MU ¢ 6. Errors

= same precision of measured value and error
e €.0.1.5+£0.5cm.
inconsistent: x=5+0.2 or x=1.07+0.1

= ideally: measurement should be free of bias (Verfalschung), i.e., the
true value should be the mean of the measured values in the limit of
Infinite measurements (for a more precise definition, see Chap. 7)

= for measurements with results which follow a known distribution,
the error is chosen as the corresponding standard deviation
(assuming the measurement value to be the expectation value)

= Examples
Poisson-distributed events: We measure 150 photons. The result is 150+V150=150+12

« uniformly distributed processes: We measure the time with a digital clock which displays
seconds. The erroris 1/V12s = 0.3s.
binomial distribution: We detect N=45 from N,=60 particles which pass a detector. The
detection rate is N/N,=0.75.
The error of the rate is SN/No=\[Ng*p*(1-p)]/Ng=V[p*(1-p)/N,]=V[0.75%0.25/60]=0.06
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Empirical derivation from a series of measurements

repeat measurement and derive error from fluctuations
for details, see Chap. 7 (parameter estimation)

justified if purely statistical errors, i.e., the results are independent of each other and
there are no (correlated) systematic errors (otherwise, see below)

2
X, =Y=%in remember CLT: E(X) = 1, Var(X) = (IT\IX
i=1
with 1, and o, the "true" parameters of the underlying distribution
5 =¢? Z(x -X)?  “empirical variance", denoted by s> to discriminate from o
2 2 e 1< 1
57 =s2 =Var(X) =Var —in =—> Y Var(x;) =—Var(x;) -
N = N° N
2
S, )2 . .
— = "(empirical) variance of the mean™
NN (N 02 Z( (empirical)

for the result, quote x,, = &, with individual errors o,

The (N-1)-term in the denominator of s? will be derived in Chap. 7.

It is caused by the fact that we need to use the estimate for the mean, x_,

instead of the true mean x (which is unknown).

Note that for N =1 measurements the variance remains unspecified, which makes sense.

If there would be an N in the denominator, we would find s2 =0 for N =1 (since X, = X,)!
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Averaging weighted measurements

Important to combine the results of the individual measurements
In such a way as to find the highest precision

In the following, we assume independent measurements

Example: two measurements with results x,,x, and errors &,,,. The variance of the
weighted sum (with w, + w, =1)

X =W, X, + W, X, is given by

Var(X) = 6% =W, 5, + w,’5,°,

and we choose the weights in such a way as to minimize the variance. This is obtained
with (prove by yourself)

1167
W, :% such that %=i+i2.
1167 +1/9, o 0,

2
1

The measurment with the smaller error obtains a higher weight!

For N measurements, we obtain the general expressions

> %167 .
X =~ and Var(X) =6° =

D16t D16

If all errors are identical, we obtain the previous expression for X and o, where the latter

is a factor of 1/\/W smaller than the individual errors. 129
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Error propagation

In the following, we identify the measurement error with the positive root of the

mean square deviation of the individual measurements, i.e., with the standard deviation.
Suppose that we measure the quantity x (in the remainder of this chapter, we don't make
a distinction between x and x) which follows a certain distribution with variance

Var(x) and "error" o, (because of the CLT, this distribution will be often a normal one).
We like to find now the corresponding error of f (x), where f is a function.

1. One variable, linear function
Letf =ax+b  with constants a and b. Then,

Var(f)=a’var(x), i.e.,

o, =la| o,

2. One variable, arbitrary function. Taylor expansion around the measured (mean)

value x,, with individual variance Var(x) = E[ (x-x,)* | = E(AX®) = o

f(x) ~ f(xm)+<x—xm)j—fX

df
dx
Note that this approximation is valid for "small" errors, where "small* means that the

o

X

df \’
Var(f):(d—J Var(x) and o, =
X

differential should not change much over a few o. 130
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3. One function of two variables
a) linear function

f=ax+by+c = Var(f)=a%ar(x)+b*ar(y)+2abcov(x,y)

b) general function. Taylor expansion
of of
OX oy

f.=E [f(x,y)]=f(x,.y,) tofirstorder, since E(Ax)=E(Ay)=0
2 2

f 10°f
Var(x) + — Var(y),
(x) 2 oy (y)

X2

But note: to 2nd order, E [ f(x, y)]= f(X,, V) + ﬂﬂCOV(X, y) + 2
oX oy 2

I.e., also the expectation value might be influenced. This is the generalization of E(xy) = E(X)E(y) + cov(x, y)

of Y of Y of \( of
Var(f)=E[(f(x,y)=f ) |=E| A — | +Ay?| = | +2AxAy| — || = ||=
() =E[(f ey~ 1,)] [ (2] vy (ay] y(axj(ayj]
2 2
(&t E(AX?) + E(Ay2)+2(ﬂj a E (AXAY) =
OX y ox )\ oy
2 2
(& ol + a 02+2(ﬂ) a cov(x,y) =
OX oy ) ’ ox J\ oy
ofY , (ofY (8fj of
=| — +| — +2| — || — | p(X,
ox) (8yj y ox )\ oy px.Y)o0,

This reduces to the "standard" law of error-propagation (without the covariance term)
if and only if the covariance term vanishes, i.e., if the x and y are uncorrelated 131
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Examples for error propagation

o)
f =ax" Var(f)=a*(nx"")*Var(x) o, :‘anx”'1 o, Tf —nZx
X
bx 2 (lhabX\ 2 Oy
f =ae®™ Var(f)=a’(be™)*Var(x) ) —|=p|o,

f =axtby Var(f)=a’var(x)+b*ar(y)[t+2abcov(x,y)]

o, = Ja’c,

f =axy Var(f)=a’ (yZVar(x) +x*Var (y)[+2xy cov(x, y)])

- (@) [=(2)3)

[note covariance: E(f) = a[E(x) -E(y) + cov(x, y)]]

*+b’c; [+2abcov(x, y)]

Similar result for f =ax/y [but with —cov term]:

- (- @ EEE]

132



LMU

)

4. One function of several variables

With covariance matrix (“error matrix") C,

E(AX))  E(AXAX,)) .. E(AXAX)
c- E[(x—xm)(x—xm)T]z E(Ax,Ax,)  E(AX?) .. E(AX,AX))
E(AX AX) E(AXAX,) .. E(AX)

Cij = PijOi0;

we find from generalizing the previous results for two variables

Var(f)=o? ——C or in vector notation
f
,,_18x OX;

Var(f)=o?=(Vf) -C.Vf

If the variables are uncorrelated, only the diagonal terms "survive", and
we obtain (again) the "standard" law of error propagation,

2
" of
Var(f)=oc? = — | &2
(f)=o; Z(axij O;

i=1
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5. Several functions of several variables

Last generalization. Suppose there are now m functions f, f,,..., f_ of n variables x, x,,..., X

2y eeey Ry

In this case, there will be always a correlation of the f,, since they share the same variables x..

Taylor expansion of the individual functions gives

Var(f) =0} = Z oty o, —£C;  orin vector notation
C i 0% 0X

Var(f,)=o; =(Vf, ) -C-Vf, (as before),
whereas for the covariances between the functions we obtain

cov(f,, f)=E(f,, f)—E(f)E(f)~

zE[(Xl_le)(Xl 1m)][ J(S;J ....+E[(X1—X1m)(X2—X2m)](

cov(f,, f)= i(%j{%}cov(x,,xj),

which includes the above expression for the variances in case of k =1.

o)),
X, )\ OX,
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The most general law of error propagations

Note that even for uncorrelated variables, at least the term involving i = |,

cov(fk,f,):i{z—il(g jcov(x” X.) = Zlaf J{af }v (%)

will always be present, i.e., the functions will be always correlated!

Denoting the matrix of partial derivatives (which is nothing else than the
transformation matrix, see Chap. 4) by

of,  of, of,
of, o, of,
T= a_xl & & e R™, Tki:%’
OX,;
of  of of
ox, ox, | ox

X=X

we can write the most general law of error propagation as

C, =TC,T'

with C, e R™ and C, e R™". Both matrices are symmetric.

This expression contains everything one has to know about error propagation.
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Example

In a carthesian coordinate system a point (X, y) is measured, where the measurements
should be independent, and the error in y is three times larger than the one in x. E.g.,

10
C,= .
y

Let's calculate the errors in polar coordinates, r = /x> + y* and g=atan <.
X

The transformation matrix (matrix of partial derivatives) is

X Y 1 1
2 X . 1 1
T=[ " ! , and we consider the errors at X, =| |[. Then, T= V2 \/E
-y X 1 -1 1
> r? e > 3
and
1 1 L) (g A
J2 2 (1 02 2 N7
C,=TCT'= _
1 1fl09)l1 1] f4 5
2 2 J2 2 J2 2

The errors in r and ¢ are the square root of the diagonal, J5 and /572, respectively,

and the covariance between (r, ) is cov(r, ¢) =4/4>2.
Only if these terms are considered, the back-transformation gives the original results!
... and any function involving both (r, @) needs this covariance term for the errors.
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Systematic errors

the effect of systematic errors does not decrease with the
number of measurements, since all measurements share the
same effect, and thus are not independent

sometimes, statistical errors and systematic ones are stated
separately, e.g.

X=5.0£1.4+2.3

where the 2nd term is the systematic error.

since statistical errors and systematic ones are independent of
each other, they add quadratically (see below)

treatment: split errors in random and systematic ones, and
calculate covariance matrix
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Assume you measure two quantities x, and X,, which have
a common systematic error S and individual random errors o, o,.

Example:

you measure the length and the width of an rectangle, where the measuring
tape gives systematically too high values (the tape might be stretched).

In this case, both measurements are affected by an individual random error
(reading) and a common systematic one.

When calculating the area of the rectangle, the covariance term (resulting
from the systematic error) usually plays the dominating role.

Split up the individual measurements in two parts,
X, =X+ X, Xy =X+ XS
with corresponding random (R) and systematic (S) errors. Then, x and x; are

independent of each other and of x. and x;, whereas x. and x, are identical.

Var(x) =E(x) —E()-E(x)=E[ (¢ + x)° |- E*(x + X}) =
=E[ ()" |- E*(¢) + E[ ()" |- E*(x)) =] + 8%,

since E(x] - x{)=E(x])-E(x’) because they are independent (Chap. 4).

The above equation proves that systematic and random errors add quadratically. 138
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Simil

arily,

Var(x,)=o5 +S? and

cov(X,, X,) = E(X,X,) — E(X)E(X,) =
= E[(xlR + X7 ) (X5 + xzs)}— E(x' + X)E( + %)=

since all products involving x° cancel, because they are independent of anything else.

Thus, the complete covariance matrix reads

g

Often, the systematic error is proportional to the measurement,

S=¢

(e.g., in case of the measurement tape, if the tape is stretched). In this case, the error matrix is

g

=E[ X% |- E(¢)E(X;) =

= cov(x’,x;)=Var(x’)=Var(x;) =S’

ol +S?
82

X

2 2,2
o, +&°X

€2X1X2

SZ
o; +S? J

2
E°XX,

2 22
o, +EX

|
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Examples

Example 1

By means of the well-known linear regression (Chap. 8), one can, e.g., fita

straight line y = mx + b to a certain data-set. Fit-parameters are the offset b

and the slope m, with errors o, and o, respectively. As we will show, there

Is (almost) always a correlation between both quantities, which

a) is negative when the "sample" mean of the abscissae, X = (ZN: X, j/ N, is positive,
i=1

b) or positive, when the sample mean is negative.

c) for X =0, the correlation vanishes.

If one wants, e.g., to use the derived relation for extra- or interpolation, the

accuracy of the extra-/interpolated value depends on this correlation.

Assume that we want to derive the y-value for the abscissa x,, and that x > 0.

y, =mx, +b; then
o, =X on + 0, + 2% cov(m,b)
which is smaller (larger) for positive (negative) x, than if neglecting (forgetting!)

the correlation. 140
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Example 2
A current | is determined by measuring the voltage U, using a meter of resolution o, ,
across a resistance R + o. The erroron | =U /R results as

2 2 2 2 2 __2
)= [Gu) o[ %) e, o2 =0t %R
I U R R

If two currents, I, and |,, are measured using the same resistance, there will be a systematic

error, and both currents become correlated. The covariance can be calculated from our
general formula of error propagation,

ol,ol, , U U 1 P
COV(ll,lz):a—F;a—F;GR :(_R_;J(_R_gjaé — F1222 ol

The errors on 1, and I, are not influenced by this covariance, of course. However, if one
calculates functions of I, and 1,, the corresponding error is affected. E.g., the variance of
(I, - 1,) is given by (again using our general formula)

2 2 2 2 2 2 2
42 2 s 2 oy tlog+o) +1,7 0, -2l 1,0,
Var(l, - 1,) =10, +(-1)"o; —2cov(l,,1,)= 2 =

— 205 + (|1 — |2)20|§
= e
which can be significantly smaller than if forgetting the correlation

[(1, = 1,)% 08 vs. (17 +1,%) 07 |
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Example 3
Given are the sides of a rectangle, a,b, with reading error 6, and scaling error o,
(stretched tape). Calculate the error on the area F. The error matrix is

co o +o7a’ 57ab
5%ab 52 + 52

F =ab. From our generalized law of error propagation, we find

(5F)2 = b2(5a)2 + a2(5b)2 + 2abcov(a,b)
2 2 2 2 2 2
(ﬁj :(@J +(§—bj s pov(@b) 5—12+522 + 5—12+522 +252ab:512(i2
F a b ab a b ab a

Due to the covariance, the relative error on the area becomes larger by 25

compared to the case of neglecting (forgetting) the correlation. Note that
also the area itself is affected by the correlation,

E(F)=ab +cov(ab) = F(L+ &)

+bi2j+ 267 + 26,
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7. Estimation

Random sampling -- a few definitions

Distribution functions give probabilities for x < x < x + dx, which moreover depend on
certain parameters A which are usually unknown. To "measure" the pdf and A, one has
to approximate it by a frequency distribution obtained experimentally.

The number of experiments performed, called a sample, is necessarily finite. Each sample

is obtained from a set of elements which is usually of infinite size (composed of all conceivable
events), which is called the (parent) population. If a sample of N elements is drawn, the sample
has size N. The sample can be described by a N — dimensional random variable

X = (X[, Xy Xy )

The sample random variable x follows a pdf
g(X) = g(X, X,y Xy )

and has to fulfill two conditions in order to describe the process of random sampling.

a) the x; have to be independent, i.e., g(X) = 9,(X,)9,(X,)...9, (Xy ),

b) the individual distributions have to be equal and identical to the pdf of the parent
population f (x), i.e., g;(x,) = f(x) Vi

A function of a sample x, which itself is ar.v., is called a statistic. A well known example

: : : : 13
is the sample mean defined as the arithmetic mean of the x;, X=-—>"x..
- 143
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= Atypical problem of data analysis is the following:
The general pdf of the parent population is known. The numerical value
of one or several parameters shall be obtained from a sample. Thus, we
are dealing with the estimation of parameters. Since the estimated value
IS obtained by means of sampling, it is a statistic, called an estimator.

= an estimator is a statistic,
S=S(Xq, X9,-.-,XN)

l.e., a procedure (function) applied to the data sample which gives a
(numerical) property of the parent population or a property or parameter
of the parent distribution function.

= for a given sample, there might be different estimators.

= the quality of an estimator can be described in three terms,
consistency, bias and efficiency

a ‘good’ estimator has to be consistent, unbiased and efficient.
to compare two estimators which are consistent and unbiased, the better one has to be more efficient .
a ‘bad’ estimator is inconsistent, biased and inefficient.

estimators should be at least consistent. Some estimators are inevitably biased.
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Bias, consistency and efficiency

An estimator is unbiased if for any size of the sample its expectation value is equal to
the parameter to be estimated,

E(S(X;.X5,.0Xy)) =4 forany N

If a bias is found, it is often easy to correct for. If , e.g., E(S(X,,X,,....Xy)) =4 +D,
then S(x,,X,,....X) —b is an unbiased estimator.

An estimator is consistent if the result becomes increasingly accurate for increasing sample size,
imo(S)=0 and IlimS=A.

N —o0 N —o0

If an estimator is consistent, its bias (if any) vanishes for N — oo : consistent = asympt. unbiased

To compare the relative efficiency of two estimators, one can use the quotient
_o’(S)
o*(S,)
Often, the efficiency can be quantified in terms of a lower limit, the so-called minimum
variance bound (MVB, see "maximum likelihood"). If Var(S) = MVB, the estimator is
called efficient.

