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ABSTRACT

Context. Mass loss is essential for massive star evolution, thus alsofor the variety of astrophysical applications relying on its predic-
tions. However, mass-loss rates currently in use for hot, massive stars have recently been seriously questioned, mainly because of the
effects ofwind clumping.
Aims. We investigate the impact of clumping on diagnostic ultraviolet resonance and optical recombination lines often used to derive
empirical mass-loss rates of hot stars. Optically thick clumps, a non-void interclump medium, and a non-monotonic velocity field are
all accounted for in a single model. The line formation is first theoretically studied, after which an exemplary multi-diagnostic study
of an O-supergiant is performed.
Methods. We used 2D and 3D stochastic and radiation-hydrodynamic wind models, constructed by assembling 1D snapshots in radi-
ally independent slices. To compute synthetic spectra, we developed and used detailed radiative transfer codes for both recombination
lines (solving the ‘formal integral’) and resonance lines (using a Monte-Carlo approach). In addition, we propose an analytic method
to model these lines in clumpy winds, which does not rely on optically thin clumping.
Results. The importance of the ‘vorosity’ effect for line formation in clumpy winds is emphasized. Resonance lines are generally
more affected by optically thick clumping than recombination lines. Synthetic spectra calculated directly from current radiation-
hydrodynamic wind models of the line-driven instability are unable to in parallel reproduce strategic optical and ultraviolet lines for
the Galactic O-supergiantλ Cep. Using our stochastic wind models, we obtain consistentfits essentially by increasing the clumping
in the inner wind. A mass-loss rate is derived that is approximately two times lower than what is predicted by the line-driven wind
theory, but much higher than the corresponding rate derivedwhen assuming optically thin clumps. Our analytic formulation for line
formation is used to demonstrate the potential importance of optically thick clumping in diagnostic lines in so-calledweak-winded
stars and to confirm recent results that resonance doublets may be used as tracers of wind structure and optically thick clumping.
Conclusions. We confirm earlier results that a re-investigation of the structures in the inner wind predicted by line-driven instability
simulations is needed. Our derived mass-loss rate forλ Cep suggests that only moderate reductions of current mass-loss predictions
for OB-stars are necessary, but this nevertheless prompts investigations on feedback effects from optically thick clumping on the
steady-state, NLTE wind models used for quantitative spectroscopy.
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1. Introduction

Massive stars are fundamental in many fields of modern astro-
physics. In the present Universe, they dynamically and chem-
ically shape their surroundings and the interstellar medium by
their output of ionizing radiation, energy and momentum, and
nuclear processed material. In the distant Universe, they domi-
nate the ultraviolet (UV) light from young galaxies. Indeed, mas-
sive stars may be regarded as ‘cosmic engines’ (Bresolin et al.
2008). Hot, massive stars possess strong and powerful windsthat
affect evolutionary time scales, chemical surface abundances,
and luminosities. In fact, changing the mass-loss rates of mas-
sive stars by only a factor of two has a dramatic effect on their
overall evolution (Meynet et al. 1994). The winds from these
stars are described by the radiative line-driven wind theory,
in which the standard model (based on the pioneering works
by Lucy & Solomon 1970; Castor et al. 1975) assumes that the
wind is stationary, spherically symmetric, and homogeneous.
Despite this theory’s apparent success (e.g., Vink et al. 2000),

theoretical as well as observational evidence of an inhomoge-
neous, time-dependent wind has become overwhelming in the
past years (for a comprehensive summary, see Puls et al. 2008).

Direct simulations of the time-dependent wind have con-
firmed that the so-called line-driven instability causes a highly
structured wind in both density and velocity (Owocki et al.
1988; Feldmeier 1995; Dessart & Owocki 2005). Much indi-
rect evidence of suchsmall-scale inhomogeneities(clumping)
has arisen from quantitative spectroscopy. Clumping has severe
consequences for any interpretation of observed spectra, with
the inferred mass-loss rates particularly affected. When deriving
mass-loss rates from observations, wind clumping has tradition-
ally been accounted for by assumingoptically thinclumps and a
void interclump medium, while keeping a smooth velocity field.
Results based on thismicroclumpingapproach have, for exam-
ple, led to a downward revision of empirical mass-loss ratesfrom
Wolf-Rayet (WR) stars by roughly a factor of three (reviewedin
Crowther 2007).

http://arxiv.org/abs/1101.5293v2
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However, for O stars, highly clumped winds with very low
mass-loss rates must be invoked in order to reconcile investiga-
tions of different diagnostics within the microclumping model.
The most alarming example was the phosphorusv (Pv) UV
analysis by Fullerton et al. (2006), which indicated reductions
of previously accepted values by an order of magnitude (or even
more), with dwarfs, giants, and supergiants all affected (but see
also Waldron & Cassinelli 2010, who argued thatxuv radiation
could seriously alter the ionization fractions of Pv). Such low
mass-loss rates would be in stark contrast with the predictions
of line-driven wind theory and have dramatic consequences for
the evolution of, and feedback from, massive stars. Naturally,
the widely discrepant values inferred from different observa-
tions and diagnostics drastically lower the reliability ofmass-
loss rates currently in use, and an explanation is urgently needed.
A key question is whether the microclumping model fails to de-
liver accurate empirical rates under certain conditions.

