v.

generalization to several r.v. “easy”. multivariate
(also: more-dimensional) distributions

In the following, only continuous distributions

definition of prob. distribution for two r.v., X,y:
F(X,y)=P(X<Xxy<Yy)with
F(-00,-0) =0, F(c0,0)=1

corresponding joint p.d.f.

f(x,y) = azgx(;,/y) - T Of f(x,y)dxdy =1 and

b d
P(agx<b,cgy<d)=”f(x,y)dxdy
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MU # Marginal distributions

= following problem: sometimes the c.d.f. F(X,y) Is
approximately determined (by many measurements), but

only the probability distribution of x (irrespective of y) is
of interest.

= example: the appearance of a certain disease is known
as a function of location and date. For a certain
Investigation, the dependence on date is without
Interest.

= |n this case, we marginalize the distribution, i.e., we
Integrate over the whole range iny

o0

P(a£x<b,—oo<y<oo)=i“ f(x,y)dy }dx=j'g(x)dx

—0o0
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0

g(x) = j f (x,y)dy is a p.d.f. of x, called the marginal distribution of x.

—0o0

The corresponding distribution of y is

0

h(y) = | f(x y)dx

—00

Marginal distributions are "projections"” of the joint p.d.f. onto the axes.

Two r.v. X,y are independent if
f(x,y) = g(x)h(y)

Now, we can define the conditional probability for y given that x is known:
P(y<y<y+dy|x<x<x+dx).

The corresponding p.d.f. is given by

f(yl =)

g(x)

and the above probability results as f (y | x)dy.

Note: conditional probabilities as defined above are normalized!
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The rule of total probability

P(B) = ZP(B By = ZP(BlEk)P(Ek)
k k

(see Chap. 2) is then expressed by

o0 o0

h(y)= [ f(xy)dx = [ f(y[x)g(x)dx .

—00 —0o0

If the variables are independent, then
f (X, X)h
g(x) g(x)
Any constraint on one variable cannot contribute information about
the other, if the variables are independent!

Bayes theorem for two-dimensional distributions:
F(xy)h(y) = f(y[x)g(x)=T(xy)

NOTE: often, this theorem is used to construct f (x, y)
from the conditional and the marginal probabilities.
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ﬁM Example

= superposition of two normal-distributions, with
corresponding marginal and conditional p.d.f.s

flz,y) = % [O.Gexp (_%2 _ g) n 07:_4;) exp (_ (-T:}Q)2 (y —42_5)2)]

glr) = % :O.GGXp (_%2) + \314_5 exp (_ (« ;2)2)] [y

hly) = \/%_W :U.GQXp (—%) + %eXp (—(ylﬂ)] =ff(X, y)dx
flyle = 1)=06672 [0.6 exp (—é _ %) 4 %e@ (_% (y —4‘2.5)2)]

= f(y,x=1)/9g(); Remember that this conditional pdf is normalized, i.e., I f(y|x=21dy=1

Note: X and y not independent, since f (y | X) depends on x!
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Convolution

USM

Let z=x+y the sum of two independent r.v. x,y, with a joint pdf
Fxy)=1,091,(y)

The (cumulative) distribution function of z is
F(2)=P(z<2)=P(x+ty<2)

and given by the integration of the joint pdf over the shaded area in the
right hand figure.

F(z)= ” f.(x) f,(y)dxdy = T fx(x)dxzj‘X f,(y)dy :T fy(y)dyzj‘y f (x)dx

The probability density is found by differentiating F(z),

f@) =" = [ 100, E-0d= [ £,z ey

This is a convolution of the two pdf's [see also Chap. 3, p. 41].

FEEEIE SIS
FEEE SIS
I I EIIEEL,
SIS
i
I LIS SIS,
SIS
I E LIS SIS
(T F L E SIS
R R O PR PP
fff!ffAf}f}fff}f}f.—"
AN E IS
o R PP P P
B P P PP P
TSI

FEEEE SIS
IS
I EE TSI
IS

v

B P P P R P PP PP
o PR PP PP
I F T F SIS
I E I EF ST
F R P PP PP
B P P P PR P
SIS
I E SIS
I E T E SIS,
I E SIS

I EE I EE ST,
F P R P PP PP
I F S E SIS,
o PP R P PR P )
e P PP P PR P PP P
e P P R P )
e R PP P
o R PP )
P P PP PP
e P P PP )

= |n Chap. 3, we alternatively proved that the p.d.f. of the sum of two independent
r.v. is the (inverse) Fourier-transform of the product of the two corresponding
characteristic functions, where the characteristic functions themselves are the
Fourier transforms of the individual p.d.f.’s (except for a different normalization)

= As we will show now, this is nothing else than a convolution, in agreement with

the above result
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There are many situations where we have a signal S(z') and a so-called “response
function” R(z,z). R decribes the probability that a certain fraction of the signal
within “channel” 1’ emerges within channel z. Thus, the signal will be washed
out by the response function.

H 4947
T

0.8

SpEcTrurm

0.6

L I A |

40060 4200 4400 4600
wavelength  (Angstroms)

4800 2000

Figure 1.1: Top: optical spectrum of the hot supergiant HD 14947, observed with high reso-
lution. Bottom: same spectrum, observed with &-times lower resolution (shifted by —0.3): the
signal has been washed out.

1.1 Example (Resolution of a detector). A stellar spectrum S(v') (with frequency ') should
be collected by a detector (spectrograph) with finite resolution Aw.

In this case, the response function can be approximated by

_v’}!

1 v
Ry, =Ry —v') = ——e &)
Vrhv

with Av the spectrograph’s resolution. (see Fig. 1.2). If Av is larger than the width of the
individual spectral lines, one observes a spectrum which has been washed out,

S'v)= / S(V)R(v —v)d' = / Sy —v')R(v)d “convolution”.

24

Figure 1.2: Resolution of a detector: the “response function”

The signal has been convolved with the response function. Due to the finite resolution, contri-
butions from different signals S(»') are summed up at frequency v, primarily from the range
v = v+ Av (Fig. 1.1, bottom).