Example for bias
The Malmquist bias is a selection effect in observational astronomy. Specifically, if a sample of objects
(galaxies, quasars, stars, etc.) is flux (“magnitude”)-limited, then the observer will see an increase in
average luminosity with distance. This is, of course, because the less luminous sources at large distances
will not be detected. The solution is then to use a sample that is not magnitude limited (for example, one

that is volume limited.)
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Basic estimators: sample mean and variance

As already shown, the expectation value of the sample (arithmetic) mean of ar.v. x

IS its expectation value,
N

E(R) =BG Y x) =1 (E0) +E(6) ot E(X,)) =

i=1
Since this is true for any sample size, the sample mean is an unbiased estimator for the
expectation value of x in the parent population, the population mean.

The variance of the sample mean is

o’ (X)=E{(X-E()’}=E [(ZE\I—XJ—#JZ { (%) - N,ux)} %E{(Z(xi_ﬂx))z}:

2
=$E{(X1—ﬂx)2+---+(x,ﬂ—ux)z}zaT(X), since all mixed terms of the type

E{(x; - #)(X; - )}, i.e., the covariances, vanish (independent r.v.).

: : : o (X
Thus, the sample mean is a consistent estimator for x , I|m a(x) = le (N) 0.

Now, let's estimate the variance of the population (see also Chap. 6). At first we assume that
4 1s known. An obvious estimator for the variance is

X

N
S(var) = %Z(xi — 1)’ =8 which is consistent (prove yourself) and unbiased, since

E{ﬁi(xi —ux)2}= NELC) e

N
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Usually, however, the "true" population mean is not kown. An obvious remedy is to
replace it by the sample mean. Let's call the corresponding estimator s',

N

X.

s'z—ii(x —Y)Z—iixz—ﬂé | + %" _
NG NS N N

with expectation value

E(s?) = E{%i(xf —YZ)} = % NE(x?) — E(X*) = E(x®) - E(X?) =
= E(x*) - (E(X))" +(E(x))" - E(X?).
As we have shown above, E(x) = E(X), and thus

E(s?) = E(x?) - (E(X))’ —[E(iz) —(E(K))Z} —Var(x) —Var(x) = (1— %]Var(x).

Thus, s'is biased, where the bias vanishes for N — oo! The reason for this bias is that we
have not used the true but the sample mean. Since the sample mean, by construction, lies
somewhat closer to the data than the true mean, the corresponding variance is smaller.
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The bias can be corrected for by applying "Bessel's correction”, namely

1 N -1 N N
E(s?)=|1-— |Var(x) = Var(x) = Var(x)=——E(s?)=E
()(Nj (%) (%) (x) = 7B = B

by multiplying with N /(N -1).

Sl2
)

Thus, a bias free estimator for the variance of a sample, s, is given by

s? :Li(x. - X)?
N-145"

The denominator can be also understood as follows: Some information about the sample
has been used for calculating the sample mean, which is lost when calculating the
sample variance. The effective number of the sample elements is thus reduced.

For large N, the variance of these estimators can be calculated (with some effort) via

2
2
Var(s?) ~ %[E{(x — )"} —(E{(x - ﬂx)?-}) } Var(s?) = {%} Var(s?)
which vanishes for N — oo. Thus, both estimators are consistent. For a Gaussian distribution

(conventional measurement errors), this reduces to (cf. Chap. 5)

4 4 4 4
Var(s?, large N) ~ 30 N o _ 2; [for arbitrary N, Var(s’®) = w

]

20"

N -1

Var(s?) = (arbitrary N) (Eq. 7.1)
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Estimating o

So far, we have calculated various estimators for the variance, s’, s'* and s°.

The obvious way to estimate the standard deviation is to take the square root of these

estimates, I.e.
S1
S(o) =+/S(var) =s'
S

Though the law of large numbers guarantees consistency, the square root of an

unbiased quantity (s7, s*) not necessarily needs to be unbiased itself. Fortunately, in all

calculations of error propagation or significance the standard deviation appears as o°.

The variance of S(o) can be calculated from the law of error propagation,

2

Var(S(c?)) = ( dd(;

J Var(S(o)) = 4o°Var(S(o)).

Thus, for large N and a Gaussian distribution, we obtain
2 2

Var(s‘)~o-— Var(s)—a— o o.x—2_ o=
2N’ 2(N —1) 2N T J2(N -1

If the population variance is not known or cannot be guessed, then o needs to be
replaced by the corresponding estimators from above.

(Eq. 7.2)
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Estimating the correlation coefficient

A simple estimator for the correlation coefficient within a sample can be constructed
via

N N

Z(Xi _X)(yi _7) Z(Xi _Y)(yi _7)
S(p)=r=-"=2 = —=t (Pearson's r)

N -1 N N
(N =08, Jz(xi—i)zz(yi—vf

(independent of N vs. N —1), and with corresponding error for large N (>500)
2

1-—
O'p =~ P .
N -1
For moderate N, it is better to transform to a variable z (Fisher's z-transformation),
7 = 1 n 1+_r not to be confused with Fischer-Z
2 1-r1

which has a standard deviation o, =1/4/(N —3).

Example: 13 physics students were given an essay to write. The correlation between the essay
mark and their end-of-the-semester average physics mark was found to be S(p) = -0.16. If this
correlation were really negative, this would imply that literate students are bad at physics and
vice versa. Is there any support for this?

Transforming from r = S(p) to z, we obtain

1-0.16

1+0.16
The error o, =1/+/10 =0.316. The deviation from zero correlation is only half a standard
deviation, so not significant.

z=0.5In =-0.1613.
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LMU Q Summary on basic estimators

= all estimators discussed so far

are consistent and

do not depend on the distribution of the parent population

(except for expressions Eq. 7.1/7.2 that assume a normal distribution)

= furthermore, the basic estimators for the mean and
the variance (“sample mean, sample variance”) are
unbiased estimators of the mean and the variance of
the parent population
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Parameter estimation: an example

Estimate the parameters of a correlated binormal distribution from random sampling
(and compare with the parameters from the parent population)

Create correlated sample from uncorrelated random numbers:
calculate 2N independent, normally distributed random numbers (either from intrinsic
generator if present or from uniformly distributed numbers and Box-Muller algorithm);
Xi —H

o
scale with individual o, o, (for each of the N r.v. pairs in direction 1,2);

rotate coordinate system to obtain correlated X,y pairs; add means ., u,

the generated numbers are reduced r.v.: u, = = X, =oU; +u:

Here, we use the example from Chap. 5 with p=(2,2)",5, =0.6252 and o, =1.6152:

For a rotation angle of 8 =-31.6", we should obtain
p=0.7, 0, =1.0, 0, =1.4142 and 2 =0.8673

u=randomn(seed, N)* o,

v=randomn(seed, N)*o, 2 times N independent, normally distr. r.v. with o,
X;| (cos@ —sind ) u note that the rotation matrix has been inverted
Y, “|sing  cos@ v, (= transposed because of its orthogonality)

X=X, + 4, Y=Y+ 4, add mean (shift center)
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Calculate estimates and corresponding errors

(by using the estimates instead of the actual, but unknown quantities)

S, ) =T =X,

o)s,  [EOD
N-1

S(ﬂx)zyzﬁzxi

S0 s, - | 20X
N -1

“s J2(N =1)

DACERI 7))
S(p)= (N -1)s,s,

= L S)
2 1-3(p)

all sums extend fromi=1 N

NOTE again: All errors scale with

o, =1/ (N -3)

1
VN =k

, k €[0,3], i.e., all estimators are consistent
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binormal distribution
with correlation, for
parameters as
described before
(N=1000 x,y-pairs)

Compare with the
covariance ellipses

from Chap. 5

0
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Results for the sample estimates for different N

N=10
mu x:
mu_ y:
sig x:
sig y:
rho:
Z:

N=100
mu x:
mu y:
sig x:
sig y:
rho:

N=1000
mu X:
mu y:
sig x:
sig y:
rho:

O O R P OO O K

O O O NN

. 74463
. 09044
. 95317
.07756
. 649858
. 7175052

.81596
.80564
.00339
.45755
.631415
. 7143767

.00010
.05395
. 969200
.32664
.682793
.834329

+/-
+/-
+/-
+/-
+/-
+/-

+/-
+/-
+/-
+/-
+/-
+/-

+/-
+/-
+/-
+/-
+/-
+/-

O O O O o o O O O o o o

O OO O o o

.301419
.340753
2246064
.253982
.192562
.377964

.100339
.145755
.0713076
.103584
.0604344
.101535

.0306488
.0419521
.0216828
.0296795
.0168885
.0316703

N=10000:

mu x: 2.00184 +/- 0.00989791
mu_y: 2.00837 +/- 0.0140576
sig x: 0.989791 +/- 0.00699923
sig v: 1.40576 +/- 0.00994069
rho: 0.700583 +/- 0.00509210
7 0.868444 +/- 0.0100015

to be compared with the population
parameters

mu x: 2.0
mu y: 2.0
sig x: 1.0
sig y: 1.4142
rho: 0.7
Z: 0.8673

note that all errors decrease with = N>,
Even for N=10, there is a significant indi-
cation that the (x,y) data are correlated!
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Stratified sampling (‘beating’ 1/YN)

suppose you want to estimate a certain quantity of a parent population
based on a smaller sample, e.g., the average weight of students at your
university.

the most simple method is to make N measurements from a random
sample, and to quote your results as

X*s, /~/N, with sample mean X and sample standard dev. S,

but, you can do better, exploiting the fact that male and female students
have different average weights, and if you know the relative proportions of
male and female students at your university (consult the corresponding
records!)

If you perform the simple estimate from above, the ratio of male to female
students in your sample will scatter about the actual ratio

(e.g., if you have bad luck, your sample contains much more male than
female students), and this scatter adds to the scatter in the average weight.

This can be avoided by measuring the average weights in a male and
female subsample, and adding up the results accounting for the specified
ratio. In this way, the error on the total average can be significantly reduced!

This method is called stratified (or partitioned) sampling (‘geschichtetes
Stichprobenverfahren’)
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Let's consider the more general case that the parent population T can be divided into
k (exhaustive!) subpopulations T,...T, .
The quantity x shall be described by correponding pdf's f,(x)... f, (x), with distribution function

F(x)= JX- f.(x)dx=P(x<x|xeT)

—00

that is a conditional probability (x has to be part of a certain subpopulation )

We now use the rule of total probability (Chap. 2) to obtain the distribution function
for the total population T,

k
F(X)=P(x<x|xeT)=> P(x<x|xeT)P(xeT)

i=1

Denoting P(x € T.) =: p;, we find

F(x)= Zk: p,F. (x) , and likewise f (x) = Zk: p; f.(x)

i=1
Thus, the population mean can be expressed by

ok

E(x) = T xf (x)dx = I pri f.(x) dx = Zk: o ]O xf. (x)dx =Zk: p,X; (Eq.7.3)

S i=l

X

The mean of the total population is the mean of the subpopulations, weighted by their probabilities
of occurring.
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The variance of the population can be calculated from its definition

Var(x) =o?(x) = T (x = %) f (x)dx = T (x — k)zzk: p, f.(x) dx =

o0

=2 b J L= R)+ (% = DT f,(x)dx

—00

Since the x; are independent, all mixed terms (covariances) vanish, and we obtain

e (=3 p,| [ (x= %) £,(0dk+ (% - %)° [ 1,00 |

o’ () =2 plol+ (& -%°] (Eq. 7.4)

The variance of the total population is the weighted variance of the subpopulations,
plus the weighted variance of the subpopulation mean about the population mean
(The latter term corresponds to the ‘additional’ scatter mentioned earlier)

For k = 2 (corresponding to the previous example), we can express this alternatively as
2

o’ (X) =Y [ o7 + (& =R |= pol + .ol + P, (R — R,)
i=1

accounting for p, = (1— p,) in this case (prove yourself ).

Thus, if we draw a random sample from the total population of size N, the variance
of the corresponding sample mean, X, will be

Var(x) = o?(x) =2 I\EX) - %Z p,[o? + (% - 9?] (Eq. 7.5)
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Alternatively, we can perform a stratified sampling. In this case, we estimate

the total population mean from the estimates of the subpopulation means,
k

S(R)=X=pX (Eq. 7.6)

i=1
(Remember that the p.'s need to be known from external resources or from preliminary
sampling). This is an unbiased estimator, since (cf. Eq. 7.3)

E(X):Z piE(Yi):Z pi% =X

k
So far, the subsample sizes n., withz n. = N, did not play any role (though they

i=1
should be large enough to ensure low errors on X:). Let's assume now that the
n,'s are arbitrary, and that we want to calculate X from the arithmetic mean of the
total partitioned sample, without using the p;'s. In this case,

ClEE 1
x=ﬁ22xij :ﬁizzllnixi’

i=1 j=1

k
with expectation value E(X) = Z&Xi. Comparison with Eq. (7.6) shows that only for
i=1

n, : : : : :
WI = p, the correct result is obtained, whereas otherwise the arithmetic mean cannot
be used as an estimator for X.
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The variance of the estimator for the population mean (Eq. 7.6) can be calculated

from the usual calculation rules,

SR =X=>p% = Var(S(ﬁ))=var(¥)=02(7)=iprar(@:ipfj_f'

1) If we would sample according to the ratios, n, = Np,, this would result in
. 13
o’ (X) :ﬁz p.o’, (Eq. 7.7)
i=1

which indeed is lower than the variance resulting from a 'simple’' sampling from the
total population, Eq. (7.5).

Only if the indiviual means X. differ largely from the total mean X, however, the
difference is significant, and stratified sampling is worth doing. Otherwise, much
time (for defining the p, and estimating the individual X;) is spent for almost nothing.

i) Interestingly, we can reduce Var(X) even further, by choosing optimum n.'s.

To this end, we minimize

k k 2
Var(x)=> p/Var(x)=> p/ Gi
i1 i1 n;
k
with respect to n; and the condition > n, = N by means of the method of
i=1
Langrangian multipliers.
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We define the function to be minimized as

L =Var(x) + u((gnij— N )

and solve for 8_L:0 and a—L:O in parallel.

on, ou
2 2
LB um0 = =B
i i H
aL k k k pU 1 k
— = -N=0 = n=>»—-—=N = =— =
2> j S =3P Ji= i he

k
Np.o. X i Z o
n =———— and Var,(X) ——(Z p,aij e, o, (X) = ':1\/7 (Eq. 7.8)
Z Pio; - \

i=1

Thus, the optimum n. and o(X) depend on the p. AND on the variance of the
individual subsamples. If all o, are identical, then n, — Np,, and we recover Eq. (7.7).

For significantly different o, on the other hand, stratified sampling with n,
according to Eq. (7.8) reduces the fluctuations of X considerably.

Note: The individual o, within the subpopulations need to be known or have to

be estimated in parallel with the estimates X..
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Example for stratified sampling

The parent population shall consist of two Gaussian subpopulations, with
p, =08, x=1 o,=05
p,=0.2, X,=10, 0,=4.0

According to Eq. (7.3), x=0.8-1+0.2-10=2.8,
and the variance of the total sample is (Eq. 7.4 and below)

Var(x) =0.8-(0.5” + (1-2.8)*)+ 0.2 (4.0° + (10 - 2.8)*) =16.36 or
Var(x)=0.8-0.5° +0.2-4.0° +0.8-0.2- (10 -1)* =16.36

NOTE: Variance dominated by the fluctuations of the individual means about
the total mean

For stratified sampling, the optimum n. are

S po=08-05402-4=12 = n=N2022_ N _y024_2N
12 3 12 3
i.e.,ﬂz1
n2

Let's simulate this now, by sampling from a population of Gaussian random numbers.

For a parent sample size of 800000 + 200000 numbers, we obtain X =2.7998 and

Var(x,) =16.3245, very close to the theoretical values.
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From simple sampling of the parent population with N =300, we estimate
X, =3.20+0.25, i.e, the estimated variance of the parent population

Var(x,) = NO'Z(Yp) =300-0.25° =18.75, to be compared with 16.36 (not too bad)

From stratified sampling with n, =100 and n, =200, on the other hand, we find
X, =0.976, s(x,) =0.456
X, =9.960, s(x,) =4.305
and thus

X, ~0.8-0.976+0.2-9.96 = 2.77

} in agreement with the parameters for the subpopulations

2 2 Ea-78 ) ) 2
(0.8-0.456) N (0.2-4.305) - (0.8-0.456 +0.2-4.305) —0.005, resulting in
100 200 300

X, =2.77%0.07 (Note: Equality in the two expressions above is only achieved if s = o)

Topn (X;) =

| Other subsample sizes gave the following results
n:n,=1ie,n =150andn, =150: X, =2.85+0.08

. _ larger error than for n, : n,=0.5,
n:n,=4,ie,n =240andn, =60: X, =2.78+0.12

| but still better compared to simple sampling

Obviously, the result from stratified sampling has a much better quality than from
simple sampling, though the total sample size is identical.