Simplified techniques to account for optically thick clumps
in X-ray line formation have been developed (Feldmeier et al.
2003; Owocki et al. 2004), but it has yet to be settled whether
or not this is important to consider when deriving empirical
mass-loss rates from these diagnostics (Oskinova et al. 2006;
Cohen et al. 2010). First attempts to relax the assumptions of
the microclumping model for UV resonance lines were made
by Oskinova et al. (2007) (optically thick clumps), Zsargóet al.
(2008) (a non-void interclump medium), and Owocki (2008)
(a non-monotonic velocity field). Sundqvist et al. (2010) (here-
after Paper I) carried out the first detailed investigation,relaxing
all the above assumptions, and showed that, indeed, the micro-
clumping approximation is not a suitable assumption for UV
resonance line formation under conditions prevailing in typi-
cal OB-star winds. Recently, these results were empirically sup-
ported for the case of B supergiants by Prinja & Massa (2010),
who analyzed profile-strength ratios of the individual compo-
nents of resonance line doublets and found that the observed
ratios were inconsistent with lines formed in a smooth or ‘mi-
croclumped’ wind. Furthermore, Paper I demonstrated that res-
onance line profiles calculated from 2D, stochastic wind mod-
els were compatible with mass-loss rates an order of magnitude
higher than those derived from the same lines but using the mi-
croclumping technique. However, as pointed out in that paper,
a consistent modeling of the resonance lines also introduces de-
generacies among the parameters used to define the wind struc-
ture, degeneracies that can only be broken by considering differ-
ent diagnostics (depending on different parameters) in parallel.

Here we make a first attempt toward such multi-diagnostic
studies. We extend our 2D wind models from Paper I to 3D,
and relax the microclumping approximation also for the optical
mass loss diagnostics Hα and Heii4686 Å (Sect. 2). In Sect. 3
we theoretically investigate Hα and resonance line formation in
clumpy winds, and propose an analytic treatment of the linesthat
does not rely on the microclumping approximation. A simulta-
neous optical and UV diagnostic analysis is carried out in Sect. 4
for the Galactic O6 supergiantλ Cep, using time-dependent
radiation-hydrodynamic (RH) models as well as stochastic ones
together with our new tools for the radiative transfer in clumped
winds. These results are discussed in Sect. 5, while two initial
applications of our analytic formulation are given in Sect.6. We
summarize the paper and outline future work in Sect. 7.

Table 1. Parameters for the time-dependent RH model of
λ Cep (see text).

Name Parameter Value
Spectral type O6 I(n) fp
Effective temperature Teff 36 000 K
Stellar radius R⋆ 21.1R⊙
Surface gravity logg 3.55
Stellar luminosity logL/L⊙ 5.83
Terminal speed 3∞ 2200 km s−1

Mass-loss rate Ṁ 1.5× 10−6 M⊙/yr
Helium abundance YHe ≡ nHe/nH 0.1
CAK exponent αCAK 0.7
Initial Langevin 3turb/3sound 0.5
turbulence fluctuation

Table 2. Basic structure parameters defining a stochastic wind
model.

Name Parameter
Clumping factora fcl

Average time interval δt
between release of clumps
Interclump medium density parameterxic

Velocity span of clump δ3

a fcl may be replaced by the volume filling factorfv.
The two are related viaxic (see Paper I).

2. Wind models and radiative transfer

We create 2D and 3D RH and stochastic wind models by as-
sembling snapshots in radially independent wind slices (see
Sect. 2.3).

Table 1 summarizes properties of a time-dependent RH
model computed following the approach in Feldmeier et al.
(1997), which introduces base perturbations from Langevintur-
bulence into an unstable line-driven wind. The line force is
computed with the nonlocal ‘Smooth Source Function’ (SSF;
Owocki & Puls 1996) method that allows one to follow the non-
linear evolution of the strong, intrinsic line-deshadowing in-
stability, while also accounting for the diffuse line drag (Lucy
1984) that reduces (and even eliminates) the instability near the
wind base. The net result is a highly structured wind character-
ized by high-speed rarefactions and slower, dense clumps (ac-
tually shells in these 1-D simulations). In comparison to self-
excited instability simulations (e.g., Runacres & Owocki 2002),
the base perturbations here induce a somewhat lower onset and
greater velocity dispersion of the wind clumping. A centralgoal
here is to examine the effects of this extensive structure on
wind diagnostics. Stellar and wind parameters are taken from
Repolust et al. (2004), except for the mass-loss rate (see Sect.
4).

Basic assumptions of our empirical, stochastic models were
described in detail in Paper I. Essentially, they are constructed
so to resemble the main structures predicted by the RH simula-
tions, while still allowing for a variation in the key parameters
controlling the line formation (see below).

2.1. Parameters describing a structured wind

When creating ourstochasticwind models, we take an heuris-
tic approach and use a set of parameters to define the structured
medium. The clumping factorfcl(3)≡ 〈ρ2〉/〈ρ〉2, with the an-
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gle brackets denoting spatially averaged quantities, is the only
necessary structure parameter when calculating spectra via the
microclumping technique. Microclumping gives rise to the well
known result that the opacities for processes that depend onthe
square of the density (for example Hα emission in OB-stars) are
augmented byfcl as compared to a smooth model with the same
mass-loss rate; in contrast, opacities for processes that depend
linearly on the density (for example theuv resonance lines) are
not directly affected. Thus, if the wind is clumped, mass-loss
rates derived from smooth models applied to Hα are overesti-
mated by a factor of

√

fcl. In addition, the occupation numbers
are modified for all diagnostics because of the changed ratesin
the statistical equilibrium equations. For a comprehensive dis-
cussion on the effects of microclumping on various diagnostics,
see Puls et al. (2008).

If the assumptions behind the microclumping model are not
satisfied (e.g. if clumps are optically thick for the investigated
diagnostic), the line formation will depend on more structure
parameters than justfcl. Thus, relaxing the microclumping ap-
proximation means that we must consider additional parameters
when describing the structured wind. These parameters (fora
two component medium) were defined and discussed in Paper I,
and are listed in Table 2. We stress that they are essential for the
radiative transfer in an inhomogeneous medium, and not merely
‘ad-hoc parameters’ used in a fitting procedure.