If the detector has a very high resolution (A/AX 2 50,000), the response function might be
approximated by a d-function,

Ry —v") =8y —1') = S'v) = Sv),
and the original signal will be hardly distorted (Fig. 1.1, top).

If one likes to compare the observation S'(7) with theoretical simulations of the spectrum, this
problem needs to be considered. Usually, the theoretical signal is convolved with the response
function of the detector. If the noise of the observed signal is (very) low, one might alse “decon-
volve” the observed spectrum (S — ).

If S(v') comprises N frequency points and R(v—v") M frequency points in the range R(v—1) # 0,
at first glance this convolution would require N - M essential operations, accounting for the
formulation as given above,

By using the “Fast Fourier Transformation (FFT)", the computational effort can
be significantly reduced. To understand this, we need the following

1.2 Theorem (convelution theorem). The FOURIER-transform of a convolution
of two functions (goh) is the product of the FOURIER-transforms of the individual
funetions, G- H.

1.3 Proof. (using a somewhat different normalization than for the characteristic
function and k = 2rt)

(goh) (z) = [ g(©)h(x — €)de
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MU Convolution

USM
Figoh) = [ dee ¥ [ g(e)h(z - £)ae
y=c—6 = [dy / eI (611 ()

2
8

By means of this theorem, we obtain the following procedure for the fast convolu-
tion of two functions via FFT:

i) Calculate G(k) and H(k) from the signal g(x) and the response function h(x)
via FFT. The response function needs to be padded by zeros and “wrapped”
around, to have the same number of grid-points as the signal. Moreover, also
the signal needs to be padded on the “right” side, typically by M/2 zeros. 1.

i1) The resulting FOURIER-components are multiplied, Yk, k = 1...N. Accord-

ing to the convolution theorem, we thus have created the transformed of the

convolution, (G - H)(k).

i) This product (in Fourler space) finally needs to be back-transformed (via
inverse FFT) to obtain the desired convolution,

lgolie)= / dke™2(G - F) (k)

Yor details, see, e.g., “Numerical Recipes”, Chap. 13.1

Since the Fourier-transformation via
FFT costs roughly N log, N operations,
the total number of essential operations
is of the order of

N - (1 + 3log,N).

The first part results from the multipli-
cations G, - H,, and the second part
from two forward and one backward
transformations.

Thus, if (1 + 3 log,N) <M (with M the
original number of grid points for the
response function), the convolution by
FFT is faster than the “simple” method
by conventional integration.

If, e.g., N = 1000 frequency points, for

allM > (1 + 3 log,N) = 30 there would
be a gain in computation time.
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Moments

= |n analogy to univariate distributions, we define

p, = E(r)
n, = E(y)
3 E[’—/’ ] =H
= Elly-m)] = U,

Ozy = E[(' _/l‘:c)(g :“’y)]:/u'llz

= E(Xy)_:ux:uy =
= cov(x,y) "covariance"

i = E('y™)
w, = E [(1 — 1) (y — ,u,y)'"]

Wy = / / (x,y) dx dy = /°° g(x) dr
/ / yf(x.y) de (IJ—/ yh(y) dy
i / / (= pg)f(x,y) de dy = / (

fy = /_ : /_ :(y—/fy)f(-lry) du dy = /_ (y = ny

T
~

=
Il

U = / / 2ly™ f(a.y) dr dy
/ / (& = 1) (y = )™ f (. y) de dy

/!
/"lm

z—U,

g(x) dr

)g()
)(y)

dy
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= similarly, we define
E(u(xy)) = [Ju(xy) f (x, y)dxdy
o (U(xy)) = E{[u(xy) - EQOy))T | = E{u*0ey)} - (E{utey)})

= examples
u(x,y) =ax+by = E(ax+by)=aE(x)+bE(y)

o (ax+by) = E| ((ax +by) - E(ax +by))* | =

=E| (ax-m) +bly - )’ |-

= E[a®(x— )" +0°(y - 11,)" + 2ab(x — 1, )(y - p1,) | =
=a’c’(x) +b°c*(y) +2abcov(x,y) (cf. Chap. 3)

u(x,y) = Xy and x,y independent, i.e., f (X, y) = g(x)h(y) =

) E(xy) = [ xyf (x, y)axdy =[] xyg(oh(y)dxdy =( [ xg(xax ([ yn(y)dy) =

= E(x)E(y) (cf. Chap. 3)
i) cov(xy) = [[ (x=1,)(y = #,) (x)N(y)dxdly =0 1
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from definition of covariance, we see that

- cov(x,y) is positive if values x>y, (x<p,) appear preferentially together with values y>p, (y<p,).
« cov(x,y) is negative if values x>, (x<y,) appear preferentially together with values y<p, (y>p,).

« if the knowledge of x does not give information about the probable position of y, the covariance

vanishes (see Fig. below)

if cov(x,y) #0, the variables x,y are called correlated.
correlation is quantified by the dimensionless correlation coefficient

cov(x,y)

PN = ey

1< p(xy) <1,

ﬁM Covariance, correlation coefficient

the limiting values are reached when y =a+bx and b>0 (0o =1) or b<0 (p=-1)

proof: calculate cov(x,y) = E(xy)—-E(X)E(y)

or cov(x,y) = %[02 (X+Y)—0c?(X) - az(y)]

Y p=-1 ¥ p<0

NN

p=0

O

with y =a+bx and then p —»

p>0

&

p=1

7

X

X

X

X

X

f(x,y)=const for different correlation coefficients (linear dependence: f(x,y)=f(y|x)f(x) with f(y|x)=5(y-(a+bx))

LI

\/b_2
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Note: for independent (uncorrelated) variables — cov(x,y)=0

But: cov(X,y)=0 does not necessarily imply that x,y are independent,
since covariance detects only linear dependencies.

Example: let x be uniformly distributed between [-1,1], and y=x?
Then: y depends on X, but cov(x,y)=E(x3)-E(x)E(x?)=0, since expectation values
of odd quantities=0 for symmetric intervalls!