For comparison, the results for N =3000 (n, =1000 and n, = 2000) are
simple sampling: X, =2.876 £0.076

. i _ (1/\/ﬁ scaling of error in both cases)
stratified sampling: X, =2.807 +0.023
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Sampling from finite populations without replacement

finite (i.e., also discrete) population: independence of consecutive
drawings is lost when individual elements are not replaced

thus, no genuine random sampling
« should be no problem when number of elements, N, is very large compared to

sample size n

Let the population be composed of N elements, y,...y,, . At first, we need to define the population

mean § and the variance o (y). Since each element has the same probability to be drawn,

y-3-1% .

Thus, ¥ is just the arithmetic mean of the population elements.

Here (but see also Chap. 1), we define the population variance as

(Y)_m _1(yi —7) :

since the number of degrees of freedom ( — Chap. 8) of the sum of squares is (N —1).
In the above sum, the first term can take any value, the 2nd one as well and so on until the

. : . 13
(N -1)th term. The Nth term, however, is completely determined, due to the restriction y = WZ Y.
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Now, we draw a sample x,...x, from the population y,...y,, withn <N,

: - 1 :
and determine sample mean, X = —Z X., and sample variance,
i=1

2 =3 (x - %)
n-143
Without proof (see Brandt, Chap. 6.4), we quote the following properties
(remember: finite parent population, no replacement)
) EX)=Y
The sample mean is an unbiased estimator of the population mean.
i) E(s;)=0"(y)
The sample variance is an unbiased estimator of the population variance.

i) var(x)= 2 (1— ﬂj

n N

For n < N, similar to the case of an infinite population.

For n < N, smaller than for the case of an infinite population.

For n=N, the variance of the mean becomes zero, since sample and population mean
are identical.

SUMMARY': mean and variance for a sample drawn from a finite population without
replacement have similar properties as if drawn from an infinite population.
— mean of 'Lotto’' numbers, 'Feynman's restaurant problem'
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= What has been discussed so far, can be generalized

as follows

Given a sample of observations/measurements, we like to find the

appropriate theoretical description of the properties of the underlying

Likelihood

population.
Examples
case 1 | given: N alternative hypotheses H,
wanted: relative probabilities for the validity of the H,
case 2 | given: one hypothesis H,
wanted: a statement about the validity of H, — (Chap. 9)
case 3 | given: a valid hypothesis H(A),
where A is a set of unknown, continuous parameters
wanted: “‘best” value for A and error
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The Bayes theorem revisited

= discrete hypotheses

Bayes theorem (see Chap. 2)
P(A-B)=P(A|B)P(B)=P(B|A)P(A)
apply to an observed value k@ and hypotheses H;. Here and in the following, variables with
superscripts denote observed/measured quantities, and the “1” denotes that it is the first (and only)
measurement of the r.v. k. (from here on, we don’t distinguish k® from k).
Let’'s assume that there is a restricted number of hypotheses which can explain the observation, and
that we know the probability distribution P(k| H;) for the r.v. k. The probability for the validity of H,
given Kk is
P(k[H;)P(H))

P(k)
and for the specific observation k®

P(H, 1K) =

Pk IH)P(H;)) _ P(k®[H)P(H,))

_ @y
P(H; [k=k™)= P(K®) > PK®P|H)P(H))

The 2nd equality follows from the rule of total probability, or (if the H, are not exhaustive
and not mutually exclusive), from normalizing P(H, | k) in such a way that the probability
for the validity of any of the hypothesis is equal to unity, i.e., > P(H,|k®) =1

P(H,| k® ) is the a posteriori probability for the validity of the hypothesis i after the event k@ has
occurred, and is the quantity we are interested in.

What can be easily calculated is the probability P(k® |H;), since the hypothesis (theory) is known.

P(H)) is the probability for the validity of the hypothesis i before the observation, the prior. Generally,
this is the cumbersome quantity.
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The relative probabilities for two hypotheses i and j for a specific measurement k@ is
given by

P(H,[k?)  PK®|H,)P(H))
P(H,[k®) PK®|H)P(H,)

example:

The decay probabilities, x, of pions and kaons into myons in a detector are

P(u|7)=0.02 and P(u| K) =0.10, respectively. The relative abundances of
pions and kaons are 3:1.

A myon has been detected. Does it originate from a pion or a kaon?

P(z|u) _ P(ulz)P(z) _0.02-3_
P(K|x) P(u|K)P(K) 010 -1

A decay from a pion is 60% as probable as a decay from a kaon.

168



LMU

)

= Continuous parameters

Now, we investigate the case that a parameter A of a hypothesis is looked for.

In this case, we deal with probability densities, and for two r.v., the Bayes theorem
reads (see Chap. 4)

f(x,4) = F (x| )h(2) = F (1] x)g(x)

where h and g are the marginal distributions of f.[h(i) :j f(x,A)dx; g(x) =I f (x,ﬂ,)di.]

If the observation gives the result x® and the parameter of the hypothesis (theory!) is A,

the corresponding probability density reads

f (x® | 2)h(A)

Oy _
T

Thus, the probability density for the parameter A given a measurement x® (wanted) depends

on the probability density for the measurement of x given the parameter A (calculatable)
times the prior h(1) (cumbersome), divided by a normalization factor

@)
1y =1 1N

j f(x® | 2)h(1)d A

—00
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Example:
We measure the time t*) when a particle has decayed. The measurement error should be
Gaussian, with resolution s. Thus, the probability to measure an arbitrary t for an actual

2
decay time T isf(t|T)« exp(— (t=T) J The pdf for the decay time before the measurement

SZ

exp(=T /1)

T

(the prior) follows from the decay law, h(T) =

Because of the normalization, constant factors can be neglected. The probability density that

the actual decay time is T when we measure t* is thus given by

exp[—(tm _ZT)z jexp[—TJ
25 T

F(T 1Y) = - -

jexp[—M]exp[—Tde
) 2S T
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= £E[T , tl ] :=Exp[-(t1l-T) "2/2/s8"2] * Exp[-T/tau] nominator

2= g[tl ] :=Integrate[f[T, tl], {T, 0, Infinity}, Assumptions - Re[sz] > 0] denominator

2= g[tl]

s2-2t1 tam 2 _ X
QUE]= & 2ta? E s |-1+ i s + Erfc { > £t } — I f (t(l) |T)h(T)dT
2 s? \/; s tau 0

4= DLE[T, t1] /g[tl], T] derivative of f (T |t®) with respectto T

(-T+t1) 2 T s2_2tl tau
- - - 2 -T+tl 1
e 282 tau 2 tau? — _—  _ —
by g2 tau

Cuf4]=
S j.Jr\/l2 s + Erfc {m]
s \/;stau

5= Solve [D[£[T, t1] /g (tl), T] == 0, T] determine maximum of f (T |t®) by solving for

df (T [t%) 0

r
2

~s? +tl tau o S
Ou[5}= {{T - }} Tmost prob., —  ——,
tau T
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Ing]:=

Qule)=

Quf7=

Qu[s=

Qufd]

tau=1.

s=1.

tl=2.

X =Re[g[tl]]

1.
1.
2.

0.470568

Given an observed decay time t®, the highest probability density for the actual decay
time is located at earlier times, due to the exponential prior. E.g., if s=1, 7 =1, then

T

most prob.

Ima= Plot[£[T, t1] /x, {T, 0., 4.}]

f(TIt=2)[

oufig=

04 -
03
02

0.1

largest
i pdf at T=1

=t® -1,

O - (e ————

Observed time tM=2
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Likelihood quotient and function

usually, the probability (density) for the prior is unknown.

What are the prior probabilities for two alternative hypothesis?

What is the pdf for a certain parameter? (As outlined in Chap. 2, this is often assumed
as being uniform, but then, e.g., f(m) and f(m?) give different results for f(m|x). )

Thus, for alternative hypotheses i,j or distinct parameters A;, A;, one usually quotes the

“likelihood ratio”

_P(™[H)
Pk®IH))

(X 14)

0 x4

rQ

which contains the full information of the observation. Neyman (1937, “Outline of a
Theory of Statistical Estimation Based on the Classical Theory of Probability”, Phil.
Trans. A236, 333) has shown that to discriminate between two alternative hypotheses
there is no other parameter which is more effective.

The result of the measurement can be (very loosely) expressed by saying that the
hypothesis/parameteri is Q times more probable than the hypothesis/parameter |
(strictly speaking, such a statement of absolute probabilities assumes equal priors).

Better to quote “only” the likelihood ratio, i.e., by saying that the likelihood of
hypothesis/parameteri is Q times larger than the likelihood of hypothesis/parameter .
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definition: likelihood
(in German: “Wahrscheinlichkeit”, same word as for “probability”. Thus,
also in German called “likelihood”, to allow for a discrimination)

The likelihood L, for a hypothesis H. with pdf f.(x) or a discrete probability

distribution P (k) and observations x¥ or k™, respectively, is given by
L (x®) = f,(x?) or  L(k")=PR(k"™).

For probability densities f (x| A) or probabilities P(k | 1) and observations x*
or k@, the likelihood is given by
LA xP)=f(xP121) orL(A|k®)=Pk®™|A).

The likelihood quantifies the validity of a hypothesis for a given observation,
whereas the pdf relates the r.v. with the hypothesis. The consideration of a
likelihood makes only sense if more than one hypothesis is given, or if the
hypothesis depends on parameters. If the likelihood depends on parameters, it
is called a likelihood function.
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= The likelihood is an a posteriori probability, in contrast

to “normal” a priori probability, and must not be
confused with a conventional pdf.

The likelihood is large when the occurrence of a
specific observation for a given hypothesis is likely.
The likelihood guantifies in how much a hypothesis is
supported by the data.

If a specific observation is extremely unlikely (i.e., L is
very small), the validity of the hypothesis is more than
doubtful, but only if other hypotheses with larger L are
available:

— for parameter estimation, maximize L(A)
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Likelihood for a sample

Usually, an experiment results in a sample of N independent values
x0,j=1,N, which are independently, identically distributed (i.i.d.),
following the pdf f(x).

The combined pdf is then the product of the individual pdfs,

N
g0 xy) = (X)) (here, the x; are still .v.)
i=1

whereas g evaluated for the observed sample is the sample likelihood,
N N

L(X(l),..., X(N)) — H L(X(J)) — H f (X(J))
j=1 j=1

For discrete variables, we have

N N
L(k(l),..., k(N)) — H L(k(j)) — H p(k(j) | H),
j=1 j=1

and for pdf's which depend on a parameter A4 (or parameter-set A)
N N

L XY oxX ™)y =TTe  x)y=TT f(x20),

A et

N N

LA k@ . k™) =] | L] k) =11 Pk |2)

=1 =1
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log-likelihood

In the following, we will concentrate on the last case, i.e.,
probabilities/probability densities which depend on a parameter

N
Lo XD, xX™) =TT f(x[).
j=1

Since for many reasons (e.g., to find the maximum of the likelihood) one has
to calculate the derivative of L, it is convenient to consider the log-likelihood,

In L(A):ZN:In[f(x“) m)]
j=1
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log-likelihood — example

In two equidistant time-intervals, we detect 5 and 10 X-ray photons from an X-ray
source. Two competing theories predict a mean number of either 2 or 12 photons
per interval. Which theory is "more likely"?

Ae” W @) :
P(k,A) = - - In L(/1|k1,k2):InL(/’t)z—Z/’HJZ:;(kJ.In/l—lnkj!)

INL(2) =—4+[(5In2-In5!)+(10In2-In10!) | =-13.49; In L(12) =—6.82

The log-likelihood for 4=12 is much larger than the one for 1=2, with a likelihood
ratio of
L(2)

—°7 — exp(~13.49 + 6.82) = 0.001.
L(12)

The observed sample indicates that hypothesis 1 might be excluded. (The significance
of such results will be discussed in Chap. 9).

Remember that to obtain actual probability (density) ratios, one would have to multiply
with the prior ratios. If both hypotheses were equally probable, then one could say that
hypothesis/theory 1 is a factor of 0.001 less probable than hypothesis/theory 2.
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Maximum likelihood

Generalizing the foregoing concept, a variation of the (set of)
parameter(s) in the likelihood function allows for infinite hypotheses.

Highest confidence should be in that set A which has the maximum
likelihood, which is then the best estimate of A (“most likely value
of A", but actually the value of A which makes the data most likely).

The error of A can be derived from the distribution of L about A .
for many parameters, maximum needs to be derived numerically
if more than one maximum, prefer the one with the largest L

caution if several maxima with almost equal L are present
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Let's first consider the case with a single parameter, A. Since the maxima of L and In L occur at the same 4,
the "most likely value of A" can be calculated by solving the likelihood equation

d f(xX0)]rda N g
f(x7; 2) i

=

d

-3 L[ rein]-3

=

[Here and in the following, we write for brevity f (x/V; 1) = f (x| 1), where this (conditional) pdf
is normalized with respect to all X" (see Chap. 4), i.e.
.f f(xP,x@ L x™; 0)dx@dx@ L.dx ™M) =1]

In the general case of p parameters, the likelihood equation is replaced by a system of p equations which
have to be solved simultaneously

olnL
o4,

=0, i=1p [evaluated at the parameter set & = (4,,...4,), see below]

A

continue with last example:
Consider now the same measurements, but without a given hypothesis for the mean value. Instead, derive
the "most likely value of A" given the data.

S i dinL N k) o1
INL(A)=-NA+>Y (kP InA-InkP1) = =0=-N+Y — = A=—> k?”
i=1 Az j=1 N j=1
The maximum likelihood value for the mean is the sample mean (which was to be expected)
5+10

For the actual example, we find A= — =7.5. For this value, In L(7.5) =—-4.66
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: T 1 log-likelihood function In L(A) for the previous

- / iy 1 example (Poisson-dist, observed values k—(5 10)).
e / \ 1  The maximum of the function is located at A =7.5

[ ’// 4

Another example
Assume that a quantity is measured repeatedly, but with Gaussian errors of different variance, where the
mean is unknown. The likelihood function for measurement x' is thus

_ _ 1 (XD — 1)?
L | xDYy=f(xP:y) = ——exp| ———F2 |
(u | X7) = £(x; w) \/—6] p[ 25?

2ro, i
The combined likelihood for N measurements is the product of the individual likelihoods, and the
log-likelihood function becomes

(X(J) _;U) ) N N

InL(u) = Z +f(o; uy) Withf(o, ) =——In27)-> In(c))
j=1 O_j 2 j=1

Ny

11‘72
=0, resultsin g = — 1
A ZT

=1 0

The solution of the likelihood equation,

which is just the "addition theorem" for calculating means from weighted measurements (see Chap. 6).
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Information inequality and minimum variance bound
(Schranke minimaler Varianz)

Having defined the concept of likelihoods, we reconsider the problem of constructing
estimators S with desirable properties. A "good" estimator for the parameter A should
be unbiased,

B(1)=E(S)-4=0,
and should have a variance o(S) as small as possible.
We will now show that there exists a relation between both quantities, the so-called

information inequality, such that frequently a compromise between the requirement of
minimum bias and variance has to be found.

(E.g., an estimator with &*(S) =0 can be always constructed, by choosing S = const,
but this estimator will be strongly biased).

We consider an estimator S(x® ,x@,...,x™), with a joint pdf for the sample
f (XY, x@ o xM )= F (XA F (X 2) - £ (xNV:A).
Then,

E(S) =IS(X(1),X(2),...,X(N)) f(xP;2) F(x?;2) - £(x™;20)dxPdx@ - dx™ = B(4) + A.
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E(S) :_[S(x‘”,x(z’,...,x('“) f(xXP ) F(x@;2) - £ (XM D)dxPdx® - dx™M = B(1) +

A (Eq.7.9)

We now assume that we can differentiate under the integral w.r.t. A (S is independent of 1),

and obtain
1+ B'(ﬂ,) — _[S iM f (X(l)'ﬂ) f (X(Z)'/l) oo f (X(N)'ﬂ,)dX(l)dX(z) . dX(N)
f(x;2) ’ ’ ’

N 10y (1) .
1+B-<@:E{s(;_ff ((Xx(j);;;j}:E{s_d ni)

The normalization of f (x®,x®,...,x™); 1) reads

j (X)) F(x@;0) - £ (XN )dxPdx® ---dx™ =1, and the derivative with respect to A

dA

5 f(xY2) 1) (2) (N) (@) 4y (2) (N)
IZT fOXP2)F(xP;2) - F(x™; ) dxPdx® - dx™ =0=E
o F(x54)

Multiplying Eqg. (7.10) with E(S) (still =0) and subtracting from Eqg. (7.9), we obtain

14 B2 E{Sdln L(ﬂ)} £(s )E{dln L(/l)}
dA dA

dInL(2)

}. (Eq. 7.10)
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v efedinL()) dinL(2)] _ ) dInL(A)
1+B(/1)_E{S—d/1 } E(S)E{—M } E{[S E(s,)]—omL } (Eq. 7.11)

which is of the type E(xy).