In addition to the clumping factorfcl (or alternatively fv),
xic ≡ ρic/ρcl denotes the density ratio of the interclump (ic) to
clumped (cl) medium. The time intervalδt (given in units of the
wind’s dynamic time scale,R⋆/3∞, and not necessarily constant
throughout the wind) effectively sets the physical distances be-
tween clumps, also known as the porosity lengthh (Owocki et al.
2004), which in our geometry is given byh = 3βδt. Moreover,
assuming a smooth underlying field of customaryβ-type,3β(r) =
3∞(1− b/r)β with b set by the assumed velocity at the wind base
3min = 3(r = 1), this time interval sets thevelocity separationbe-
tween the clumps∆3 ≈ 3βδtd3β/dr (Appendix A). Finally, the ra-
tio of the clump velocity spanδ3 (as defined in Fig. 2 in Paper I)
to this velocity separation (representing avelocityfilling factor,
see Appendix A) largely controls how strongly a perturbed ve-
locity field affects line formation1. In addition to these basic pa-
rameters, the velocity3cl (or radiusrcl) at which clumping is as-
sumed to start also plays an important role for the line formation.
Note also that the parameters defining these stochastic winds are
independent of the physical origin to the inhomogeneities.

The stochastic models should be distinguished from the
time-dependent RH simulations. In the latter the structurearises
naturally from following the time evolution of the wind and
stems directly from the line-driven instability. Thus, thetime-
averaged structure parameters, as functions of radius, areanout-
comeof these simulations (in contrast to the stochastic mod-
els, where they are used as fundamental parameters defining the
structured wind). Nonetheless, the exact wind structure still de-
pends on the chosen initial conditions, for example on whether
the instability is self-excited or triggered by some excitation
mechanism (the latter is done here, see Table 1). Finally, as
shown in Paper I, by choosing a suitable set of structure parame-
ters one can reconcile spectrum synthesis results stemmingfrom
the stochastic models with those from RH simulations.

1 In this paper, we do not consider the ‘jump velocity parameter’, 3j ,
defined in Paper I, since it was shown there that this parameter mainly
influences the formation of very strong saturated lines, which are not
considered here. In our applications in Sect. 4, we simply set 3j/3β =
0.15, which was found to be a prototypical value in Paper I.

2.2. Radiative transfer

For resonance lines we use the Monte-Carlo code described in
Paper I, but a new radiative transfer code has been developed
for the synthesis of wind recombination lines presented here.
We investigate the O star recombination lines Hα and Heii 4686.
Recall that recombination lines and resonance lines are formed
differently. First, the optical depths are calculated in different
ways. For resonance lines, the optical depths may be computed
via a line-strength parameter,κ0, which is assumed to be con-
stant throughout the wind and is proportional to the productof
the mass-loss rate and the abundance (by number),αi ≡ ni/nH, of
the considered elementi. κ0 may be expressed as (e.g., Puls et al.
2008)

κ0 =
Ṁ

R⋆32∞

πe2/mec
4πmH

αi

1+ 4YHe
fluλ0, (1)

wheree andme are the electron charge and mass, respectively,c
the speed of light,mH the atomic hydrogen mass,YHe the helium
abundance,flu the transition’s oscillator strength, andλ0 its rest
wavelength. The advantage with this definition is that the radial
Sobolev optical depth in a smooth wind collapses to

τSob= q
κ0

r2
3d3/dr

, (2)

whereq is the ionization fraction of the considered ion, andr is
measured in units ofR⋆ and3 in units of3∞.

For Hα, the analog toκ0 is the parameterA (Puls et al. 1996,
Eqs. 1-3).A is proportional to the mass-loss ratesquaredand to
the NLTE departure coefficient,bi , of the lower transition level
(minus the correction factor for stimulated emission).bi = ni/n∗i ,
wheren∗i is the occupation number of leveli in LTE with respect
to the ground state of the next ionization state. In this case, the ra-
dial Sobolev optical depth in a smooth wind becomes (Puls et al.
1996)

τSob=
A(r)

r4
3

2d3/dr
. (3)

In addition to their different optical depths, recombination lines
are (mainly) formed by recombining ions creating wind photons,
whereas resonance lines are formed by re-distributing photo-
spheric stellar continuum radiation by line scattering. Therefore
the participating atomic levels for recombination lines are rather
close to LTE with respect to the next ionization state (see Fig. 5),
which means that the departure coefficients and thereby also the
line source function,Sl ∝ (ehν/kTbl/bu − 1)−1, for these lines
are basically unaffected by the radiation field and its dilution. In
turn this allows us to prescribe the source functions (Puls et al.
1996, 2006) and simply carry out the ‘formal integrals’ within
our stochastic and RH winds. In the present work, weassume
that changes in the NLTE departure coefficients due to optically
thick clumps can be neglected for recombination-based linefor-
mation, and simply calculate thebi ’s from NLTE model atmo-
spheres using the microclumping approximation. Taking theex-
ample of Hα in O stars, this assumption should be reasonable,
for the Hα departure coefficients in this domain are very close
to unity and the ionization of hydrogen is complete. However,
for the case of, e.g., A-supergiants, the assumption no longer
holds, because in that stellar domain Hα’s lower level becomes
the effective ground state of hydrogen, which means that the
line transforms to a quasi-resonance line (and thereby thatSl
depends on the radiation field, Puls et al. 1998).



4 J.O. Sundqvist et al.: Mass loss from inhomogeneous hot star winds

As described in Paper I, also the ionization fractionsq for
resonance line formation are calculated assuming microclump-
ing. These fractions are used both within clumps and for the
interclump medium. The potential feedback effects of optically
thick clumping on the departure coefficients and ionization frac-
tions will be investigated by incorporating the analytic methods
developed in Sect. 3 into suitable NLTE atmosphere codes, and
reported in a future paper.