In other words: there are cases when cov(x,y)=0, but the conditional
p.d.f. f(y|x) depends on x.

Independence is only warranted if f(y|x) = f(y) [or, equivalently,
f(x,y)=g(x)h(y) ]
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Q Transformation of variables

LMU
= analogous to 1-D (univariate) case
« given f(x,y) and u(x,y), v(X,y)
Then: g(u,v)dudv = f (x,y)dxdy = g(u,v) = f(x,y)- 2)(2//
ul
%/_/
absolute value of
Jacobi-determinante
= example
Transform 2-D normal distribution Zie(xzwz)’2 into polar coordinates x = r cose, y =rsing
T
x o
oX,0y| |or or| | cosep  sing _y
or,0p| |OX Oy| |-rsing rcose
dp 0@

1 2 : : o
= g(r,p) = o re”"'? with marginal distributions

27 ) 0 1
= r.o)dp=re"">andqg =|g(r,p)dr=—, i.e.,
g, !g( )dg g, !g( p)dr =——

the distribution factorizes into the marginal distributions (independent variates!)
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Reduction of variables

problem: we have f(x,y), and need g(u) with u(x,y).

solution: use standard transformation, by introducing a 2"d variable
v(X,y) (usually, choose v=x)

f(x,y) = h(u,v)
and marginalize with respect to u

g(u) :jh(u,v)dv
example: given 2-D uniform distribution

1
— if A A
f(X,y)=1 A2 fxe[0,Alandy €[0,A] see next page, left figure

0 else
Calculate g(x + y)! (see also Chap. 3, page 57/58 and Chap. 4, page 73)
Note: f (x, y) already normalized

OX oy
u=x ou eul L1
+y OX,0y| _|ou ou| _ =1 = h(u,v)= f(X,Y)=i2
V=X ou,ov| |ox dy| L O A
oV oV
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2.0r 20f
15t 15h
ELO El.()f— ——————————————————
05| 051 |
00 02 04 06 08 1.0 00 02 04 06 08 10
x [4] x [4]
vmax(u) Xmax(u) 1
g)= [ huV)dv="| hux)dx = = (X (U) = Xy (U))
Vimin (u) Xmin (U) A

From above figure (middle): u(x) = (x+y) €[x,x+ A], sincey €[0,A]

u<A:x(u)el[0,u] (slope=1) = g(u) :%(u -0) :%u

u>A:x@u)elu—A,A] = g(u)=%(A—(u—A))=%(2A—u)
1

gmax=g(A)=Z

The distribution of the sum of two uniformly distributed quantities is triangular-shaped,

see above figure (right). See also Chap. 3, page 57/58
Note: the distribution of x — y looks similar, when the abscissa is shifted by -A 82
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Calculation of the transformation

as in the 1-D case: integration and inversion of primitive function

iImportant example: Box-Muller algorithm to create normally
distributed variates from uniform distribution (random number
generator)

remember 2-D normal distribution in polar coordinates

g(r,(p)drdgpzzire‘rz’zdrdgo (factorized in r and @)
T

distribution inr:

G(r) = j r'e”"2dr'=F(x)=x_(uniform distribution w.r.t. [0,1])
0

G(r)=-e""=x; r=y-2Inl-x)
distribution in ¢:
@
H(p) = jzidgo' =F(x,) =X, (uniform distribution F)
T

0

H(¢)=§=xz; 0= 27X,
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in Carthesian coordinates:
X=TrCcose = \/—2 In(1l—x,) cos(27x,) = /-2In(x,) cos(2xX,)
y=rsing= \/—2 In(L—x,) sin(27x,) = \/-2In(x,) sin(2zx,)

These variables are independent and normally distributed with expectation
value zero and unit variance.

f(x,xl)zie_“z”z)’2 S B

V2r ar

Thus: two uniformly distributed variates x,,X, = two normally distributed variates X,y

gt : P.d.f.s for a uniform distribution (black),

] generated by a random number generator
from N=10° subsequent numbers. The
corresponding normal distribution (blue) has
[ ] been created from these numbers using the
e, : Box-Muller algorithm. Displayed are

* SR ’ histograms with bin size 0.02. Analytical
p.d.f.s in green and red.
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Distributions with more than two variables

probability density
f (X, %, X5,...Xy ) = F(X) (in vector notation)

expectation value

E(u) = TT u(x)f(x)f[dxi

—00 —00

particularly important is covariance matrix C,

C; =cov(x;x;)=E {(xi — W)X - uj)} (see also Chap. 6)

The covariance matrix is symmetric, and the diagonal elements
are the variances: C; =Var(x,) = o*(x,)

Matrix notation: with x" = (X)) Xy, Xg,...Xy ) @NA X = ,

C=E{(x-m(x-p)'}
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transformation of variables with Jacobi determinant

0%, ...0Xy

= f
g(y) = 1(x) Vs

independent, identically distributed (i.i.d.) variables

(u.i.v. = unabhéngig, identisch verteilt)

For parameter estimates, sample of N independent measurements might

be used. The joint p.d.f. f for N independent variables which are identically
distributed according to f (x) is given by

Foo=TT 100
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ﬁM 5. Important distributions and the CLT

Binomial distribution

= experiment with two mutually exclusive outcomes, i.e.,
S=A+A withP(A)=p andP(A)=1-p=q
= calculate the probability that n experiments have k times the outcome A.

What is the probability to obtain (exactly!) 4 times the six when rolling the die 10 times? Answer: =0.054

1 _ 5
n=10, k=4, p(A)== p(A)==
P(A=¢  P(A)=

What is the probability to toss “number” only one time in 20 trials? Answer: =1.91 -10°

1 _ 1
n=20 k=1 A) == A) ==
p(A) 5 p(A) >

let's assign the random variable x. to the outcome of experiment i.

x, =1 if the result A occurs, and x, =0 if A occurs. Our above question
can be rephrased then to the question regarding the probability distribution
of the random number

X:Zn:xi,
i=1

and, particularly, to the probability P(x = k)
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answer depends on two factors
1) What is the probability to obtain the result A in the first k experiments
and to obtain A in the remaining n—k?