To proceed further, we invoke the Schwarz inequality, (E(xy))2 <E(X*)E(Y?) (Eq. 7.12)

 Proof:
E{(ax +y)*} =a’E(x®) + 2aE(xy) + E(y?) 2 0 is a non-negative number for all values of a e R
To fullfil this condition, the discriminant (regarding the solution a,, of E {(ax + y)2} = 0),
D =(2E(xy))" —4E(xX*)E(y?),
(i) must be either D =0 (unique solution, since only for ax + y =0 we have E {(ax + y)2} =0,

(i) or D <0 (no real solution for E{(ax - y)2} =0)

= together: D <0, i.e.,

_4(E(xy))2 —4E(x*)E(y®) < 0, which proves the inequality.
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o dInL(2) 2 ety o [(dinLa) Y
(1+B'(4)) :[E{[S—E(S)]T}j < E{[S—E(S)] }E{d—zj }

(1+B'(A))
E{(dInL(2)/dA)’}

= E{[S— E(S)]Z} —Var(S) >

The quantity in the denominator is called the information of the sample w.r.t. A, which is
a non-negative number that vanishes if the likelihood-function does not depend on 4,
and the inequality is called the Cramer-Rao- or Frechet- or information inequality.

The r.h.s. is called the minimum variance bound, MVB.

Since

dinL(4) > f(x;A) @ 2) (N) @) 4y (2) (N)
Es——= = — = (XA (X A) - T (X )dxdx ---dx =0,
{ — } j(z o0 | A - ()

further differentiation w.r.t. A yields (in obvious notation: dX =dx®dx® -..dx")

dinL
dA

LdX =0

di S F(x;)

2 2
:>J-dln2LL+dInLdL dX:O:J-dInZL+dInL dL LdX
dA di dA dA dAi LdA

N £ (i)
d I[Z—f (X ’MJ f(x2:) fF(xP;2) - £ (xM™: )dxPdx® - dx™) :dd_/l-[
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2
j d InZLL+dInLdL _ —j InZL dinL dL LdX
dA dA dA dAi LdA
2 2
=E d In2L =—E (dlnLj . so that an alternative formulation for the MVB is
dA dA
given by
1+ B'(1)) 1+B'1)) —(1+B'\))
Var(s)s LFEA) _ (1+B() _ - g+ () : (Eq. 7.13)
(M E{(dinL(2)/da)’| E{d*InL(2)/d2"]

The larger the information in the sample, the smaller the variance of the estimate!
Note: the nominator of the above equation depends on S,
whilst the denominator depends on the pdf and N

2 2
The information 1(1) = E {(dcllrlil_} } = —E{ddLn } can be also written in terms of the

individual, independent probabilities
B foGA)) | fi(x,2))
(1) = NE{(—f (x,/l)J } NE{( ) j } (Eq. 7.13a)

if the expectation value is defined in analogy, E(X) = I xf (x, A)dx.
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Example

Efficiency of the sample mean for a Gaussian distribution
For a sample resulting from a normal distribution (identical mean and variance), the individual likelihoods are

L(,u|X(j))= f(X(j);,u)Z \/i exp[_ (x _Z,u)z}

2no 20
and the combined log-likelihood for a sample of size N becomes
Ny (D) 2
(X" —n)
InL(u)=-) ——————NlIn(ov2x
(1) z — (ov/2r)
d?InL N ~(1+B'(n)* o? .
= =—— => MVB= ——————=—(1+B" with B(u) = E(S) -

On the other side (from previous considerations), we also know that the variance of the sample mean is
2

O
Var(X) = —
(X) N
which shows that this estimator has a variance according to the MVB (remember that the sample mean
is an unbiased estimator, B(X) =0).

Such estimators with Var(S)=MVB are called efficient, otherwise their efficiency is given by the ratio
_ MVB
Var(S)

n

We might now ask under which general conditions an estimator is efficient,
I.e., when do we find the equal sign in the information inequality?
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Minimum variance estimators

To obtain equality in the Schwarzschild inequality Eq. (7.12) , we must have
ax +y =0, because only then E {(ax + y)*} =0.

This implies that (cf. Eq. 7.11)

dinL
a(S-E(S)) + 17

=0, or generally

dinL
dA
where A must not depend on the sample x®,...,x™), though it might depend on A.

= A(L)(S - E(9)), (Eq. 7.14)

By integration (between A _.. and 1) and noting that E(S) = B(1) + 4 = f (1),
InL(A) = I[A(A)S ~ A(2) T (4)]d 2 =C(4)S+ D(A) + const

L(1) =dexp{C(1)S+ D(4)}, (Eq. 7.15)

where d does not depend on A. Estimators accompanied with likelihood functions of
this type attain the MVB, and are called minimum variance estimators. In case of
unbiased minimum estimators, B(A1) = 0, we then have
1 1 1 1

Var(S) =

Var(S):ﬁ

1(2) E{(dInL(2)/d2)’| ) N (DE{S-E@Q)’] AME{S-47} A(A)Var(s) -
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Sufficient estimators

If instead of L = d exp{C(4)S + D(4)} only the weaker condition

L=g(S 1) -c(x?,...,.x") (Eq. 7.16)

holds, the estimator (statistic) is called sufficient. It can be shown that no other
estimator can contribute knowledge to A that is not already contained in S if this

condition is fulfilled.
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Example

For a sample drawn from a Poisson distribution, we had

N
INL(A)=-N2+> (kP In2-Ink?1), e,

j=1

N 1 (J) Kk _
dink _ +Zk—=—N +N—kzﬁ(k—/1), which is of the form
d2 < 12
dinL

=A(1)(S-E(S
97 (4)(S-E(S))
when the estimator for the mean is the sample (=arithmetic) mean. Thus, the sample

mean k for a Poisson distributed sample is a minimum variance estimator, and, since
it is unbiased, its variance is given by

Var (k) =$ =%

which we have already derived previously.
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Bias for ML estimators

Example: ML estimators for the mean and the standard deviation of a normally
distributed sample.

For a normally distributed sample, the likelihood equations for the ML estimators

olnL Ny -
=0 =>(xPY-n)=0
O s ;
(1)
omL| _, {Z(X ,u)j N_,
00 |5 )

. . .1y
result in the well known ML estimates for 2 =-—>"x'", the sample mean, and
j=1

~ LSy y2 _ o
= WZ(X —H)" =5
j=1

From our previous considerations, we know that the latter estimator is biased, by a factor
(N-1)/N.

Now, calculate the ML estimator for the variance, S(¢®) = 2nd ML equation

N () _ m2
dinL 0 — Z(X #4)° | N 0 = o __Z(X(J) )2 = 621

00" |, = 2(;2—7\ 20" N 191
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ML.: consistency, bias and invariance

ML estimators are usually consistent (see below)
but ML estimators are also biased (in most cases)
bias becomes small for large samples (see below)

bias is the price one has to pay for an advantageous property of
ML estimators, namely that they are invariant under parameter
transformations (see example above,

ML estimator for 02 = (ML estimator for 0)?

: i ~ d
If the maximum of L occurs at some particular value A, a1 =0,

then the maximum of L w.r.t an alternative parameter = f (1)

dL| dL da

occurs at a = f(/i), since dt =0 because of 0= =
dﬂ i dO{ dﬂ i

A |y (1)

Thus, we have generally,
Sw(f(\)= T =f(A)

Note: other, non-ML estimators preserve the difference
Invariance under transformation is incompatible with lack of bias
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Asymptotic properties of L and ML estimators

In the following, we investigate important properties for L and ML-estimators in the case
of big samples, i.e., N — oo. The estimator A was found from the solution of the likelihood
equation(s),

dInL N (). B L F(x;2) _
z—ln[f(x )| _le T )"

z pi

Let's develop the derivative of the likelihood function into a Taylor series about A,

dinL = dinL +(1- /f) d In = =(1- /1) d” In = +... (first term vanishes, see above)
dA di |; 5 P
2 N (gD 2y

d InZL = M , which has the form of a sample mean (times N).
da’ |, Z\f(x;2)

For large N, sample means can be replaced by the expectation value (since their variance

z}:_E{(dJZLj}=—l(1)=:_a

with E{g(x(”...x(“‘);i)} :J'g(x(”...x(N);/{)f (xP: 2) F (x?;2) f (x™; Ddx@dx@ ... dx™ =

2
_E d InZL and E dinL
; dA ; dA

decreases with 1/ N), i.e.,

Now £ d?InL
dA?

d?InL
dA?

Yl

. d’InL
E{g(x(l)...x(N’;/i)}i, ie., E{ 7

e}
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In other words, we have replaced the 2nd derivative of the likelihood function (which depends
on the specific xX®...x™"?) by a (negative) number —a (I (1) > 0), which depends "only" on

the pdf f and the estimator A. (Note that only here we require the asymptotic limit N — ).

To first order, we thus have for the Taylor expansion

dinL

92 =-a(l- ;Z), which by integration results in

InL = —g(l —2)? +const =
L(A) = kexp{— %(ﬂ. —1)2} [with constant k]

Thus, for large N the likelihood function L(4) has the form of a normal distribution, with

mean A and variance 1/a (standard deviation /1/a).

Comparing with the expression
dinL

= A(1)(S—E(S)) derived in the context of minimum variance estimators,

and since 1 =S, E(S) must correspond to 4, and A(A) to a.
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Thus, we conclude that the ML estimator A has the following properties

1) it is asymptotically unbiased, E(S) = E(/i) — A
i) it is aymptotically efficient (i.e., a minimum variance estimator), with
var(f) > 1= -
a 1(4)

v 1 _ 1 - L (Eq. 7.17)

d?InL dinLY’ £, 1)) Fi(x,4) )
E
{ az’ }i E{( a j} “'E{[f(x,ﬂu)j}i NE{[f(x,Mj i

Note: The asymptotic variance corresponds to the MVB (Eq. 7.13), evaluated at A = A and with B' = 0!

iii) since Var(4) — 0 for N = o and A is asymptotically unbiased, 4 is also consistent.
Iv) the likelihood function is asymptotically normal, and the log-likelihood is a parabola.

Remember: The expression for Var(i),
1

2
£ d In2L
di® |
is not only (generally) valid for large N, but also in those cases where we know

(from explicit calculation) that the ML estimator is unbiased and efficient, e.g., for the
sample mean from a Poisson distribution (see previous example).

Var(1) = -
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Errors on the ML estimators

As we have argued at the begin of this section, the likelihood function
L(A|x®..x™M)

can be transformed into a conventional pdf for A, if the prior h(4) [corresponding to the

marginal distribution I f (x,4)dx] is known and the distribution can be normalized,

fxXP D)) LA xP)h(A)

f ()Y = = '
(A1x%7) If(x(j)u)h(l)dﬂ JL(MX“))h(ﬂ)dﬂ

Though the prior is usually unknown, the (normalized) likelihood function corresponds
directly to a pdf for A if the prior is constant (all parameter values equally probable),

L(ﬂ) constant prior, L normalized% f (/1)

which is assumed (and justified) in most cases.

From the previous considerations, we know the the likelihood function is asymptotically
normal, with mean A [the ML estimator obtained from the solution of the likelihood

equation(s)] and variance 1/ I(/i) [the information of the sample w.r.t. i].
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Thus, the standard approach to define the errors of the estimated parameter
A=A+ Al =1t o()
refers to the usual confidence intervals for a Gaussian:

in the 1-o interval, the probability has decreased by e™* = In L has decreased by 0.5
in the 2-¢ interval, the probability has decreased by e™** = In L has decreased by 2.0
in the 3-c interval, the probability has decreased by e®? = In L has decreased by 4.5

with respect to the maximum, i.e, L(i) or In L(/i), respectively (independent of the dimension of A1)

When the large N limit has not been reached, L will not be a Gaussian, and In L not a parabola.
Presumably, however, there will be an alternative parameter A' which transforms the shape to a
parabola. For this parameter then, the corresponding 1-o limits can be derived from the values of

A" where InL(A") has decreased by 0.5 below its maximum, and one can calculate the corresponding
limits w.r.t. 1. These, by the invariance property of the likelihood, are just those values of A where
InL(A) has decreased by 0.5. Thus, we can completely skip the transformation to A' and read off the
n-o limits from InL(A), both for finite as well as for large N.

For finite N, the L-distribution is asymmetric about A, such that asymmtric errors have to be quoted,
in the form of, e.g., 1=1.51">%

-0.15 *

Note : for asymmetric distributions, the 2-o limits are not the double of the 1-o limits!
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Log-likelihood functions In L(A) e
for the mean A, calculated for 3 _.f

different samples with sizes N=5 »
(top),15 (middle) and 50 ¥

(bottom), drawn from a Poisson ~ ~f
distribution with A=10 (dashed).  _.f

The 1-,2- and 3-o limits of the
ML-estimator (corresponding to
In L values which are 0.5, 2.0

and 4.5 smaller than the

maximum) are indicated in red,
green and blue.

The corresponding estimate for  -=
the mean (including error), as
calculated from the sample
mean, is indicated by the
horizontal black line.

Note that the shape of In L 125

becomes more and more
symmetric (and converges to a
parabola) when N increases, in

parallel with decreasing errors
on the estimated parameter. .

Examples

i)
lam

10
lam
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Iso-contours of the log-likelihood
In L(p,0) for the mean and
standard deviation of 3 different
samples with sizes N=10 (top),
20 (middle) and 100 (bottom),
drawn from a normal distribution
with y=-3 and 0=2 (red plus).

The iso-contours denote the 1-,
2- and 3-oconfidence regions of
the ML-estimators (corres-
ponding to In L values which are
0.5, 2.0 and 4.5 smaller that the
maximum), indicated in red,
green and blue.

The corresponding estimates for
the mean and standard
deviation (including errors), as
calculated from the sample
mean and variance, are
indicated by the black crosses.
The small difference between
ML- and sample estimates is
related to the bias in the ML-
values.

Note that the shape of the In L
iso-contours becomes more
and more symmetric (and
converges to an error ellipse)
when N increases.
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Several parameters - covariances

To obtain a set of parameters 4, i =1, M, the set of likelihood equations has to be solved
simultaneously. In the large N limit, the likelihood function becomes a Gaussian, and the

variances of the ML-estimators are

1
2

E{@IzL}
x|,

From a Taylor expansion of the likelihood function, one then obtains the covariance matrix

Var(i)=- i=1LM

regarding the estimators

Fisher-matrix

C=B*'B=

2 2 2
_E{alnL} _E{élnL} _E{aln}}
0, 02, 02,04, oA, -

ie”cu=(54%,wnth12)=a%i)=c“amhmvdL@):C”
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Calculate the variances and covariance of the mean and o estimates for a Gaussian

InL(u,0)= Z( _/“‘) ~Nin(o/27)

x()

=X, 0= \/(x me —\/x — > (=s see previous example)

8,uaa = o
N
Thus, B = {&2 , and we obtain the estimates for the errors,
0 -
Var(u) —&— , Var(o) ——2 and cov(u,0) =0.
N 2N

Estimates of mean and standard deviation are uncorrelated, which is also obvious

from the position of the covariance ellipse in the previous figure.
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Final comments on ML estimators

For large samples, A is a consistent, unbiased and efficient
estimator, so the best thing one can obtain

for smaller samples, however, this is not true: in these cases, ML
estimators are (often) biased

advantages of ML.:
easy to calculate estimators and corresponding errors
invariance under parameter transformation

very suitable if several parameters to be estimated in parallel

major disadvantage:

one has to know the parent distribution. If the assumption on f(x;A) is wrong, there is no way of
telling this from the results, since there is no quality factor or goodness of fit number

minor problem:

to interpret L(A) as a pdf (which is required to estimate the errors of the estimates), one has to
assume a uniform (constant) prior for the distribution of A.

Besides the basic estimators (sample mean and sample variance)
and the ML estimators, there are other estimators as well, e.g., the
method of moments (see literature) and the chi-squared
minimization (next section).
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8. Least squares

Suppose a data sample of pairs (x?, y), where the x” are precisely known and the y*’
have been measured, with individual errors o ;. A theory predicts that y should be a function

¢(x,4), where the parameter(s) A need to be estimated. The "ideal" y — values are assumed to be
smeared out by measurement errors alone, and we further assume these errors to be normally

distributed (invoking the CLT). Thus, the pdf to measure a certain y’ for a given x' is given by

1 |: (N ¢(X(J) ):|
expd — .
V270, 20

f(y?]2) = =L(Aly?)