The assumption of prescribed departure coefficients is an
enormous simplification compared to the UV resonance lines,
and has enabled us to extend our 2D wind models to 3D when
modeling recombination lines. In the synthesis we follow the
basic method introduced by Puls et al. (1996), which does not
rely on the Sobolev approximation, with appropriate modifica-
tions for the line opacities of Heii4686. A core/halo approach
is adopted, in which a photospheric profile is used as a lower
boundary input (atr = 1, with r in units of the stellar radius)
and the radiative transfer is solved only in the wind. As for the
resonance lines (Paper I), we assume pure Doppler line broaden-
ing within the wind, characterized by a thermal speed,3t, given
throughout the paper in units of3∞.

Our new recombination line code has been extensively tested
and showed to yield equivalent results with Puls et al. (2006) for
smooth winds. Also, results based on the microclumping tech-
nique are reproduced for stochastic as well as RH winds with
low wind densities, as expected because the clumps then remain
optically thin. In our applications, we use hydrogen and helium
occupation numbers calculated byfastwind model atmospheres
(Puls et al. 2005), under the microclumping approximation,as
input for the radiative transfer to compute synthetic spectra.
Photospheric profiles are taken from NLTE calculations of atmo-
spheres with negligible winds. The consistency between unified
(meaning a simultaneous treatment of the photosphere and wind)
model atmosphere calculations and the simplified core/halo ap-
proach has been verified in the microclumping limit, for recom-
bination lines as well as for resonance lines. Moreover, we have
found that averaged recombination line profiles calculatedfrom
our earlier 2D, stochastic models are almost identical to those
calculated from our new 3D ones, as was already anticipated for
the UV resonance lines in Paper I.

The He ii blend in Hα. The star’s helium abundance has of
course been considered in the calculation of the Hα wind opac-
ity, but for simplicity we include the Heii blend only in the pho-
tospheric profile, thus neglecting its direct contributionto the
wind emission. This results in a slight underestimate of theto-
tal wind opacity of the line complex. However, by comparing to
unified model atmosphere calculations that consistently treat the
Heii blend, we have found that the direct helium contribution is
low for our typical stars of interest, and in our applications for
λ Cep it can even be neglected. Although sufficient for our pur-
poses here, this approach should obviously not be generalized,
because it may yield unrealistic results for stars with parameters
different from our template star.

2.3. Geometry

To construct (pseudo-)3D winds, we use the ‘patch method’
from Dessart & Owocki (2002). A standard right-handed spher-
ical system (r,Θ,Φ) is used, defined relative to a Cartesian set
(X,Y,Z). However, when computing recombination lines, we no
longer assume symmetry in the azimuthal (Φ) direction (as was
done in Paper I). The lateral scale of coherence in the wind isset

Fig. 1. Illustration of the wind geometry, see text.A color version
of this figure is available in the web version.

by the parameterNΘ and by assuming that the physical coher-
ence lengths in both lateral directions are approximately equal
(Fig. 1). This assumption is reasonable because, within ourap-
proach, which for example does not include an axis of rotation,
all observer directions should be alike. Thus, if we desire aco-
herence scale of 3 degrees, the number of slices in the polar di-
rection should beNΘ = 180/3 = 60 and in the azimuthal di-
rectionNΦ = int[2NΘ sinΘ], i.e., 2NΘ at the equator but fewer
toward the pole in order to preserve thephysicallength scales.
Wind slices are then assigned randomly from a large number of
spherically symmetric simulations (either RH or stochastic).

NΘ thus enters all our models as an input parameter. Paper I
showed that this parameter does not change the strengths of
the resonance lines. More tests have shown that also the ef-
fects on recombination lines are modest for investigated values.
Therefore all 3D models in this paper assumeNΘ = 60, meaning
a coherence length of 3 degrees at the equator, which is con-
sistent with observational constraints derived from line-profile
variability analysis (Dessart & Owocki 2002). Theoreticalcon-
straints onNΘ are still lacking, and will require a careful treat-
ment of the lateral radiation transport in RH models. The first 2D
simulations by Dessart & Owocki (2003) neglected this trans-
port and resulted in a laterally fragmented wind down to the
grid scale but the follow-up study (Dessart & Owocki 2005) in-
cluded a simplified 3-ray approach and resulted in larger (but
un-quantified) lateral coherence scales.

For recombination line formation, the observer is assumed
to be located at infinity in theZu (subscript u denoting a unit
vector) direction. The geometry is sketched in Fig. 1. We solve
the radiative transfer using a traditional (P,Z) system for a set of
P-rays, each defined by the minimum radial distance to theZ axis
and by the azimuthal angleΦ, which is constant along a given
ray. If the angle between the ray and the radial coordinate isθ,
thenµ = cosθ andP = r

√

1− µ2. Thus, for rays in directionZu
the radiation angleθ coincides with the polar coordinateΘ, and it
becomes trivial to calculate the physical locations at which wind-
slice borders are crossed. The observed flux may then finally
be computed by performing a double integral of the emergent
intensity overP andΦ.
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3. Theoretical considerations of resonance and
recombination line formation in clumpy winds

Resonance line formation in clumpy hot star winds was dis-
cussed in detail in Paper I. There we identified an intrinsic cou-
pling between the effects of porosity and vorosity (=’velocity
porosity’, Owocki 2008), which we here further elaborate upon.
In particular, we propose an analytic formulation of line forma-
tion in clumped hot star winds (that does not rely on the mi-
croclumping approximation). As already mentioned in Sect.2,
the development of such simplified approaches is important for
properly including effects of optically thick clumping into at-
mospheric NLTE codes. For recombination lines, we focus on
Hα and discuss impacts from optically thick clumping on its for-
mation, using our stochastic wind models as well as an extension
of the analytic treatment developed for the resonance lines.