Since the experiments are independent, this probability is given by the
product of the probabilities of the individual events, i.e.,

p“@-p)"*

1) How many possibilities for the event "k times result A in n experiments"

do exist? This is given by the binomial coefficients,
ny n!
k) ki(n—k)!

Thus, the probability P(x = k) is given by

n _ n I k n-k
B (k) = ey P L P)

I(n—k)
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expectation value and variance

expectation value and variance of single experiment
E(x)=1-p+0-(-p)=p

Var(x;) = E(x”) - (E(x;))" =[1*- p+0°-(1- p) |- p* = p(L- p) = pq
The corresponding values for the random variable X:in are

i=1
(exploiting the calculation rules for independent variates)

E(x)=(k)=np “mean number of successes"
Var(x) = o*(x) = np(l- p) = npq

(cumulative) distribution function

09 =Flk<k) = 3B =) k'l(nn—! P e

89



LMU $M

B,k
Elrp.k
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[
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Binomial distribution, B] (k), as a function of k. Top panel: fixed p, different n;
middle: fixed n, different p; bottom: different values of n and p, but np=const
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Example: Detector efficiency

spark chambers (95% efficient) are used to measure the tracks of cosmic rays. At least three
points are needed to define a track. How efficient is a stack of three chambers? Would using 4 or
5 chambers give significant improvement?

The probability of three hits from three chambers is

3!
P(3;3,0.95) = B2, (3) = 0 p*(L— p)° = 0.95° = 0.857

For four chambers, the probability of three or four hits is
P(3;4,0.95)+P(4;4,0.95)=0.171+0.815=0.986

For five chambers, the probability of three, four or five hits is
P(3;5,0.95)+P(4;5,0.95)+P(5;5,0.95)=0.021+0.204+0.774=0.999!
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A weak law of big numbers

Application of Chebychev’s inequality (page 49/50) to the binomial
distribution results in a weak law of big numbers:

The expectation value for the frequency of an event A (n experiments
with k times event A occuring) is given by E(k/n)= p, with variance
Var(k/n)=1/n? Var(k)=p(1-p)/n. Thus,

P(k Zgjg p(l_zp)g L

no P ne dne
rpplying the inequality of arithmetic and geometric mean (Chap. 1) for n=2

n
- p+d-p)_1
Vpd-p S

2

and the frequency converges stochastically towards its expectation
value.

2
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MU Q Multinomial distribution

= binomial distribution: 2 different outcomes
= multinomial: more than 2 different outcomes, mutually exclusive!

|
S=A+A+A+.+A withP(A)=p, and > p,=1
j=1
When n experiments are performed, the probability of finding k; events A, is given by

nl £ _
P P2+ P3Py (kl’kz’kz’""kl): I Hpjkj

[Tt

j

Mn

We define x; =1if experiment i yields A;, and 0 otherwise. Then

X;=>x; and
i=1
E(x;)=np;, with covariance matrix
C; =np;(9; — p;) (6; Kronecker 6), i.e.,

C; =np,(1— p;) as before, but nonvanishing, negative covariance C; = —np, p;

That there is a correlation was to be expected, since the x; are not independent due to

the constraint Z p, =1. Le., if there are more successes for class i than expected (E(x;)),
the values of x; for all other classes j are smaller than E(x)

= negative correlation!



LMU 4 Frequency; law of big numbers

= probabilities, e.g., p; in case of the multinomial distribution, are usually
not known a priori but have to be obtained from experiments. The
frequency of event A;in n experiments is given by

1 1
nizzl“ " on !

= This frequency is a random number, since it depends on the results of
the particular n experiments.

E(h) = E[ﬁ]iE(xj): D
n n

I.e., the expectation value of the frequency of an event is the corresponding
probability , and

Var(h) =Var [ﬁ) = %Var(xj) 1 p;1-p;)=o(h) = 1
n) n n Jn

This is the law of big numbers! For large n, the standard deviation of the
frequency vanishes below any given limit, which "justifies" the frequency

definition of probability (cf. Chap. 2, p. 18).
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Poisson distribution

The study of the lower panel of the last figure (binomial distribution)
suggests that this distribution approaches a fixed distribution if n tends

to infinity but the product (the expectation value) np=A is kept constant.

Indeed,

P(kin, p) =P(k;n,4/n) :ku(nn—lk)l(%j (1_%j |

(n—k)!

n—k n
(1— EJ —> (1— éj —e” forn— o (definition of the exp function)
n n

=n(n-D(n-2)---(n—k+1) > n* forn -

Thus,

i n* (A" e *ak
P(k;n,A/n) — P(k, 1) ZF(_j et = O which is the Poisson-distribution
1\ n !

and describes the probability of obtaining k events if the expected number isA

calculation: start with P(0)=e™*, and then successively multiply by A
and divide by 1,2,3,4,.... to obtain P(1), P(2) etc.

95



LMU

$

Interpretation

Suppose A events are expected to occur in some interval. Split up this
interval into n very small sections, so that the chance to find two events
In one section is negligible. The probability that one section contains
one event is then p=A/n.

The probability of finding k events in the n sections is given by the
binomial distribution,

P(k;n,p=A/n)

which approaches the Poisson distribution for large n.