The combined log likelihood function is then

j=1 j

(J) (1) N
In L(ﬂ)z—%Z{ ‘(’;(X }“)J Zln( Jar )

and in order to maximize In L(A1) one has to minimize the quantity

N (l) (i)
p Z[ ~o(x z)j,

J

i.e., one has to minimize the y* (=y° — minimization) or, in other words,
the (weighted) sum of the squared differences (= least squares minimization).
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= Though the method of least squares can be ‘derived’ from the ML principle, many
people regard this method (and the corresponding estimator) to exist in its own
rights, being obviously sensible and empirically tested.

= The predicted values are adjusted in such a way as to be close to the _
measurements; by squaring the differences, larger effort is spent on removing
the larger deviations.

= Firstly published by Legendre in 1805 and by Gauss in 1809.The term “least
squares” is from Legendre’s term, “moindres carrés”. However, Gauss claimed
that he had known the method since 1795. Legendre and Gauss both applied the
method to the problem of determining, from astronomical observations, the orbits
of bodies about the Sun.

= The minimization problem can be condensed in the form

N o1q d¢(X(j);ﬂ) .
—0—{210_2 di |:yj _(D(X(J)!ﬂ’)]
A =1 7

A

dr”
dA

= Since the estimator A is a function of the y;, and the corresponding errors are
known, the laws of error propagation can be used to calculate the error of the
estimator (if we consider the least square method as being independent of the
ML principle, we don’t have to worry about uniform priors here)

= |f there are M parameter to estimate, a set of M simultaneous equations has to
be solved. 204
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Fitting to a straight line

most common application of least square fitting
y=@(X;m,b)=mx+b
with slope m and intercept (offset) b =¢p(x=0)
often denoted by “linear regression”

« but note the difference between a straight line fit and regression:

« regression is a statistical term related to “non perfect” laws, resulting in the
formulation of a “trend” or correlation

« firstly introduced by Francis Galton (1885), a cousin of Charles Darwin, to
describe the biological phenomenon that the heights of descendants of tall
ancestors tend to “regress down” towards a normal average

* in the context considered here, we deal with the problem of parameter
estimation, since we assume the law to be perfect (i.e., better measurements
should lead to data very close or indistinguishable from a straight line)
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|dentical o

Let's first assume that all measurement errors can be described by the same o,

o=0, j=1N

(which is frequently done, particularly if the errors are unknown). In this case, the "original

least squares problem needs to be solved, namely the sum

ZN:(yj‘ij_b)z

j=1

is to be minimized w.r.t. m and b. (Here and in the following, we abbreviate y"’ by y, etc.).

Differentiating w.r.t. m and setting to zero yields

ZN: —2X. (yj —mx; —6):0,

j=1

or, dividing by N and in terms of sample means X =

Xy — fix? —bx = 0

Likewise, differentiating w.r.t. to b,
N

Z—Z(yj — X, —6)=

=1

Y—mX—b=0.

._MZ
x

3,
N<

N
Z Y, etc.,
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Combining both equations, we obtain

><|

g B eae o
YX g g XITy

m= 2 2 2
X" =X

N |

x
x|

The first expression for b shows that the line goes through the center of gravity, (X,y), since
y(X)=MmX +b =7.
The errors on the parameters follow from the law of error propagation. Writing the expression

for m in the alternative way
- X

In case we have no info on o, we approximate this quantity from the resulting > (see below)
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Likewise
2

Var(b) = Z (x——x) o :m:xWar(rﬁ).

The general law of error propagation was

cov(f,, f,) = i [%}{%Jcov(yw yj)-

Application to our case of independent y; (i.e., cov(y,, Y;) = 5".0-2), we obtain

cov(if, b) z( o J{ ob Jaz_z(xj _X)_(X _szj)dzz —_Xaz __svar(i).

ﬁyj i NZ(XZ—YZ) N(XZ—Y‘Z)

Before we give further comments on the error of the fit parameters, let's calculate the
resulting (minimized) »?, which we will need later on to assess the fit quality.

~\ 2
N (y.—mx. —b
72 = Z( J sz ) =N Vaargy) (l—piy), if we use the abbreviations
j=1

—
Var(y):?_VZ and p? = (F(_X;;();_i)_ 72).

Note that as long as the scatter in the y, — values is of the order of o, z.., is O(N).
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Variances and correlation

Summarizing the previous results, the error matrix for (rﬁ,B) is given by

{ Var (i) cov(rﬁ,B)j i [ 1 —ij _ i o
C= . . |=Var(m) — |, with Var(m) = ———,
cov(m,b)  Var(b) X x°

and the correlation coefficient is

covim,b) X

yo,

e \/Var(rﬁ)Var(ﬁ) B NG

Obviously, the errors on the parameters and their correlation depend exclusively on the
abscissae of the measurements. The larger the spread of these values, the smaller the
variances and the correlation. This is reasonable, since measurements which cluster around
a certain x-value allow for a lot of freedom in slope and intercept.

Interestingly, however, the covariance and the correlation is proportional to the sample mean
of the x;-values, and p_. <0, >0and=0 for x>0, <0 and =0. (see the example in Chap. 6)

In so far, the correlation can be simply avoided if one uses shifted x-coordinates X = x — X, and fits
y=m(Xx—X)+b=mgX+b instead of y=mx+Dbh.

With these new coordinates, Var(m) = o> /(N %2), Var(b)=oc2/N, and p.: =0.
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Inter-/Extrapolation — individual o;

If one inter-/extrapolates a value of Y for a given value X, in the conventional coordinates we
find

Y(X)=mX +b,  Var(Y)= X2Var(i) +Var(b) + 2X cov(ii,b)  (see Chap. 6)

whereas in the new coordinates X = x —X (with X =0 and cov = 0) we obtain, after inserting

the corresponding values for Var(m) and Var(ﬁ),

—X)Z O-Z_ +G—2:G—2£1+ M]:G—Z(l+ @j

Var(Y)=(X

Nx* N N X’

which of course has the same numerical value as the expression above.
Large errors are induced if X is far from X, whereas for X ~ X (i.e., close to the center of
gravity), the variance is reduced by a factor of 1/N compared to the intrinsic scatter.

Finally, we assume that the measurements have individual errors o;. Now, z° has to be

minimized, and the individual errors have to be accounted for. All derived equations remain
valid, if we replace the sample means by the corresponding, weighted means,

and the quantity o® occuring in the error matrix likewise, e.g.,

—_— N

Yi
.Y Z: Z
v _ 2 i
y= o —)O'

N 1’
Zfz Z
j j j

—_— N

N
1

2
J

q \._\_qm\q

— N

O 210



LMU

)

Example

Four slightly different samples (figures next page), all with N =7

sample 1 sample 2

X, 1 2 3 4 5 6 7 X, 1 2 3 4 5 6 7

Y, 12 19 31 42 20 65 6.8 Y, 12 19 31 42 20 65 6.8
o 05 05 05 05 05 05 05 o, 05 05 05 05 20 05 05
sample 3 sample 4

X, -9.5 1 2 3 4 6 7 X, -9.5 1 2 3 4 6 7
Y, -5 12 19 31 4.2 6.5 6.8 y, -5 12 19 31 4.2 6.5 6.8
o 05 05 05 05 05 05 05 o 20 05 05 05 05 05 05

J J

Sample 1/2 and 3/4 differ in one point at either x =5 or x =-9.5. All following results
have been calculated from the previous expressions.

Results

sample M b cov(r,b) Pui Xmn  Y(X=-8) Y(X=55)
1 0.889+0.094 0.114+0.423 -0.0357 -0.894 33.16 -7.00%+1.15 5.01+0.24
2 0.992+0.096 0.114+0.423 -0.0357 -0.877 3.63 —-7.82+1.16 557+0.26
3 0.721+0.037 1.282+0.202 -0.0027 -0.356 11.13 -4.48+0.42 5.24+0.23
4 0.905+0.081 0.513+0.363 -0.0244 -0.829 461 -6.73+£0.97 5.49+0.25

The relevance of the obtained y2. will be discussed later on. Y (X) are extra-/interpolated values.
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Examples

red data: inter-/extrapolated values with error-bars

: sample 1

i //
://

A

- sample 2

sample 1 vs. 2: ~

a) Note the influence of the measurement

error o for y(x=5)

b) extrapolated values have a larger error -
than values close to the center of gravity

c) Though the fit to sample 1 looks I
reasonable, the large x? makes it rather > ¢

unlikely (see later on)

sample 3/4 vs. 1/2

o T T T

R
n A .

‘ ‘ -5
10 0 5

\

Note the strong influence of a data point far i +

away from the center of gravity (and the
influence of the corresponding error)
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Binned data

least squared fitting also possible for binned data (histograms)
- assume data can be binned (without significant loss of information)

- suppose there are N events, and the pdf is f (x; 1)
- the events are sorted into N, bins, centered on point x; and with width W, (often uniform)
- the expected number of events in bin j is x; = NW, f(X;; 1)
(here we use u for the expectation value to avoid confusion with the parameter A of the distribution)
- the actual, observed number is n;, and can be described by a Poisson statistics (see page 96)

- thus, the error on the events in bin j is o; = ‘/,uj

- the total »*> summed over all bins (sometimes called Pearson's y° ) results in

b (0 - ) N (0 - )
2 j j j j
X :E :E
j=1 sz j=1 H;

- for discrete probabilities with individual probability p; (1) for bin j, we likewise obtain
Je (nj - ij)2

2 _
2= Np

it

j
The parameter A can be calculated from the usual minimization of y?
Note: (i) the bin width should be not too small (see (ii)) and not too large (such that f (x; 1)

does not vary too much over the bin j)

(ii) the expected number of events («; or Np;) should be at least 5 per bin. If this constraint
is not fulfilled, the number of events N or the bin-width needs to be increased.

(iii) since the n; are Poisson distributed, Pearson's z* as defined above follows the actual

y* —distribution (based on a Gaussian) only for large N
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right panels: histograms with
different bin-widths

(W;=0.5, 1, 2) resulting from
a normal distribution with uy=3

and 0=2, for N = 200

left panels: corresponding x?
as a function of 0. Afit to the
binned data using

o( Min(x?)) is displayed in
green on the right.

chi+2

Example
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MU ¢ Goodness of fit (Fitgute)

= So far, we have minimized x? and obtained estimates (incl. errors) for
the parameter(s) A of the function ¢@(x; A) used to fit the measured data.

= From this approach, however, it is not clear whether the function itself
(or the assumed errors) is/are reasonable.

= A suitable test can be found from the goodness of fit, which uses the
properties of the x? -distribution.

= Remember the basic assumption of the least squares method:
the differences between theory (@(x;; A)) and observations (y;) are due to
measurement errors alone.

= |n so far, different samples (different series of measurements) will give
different y, and thus different minimized x2,, and different parameters A.

= |f we now assume that the measurement errors are Gaussian distributed
(CLT), the (minimized) x? is just a sum of squares of normally distributed
reduced variables,

Z (y| /ul Zu with M= ¢(Xi ; /1)

and thus should follow the corresponding x? -distribution introduced in
Chap. 5.
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2 1

P(y2 f)=———(42)""%1e 22 \ith Gamma-function T and
(x, 1) F(f/z)zf,z(z)

E(y*)=1f, Var(y®)=2f, wheref denotes the so-called number of degrees of freedom.

For a sum of N independent r.v. u®, the number of degrees of freedom is f = N (Chap. 5).

If, however, y* has been calculated after the minimization, not all terms in the sum are
statistically independent, since they are subject to homogeneous linear constraints, at least

M
for linear models, y = p(x;1) = > A f, (X)

k=1
In this case, the number of degrees of freedom is reduced by the number of constraints

(= number of parameters to be fitted),
f=N-M

Note:

(i) for a fit to a straight line, the linear model isy =mx+Db, i.e.,

M =2 with 4, =b, f,(x) =1, 4, =m, f,(X) =X

(ii) for non-linear models, e.g., y = x™ + x™, this is no longer strictly valid, but might be
applied if the non-linearity is not too drastic or if N >> M
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Example

consider a fit to a straight line with 10 measurements und two
parameters, m, b:

y, = b + mx; + noise (Gaussian) (i=1, 10);

because of the Gaussian noise, all requirements to apply the
least squares method are exactly fulfilled

we calculate 10,000 different samples created in this way and
calculate the corresponding minimized x2.,i.-

the corresponding distribution is shown in the next plot, and
compares very well with the theoretical x? -distribution with
f=10-2=8 degrees of freedom

mean value and standard deviation of the experimental
distribution, 8.07 and 4.03, respectively, are in good agreement
with the theoretical prediction, E(x2)=f=8 and o(x? )=V(2f)= 4
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histogram of “measured” distribution of minimized »*_ (10,000 measurements);
grey curve: theoretical pdf p(x?2,f) for =8
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Thus, a first simple test to decide whether all assumptions made
(reasonable model, Gaussian errors of “correct” size) are fulfilled is to
check the magnitude of the minimized x2.,,, . If itis in the range

X2min = FEN(2f),

then there is no obvious problem.
a better quantification is the calculation of the goodness of fit, Q

Q describes the probability that any another x? = ¥2,.,, could have
occurred by chance, i.e.,

Q(szin’f)=P(X22 X2min)

if, e.g., Q=1, then the minimized 2., is most likely too small (see below)

Q can be calculated from integrating the pdf of the y*-distribution:

2 _ T 2 2 _7(f/2’)(§1in/2)
Qxin f)= j P(x% f)dz?=..=1 112

Zmin

(Note the arguments!!!)
with incomplete Gamma-function y(a,x) = [t* e 'dt and
0

(complete) Gamma-function I'(a) = .[ta‘le“dt

0 219



LMU

4

The calculation of the goodness of fit allows to determine
whether the model and/or the assumed errors comply with the
measurements.

In dependence of the value of Q, we can make the following
statements
e if 0.05<Q<0.95, the fitis OK (at least in principle).

In terms of hypothesis testing (Chap. 9),

the fit cannot be rejected at a two-sided 10% significance level.

¢ if 0.001 < Q<0.05, the fit maybe OK, but one should perform an
additional measurement series.

e if Q <0.001, z2. is too large (the probability to obtain any other, larger y?
is less than107®), and the fit has to be rejected at a 0.1% significance level.
Either, the model is "wrong", or certain errors have been
assumed as too small, or the errors are not normally distributed

e if Q is close to unity, y’. is too low! Either, the errors have been adopted as
too large, or we have encountered a case of data-faking!
There is, of course, a (quite) low probability that we were simply lucky. Again,
an additional measurement series might be helpful. 220
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Example

continuation of example from page 211

The minimized y?. for sample 1,2,3,4 were

x2 =33.16, 3.63, 11.13, 4.61,

respectively. The number of data was N =7, and the number of fit-parameters was M =2
= f =5 (number of degrees of freedom)

Thus, we expect a minimized y2, = f +,/2f =5+3.16

From this expectation, we conclude that the fits to sample 2 and 4 are OK. The fit to

sample 1 can be discarded (obviously), whereas the fit to sample 3 lies within the 2-o region
and needs to be reinvestigated.

Quantitatively, we find goodness of fit parameters
Q(x2,,5)=3.52-10"°, 0.604, 0.049, 0.465

which are consistent with our above expectations. Note that the value for sample 3 lies just
slightly below the 5% margin and might be OK indeed, since there is still an almost 5% chance

that other experiments would have yielded a higher 2. !
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MU {l Unknown errors

In order to calculate » . and the goodness of fit, Q, but also the errors of the fitted
parameters, one needs to know the individual errors o, (which may be identical for all

data-pairs)
Sometimes, we do not know these errors. In this case, we may proceed as follows:
We assume that the errors are identical, i.e., o, = o, and determine the set of parameters

from minimizing the quantity
2

N
Yly;—e(x;4)] . (Formally, we use the general algorithm and set o, =1)

j=1

Then, we assume that the fit is OK, and derive the value of o from the corresponding

expectation value of y7. .

(X(J) ﬂ,):|

= Zmin = E(Zmins f)=N-M = Z[

j:]_ N_M

Note that this approach does not allow to assess the quality of the fit, since we assume the
fit to be perfect. However, the derived value of o allows for a rough estimate on the errors
of the parameters. -
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Errors on x and y

Until now, we have assumed that the x-values are
error-free.