3.1. Analytic treatment of resonance lines in clumpy winds

Throughout this section we assume asmooth velocity field, char-
acterized byβ = 1 (Sect. 2.1). Despite this, the vorosity effect
will be demonstrated to be important for the line formation (i.e.,
a non-monotonic velocity field is not required for vorosity to
be at work). Adopting the normalized, dimensionless frequency
x = (c/3∞)(λ0 − λ)/λ, and following the basic arguments of
Owocki (2008), we write the absorption part of a normalized
resonance line profile,Ra,x, from a radial ray as (see Appendix
A)

Ra,x = ξxe−τcl,x + (1− ξx)e−τic,x . (4)

Ra,x describes the part of the profile that stems from absorption
of continuum photons released from the photosphere. Theto-
tal line profile is given byRx = Ra,x + Rem,x, whereRem,x is
the re-emission profile. The scattering nature of the resonance
line source function significantly complicates the formation of
Rem,x. Therefore, for now we restrict ourselves to discussingRa,x
from a radial ray for these lines. For recombination lines, on the
other hand, we will lift these restrictions and treat the complete
line profile (Sect. 3.2). Obviously this must be done also forres-
onance lines before, e.g., including our analytic formalism in
NLTE model atmosphere codes (see also Sect. 6.2). In any case,
recall thatRa,x controls the actual line-profile strengths of reso-
nance lines, because these are pure scattering lines formedout
of re-distributed continuum radiation emerging from the photo-
sphere.

In Eq. 4 we defineξ as thefraction of the velocity field over
which photons may be absorbed by clumps, with the τ’s rep-
resenting the optical depths for the clumped (subscript cl)and
rarefied (subscript ic) regions.ξ describes the essential effects
of Owocki’s vorosity; the first term in Eq. 4 handles the part
of the line profile emerging from absorption within the clumps,
whereas the second term handles the part emerging from absorp-
tion within the interclump medium. What remains then is finding
an appropriate expression forξ. In Appendix A we argue that a
reasonable approximation may be

ξx ≈
δ3

∆3
+C
3t

∆3
= fvel(3) +C(3)η(3), (5)

with ∆3 the velocity gap between two clump centers,fvel the
velocity filling factor (defined in full analogy with the tradi-
tional volume filling factor),η the effective escape ratio(here
re-defined from Paper I, see Appendix A), andC a correction
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Fig. 2. Panel a:ξ (Eq. 5) as a function of wind velocity.Panel b:
The relative contributions toξ from fvel andCη. Curves in pan-
elsa andb have been calculated withκ0 = 5 and thermal speed
3t = 0.005 (in units of3∞). Panels c and d:Analytic (Eq. 4, solid
lines) and Monte-Carlo (dashed lines) based absorption part res-
onance line profiles from clumped winds, as compared to smooth
results (dotted lines). Clumping starts at3cl = 0.2 (rcl = 1.24).
Panel c: Profiles for three different values of the line strength
κ0 (indicated in the figure), with increased absorption for higher
values ofκ0. Only theκ0 = 1 profile is not saturated (i.e., does
not displayRa = 0) for smooth models.Panel d: Profiles for
κ0 = 5 and different values of3t, as indicated in the figure. No
Monte-Carlo profile for the3t = 0 case is shown (simply because
we have not yet developed a ‘Sobolev version’ of this code).
Analytic and Monte-Carlo profiles display increased absorption
for higher values of3t, whereas all smooth profiles haveRa = 0.

factor that depends on the line strength. The condition for inter-
action for a radial line photon is in the Sobolev approximation
simply x = 3, and, for simplicity, we from now on suppress all
velocity dependencies of the quantities in Eq. 5. As shown in
Appendix A, we may write

fvel = fv|
δ3

δ3β
|, η =

L
h
, (6)

whereh is the porosity length of the medium andL = 3t/(d3/dr)
the (in this case radial) Sobolev length. For the smooth velocity
field considered in this section,δ3 = δ3β, which gives fvel= fv.
Even though the principle effect of the optically thick clumps
on resonance line formation is a velocity effect governed byfvel,
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Eqs. 4-6 indicate there is also a dependence on spatial porosity
through the ratioη = L/h. This coupling was argued for already
in Paper I. However, it appears thatξ better characterizes the ef-
fects of clumping in resonance line formation than did our pre-
vious parametrization (see Appendix A). The optical depthsen-
tering Eq. 4 may be approximated by the corresponding Sobolev
ones, corrected for the influence ofη (Appendix A). Then for
resonance lines,τcl,x ≈ τsm,x/ξx andτic,x = τcl,xxic, whereτsm,x
is given by Eq. 2. Note that all parameters used to define our
stochastic wind models (Table 2) enter the expression forRa,x,
illustrating that indeed all these are important for the general
line formation problem.

The upper two panels of Fig. 2 plotξ as well as the rela-
tive contributions fromfvel and Cη for a resonance line with
line-strength parameterκ0 = 5. We do not allow forξ values
above unity (important for the outer wind, see also Appendix
A), and we also recover the smooth result for velocities lower
than 3cl simply by settingξx≤3cl = 1. All models displayed in
Fig. 2 were calculated with density structure parametersfcl=4.0,
δt=0.5, andxic=0.0025. For asmoothmodel (with ionization
fractionq = 1, assumed in this section),κ0 = 5 results in a pro-
file at the saturation threshold. In the lower two panels we show
analytic absorption-part line profiles calculated using Eq. 4 and
profiles calculated using our Monte-Carlo code. To make con-
sistent comparisons between methods, we accounted only forra-
dial photons in the Monte-Carlo simulations. The agreementbe-
tween the methods is very good, lending support to the proposed
analytic treatment and providing a relatively simple explanation
for the basic features of the synthetic profiles.