Note: the Poisson distribution is defined only for integer values of k!
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0.4

03p

0.2

0.1

0.0

0.08

0.06

0.04 |

0.02 |

0.00

A=20

20

40

e,
k

0.00
0

0.04

0.02

0.00

\
10| 15 20
k

2 =100

100 150
k

Poisson distribution for different

expectation values

Total probability
D P(k,2)=1
k=0

expectation value and variance
E(k)=4
Var(k)=c’(k) =1

[this is consistent with the binomial distribution:

E(k):np:nizﬂ and
n

Var(k) =np(l-p) = ni(l—i) — A for n —» o]
n n

all cumulants are

skewness identical (=A)!
' = A (third central moment) —
1 Z ~
:,U_?;:,: PEE =47,

I.e., the distribution becomes increasingly symmetric
for increasing A
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application:

Poisson distribution describes asymptotic behavior of binomial distribution
with constant A=np, i.e., with a (very) low probability for the individual
process. Thus, it should be applied when there are many trials but only
few successes, and the mean (expectation value) is known. Since one has
no idea on the number of trials (only that there are many), it describes the
cases of sharp events occurring in a continuum.,

examples:
« the number of flashes of lightning in a thunderstorm (it is meaningless to ask

how often there is no flash) when the mean is known

« the number of clicks in a Geiger counter (meaningless to ask about “non-

clicks”) when the mean is known

» the actual number of photons from an average signal/background
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A historical example

Statistics on the numbers of Prussian soldiers kicked to death by
horses. In the 19th century is was reported that there were 122 deaths
In ten different army corps over twenty years, i.e., the mean number of
deaths per corps and per year is A=122/200=0.61.

The probability of, e.g., no death is then
P(0,0.61)=0.5434 per year and corps.

In twenty years and ten corps, there should be 108.7 cases where no
death should have happened. Actually, 109 such events have been
reported.

Number of deaths | actual number predictions from
per year and corps reported for 20 Poisson statistics
years and 10 corps

0 109 108.7

1 65 66.3

2 22 20.2

3 3 4.1

4 1 0.6

(1¥65+2*22+3*3+4*1=122)
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ﬁﬂ Supernova 1987A

The following table gives the numbers of neutrino events detected in
10 s intervals by the Irvine-Michigan-Brookhaven experiment on
Feb. 23rd 1987 (around which time SN1987A has been firstly seen)

no. of events 0 1 2 3 4 5 6 7 8 9
no. of intervals | 1042 | 860 307 78 15 3 0 0 0 1
prediction 1064 | 823 318 82 16 2 0.3 0.03 | 0.003 | 0.0003

The average number of events per interval (ignoring the interval with 9
events) is 0.77

The Poisson predictions agree well with the data, except for the interval
with the 9 events. Thus, the background due to random events is
Poisson and well understood, and the nine events cannot be due to
fluctuations, but must have come from a different event (the supernova).
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If there are two separate types of Poisson distributed events, and we do
not distinguish between the two, then the probability of k=k,+k, events is
also Poisson, with mean equal to the sum of the two individual means.

P) =3 Pk, 4)P(k —k, 1) = P(k, 4 + )

Proof via characteristic function of Poisson distribution

¢P(t)=ie“kP(k 2) i te ik - —e i (e It) =e“exp(Ae") =exp| A(e" -1) |

k= . !

Remember: characteristic function of sum of independent variables is product
of their characteristic functions (Chap. 3) =

Dy (1) = ¢P(/11) (t)¢P(zQ)(t) = exp[/ll(eit —1):|9Xp [22 (e“ —1):| =
=exp| (4 +4)(E" 1) |= by, (V)

Thus, the sum of two independent, Poisson distributed variables is Poisson-

distributed as well, with A=4, + 4,
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= can be generalized to any number of Poisson processes

= example: signal with background
« expected are S signals with an average background B. The average

fluctuation (standard dev.) of the observed number of events k is thus
o(StB)=+S+B

« If we subtract the average background from the signal, this fluctuation

remains conserved, of course.

For an expected signal S=100 and background B =50 we observe
on average 150 events with a standard deviation of v/150. After
subtracting the background, the average signal is S=100 ++/150

« If the exact expectation value of the background is not known, the

uncertainty is even larger (error propagation)
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Uniform distribution

so far, only distributions of one or more discrete variables discussed
will now turn to continuous distribution functions
most simple case: the uniform distribution (already mentioned before):

constant probability density in a certain interval, elsewhere 0.

f(x)=c a<x<b
f(x)=0 x<a,x>b

From the normalization, j f (x)dx =1, we obtain

—00

1
C=—,
b—a

and the distribution function becomes

F)= [——dx=2"%  a<x<b
- b-a b-a

F(x)=0 X<a

F(x)=1 X>b
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1% 1
E(X)=—— j xdx = = (a+b) F(x)
b-a- 2
1 2
Var(x)=—(b—-a)
12 1
f(z)
D S
b—a
Probability density function (pdf), f(z), of a uniform distribution within the interval [a,b]. Corresponding cumulative probability distribution, F(x).

uniform distributions with a=0, b=1, i.e., f(x)=1 and F(x)=x,
created by random number generators (RNGSs).

Note: in many RNGs, “0” not included, i.e., lowermost value
=¢ (machine dependent)

important for Monte Carlo methods

different distributions obtained from transformation methods

(see Chap. 3/4)
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= assume binomial distribution with random variable k

P(kin, p) = p*(d-p)""

nl!
ki(n—k)!
characteristic function (see exercises):

§0)= 3" P(kin,p) =[exp(it) p+ 0 P

consistent with charact. function of Poission distribution: p = £ — ¢(t) = (1— £ +exp(it) ij =
n n n

[ /l(e';— )) —>exp(/1(e" ~1)), cf. page 101

use reduced variable
k- (k) _k-np

(o} (o3

= ¢, ()= exp(—itﬂj {exp( J p+(1- p)} (see exercises)
O

u=
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¢, (t) = exp(—imj{exp(i—t) p+ (- p)}
(o) (o)

Ing, (t) = _ltp + nln{1+ p[exp(i—tj —1}}
(o) o

Expandint/oc (oct/«/np(l- p), small quantity for large n)

Ing, (t) :—itﬂ+ nIn[l+ p[i—t—%(lj - j]
(o) (o) o

2
:In¢u(t)=—i¥+n[p[g—%@ +J—§p(g—%@j +J +_..J:
o ([

Gaussian (or normal) distribution
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Thus, accounting for o = np(1— p) and in the limit of n — oo, we find

5,0 =exp[—%t2j

This is the characteristic function of a binomial distribution, using a reduced
random variable, in the limit of large n [no assumption regarding p, contrasted to Poisson]
Back-transformation yields the corresponding p.d.f.,

f(u):%exp(—%uzj

which is called the Gaussian or normal distribution.