Often, one needs to perform a straight line fit to a
data-set where both the x and the y data are affected
by measurement errors. (Even worse, sometimes the
X and y data have been calculated from other data
and are correlated!)

In this case, we have to minimize the quantity

N - b
. Z[yJ (mx; + )]

G
where o, . IS the total measurement error.

tot,
tot,
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To calculate this error, we consider a certain residuum (see figure),

I, =y, - f(x;)=y,—(mx, +b)

It is the error of this quantity which needs to be considered in the regression.

(Note that for the conventional case of o, =0 we obtain o :=Al; = Ay, as usual).

Y

y(x,m,b)

For errors on both axes, we find from the law of error propagation

2 2
ol ol ol. ol
Oy = Al = (—'J Ayf+{—1j AXS [+2—’—’cov(xj,yj)J =
0y OX; 0y OX;

=Ay? +m?Ax: (=2mp(x;, y;)Ay,Ax; ) (with correlation coeff. p)

224



LMU

)

2 2 2 ij ij
= O, =0, 1+m py —2mp(xj,yj)—a

Yj Yj
Obviously, errors in the x-data become of strong impact if the relation is steep.

The estimate for the intercept b still follows from the equation y = mx + b

2

(because oy, ; does not depend on b), i.e.,

the line goes through the center of gravity (w.r.t. weighted means) as usual.

m, on the other hand, has to be calculated by numerical minimization methods,
unless the errors in x direction are identical, as well as the errors in y-direction, and
the x and y data are uncorrelated. In that case, one obtains

=
Il

Q |<Q

2, 2 2 2, 2 2
—y ) -o(x* -x
(Air A2+1) with A= 2 ZY) o, =x)
X 2GxGy (Xy o Xy)

The positive sign is taken if the denominator of A is positive, and vice versa.



MU Example

UsM

(o8]

a0

continuation of example from

page 211/212 >0 >
data and y-errors (0, =0.5, blue) as in )

sample 1; regression accounting for y- 20

errors only in black: -

m=0.89, b=0.09, 2., = 33.16 OF

—
]
I
(o)
oo
C.
]
I
o)
oo

additional errors on the x-data (o,, green)
and regression accounting for x- and y- b X
errors in red

upper and lower panel, from left to right:
o, =0.01, m=0.89, b=0.11, . =33.15 T T ] AR

0, =0.50, m=1.05, b=-0.53, .. =17.15 8 8
0, =1.00,m=1.16,b=-0.96, >, = 6.48 I i
0, =1.50,m=1.19, b=-1.09, 2. = 3.15

[@))]
(o]

Formally (from ), fit 3 and 4 are OK.

A- A-
27 )
M M
(W) (W)
0 2 4 6 8 0 2 4 6 8
X X
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ﬁ To be continued ...

= Least squares fitting/ x> minimization
« arbitrary linear models: “normal equations”, orthogonal transformations

« non-linear models: Gauss-Newton method, minimization methods,

particularly Levenberg-Marquardt method and genetic algorithms

— lecture notes “Numerik fur Physiker” (in German), Chap. 5.5/5.6

(http://www.usm.uni-muenchen.de/people/puls/lessons/Numerik/Numerics.pdf)
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9. Confidence intervals and hypothesis testing

A few remarks on confidence intervals

Measurements (in a statistical sense) are obtained from estimates of
one or more parameters.

The corresponding measurement error(s) are obtained from estimates
of the confidence interval(s).

not evident how to define these intervals. Various philosophies/methods
are present, based on the “school” the author is belonging to.
a small list of wishes for appropriate properties:

« confidence interval(s) should contain the actual parameter(s) with a certain (pre-defined) probability
(confidence level)

for a given confidence level, the interval should be small
independent of subjective assumptions

the definition should be consistent, i.e., observations with similar information content regarding the
parameter should yield similar intervals.

method to derive intervals should be simple and transparent
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From Chap. 7, we know that it is impossible to obtain the pdf for a
certain parameter from a sample alone, unless the prior’s pdf is known.
Thus, in most cases one should restrict oneself to the likelihood
function.

if the prior is known with sufficient knowledge, the pdf of the parameter can be derived, and the
corresponding confidence interval defined from the variance of this pdf.

«  for unknown prior, we use
the errors derived from the variation of the likelihood function around its maximum

in the large N limit (— Gaussian likelihood function), the variances of the estimator(s) from

_r
2

E{@IzL}
o4, i

— if possible, the limits as implied by a likelihood ratio (Chap. 7)

sometimes, one needs to integrate over the possible parameters. In this case, we assume constant
priors (maximum ignorance). Remember, however, the inherent problem regarding parameter

Var(/ii) =— ,1=1M for M parameters

transformations
% “ oA
J'L(/I)dxi jL(a(l))—da jL(a)da
oo

4 o

P(h<A<k)== =t *
j L(A)dA j L(A)dA j L(a)da

—00

@,

—00 —00

when «(A) is a non-linear function.

The latter problem can be circumvented by using “Bartlett’'s S-function”, see Brandt, Chap. 7.8
229



LMU

4

Classical confidence intervals

“frequentist” interpretation, introduced by Pearson, difficult and
sometimes problematic (not recommended, except for Gaussian case)

Definition: The confidence interval with confidence level p contains all
those values of the parameter X, for which the probability to obtain a
measurement (estimate) x=S(X) within a certain interval is given by p.

Before the measurement, one defines, for each value of X, an interval,
which in the one-dimensional case is defined by

Px<x<x"|X)=p

For a given X and p, a measurement of x is thus expected within the
interval [x°(X), x*(X)].

For an actual measurement of x,, the confidence interval of X comprises
all those X-values for which the above condition with x= X, is fulfilled.

In the univariate case, usually central probability intervals are chosen,
le.,

P(x <x | X)=P(x>x"| X)=(1-p)/2
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______ X|
]
X X(x—xg) X —X(x =xg) X=x,-no X'=xgino
X X
Classical confidence intervals, general case: Classical confidence intervals, normal distribution:
the confidence belt (i.e., the region in between x~ and x*) Here, the confidence belt lies inside the region confined by
is constructed from the condition P(x" <x < x™ | X) = p, X~ =X —no and X" = X + no. Both relations are parallel to
as a function of the true parameter X. For an actual measure- the one-to-one relation x = X. Thus, the confidence interval
ment (estimate) x,,, the confidence interval [X™ < X < X 7] [X™ <X < X"] derived from an actual measurement x, is
is derived from inverting the relations as indicated. Note that given by X* = x, £ no (see figure), which justifies the "usual”
in general the classical confidence interval is not (directly) approach of identifying the confidence region of X with the
related to the errors of x. uncertainty of x, (which for the general case would be a
Example: Poisson distribution, with mean X and measurement misinterpretation and wrong.)

k,. Here, the width of the distribution depends on X via o (k)

=JX. E.g., for large X, x* = X + nvX, and the confidence

belt diverges with increasing X (compare with right panel).
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The discussed property for normal distributions can be generalized to such distributions
that are symmetric with respect to parameter X, and their width etc. does not depend

on X, i.e.
f(x)=f(jx-X]).
Proof: x"(X) can be derived from the condition (if the central probability is p)
j f(Jx'= X])dx'= (- p)/2
X" (X)
Now substitute X'= X :=x, -y = dx'=-dy andy=—-x"+x, + X.
—o0 X- X~
a-pi2=- [ f(x-yl)dy= [ f(ly-x[)dy= [ f(x=x][)ax
—Xt+X+X —00 —00

[Note: — X"+ x, + X =X, see previous sketch]

Thus, the role of X and x, are interchanged, while the integrals have the same values.
Consequently, the integration range must be the same, and because of the symmetric
pdf we find that if X" = X + A, then X~ =x, — A, g.e.d.
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= in the multivariate case, probability regions are chosen which are
enclosed by a curve or surface of equal probability.

- probability region

A given set of parameters (here: 2), A,
will provide measurements in the region
a with a probability p. The probability
region for another parameter set B (with
same probabillity) is b, and so on.

The set of all parameters with probability
limits which cross the measured value
A (thick dot) comprises the confidence

region (grey).
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Upper (lower) boundaries

Sometimes there is the problem that a parameter cannot be
measured accurate enough as to obtain a value which is
significantly different from zero. In this case one might like to
provide an upper boundary.

Example: the life-time of a short-lived particle might be quoted as
“‘with 90% confidence, the mean lifetime is smaller than .

In this example, the probability aspect is the dominating one, and
one invokes a constant prior. In other words, one calculates the
normalized likelihood for the considered parameter A and
Interprets this as a pdf for the parameter (since we assume a
constant prior, this cancels in the nominator and denominator,
see Chap. 7).

The integral over the allowed range [-, A, ] yields the
confidence level C for the upper limit A,.

Ao

jL(/I)dl
C(ﬂ“o) = _OZO

jL(/l)d/z

—00
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Upper Poisson limit

If, in a certain experiment, one is looking for a specific event (reaction, number of
photons, particles etc.), but does not find any, it is appropriate to cite an upper
limit instead of the measured value, again using a corresponding probability.

In this case, the result might be quoted in the form “the number of events,
photons ... is smaller than A, with p*100% confidence (p=0.90, 0.95 ...)

Again, the upper limit A is found by integration of the likelihood function
assuming a constant prior.

Example: We observe k events. Calculate the upper limit A, for the expectation
value with C = 90% confidence.

« The normalization integral w.r.t. the Poisson distribution is unity, and thus we obtain

L(4) = L(4;k) = P(k[4);

A A k j k
C =[Pk M)dlz%jexp(—ﬂ)i"dl _ 1—26"'0( fo) 1-3 P(jl 4)

partial j=0 ] ! =0
integration

In particular, if no event has been found (k = 0), we obtain
C =1-exp(-4,) and thus
A, =—In(l-C)

For C = 0.9, the upper limit for the expectation value is 4,=2.3 events
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Unphysical parameters

Sometimes, the allowed parameter range is restricted by
physical laws (e.g., masses should be positive, though a
specific experiment might yield a negative one).

In this case, the prior is a step function,
P(A)=0 for A<O and constant for A>0,
and we have to adapt (restrict and to renormalize) the likelihood.

Ao
j L(A)dA
C(ﬂ“o) _ min

o]

j L(A)dA

/Imin

For confidence levels/regions for parameters derived from x>2-
minimization (in particular, parameter sets of higher dimension),
see Numerical Recipes.
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Tests of hypotheses

So far, we have concentrated on the determination of unknown parameters from
a sample (“measurement”, estimation).

Often, one has an expectation on the values of these parameters (e.g., from
previous results or from models/theories)

Then, the purpose of the sample is to test this hypothesis (see also Chap 7,
section “likelihood”, page 166 ff),

Example:

In production control, one assumes that certain parameters are distributed normally about their nominal value. We consider
the case of bread production. A certain type of bread should have a weight of 2kg, with a standard deviation of 20 g. From
the daily production, we draw a random sample of ten breads, which display an arithmetic mean value of 1.99 kg, i.e., 0.01
kg below the nominal value.

If we assume the hypothesis to be true, then the mean difference (w.r.t. the nominal value) should be normally distributed,
with mean 0 and standard deviation 20g/v10.

We now ask: What is the probability of “observing” a mean difference, |5x|, = 0.01 kg in our distribution? From Chap. 5,
page 110, the corresponding probability is

P(6%|2 0.01) =1~ (2, (u) 1) = 2(L-y/, (W)

with y_(u) the cdf of the normal distribution and u the reduced random variable, u =(x — x)/o.

: : : : : 1
Since we are dealing with mean values, the corresponding o is a factor of —— smaller than the

N

individual one, and we have u = 0.01/(0.02/\/1_0) =10/2=1.58
Thus, P(\5_x‘ >0.01) = 2(1—, (1.58)) = 0.114
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Therefore, even is our hypothesis is true (i.e., that the weights are normally distributed around 2 kg
with the given standard deviation), there is a probability of 11% that a sample of size 10 yields a mean
that deviates by 0.01 kg or more from the nominal value (i.e., from the population mean)

difficult to answer the simple question whether the hypothesis is true of
false.

but: all results in statistics are probability results. Therefore, we can

improve the situation by introducing the concept of a significance level.

We fix a certain (small) probability a (preferentially, before the sample
has been analyzed).

We then ask: Assuming the hypothesis to be true, is the probability of
finding a sample with the observed properties larger or smaller than a?
In the above example, our question would be whether P(|ox|>0.01) < «

If the probability is indeed smaller, we would conclude that it is unlikely
for the assumed population to yield a sample as observed, and we
would reject the hypothesis.

Unfortunately, the reverse is not possible. If the probability exceeds a,
one cannot say that the hypothesis is true, but only that it is not
inconsistent with the result from the sampling and that there is no
reason to reject it.

Typical values of a are 10, 5,1 or 0.1%
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= |In some cases, the sign of the quantity in question is relevant. In our example, an
underweight might be illegal and an overweight results in profit losses.

= Thus, we might test in one direction only and ask if P(X>x )<a

= This is called a one-tailed test, contrasted to the two-tailed test P(|X|>x,) <«
from the example above

a= 0.05

T T T T T
-1.86 1 1.96 0 1 645

» Mormal Probakility » Marmal Probakbility )
“X'q X'q Xq
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Generally, quantities different from the mean might be
tested.

Then we define a corresponding test statistic T (i.e., a
suitable function of the sample), and fix a significance
level, a. For this level, we determine a sub-region, the
co-called critical region S, within the complete
definition region of T such that

P(TeS,|H)=«

We draw a sample which yields a certain value for the
test statistic. If this value falls inside S, we reject the
hypothesis H (at a significance level a).

more later on (page 252 ff)
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F-test on equality of variances

A quantity should be measured with two instruments which should have no
systematic errors. We ask whether the measurements have the same variance

(i.e., quality).

We assume the populations to be normally distributed, and draw samples of size
N, and N,.

Our hypothesis is that the variances are equal.

We calculate the empirical variances (i.e., the bias-free estimators) s2 for each
sample, and consider the variance ratio.

If our hypothesis is true, F ~ 1. If the population is normally distributed, the quantities

N (X. —X)? 15> 52
X?:Z(J 2) _(N; 21)3I :f,s?,’

= O Oj O;

=12

follow the y* —distribution with f. = N. —1 degrees of freedom. Assuming our hypothesis
is true, o, =o,, and
_hBX s
f, X2 s
Using the distributions of X ?, the pdf of F can be calculated as

fi/2 —(f+1,)/2
f(F): L 1_‘((fl+ f2)/2) Ff1/2—1 1+LF
f,] T(f,/2)(f,12) f,

F
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The corresponding cdf
s PP
W(F):P(S—12<F):jf(F)dF
2 0

is called Fisher's F-distribution (sometime also Snedecor or variance-ratio distribution),

and depends on F, f, and f,.
Tables and programs to evaluate W(F) can be found in (almost) any textbook on statistics

and within mathematical/graphical program packages, respectively.

(a) F distibution far 2 and 12 df. (b Fdistribution for 16 and 1004 f.
E 10 4 F[inﬁlz.u 5 10 4 \F[inﬁ].m.mn
5 ) ) B .
= | = |
=05 =05 A ; Note that f(F) is asymmetric.
: : k
O O .

00 00 —

0 2 4 5 0 2 4 5
F F

The shaded areas corresponds to a one-tailed significance level of 0.05, i.e., those variance
ratios with P(s,%/s,2 > F -, 05)=0.05, where F_, o5 is indicated by the arrows. By comparison with
above, we have

Fa=005 = Fogs =F1.q and

1-W(F,.4)=aor W(F,,)=1-a 242
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Since we are testing for the equality of two test statistics, we have to perform a two-tailed

test, i.e., we have (in principle) to calculate two cut-off values F and F~ with

52 | 52 .
P(=<F)=al2 andP(Z>F)=al2
S, S

We then would NOT reject the hypothesis of equal variances if F <F, <F.
Generally, F =F_,(f,f,)andF =F__,(f,f,)

FISHER F DISTRIBUTION : f(X)

1.2 ? g
“\é |
1 ! H
: . \
\ §
| T \v\ e S s ORI aRt S S N e e RS TR
......... L yTeas vy ey
_ not  \ : ,
g BA Jss
o F’ 1 ' FZ 3 4 5

F=F,(f,f)=051land F =F__,,(f,,f,)=1.955 with =0.1, f, =25, f, =25

243



LMU

)

Because F is a ratio and because of certain properties of W (F)
[without proof : F_(f,, f,)=1/F__(f,,f) andF_, (f,f,)>1for ¢ <0.1],
for typical «'s the two-tailed test can be performed in one rush, by testing whether

2
2 > FlfaIZ(fL’ fs) (a<0.2) )

2
S

where L and S are the indices of the larger and smaller value of (s,,s,).