Evidently, profile-strength reductions can be quite dramatic
for ‘moderately strong’ cases such asκ0 = 5. For the very strong
κ0 = 500 line also the interclump medium is optically thick and
the profiles are therefore saturated (which is a necessity because
such saturated profiles are observed in hot stars). Note that, if
δ3 were much higher thanC3t, one could neglect the second
term in Eq. 5 andξ would become independent of the poros-
ity length. If one also neglects the interclump medium (setting
xic=0), and assumes that clumps are optically thick throughout
the entire wind (appropriate for theκ0 = 5 line), then the ob-
server in our example would simply receive a constant resid-
ual flux Ra,x = 1 − fv = 0.75. Fig. 2d shows that this gener-
ally does not hold (even for the idealized case of zero thermal
speed, the interclump medium still plays a role), demonstrating
that, along with the velocity filling factorfvel, in general both
xic andη also help shape the emergent profile for a wide range
of line strengths and structure parameters. Fig. 2d illustrates the
importance of accounting for the finite line profile width.Cη
may not be neglected, even in models with very low, but finite
thermal velocity, and becomes particularly important toward the
blue edge of the line profiles. This occurs because the resonance
zones in the outermost wind become very radially extended.L
thus grows whereas the distances between the clumps (deter-
mining h) are unaffected due to the very slowly changing ve-
locity field. Consequentlyη becomes very high andξ eventually
reaches unity. Since the smoothκ0 = 5.0 line is optically thick,
a ‘blue absorption dip’ (extensively discussed in Paper I) is cre-
ated.

Randomization effects are here neglected because we have
used a smooth velocity field. When clumps are allowed to have
velocities higher and lower than those given by the mean ve-
locity field, overlapping velocity spans of the clumps lead to in-
creased escape of photospheric photons. The blue absorption dip
then becomes less prominent than what is displayed in Fig. 2,as
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Fig. 3. Upper panel:Deviations from the microclumping ap-
proximation of equivalent widths of synthetic Hα line pro-
files versus mass-loss rate (see text). Clumping starts at3cl =

0.24 and 0.06 (rcl = 1.3 and 1.05), respectively, as indicated
in the figure.Lower panel:Hα line profiles as calculated by
stochastic, analytic, and microclumped models withfcl=9 and
Ṁ=10× 10−6 M⊙/yr, and the rest of the stellar and wind param-
eters as forλ Cep. Clumping for all models starts at3cl = 0.24.

discussed in Paper I (see also Appendix A, for some comments
on randomization effects).

Nevertheless, this section demonstrates that the microclump-
ing approximation can result in large errors if indeed the wind is
clumped but the clumps are not optically thin. First applications
of the analytic formulation are given in Sect. 6, for diagnostics
of weak wind starsand for the predicted profile-strength ratios
in resonance linedoublets.

3.2. Recombination lines in clumpy winds

We now leave the resonance lines behind and turn to the forma-
tion of recombination lines. We focus on Hα, the primary spec-
troscopic mass-loss diagnostic for O stars. Heii 4686 reacts sim-
ilarly as Hα to clumping in our primary stars of interest (because
Heiii is the dominant ion in the line forming regions), and will
be considered only in our diagnostic study ofλ Cep (Sect. 4).

First we present results from calculating Hα line profiles us-
ing our stochastic 3D wind models. Our main interest is to inves-
tigate differences with respect to the microclumping model, so
main results are provided in terms of the deviation of the equiv-
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alent widthsWλ between the two methods, (Wλ,mic−Wλ)/Wλ,mic,
as a function of mass-loss rate (hereWλ,mic denotesWλ as calcu-
lated from a model assuming microclumping). All models dis-
cussed in this section were calculated with unity departureco-
efficients, wind electron and radiation temperatures as for ap-
proximatelyλ Cep (calibrated using unified NLTE model at-
mospheres, see Puls et al. 2006), and no input photospheric ab-
sorption profiles. We used structure parametersfcl=9.0,δt=0.5,
xic = 0.0025, and a smooth velocity field characterized byβ = 1.

For typical O-supergiants, the equivalent widths of profiles
calculated from stochastic models are slightly lower than those
based on the microclumping technique (Fig. 3). Deviations stem
from optically thick clumps. The dominating effect is on the
wind emissionof Hα photons rather than on the wind absorp-
tion of photospheric photons (in contrast to resonance lines, see
previous section). This is because the source function for re-
combination lines is basically unaffected by the dilution of the
radiation field, which for relatively strong and hot winds make
these lines appear in emission and thereby suffer the main effect
from a clumped wind on the emission part of the line profile.
Moreover, theρ2-dependence of recombination line opacity in-
creases the contrast between the optical depths for the clumps
and those for the interclump medium, as compared to resonance
line formation. This lowers the significance of the interclump
medium and also causes the clump optical depths to decrease
faster for increasing radii. The latter effect results in clumps that
are optically thick only in the lower wind regions. Deviations
from the microclumping limit are therefore more significantfor
cases with earlier onset of clumping. For example, the equiv-
alent widths for the models witḣM=2.5× 10−6 M⊙/yr are re-
duced by 7 % and 17 % when clumping starts at3cl = 0.24 and
3cl = 0.06, respectively. The effect is thus modest, but notice-
able. Remember that reductions are measured against modelsas-
suming microclumping; the profiles are still much stronger than
profiles computed from smooth models with the same mass-loss
rate.