Since u is a reduced variable, E(u) should be 0 and Var(u) should be 1.
Test:

E(u) = zu Lexp(—%uzj =0

N2
d2g) T d%(t)
Var(u) =- e R 1, g.ed
t t=0 t t=0
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A more general form of the normal distribution is
1 (x—a)?

N exp[— o0 j

Since E(x) = a and Var(x) =b?, the conventional representation is

F(x)=

The inflection points of this distribution (zero curvature) are located at x + o.

Once again, this is the limit of a binomial distribution with the above
expectation value and variance, in the limit n — oo,

The corresponding characteristic function is (with Xx=cu + u)

é.(t) = _[e“x f (x)dx = exp(it ) exp(—%aztzj (see exercise)

Theorem: The characteristic function of a normal distribution with
zero mean is itself a normal distribution with zero mean. The product
of the variances of both distributions is one.
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The characteristic function transformed toy =x — x is

$'(t) = exp (—%aztz

With /| = in d (in(t) (Chap. 3), we find the central moments
I t=0
u, =0, u,=c° u,=0, u',=3c" (remember curtosis, Chap. 3),
and
Hya=0,k=0123,.. Cumulants: «, =0 (here; otherwise = ),
. (2k)! —o? Kk = >
lu2k:2kk!o.2k. kK,=0",k,=0forn>3

Corresponding cumulative distribution functions are

1 1,
Wo(x):E[Oexp(—Ex jdx

X Y (x-s)lo _
w(x)=éajexp(—(xzﬂ) jdx=i | exp(—%uzjduwo(x /’lj
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The probability of observing t within a band width 2x around

the expectation value zero is

X

X

Pl <x)=[ f(u)du=[ f(udu+[fudu= [f(u)=7(u)]

—X

0

= 2} f(u)du = 2} f (u)du —2} f (u)du =2y, (x)-1

and

the probability of a random variable being observed within an

integer multiple of the standard deviation from the mean

P(|x - | <nc) =2y, (”—"j—lz 2y, (n)-1
o)

>
|
-
IA
q
N
I
o
(@))
(@)
N

(]x—u|<20)=0.954
(]x— 4| <30)=0.998

N

“30-error”

from Chebychev inequality (Chap. 3)
P(|X—,u| > O')Sl.O
P(|x—u|220)<0.25
P(jx—u|230)<0.11
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Multivariate normal distribution

The joint normal distribution of n variables (x,,X,,....x,) =X" is defined as
() =k exp{—%(x _a) B(x - a)}

with B a symmetric, n x n Matrix. Since ¢(x) symmetric about a,

. X, — 8 0
_[(x—a)¢5(x)dx:0, e, |i.e., ”'[ P(X Xy y-ny X )AX DX, ..OX =] ...
a0 X —a 0

n

EX)=a=p.

Differentiating w.r.t. a (=0), we find for the ith component

vector

aiai_]i(x—a)¢(X)dx=1[—¢(x)ei+(x—a)¢(x)(—%j(_2)z Bik(x_a)kjdxz 0.

and for all components (n columns — nxn matrix)

0 nxn matrix

[a‘; , aiz a‘; ]z(x —a)p(x)dx=— | (l - (x-a)[B(x - a)]T)¢(x)dx = 0 , which implies that

—00

E((x-a)(x-a)")B=1 (B symmetric)and thus
C=E((x-a)(x-a)")=B"

The Matrix B in the exponent of ¢(X) is just the inverse of the covariance matrix,

and the vector a the vector formed by the expectation values. .
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ﬁﬂ Binormal (or bivariate normal) distribution

. ? cov(X,,X .
With C=B™* = 1 ( " 2) , We obtain
cov(X,,X,) o,
B 1 o, —COV(X,,X,)
0,20," — oV (X,X,) | —cov(x,,X,) o’
Case 1: independent variables —
1
oz 0 1 1(%—m) 1 (%~ 4,)°
B=| ' — d(X,X,) = exp| — ==+ lexp| —=2—2 |, e,
0 1 2ro,0, 2 o 2 o,
2
0,

¢ becomes the product of two normal distributions (the leading factor from normalization)

: : _ _ : : J/det(B
(for n variables with vanishing or non-vanishing covariance, one obtains k = 1 ®)

(27)"* Jdet(C)  (27)™"

Case 2: dependent variables

1 L (o) o x—w Xty (= i)
P(X, %) = =exp| - 7 T 2p + 2
(270,0,)41-p 2(1-p%) O, 0, oF .
Let's use reduced variables, u, = u 1=1,2 and correlation coefficients p = VX, Xy) cov(u,,u,) —
of 0,0,
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\JdetB

¢(U1,U2) = o

1 —
1-p°\-p 1
Lines of constant probability density result from constant exponent

(%)ﬁ(uﬁ +U,” - 2U,U,p) = const(%)
Let const=1, I.e., the prob. density has decreased by a factor of
exp(—1/2):1/\/5 from the maximum, ¢(0,0).

(This corresponds to the 1-D case where atu = 1 (i.e., + (X - u) = o)

exp(—%uTBu), with

the prob. density has decreased by the same factor. )
ellipses of covariance for

In the original variables, we then have various binormal distributions,
2 2 with different p (all other para-
(ami) it (ot) 4 p  metersdentical)
o, o, o, o, :

which is the equation of an ellipse with center at (¢, 1,) and is called the
ellipse of covariance (Fehlerellipse).

The extreme values of x, and x, are located at

W o, and u, o, (independent of p!),

I.e., the ellipse fits exactly into the rectangular box between these limits.
The total probability of observing a pair of x, and x, inside the ellipse is 1—exp(-1/2),
see below. 113
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By a simple rotation, the correlation can be put to zero
(diagonalization by orthogonal transformation).