If the observed ratio is actually larger than the cutoff, then the hypothesis of equal variances
needs to be rejected at a significance level of «, and we have actually performed a two-tailed

test in the above sense, with F ' =F__,(f_,f.)and F =1/F__,,(f,,f,)

Example repeated measurements
Instrument1 100 101 103 98 97 98 102 mean x,=99.86 s, =2.268 f =7-1
Instrument2 97 102 103 96 100 mean ,=99.60 s,=3.050 f,=5-1
32
Foe =—==181 < Fy4(4,6)=453=F" (F, >F'=F,(4,6)=1/F,(6,4)=0.16
Sl

simultaneously fulfilled)

Thus, the hypothesis that both samples have equal variances cannot be rejected at a
10% significance level.
We have no reason to believe that both instruments have a different quality.
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ﬁM Student’s test — comparison of means

Let’s consider a normally distributed r.v. x.

We draw a sample of size N with mean X, which has a variance of 02(X)= g2(x)/N,
which is unknown.

The corresponding estimator is s2/N.
We ask how much the reduced (random) variable
(X—p)
o (X)

y:

deviates from the Gaussion when o (X) is replaced by the empirical standard deviation S(Y):s(x)/\/ﬁ.
Let's shift coordinates to obtain #=0 (always possible). We consider the distribution of

_ X _XIN

s(X)  s(x)

Since (as in the previous section) (N —1)s*(x) = fs®(x) is y*-distributed with f = N —1 d.o.f., we write

t=X /N—fz , with a distribution
y4
F(t) = P(t<t) = P(X /N—fz <t).
y4

After some calculations, it turns out that

t

F(t)= .[ f (t)dt, with Student's distribution (published by W.S. Gosset under the pseudonym "Student")

—0

T((f +1)/2) [1 j (e

f(t) =
0= r(f/2)zf
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Student’s distribution

probability densities for
Student’s distribution with
f=2, 10, 100, compared to
a standardized Gaussian
(red curve)

-2 -1 0 1 2 3 4

symmetric, bell-shaped, wider wings than Gaussian, core narrower
f(t)— Gaussian for d.o.f.—

tabulated in all text-books etc.

P([t|st)=2F(t)-1, as for Gaussian

t

bounds +t_ from I f(t)dt= %(l—a) for a given significance level «,
0

)
. : ¢ 1 1 o :
e, F(t,)=| fOdt=>+20-a)=1-= =1, =t

—0o0
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Student’s test: testing the mean

A hypothesis predicts a certain expectation value L.

A sample of size N is drawn, and X and s* calculated
If the inequality

|i_'u|\/ﬁ>t' =1

a = l-al2?
S

is fulfilled, the hypothesis must be rejected at the a-level.

t]=

example (continuation from page 244)

hypothesis: the parent distribution has an expectation value

1u=100 (use data from instrument 1)

_[0986 ~100]4/7
2.268

=0.163<1.94=t,,, (for6d.o.f.)

The hypothesis cannot be rejected at the 10% level.

If the hypothesis were y=102, — t=2.50, and the hypothesis
would need to be rejected.
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student’s difference test: comparing two means

LMU U{M

= From two populations samples of size N, and N, have been drawn. We like to
test whether the population means are equal, i.e., whether <x> = <y>,
As before, the empirical variances are s*(X)=s’(x)/N, and s*(¥)=s’(y)/N,.
Because the sum of two normally distributed r.v.s is normally distributed as well (see
exercises), also the difference A =X —y should be (nearly) normally distributed, with

s*(A) =s*(X) +s*(¥).

Our hypothesis of equal means implies E(A) =0, and we have to test for t= (A(_A)O).
S

Usually the hypothesis of equal means also implies that the samples have been drawn from

the same parent population, thus o*(x) = o*(y), and the best estimator for the common

("pooled") empirical variance, s Is the weighted average [with weights o« (N, —1) and (N, —

, (N; =1) s2(x) + (N, —1)s*(y) S5
ey e ORNCCREIOR ﬂ/ 1/

The quotient

A X—-y
s [1, 1
P Nl N2

follows the Student distribution with f = N, + N, — 2 degrees of freedom. If the hypothesis
of equal means needs to be rejected, one can assume that E(x) > E(y) or E(y) > E(x),
depending on the sign of A=X —V.
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= Note: even if the distributions are not accurately Gaussian, Student’s
difference test works remarkably well, i.e., it is a robust test

= example (continuation from page 244)

= hypothesis: the two samples measured by instrument 1 and 2 are drawn
from the same population.
equal variances could not be rejected (Fisher test)

test now equal means

, 6-2.268° +4-3.05
P 6+ 4
. 99.86-99.60)|

2.609 1+1
7 5

S =6.8073, s, =2.609

=0.17<181=t,,, for10d.o.f.

The hypothesis cannot be rejected at a significance level of 10%.
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For unequal variances, the unpooled t-test needs to be applied:

=2 o XY with f- & (i);sm) 7 d.of
S(A)  J52(R) +5%(9) (s®) (D)
N, -1  N,-1
and s°(X) = 5" (x) , sA(Y) = szl\fy)

1 2

For the previous example (assuming now unequal variances), we obtain

99.86 —99.60|
t= =0.161, f =7(.05), ty4(f =7)=1.89
\/2.2682 , 3.05

7 S

Even if the variances were different, a hypothesis of equal means cannot
be rejected at o =0.1.
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General aspects — the null hypothesis

Any hypothesis consists of an assumption on the pdf

(AL A, Ag, ..y Ap) = 1(XS A)

A hypotheS|s Is called simple if the pdf f is completely specified (i.e.,
regarding all parameters A,).

A hypothesis is called composite if the form of f is known but at least
one of the parameters remains unspecified.
The hypothesis to be tested is called the null hypothesis, H,.

Remember that we can only reject a hypothesis (at a given significance). If we actually want to confirm
a specific hypothesis, the null hypothesis must be the opposite and needs to be rejected by the test.

example: We want to show that A; # A, . Thus, Hy is A; = A, . If we can reject H,, we can “confirm” our
actual hypothesis.

This approach has beenl/is criticized by different groups, particularly from the Bayesian school.

Also publication bias: journals and reviewers have developed a bias against articles that do not reject
the null hypothesis. In connection with the file drawer problem, other researchers might waste their
time by examining questions that have already been examined.

The file drawer problem exists due to the fact that academics tend not to publish results that indicate
the null hypothesis could not be rejected. These results mostly end up unpublished, in file drawers.
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Critical region

A reasonable H, should (but not necessarily needs to) be simple, i.e. H, (A =1,).
Any other hypothesis is called alternative hypothesis, and can be simple
H, (A =14,) or composite (e.g., H, (A # 1,)).

H, predicts the probability distribution in sample space, i.e., the probability
of "observing" a point X = (x®,x@,x® ...,.x™) in any region of the possible
sample space. We define a critical region S, at a significance level « by requiring

P(XeS,|H,)=a,

.e., that the probability of observing a point X inside S_ under the condition
that H, is true is equal to «. If in a specific experiment X actually falls inside
S., we reject H,. Note that the above requirement does not uniquely determine
S. [simple example: two-tailed vs. single-tailed (upper, lower tail)].

For actual tests, we form a test statistic,

T=TX)=T(x®x?x®, .. x™
and determine the corresponding critical region by mapping

X = T(X), S,(X)-U(X).
In this case, the null hypothesis is rejected if T eU. 52



LMU { Errors of first and second kind

H, might be true even if the hypothesis was rejected because of X € S_. This is called
an error of the first kind (or type | error), and its probability is equal to « by definition.

There is another possibilty to make a wrong decision, namely not to reject the hypothesis,
because X ¢ S_, although H, is false and an alternative H, is true. This is called
an error of the second kind (or type Il error), with probability ("false negative rate")

P(X¢S,[H,) =5

which depends on the particular H,. Thus, for a meaningful S_, # should be small, or,
the other way round, the power of the test,

1-B=P(XeS,|H,),

should be large. If there is only one alternative hypothesis, the power is the probability of
correctly rejecting H,.

= A simple example
An accused in front of a law court proclaims that he is innocent
Ho : the accused is innocent
H, : the accused is guilty

Both the null and the alternative hypotheses are simple ones
= if the accused is innocent but wrongly convicted, this is a type | error
= if he is declared innocent but actually is guilty, this is a type Il error
253



LMU Significance and power

UsM

H, = normal distribution,

a simple null hypothesis and a simple alternative with 4 = ~4, = 2 (black)

H, = normal distribution,
u, =[-2,3,6],0 =4 (blue)
(from left to right)

020 0.20

015F 08k

significance level, two tailed
a=[0.2,0.05] (top and bottom)

010

indicated are the critical regions

S.=([-, X,,] UTX, 42,1,
bounds displayed by vertical lines

0051

0,00 Lo

20 =20
with corresponding probability
P(xeS.|H,)=ca:
significance, black shaded

020 Q.20

015 015
and
P(xeS,|H,)=1-4:

power, blue shaded

010 Q.10

005k

The false negative rate, S
(= prob. of type Il error) corres-

ponds to the area under the blue

0 =20

curve within the vertical lines 254
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Summary of definitions

significance (level) of a test, a: probability of type | errors (reject true
Ho)
upper bound of probability for composite hypotheses
should be small, usually needs to be defined by the person who performs the test (typical value: 0.05)
a result is significant if the prob. that it could have arisen by chance from H,is small
region of rejection / critical region, S,

the set of values of the test statistic for which the null hypothesis is rejected (at a certain significance
level)

region of acceptance

« the set of values of the test statistic for which we fail to reject the null hypothesis (at the above
significance level)

false negative rate, B: probability of (specified) alternative H, outside
rejection region of H, = probability of type Il error w.r.t. H, (accept H,
though H, is true)

should be small

power of test, 1-B: probability of alternative (H,) in rejection region of
HO

probability of correctly rejecting H, (if only one alternative hypothesis exists)
should be large
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UsM

Once the critical region has been specified, one can calculate the probability of rejecting
H, as a function of the "true" hypothesis or the parameters decribing it. This probability
is called the power function of the test and is given by

M (S, k) =P(XeS, |H)=P(XeS,|1).

The complementary probability of "accepting” (i.e., not rejecting) H, as a function of the "true"
hypothesis or its parameters is called the acceptance probability or the operational characteristic

of the test,

L(S.,A)=1-M(S_,1). Obviously,

M (S, A,) =« M(S.,A)=1-p
L(S.. k) =1-a L(S..h) =2

Some possible test properties:

most powerful: M (S_,A,) =1- 8 = max (when testing a simple H, relative to a simple alternative H,,
implies an optimum S ).
uniformly most powerful: the test is most powerful w.r.t. any possible alternative (particularly also
composite ones).
unbiased: M (S_,A)>a, L#L, reasonable since the probability of rejecting H, should be smallest when
H, is true. 256
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The Neyman-Pearson theorem

We define a conditional pdf
F(X[H,)

where X is a "point" in sample space with coordinates (x®,x® x® ... x™)

(in the case of one random variable. Generalization to multi-variate processes is obvious).
Then we have

[ F(XTH)dX =P(XeS, H,) =«

S

4

Neyman-Pearson theorem:

A test of the simple hypothesis H, relative to the simple alternative H, is most powerful if
the critical region S_ is such that

f(X | Hg){ﬁcforeachXeSc

f(X|H,) |=cforeach X ¢S,

where c is a (positive) constant depending on the significance level.

Proof: e.g., Brandt, Chap. 8.4.
Idea: show for arbitrary S = S_ that M (S_,%,) > M (S, &,), using the above relations.
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Example

From Barlow, Chap. 8.2:

The density of opal is 2.2 g/cm?, and for quartz it is 2.6 g/cm3. Various sites produce small quantities of
crystals which could be either, since their density is measurable with a resolution of 0.2 g/cm? only. Which
are worth the expense of further excavation?

In formal terms, we have to perform a test on the hypothesis that a normal population of a given variance o2
has the mean p=y, instead of p=p;, from a sample of size N=1 (see next figure).

Both hypotheses are simple, so the Neyman-Pearson theorem can be applied

The conditional probabilities of the drawn sample point X = x® are

f(XHy) = ——exp(- P =) 01 and
5\/ 2(7 0
1 (x® - ) . o
f(X|H)= \/_exp( -————— for the alternative hypothesis with z=y;.
oN2r

The quotient becomes

o)

f(X|H,) ( 1 2 2 1 j X(l)(,u — 1) .

———~=exp| - - —2x9 (u, - =kexp| ——2—| withk >0
x> — (" =) ) p ;

Note that this ratio increases monotonically with x® for z, > 4, and decreases monot. for , < ;.
Thus, it is always possible to find a region where the ratio will remain below a certain threshold.
In particular, the Neyman-Pearson condition takes the form

k exp XDy — )| [Scfor Xes,
o’ >cfor Xg§,
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which is equivalent to
<c'for XeS$S
@) c
X —
(e ﬂl){z c' for Xg§,
This places the required condition on S_, and suggests that a suitable test statistic is x* itself.
Exercise: Show that for the same problem but a sample size N >1 one obtaines a similar inequality,

with x replaced by the mean X (which then would serve as the test statistic).

From above, we find that the critical region corresponding to a most powerful test depends
on the sign of (g, — 1,).
For u, > 4, the critical region is "on the left", x® <c" [quotient montonically increasing], and

for u, < 1, the critical region is "on the right", xX¥ > ¢" [quotient montonically decreasing].

Thus, the most powerful test on the above hypothesis is a one-tailed one, with S_ depending
on wether (z, — 4,) > 0 or <0, respectively.
In so far, a uniformly most powerful test does not exist for this problem.

Note, however, that a two-tailed test can deal fairly well (i.e., with not significantly less power)
with both possibilities (see figure next page).



Opal or quartz?
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H, : the sample is opal
= normal distribution,

most powerful test according to

the Neym_an-Pearson theorem with 41— 22,0 0.2 (black)
(see previous example)
2o NS ARRERARSS ] 20T T AMARRAAA H, : normal distribution,
1—g=sz | | 1—p=0.50/ |
™ I;' 'I,‘ ] I f‘l "| 1 =1.8,0=0.2 (blue, upper panel,
w g ".ll‘l' '||‘ 1 I;‘ I‘I;‘I ‘Ill for comparison)
'\\: "' '|| ] |' I: '| 1 =2.6,0=0.2 (blue, lower panel,
1ok & ‘||"II ‘lll ] ) I;' JH" ';l corresponding to quartz)
I\%ﬂf L ."I M 'wll significance level ¢=0.05

from left to right: critical regions for
1. two-tailed test, S, = ([—, X_,,]U[X,_, 5 *])

0.0 L’y

_—
; —

W ’ S 4 1 ’ ’ ' 1 ’ " 2. one-tailed test, S. =[x, ]
20 SN s aantas 2 [ 2 o T 3. one-tailed test, S, = [, X,]
1-g=052 | N 1=p=084 /1 | 1-f=000/| ||
1IN AN an . -
i PN 5 PN 15} o ] bounds displayed by vertical lines
TN RN [
I % |' HN P
\I |‘ l\ I‘ le II | I' . e
1 N } : H\ g ol | significance, black shaded
BN | I.‘I "I\ . power 1-4, blue shaded
I‘I ‘I| II‘ DY II‘ I| ||§ II| |‘I |II |
[ }}i I;" [l | / "‘.,‘ I"all For u, > 1, (upper panel), the most powerful
A./HK\ b // IIIII N b J ‘/:" \\ test comprises a critical region according to 3.
1 : ’ ! ‘ : ’ ! ‘ : : ' For u, < u, (lower panel), the most powerful

. f(x|H . . . . . .
upper panel: quotient M monotonically increasing; lower panel: quotient monotonically decreasing.  tast comprises a critical region according to 2.
2

f(x|H,) 60
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If we allow for a rejection of 5% of genuine opals (type | error),
the most powerful test gives 1-=0.64, i.e., a 36% probability of
type Il errors: 36% of the quartz deposits will be needlessly
Investigated.

In this case, we reject all samples with a measured density of
larger than 2.53 g/cm?, which is 1.640 above the opal density.

In reality, one has to make a compromise regarding the
Importance of type | (ignoring valuable resources) vs. type |l
(needless expenses) errors.

If, e.g., the costs for test excavations are very high, one might
want to reduce 3 at the expense of discarding more genuine opal
sites. E.g., for a=0.15 (corresponding to an upper bound of

2.41 g/lcm3 (= 1.040), B is reduced to 17%
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Likelihood ratio test

The Neyman-Pearson theorem gives a condition for a most powerful test when
comparing two simple hypotheses.