Our tests show that effects are confined to the line core and
that the microclumping approximation provides accurate results
in the line wings. However, Fig. 3 reveals prominent emission
strength reductions for stronger winds, since then opticaldepth
effects become important for ever larger portions of the total
wind volume. Furthermore, the onset of clumping is irrelevant in
these strong winds because the majority of the emission emerges
from radii greater thanrcl. This insensitivity to the onset of
clumping also recovers the scaling invariant formicroclumped
winds (∝

√

fclṀ, see Sect. 2.1). For typical OB-supergiants,
however, this scaling does not hold because of the strong opacity
contrast between wind radii lower than and greater thanrcl. Very
strong recombination lines, such as those displayed in Fig.3
(lower panel), are typically seen in WR stars, for which how-
ever also a reduced hydrogen content is expected (as well as a
breakdown of our assumption of an optically thin continuum).
Nonetheless, our analysis could, of course, be generalizedto re-
combination lines of other chemical species (as has been done
for Heii 4686 in our application toλ Cep), and may point to
significant optical depth effects in the strong emission peaks
of stars with very high mass-loss rates. Indeed, lower emis-
sion peaks in the theoretical spectrum of a WR star have been
found by Oskinova et al. (2007), on the basis of scaling smooth
opacities using a porosity formalism. However, when deriving
empirical mass-loss rates from microclumping models of WR
stars one normally considers also the electron scattering wings
(which are unaffected by microclumping, see Hillier 1991), and
because clumps in these probably are optically thin it may bethat

Table 3. Structure parameters for an empirical stochastic wind
model ofλ Cep.

Velocity range [3β/3∞] fcl δt xic δ3/δ3β
3min - 0.15 1.0 1.0 1.0
0.15 - 0.35 28.0 0.5 0.005 -5.0
0.35 - 0.60 14.0 0.5 0.0025 -5.0
0.60 - 0.95 14.0 3.0 0.0025 -5.0
0.95 - 1.0 4.0 3.0 0.0025 -5.0

lower emission peaks would have a greater effect on the inferred
clumping factors than on the mass-loss rates.

Analytic treatment of recombination lines. We can understand
the reduction in Hα emission strengths using the same analytic
treatment as outlined for resonance lines. Better yet, because the
source functionS is almost unaffected by the radiation field (see
Sect. 2), we can for recombination lines simulate the total pro-
file, Rx = Ra,x + Rem,x, writing

Rem,x = Sξx(1− e−τcl,x) + S(1− ξx)(1− e−τic,x), (7)

whereS is given in units of the continuum intensity and eval-
uated at the resonance point.Rem,x is much more influenced by
non-radial photons than isRa,x, so accordingly the radial stream-
ing assumption from the previous section must be relaxed here.
Details are given in Appendix A. Moreover, the clump and in-
terclump optical depths now becomeτcl,x ≈ τsm,x( fcl/ξx) and
τic,x = τcl,xx2

ic, due to theρ2-dependence of the line opacity,
with τsm,x given by Eq. 3. Already in the previous paragraph we
mentioned how this lowers the significance of the interclump
medium in recombination line formation. Actually, tests have
shown that, in our typical stars of interest, the optical depths in
the interclump medium are so low that the second term in Eq. 7
can safely be neglected. The lower panel of Fig. 3 illustrates that
profiles computed using the analytic approximation agree very
well with those computed using our stochastic wind models.

4. A multi-diagnostic study of λ Cep

We have carried out a detailed study of the Galactic O6 su-
pergiantλ Cep. This star was chosen in part to connect with
Paper I and in part because it is a well observed and studied ob-
ject, with significant mass loss, that appears to be less peculiar
than, e.g.,ζ Pup. A simultaneous investigation of optical diag-
nostics and the Pv resonance lines is performed. The ionization
fractions of Pv and the hydrogen and helium departure coeffi-
cients (see Fig. 5) are calculated with the unified model atmo-
sphere codefastwind, under the microclumping approximation
and assuming the same (smoothed) clumping factors as in cor-
responding RH or stochastic models, with stellar and wind pa-
rameters as given in Table 1, and with a solar (Asplund et al.
2005) phosphorus abundance. We account for stellar rotation by
convolving the emergent synthetic line profiles with a constant
3 sini = 220 km s−1, which is the photospheric value. Thus we
neglect differential rotation in the wind and simply assume that
stellar rotation only affects the line formation in the wind in such
a way that we may approximate the same3 sini value as for the
stellar photosphere (see also Sect. 5.1). Generally, for the line
profiles studied here, the influence of rotation is importantfor
the recombination lines, but not for the resonance lines. Weuse
observeduv fuse spectra from Fullerton et al. (2006), and optical
spectra from Markova et al. (2005) and A. Herrero (describedin



8 J.O. Sundqvist et al.: Mass loss from inhomogeneous hot star winds

0.0 0.2 0.4 0.6 0.8 1.0
v/v∞

10−6

10−4

10−2

100

102

104

τ c
l

Hα,rad

Hα,tan

PVrad

Fig. 4. Radial clump optical depths for PV, and radial and tan-
gential ones for Hα, as functions of wind velocity for our empir-
ical, stochastic wind model ofλ Cep (Table 3).

Herrero et al. 2000). In addition to Hα, Heii4686, and PV, we
also consider the wind sensitive cores of Hβ and Hγ. However,
for these diagnostics we rely entirely on the microclumpingap-
proximation, which because of their low wind optical depths
should be sufficient.

4.1. Clump optical depths

The clump optical depthin the wind is the primary quantity
governing the validity of the microclumping approximation. In
Appendix A (see also the previous section) we have provided
estimates of the clumps’ radialSobolevoptical depths in reso-
nance and recombination lines. However, in our stochastic mod-
els, clumps do not always cover a complete resonance zone, so
the Sobolev optical depths must be replaced by optical depthcal-
culations including the actual line profile (cf. Paper I, Eq.A.12,
and note also that these ‘exact’ optical depth calculationsthen
involve fvel rather thanξ, see Appendix A). Within our stochas-
tic wind models, the radial extent of a clump islr = 3β δt fv, and
therefore, by transforming to the corresponding velocity width,
we may readily calculate the ‘actual’ clump optical depthτcl.