The corresponding transformation for g4 =z,=0

(in case, correct for non-vanishing expectation values) is

X' 0 si
L C(?S siné@ \( x, with ’
X, -sin@ cosé )\ X, <

2p0o,0,
2 2!
0, —0,

tan 20 =

and new semi-major and semi-minor axes (corresponding
to the variances of the uncorrelated variables x, ' and x, ‘)

2 2 2
o2 = 0,0, 1-p7)
' g2sin?0+0,% cos’ 0 - 2po,c, sin 0cos O
2 2 2
: o0, (1-
.2 = Lo, 1-p%)

2 5208’ 0+0,2sin? O+ 2po,o, sinHcos b
In the rotated coordinate system, the distribution has the simple form
1 X 12 X 12
exps —=| =5+ 25 |t
2\ o o,

and is also centered at z4'=1,'=0.

P %) =

270,0,

N

-

- @ ‘I:.f /"\y\\ .
- H ( NI .
L (] \ x\’ i
[ \ < \ ]
- 4| \ v A/ "'.‘ i
B =] \ N4 f i
N b '\\ é n ]
r -H. \ %, | ]
— ‘\ P 4 /f —
: o :
- ) to, = 2+1 : .
I T R S B Alll Il 1 1 1 ‘ Il Il Il Il | IIIIIIIII B
) 7 3 4
%1

covariance ellipses centered at (2,2), with o, =1, o, = J2 ,and

p=0.7
»=0.0
p=-0.3

p=-0.999 (black) — 6=

(green) — 6= —31.60°, o, =0.6252, o, =1.6152
(red) > 0= 0.00°, o, =1.0000, o, =~/2
(blue) — 6= 20.16°, o, =0.9188, o, =1.4683

35.26°, o, =0.0365, o, =1.7316

All ellipses fit into the rectangular box x4, £ o, and w1, £ o, !

In the rotated coordinate system (by &), x, and x, are uncorrelated!
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The probability enclosed by the covariance-ellipse can be calculated as follows:
Consider the rotated coordinate system, and work in reduced variables. In this case, the p.d.f. reads

Co 1 1, . .
¢(u1' uz) = 2_ exp(——(uf +U22),
V4 2

and the total probability inside the covariance-ellipse (which in the transformed variables is the unit circle)

can be calculated from

2z 1
_U $(u,,u,)du,du, :2i j d(pJ. r exp(—r®/2)dr = —exp(-r?/ 2)‘2 =1-exp(-1/2)=0.393
4 0 0

circle

This is the probability that any (x;, x,) pair is located within the covariance-ellipse,
and applies for all binormal distributions, independent of their specific correlation term
(distribution in transformed coordinate system independent of correlation).

The area inside the covariance ellipse is called the "1-o confidence region™, since it comprises
the region where the p.d.f. has decreased from the maximum by a factor of exp(-1/2),
in analogy to the 1-D case (independent of correlation and the specific o, , ).

Similarly, one can calculate the 2-o confidence region (where the probability density has decreased by

a factor of exp(—(20)°/20°) =exp(—4/2), with a total probability inside the corresponding ellipse of
1—exp(-4/2) =0.865
(in the above integral, replace the upper limit by r=2), and so on for the n-o interval.

Finally, one can generalize this consideration to arbitrary dimensions.
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Generally, the 1-o confidence interval denotes the region where the probability density has decreased by the factor of exp(-1/2)

o.4

binormal distribution as before, _ b o _
with p =-0.9, and contour plots 4r ;ffi‘\ ]
for the 1-,2- and 3-o covariance ellipses N\

7
A 7 ‘,»':x

In the lower panel, the coordinate system i & 1
has been transformed (rotated, streched) —2t e .
and displays the transformed binormal - 7 o

distribution (with unit variances and p=0) ‘ N i._ ==

and corresponding covariance "ellipses"
for 0=1,2,3 om0

Note that the volume (corresponding to ol S ]
the total probability inside the contour levels) 4| / ;
remains preserved under the transformation : ] =L
(e.g., for thin ellipses with large |p| ! \ -/
the probability densities are larger)
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covariance ellipses for 0=1,2,3,
corresponding probabilities and
standard-deviations with respect
to the two directions

X,
deviation Dimension confidence- | Dimension
1 2 3 4 level [%] 1 2 3 4
lo 0.683 | 0.393 | 0.199 | 0.090 || 0.50 0.67 | 1.18 | 1.54 | 1.83
20 0.954 | 0.865 | 0.739 | 0.594 || 0.90 1.65 | 2.14 | 2.50 | 2.79
o 0.997 [ 0.989 | 0.971 | 0.939 || 0.95 1.96 | 2.45 | 2.79 | 3.08
4o =, ~. 0.999 | 0.997 || 0.99 257 3.03 | 3.37 | 3.64

left: probability inside n-o confidence region; right: interval limits in units of o,
for a given confidence level (probability)
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x2-distribution

Remember example 2 from Chap. 3, "calculation of the transformed p.d.f.":

Calculate the distribution for the square of a reduced r.v.
which itself should be normally distributed.

u{(X-u)

(x=u)?
e 252

o)

} and f(x) = g\/lﬂ

-u/2
e,

= g(u) = >

which is the so-called y>-distribution for one degree of freedom.

For convenience, we denote y* by u in the following.
E(u)=1 Var(u)=2

Now, let's add f squares of independent, normally distributed and reduced
random variables

f (Xi-ll'li)z
zz =U :Z—Z
i=1 O-i
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This results in the *-distribution for f degrees of freedom, and plays an
important role in the comparison of measurements and theoretical predictions
(e.g., linear regressions). In this case (e.g., via the charact. function)

g(u) = ;u”“efu’z, with Gamma-function T" and

T(f/2)2"7

E(uy=f, Var(u)=2f (from the definition and using the calculation rules
for expectation value and variance) 06

Maximum (mode) of y*-distribution forf >2atu__ = f —2.
0.4

For f =2, we obtain an exponential distribution
For large f, y°-distribution approaches normal distribution. 0.2

The role of the degrees of freedom will be discussed in Chap. 8 0.0
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The central limit theorem (CLT)

Remember: Normal distribution was derived as the asymptotic distribution for

X = I|mZx

nN—oo

when x; describes the outcome of an experiment with two possible results, x; ={0,1}.