In general such a test does not exist if the alternative hypothesis is composite
and comprises parameters which are both smaller and larger than the one of H,
(no uniformly most powerful test possible).

There is, however, a method which yields tests with desirable properties, based
on a specific likelihood ratio.

Note that the quotient entering the Neyman-Pearson theorem is nothing else than the likelihood ratio Q defined in Chap. 7
(page 173) for the comparison of two simple hypotheses.

The null hypothesis shall be defined by a certain range of parameters, A € A,. The most
general alternative is then described by that part of the total parameter space A which
does not contain A, i.e., A,=A — A,. The likelihood ratio test defines a statistic

f(x®x@x®, .. x™:1(A))
- F(x® x@x@  x™:5(A,))

where X(A) and X(AO) are the maximum likelihood estimates (Chap. 7) for the parameter set A,

evaluated for the parameter regions A = A, + A, and A, respectively.

Note 1: sometimes, T is defined by the inverse ratio.

Note 2: f(x® x@ x® ... x™:1%) is the joint probability density of the sample X = (x® x® x® ... x™)
given A, i.e., the likelihood function L(A | x®,x® x® ..., x™)), and the values entering

the quotient are the corresponding maximum likelihoods.
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Thus, we can alternatively (and briefly) write
L (heA) L@
L_(heA,) L,

If, e.g., the overall maximum of L lies inside A,, we have T =1. In this case, the null and the alter-
native hypothesis have an equal likelihood, and we cannot define a rejection region.
If, on the other hand, the null hypothesis is simple, A = 1, the parameter space A, degenerates into
the point A = A,, and the statistic becomes

L (AeA)

L)

Within the likelihood ratio test, we now reject H, if T>T,__,with

P(T>T,, IHg)= | 9(T [Ho)dT

Tlfa

and g(T | H,) the conditional pdf of the statistic T.

Wilks' theorem (1938). For large N, the statistic T'=2InT follows a y°-distribution, with
f =max(l, p—r) d.o.f., when p is the number of parameters and r out of those have been
specified in H,.

Usually, T is easily determined, and the only problem is to derive its distribution, if one does
not rely on the asymptotic behaviour of 2InT. For further details, see Brandt, Chap. 8.5.
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Example 1

Test the hypothesis that a normal population with variance o has the mean =y, via the
likelihood ratio test.

Parameters for H : z(A) =X (maximum likelihood estimator, Chap. 7) G2 (A)= o’
Parameters for H, : ia(A,)=u,, &°(A,)=0"

:Lm:( 12”j exp(—Z%} L(Xo):( L jexp£_2<xi2—;o)J

o i1 o2 i=1

2
2 i=1 (o} o)

N —\2 2 z(ﬂo_i)ixi"'N(iz_ﬂg) —\2
T=eXP£—£Z(Xi —Zx) _(xi—fto) jzexp 1 — :eXpGN(ﬂo_x) ]

N(/Uo _i)z _ (i_:uo)2 —u?
2 2
o o°IN

2InT =

Since the x; are normally distributed, also the mean X is normally distributed, with E(X)=x, and
Var(X) =’ /N.

Thus, u is the square of a normally distributed reduced variable, and thus y*-distributed with f =1 d.o.f.

In this case, Wilks' theorem (2In T is y°-distributed with f = max(1, 2 — 2) =1) is valid even in the non-
asymptotic case, i.e., forall N >1.
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Example 2

Test the hypothesis that a normal population of unknown variance has the mean p=y, via the

likelihood ratio test.

Parameters for H : zi(A) =X, 6% (A)=s"? =

1
N

- - 1
Parameters for H, @ a(Ay)=p,, & (Ay)= N (% =)’
i=1

N
> (x —X)?, maximum likelihood estimators (Chap.7) 1 T 1
i=1 \ \

ensity

d

e

N/2 N/2 E
~ N X, —X)? -
= L) = - N exp| -, 5 (N' ) = - N exp (—%)
2;72 (x, —%)* = WZ (x, —X)* Zﬂz (x, —%)*
i=1 i=1 i=1
N/2 N/2
~ N N (% =) N N
L(ky)=| ———— exp —Z > 0 = - exp oy
27[2 (Xi _;Uo)2 i ﬁ (X| _:uo)2 27[2 (Xi _,uo)2
i=1 i=1 i=1
N N/2 N N/2
Z(Xi—,uo)z Z(xi—i)2+N(7—yo)2 RANIE
Z (Xi _7)2 Z (Xi _7)2 -
i=1 i=1
(X— 1, )N , - - :
t = ——————— the Student's test statistic. To test the null hypothesis, we can either (for large N)
s

compare the sample's value of 2 In T with the bound from the corresponding x> -distribution (left fig.).
Alternatively, we can use t instead of T (since t(T) is a monotonic function of T, T > 0), and reject the
null hypothesis for a specific sample if [t|>t_,,,.

In so far, the general likelihood ratio test is consistent with our former t-test on the mean of normal
samples with unknown variance.

Wilks’ theorem for example 2:

histogram of the distribution of 2InT, for 50000
samples with sizes N=5 (left panel) and N=30
(right panel).

Overplotted in blue is the x? distribution with
(p-r)=2-1=1 degree of freedom. For large N, 2InT
becomes X? distributed.

Exercise: Show that to test the hypothesis that a normal
population of unknown mean has a variance o,
the appropriate test statistics is

N 2
T:(ﬁj exp N S—Z—l (Note: error in Brandt)
s' 2\ o,
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MU ¢ Goodness of fit (Fitgute)

= So far, we have discussed parameter tests, i.e., tests on
hypotheses which specify one or more parameters of a
population.
Many more tests can be found in the literature, e.g.,

the analysis of variances (ANOVA): comparing parameters from several samples

“contingency table” analysis (particularly suited for non-numeric data)

= Null hypothesis is accepted or rejected on the basis of one single
number, the test statistic, determined from the sample.

= Now: tests of fit. Here, we compare the distribution function of
the sample directly with the (supposed) distribution of the
population, or the distributions of two samples.

= The x?-test described in the following is a generalization of what
has been already discussed in Chap 8 (Goodness of fit, binned
data)
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The x?-test for data pairs

Assume that the data consist of a set of data x; and y;, where the x; are
exact and the y; have measurement errors o,. The hypothetical function
y=f(x) claims to predict the actual relation between x and y.

To test the hypothesis, we calculate the test statistic X7,

Xz :ZN:(yi - fz(Xi))

i=1 Gi

for independent measurement errors, and

X*=(y-f)'Vi(y-f) for correlated errors, with V the
corresponding covariance matrix (Chap. 6).

If the hypothesis is true, the differences in the nominators should be only due to

measurement errors. Then, the quantity X* is the sum of N squares of reduced,
normally distributed variables, and should be distributed according to the

y”-distribution (Chap. 5 and 8). The hypothesis has to be rejected if

X2 > ;(f_a,

where P(X? > y/ )= I g(u, fdu=«
Ma
with g(u, f) the probability density of the y”-distribution with f =N d.o.f.
The so-called »*-probability y/ _ is tabulated in most text-books (as a function of
f and «), and included in various program-packages.
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If X? is too large to be accepted, there might be three reasons for this:

1) f(x) is not the correct description fory, i.e., the "theory" is wrong
(this disproof is the original intention of the test)

i) the errors o, might have been underestimated (check!)

iii) the errors are not Gaussian (seldom, but small samples!)

Additionally, one needs to check whether the obtained X? is not too small
XZ

(typically, when P(y* < X %) = j g(u, f)du<10” see Chap. 8).
0

In this case, there is the possibility that either the o, have been overestimated, or that the data have
been faked. If possible, one should analyze a second sample.

If f(x) depends on p parameters which have been fitted from the sample, these leads to constraints
in the above sum of squares, and the number of d.o.f. has to be reduced by p, i.e.,f =N - p.

It is recommended to always carry out such a y”-test after relations have been fitted from a sample,
e.g., after a straight line fit has been performed (in the latter case, f = N —2), and the variances are
due to real measurement errors and not estimated from the fit itself (otherwise, the > will be
always OK, see Chap. 8)
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The x?-test for binned data

We like to test whether the population is distributed with a probability density f (x).
The total range of the r.v. X is binned into r intervals &,&,,¢&;,..., &, ..., &,. Hypothetically, the
probability of observing x in a specific &, is given by

Py = P(Xefk)ﬂ' f(x)dx,  with Zr: p, =1

We draw a sample of size N, with n, the number of elements of the sample which fall inside ¢, .

Obviously, > n, =N.

k=1
From the hypothetical probability density, we expect
E(n,)=Np,.

As a measure for the deviation of the sample distribution form the hypothetical one, we use

xe oy (MBI < (0 ~Ne,)

k=1 o (nk) k=1 Np,

The test statistic X is asymptotically y* — distributed, with f =r —1 d.o.f.

idea of proof: The population probability of the individual channels can be either described

by a multinomial process (Chap. 5), or by r independent variables following a Poisson distribution

with mean and variance Np, (Chap. 5). Both processes give identical population probabilities,

independent from the sample size. 269
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Now, by virtue of the CLT, in the asymptotic limit X? is just the sum of squares of reduced
random variables which follow a normal distribution.
[Poisson distribution with 'large’ mean — normal distribution (see exercise)]

Consequently, X?* is asymptotically > —distributed, and the d.o.f. are r —1 because of the
additional constraint > n, = N.

If the function depends on p parameters fitted from the observed sample, there are additional
p constraints, and the d.o.fare r — p —1.

The distribution of the bins have to be carefully chosen (sometimes, one has to accept intervals
which are not equidistant).

Rule of thumb to ensure that the Poisson distribution can be approximated by a normal:
In each bin, at least E(n, ) = Np, =5 events have to be expected (this gives a constraint
on the size of the sample, N), and there should be also at least n, =5 events present in each bin.



LMU The Kolmogorov-Smirnov (KS-)test

UsM

= provides a possibility to test the hypothesis that
a sample has been drawn from a given theoretical distribution

the distributions of two samples are equal

* s an alternative to the x?-test when the data
sample is so small that binning becomes
impossible.

»= |s applicable only to univariate distributions,
which are fixed beforehand, i.e., not fitted to
the data sample.

a generalization of the original KS-test for 2-D distributions can
be found in Numerical Recipes, Chap. 14.7 and references

(x)

therein [

In the KS-test (one sample), we compare the hypothetical cdf

X

F(x)= j f (t)dt

—0

with the observed one,

SN (X) =

number of events with x; < x
total number of events N

If the events are located at x,, then S (x) gives the fraction of data
points "to the left" of a given x. This function is constant between
consecutive x; (which have to be sorted into ascending order before
the test can be performed), and jumps by the same constant 1/N at
each x;. See figure on the right. Thus,

SN(Xi)=ﬁ, i=1 N

which is an unbiased estimator for the cdf of the distribution from
which the sample was drawn.

0 2 3 4
KS-test on a sample of size N=5.

Theoretical distribution (cdf): normal, p=2,0=0.5
sample drawn from same population

green asterisks: sample data

step function: cdf for sample data, with steps of 1/N=0.2
red line: max deviation D

The significance of the test is a= 0.91.
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The KS-test measures the maximum value of the absolute difference between two cdfs.
If we compare a sample's S (x) with a given theoretical distribution, the KS statistic is
D = max([S, (x) - F (X)),

while for comparing two cdfs, the statistic is

D = max([$,, () - Sy, ()

Note that in both cases the differences have to be evalutated only at the data points x; (see figure).
The distribution of the KS-statistic given the null hypothesis (samples drawn from the same
distribution) can be calculated, and gives the significance of any observed value of D. The central
function entering the significance is the sum

Qus(D.) =2 (-1)""exp(-2k*D.?),

which is a monotonic function with Q,;(0) =1 and Q, () =0, and the significance level of an
observed value of D is

P(D>D) = QKS(D*(D))' Critical value Significance
D. Qs(D-)
For sensible sample sizes N >4, one can approximate 1.63 0.01
D.(D) = D({/Ny +0.12+0.11/ /N ) with 1.36 0.05
L 1.22 0.10
N for the case of one distribution
N, =1 NN, 1.07 0.20

for the case of two distributions

N, + N, 272
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KS-test on samples of size
N=10 (left panels)
and N=30 (right panels).

Outline as in previous figure.

Theoretical distribution:
normal, p=2,0=0.5

F[_:x:j
lef

Upper panels: sample drawn
from same population,
hypothesis can be accepted.

0 ! 2 1 Lower left panel: sample
drawn from population with
different mean, p=3.
Significance level very low,
hypothesis needs to be

rejected.

-

o
;X|

]
o0

r
o

Lower right panel: sample
drawn from population with
larger variance, 0=1.0.

Note that the significance is
reasonable though the
variances of theoretical
distribution and sample are
different, and N is quite large.
In this case we would accept a
wrong hypothesis (type Il
error). 273
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Nonparametric tests

Tests of hypothesis are usually classified into parametric and
nonparametric methods.

« Parametric methods make assumptions about the underlying distribution from which
sample populations are selected.

* Nonparametric methods make no assumptions about a sample population's distribution
and are often based upon magnitude-based ranking, rather than actual measurement
data.

In many cases it is possible to replace a parametric test with a
corresponding nonparametric test without significantly affecting
the conclusion.

In Chap. 7, we provided an unbiased estimator for the linear
correlation coefficient, Pearson’s r.

Unfortunately, r is a rather poor statistic for deciding whether an
observed correlation is statistically significant, or whether one
observed correlation is stronger than another.

Nonparametric or rank correlation can improve the situation.
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= We consider N data-pairs (x;,y;).
= We replace the values of x; by the value of its rank among all other x;'s in the
sample, that is by a number in between 1 and N.

= |f there are some ties, they will be assigned a midrank which is the mean of the
ranks they would have had if their values would have been slightly different.
= Example for ordered data:
- x=[-1,4,4,8,20,50,50,50,100,100, 100]
if slightly different, we would obtain rank (x)= [1,2,3,4,5,6,7,8,9,10,11], where bold face ranks indicate ties.
averaging over ranks from ties results in rank (x)=[1,2.5,2.5,4,5,7,7,7,10,10,10].
due to this procedure, the rank sum will be just the sum of all integers between 1 and N, namely 1/2N(N+1) [=66 for our
example].
= example for unordered data (same values, other order)
x=[100, 20,-1,50,8,50,4,100,100,50,4]
rank (x)=[10,5,1,7,4,7,2.5,10,10,7,2.5]

= The same ranking process is applied to the y;-data, replacing each value by its
rank among all other y;’s

= Finally, we have mapped (x;,y;,) pairs to [rank (x;), rank (y,) ] pairs.

= Now we can develop/use statistics for detecting correlations between uniform
sets of integers/ half-integers in the range 1 to N.

= Due to ranking, there is some loss of information, ...
= ... but nonparametric correlation is (much) more robust than linear correlation:
If a correlation has been detected by nonparametric methods (at a certain signifi-

cance, of course), then it is really present.
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Spearman rank-order correlation coefficient

Let R, be the rank of x, and S, be the rank of y,. The rank-order correlation coefficent is then
the linear correlation coefficient w.r.t. the ranks,

> (R -R)(S -5

\/Z(Ri - F_Q)Z(Si _§)2

=

The significance of a nonzero value of r, (i.e., that ry deviates from zero) is tested by computing
N -2

2

t=r, |—
“\1-r,

which is approx. distributed as Stundent's distribution with f =N -2 d.o.f.
Most importantly, this approximation does not depend on the original distribution of the
X, and y;.
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The Wilcoxon rank-sum test

(also known as Mann-Whitney U-test) tests (loosely spoken) the hypothesis that two sample
populations X and Y have the same mean. X and Y may be of different lengths, N, and N,.

More precisely, the null hypothesis in this test is that the two samples are drawn from a single
population, and therefore that their probability distributions are equal.

somewhat similar to t-test on equal means. It does not require, however, assumptions about
the form of the distribution of the parent population (contrasted to the t-test, which assumes
normal distributions).

to be used whenever the distributional assumptions that underlie the t-test cannot be
satisfied.

The Mann-Whitney statistics for X and Y are defined as
U, =N,N, +%NX(NX +1) -W,

1
Uy =N,N, + =N, (N, +1) =W,

[U,+U, =N,N, (good test whether everything is OK) |

where W, and W, are the rank sums for X and Y within the combined sample, respectively.
for small samples, compare Min(U,, U,) with critical values from tables, Ug(N,,N,,a)
for larger samples, calculate the test statistic Z,

U, NN, /2

7=
JNLNG(N, + N +1)/12

which follows closely a standardized normal distribution for sample sizes N,, N, 210, and

evaluate the significance.
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