Let's now investigate more general sums of this type.

"Classical" theorem:
We assume that the x; are independent r.v. and originate from the same, arbitrary distribution

with well-defined mean x and variance o. The characteristic function of this distribution
(for x, =X, — u) is

2

d’g(t)
dt?

4. (1) =E("*™), with %

t=0 t=0

Thus, the Taylor expansion is given by [#(0) =1]

¢, (1) = 1——0 24+ 0(t%)
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We introduce now a new variable

5 KT H hich simply contracts the scale. The corresponding charact. function is
on f
4, (t) = E(e™) = E(exp(it=" X, “)) 4, (—— f) and therefore
2
¢, (t) = 1—t—+ with higher terms at most of order O(n"*'?)
2n

Making use of the fact that the characteristic function of the sum of n independent

r.v. is given by the product of the individual charact. functions, and going to the limit n — oo,

we find for
u—IlmZu —Ilmz that

4,0 = lim(¢, ) = Lm(l—;—;+....j

4,0 =exp(- 1),

which is just the charact. function of the standardized normal distribution,
with expectation value 0 and variance 1.
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In terms of the arithmetic mean of the original variables x; then,

n

DH
%=X —lim= {Z(a\/_u +,u)}—|lm Zu + lim 2 :iu+y,

n e N A A
E(X)=u, Var(X)=c*/n
the back-transformed distribution is normal, with mean 4 and standard deviation o/n.
For a corresponding (easier) proof using the properties of cumulants, see exercises.

Thus, the "classical” central limit theorem reads:

If the x; are a set of independent r.v. each distributed with (existing) mean x and variance o2,
then in the limit of n — oo their arithmetic mean

theorem not valid for “pathologic*
X 1 X distributions with undefined/non-

‘ existing mean or variance, e.g.,
n n i=1

) L i . ) the Cauchy (Lorentz) distribution
is normally distributed with mean « and variance o /n.

X =

Under certain assumptions

[see, e.g., Wikipedia: the Lyapunov criterium ("weak" asymmetry) or the

even weaker Lindeberg condition], a "generalized"” central limit theorem can be formulated.
If these conditions apply, the sum of arbitrary (i.e., not identical) distributed r.v converges

n n
to a normal distribution, with mean Z 4, and variance Zaf.
i=L i=L 122
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CLT for several cases:
upper panel: arithmetic
mean of n=1, 2, 30
uniformly distributed r.v.
Overplotted is the
corresponding Gaussian
with y= 0.5 and
variance =1/(12*n)

middle panel: arithmetic
mean of n=1, 2, 30
exponentially (A=1)
distributed r.v.
Overplotted is the
corresponding Gaussian
with y=1 and

variance =1/n

lower panel: sum

of n=1, 2, 30
exponentially (A=1)

plus n=1,2, 30

uniformly

distributed r.v.
overplotted is the
corresponding Gaussian
with y= n*1+n*0.5 and
variance =n*1+n/12.

Examples for the CLT

T T T T 2.5 ]
N _,,r' N\ ]
°r 7 A\ 1 2.0F ]
-/ R :
F / 1_'3:— \ —:
Eo/ \ ] s ]
L/ AY 1.0 / b
;/ r I.f b\ E
4 L N\ ]
050 /X *, b
C e ]
0.0p
D 02 04 0B 08 10 1.2 00 0 04 06 08 1.0

0.4F

sample size =1e6, bin size=0.005

0.04F
0.02f

0.00

2.5

20
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= The CLT in its generalized form is the base of

assuming experimental errors as being normally
distributed:

each measurement error is assumed to consist of an
accumulation of small individual errors (with unknown
distribution), whereas their sum (the measured error)
can be described by a Gaussian.
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log-normal distribution

single-tailed probability distribution of a random variable whose
logarithm is normally distributed. If y is a random variable with a normal
distribution, then x = exp(y) has a log-normal distribution

likewise, If x is log-normally distributed, then log(x) is normally
distributed. (The base of the logarithmic function does not matter)

a variable might be modeled as log-normal if it can be thought of as the
product of many independent factors which are positive and close to 1.
(see figure next page)
log (X) = log of product = sum of log’s -> CLT -> log (x) normally
distributed
plays an important role in, e.g., economy, biology, mechanics and
astrophysics

(In(x) - u)°

eEXpP(—
\/ TOo X p( O'

f(x,u,o)dx =

)dx or

(Inx - u)°

1
exp(-
\N2rwo 25"

f(Inx, u,0)dInx =

)dInx — Inxisnormally distributed

(of course, w.r.t. d In x)
E(X) _ e,u+62/2

Var(x) = (e° —1)e?*" 125
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pdf (left) and cumulative distribution function (right) for a log-normal distribution with y=0 and different o

as a function of x (linear scale)

20

0.5

— o=10
— 0=3/2
o=1

o=1/2
— o=1/4 .
— 0=1/8 7

25 3.0

(X
~

1.0
0.8
0.6
04+ —o=10
¥ — 0=3/2
o=1
o=1/2
0'2_ — o=1/4
— 0=1/8
0.0_..»|..1....1....|....|....
0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

Left: simulation of a log-normal distribution from a

sample of 10° r.v. which are distributed according to
7

x=]]x; withindependentx,
i=1

where the x, are uniformly distributed within

the interval [0.4,1.6].

The estimators (Chap. 7) for # and o are

4=-0.47 and 6=1.01

Overplotted is a theoretical log-normal distribution

with these parameters 126


http://upload.wikimedia.org/wikipedia/commons/4/46/Lognormal_distribution_PDF.png
http://upload.wikimedia.org/wikipedia/commons/e/e6/Lognormal_distribution_CDF.png