Fig. 4 showsτcl for Pv and Hα, as calculated from our empir-
ical, stochastic model ofλ Cep (Table 3). The figure shows that
the radialτcl is significantly higher for Pv than for Hα and, more-
over, that the linear dependence on the density for resonance
lines (as opposed to the quadratic dependence of recombination
lines) causes clumps to remain optically thick in Pv throughout
almost the entire wind. The figure also illustrates how tangential
Hα photons have higher optical depths than radial ones in the
line forming regions. Since non-radial photons are important for
recombination lines (Sect. 3.2), this enhances the effects from
optically thick clumping on the Hα line formation in our empir-
ical λ Cep model (as seen in Fig. 7). The differences in clump
optical depths for radial (µ = 1) and tangential (µ = 0) photons
stem from the dependenceτcl ∝ [d3/drµ2+3/r(1−µ2)]−1, and the
fact that3/r is significantly lower thand3/dr in the relevant wind
regions. In any case, based on these simple estimates, one might
expect that the basic results of Sect. 3 should hold in diagnostic
applications of typical O stars. That is, Hα should be affected by
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optically thick clumping only in the line core, whereas resonance
lines should be much more affected over the entire line profile.

4.2. Constraints from inhomogeneous
radiation-hydrodynamic models

Fig. 6 displays line profiles calculated from our RH model ofλ
Cep. Consistent fits of the observed diagnostics are not achieved.
The Hα line wings are reasonably well reproduced but the core
emission is much too low. The Pv profiles are, actually, better re-
produced, although stronger than observed toward the blue edge
of the line complex (the ‘blue edge absorption dip’ problem,
see Sect. 3.1). The reasonable Pv fits are due both to adopt-
ing a rather low mass-loss rate forλ Cep (see Table 1) and to
lower velocity spans in these RH models than in those analyzed
in Paper I2. The mass-loss rate was essentially chosen from a
best compromise when considering the complete diagnostic set,
however note that a consistent fit to all diagnostics could not be
achieved, independent of which mass-loss rate was adopted,as
now discussed.

The apparent mismatch between Hα emission in the core and
in the wings occurs becausefcl increases rather slowly with in-
creasing velocity (Fig. 5), which for a given mass-loss rateim-
plies that the optical depths in the Hα core forming regions are
too low as compared to the optical depths in the wing forming re-
gions. Heii 4686 is subject to the same mismatch as Hα, and also
the cores of Hβ and Hγ are deeper than observed. The latter fea-
ture occurs because the photospheric absorption profiles are not
sufficiently re-filled by emission from the only weakly clumped
inner wind. Thus, the optical wind diagnostics all indicatethat
the clumping factor as a function of velocity inλ Cep differs
from that predicted by the RH simulations (see also Puls et al.
2006; Bouret et al. 2008). On the other hand, any significant in-
crease in the mass-loss rate to obtain a better fit of the higher
Balmer lines and the core of Hα would produce stronger than
observed Hα and Heii4686 line wings (as illustrated for Hα in
Fig. 6) and, vice versa, a reduction of the mass-loss rate to obtain

2 The exact reasons for the lower spans are still under investigation,
and will be reported in a future paper.
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Fig. 6. Observed and synthetic line profiles forλ Cep.Dotted linesare the observations.Solid lineprofiles are calculated from
the inhomogeneous radiation-hydrodynamic model ofλ Cep (Table 1), anddashed linesfrom a correspondingfastwind model
including microclumping. The long-dashed line in the upperleft panel is from a RH model in which the density has been scaled to
mimic an increase in the mass-loss rate by 50 %.

a better fit of the (blue edge of the) PV lines would produce too
weak wings.

Comparison with the microclumping technique. We now com-
pare results from above with those from a microclumpedfast-
windmodel having the same (smoothed) clumping factors as the
RH model. The Pv profiles calculated using thefastwind model
are stronger than those calculated using the RH model. We may
characterize this difference by the difference in the equivalent
widthsWλ of the absorption parts of the profiles.Wλ is roughly
15 % lower for the RH model (see also Owocki 2008). However,
this moderate reduction in profile strength actually corresponds
to a reduction in the mass-loss rate by a factor of approximately
two, because of the resonance lines’ slow response to mass loss.

Resonance line profiles stemming from the RH and micro-
clumping models also display different lineshapes. For RH
models, significant velocity overlaps stemming from the non-
monotonic velocity field ensure that the observed flux at the
blue side of the line center is accurately reproduced without in-
voking any artificial and highly supersonic ‘microturbulence’,

as must be done when using smooth as well as microclumping
wind models. Although not analyzed here, also the absorption
at velocities>3∞ of saturated resonance lines may be repro-
duced by RH models without invoking additional microturbu-
lence (Puls et al. 1993, Paper I). For Hα and Heii 4686, the RH
and microclumping models yield almost identical results. This
occurs because clumps are optically thin in these diagnostics
throughout almost the entire wind, due to the slow increase of
fcl with mean wind velocity, which in turn results in wind den-
sities in the inner wind unable to produce optically thick clumps
(compare to the empirical models in the following section).

4.3. Constraints from empirical stochastic models

Clearly, the RH models fail to deliver satisfactory line profiles
when their structures are confronted with UV and optical wind
diagnostics in parallel. Here we use our stochastic models to
modify the wind-structure parameters and show how the results
then may be reconciled. This is a first attempt toward our long-
term aim of using consistent multi-diagnostic studies to obtain
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Fig. 7. As Fig. 6, but using our stochastic models (solids) with corresponding inferred empirical structure parameters (see Table 3
and text). The assumed mass-loss rate is the same as for the RHmodel ofλ Cep, see Table 1.

unique views ofempiricalmass-loss rates and structure proper-
ties of hot star winds.

The mass-loss rate is determined by a best fit to the com-
plete diagnostic set (giving highest weight to the optical hydro-
gen lines). We derive the same rate as was previously adopted
for the RH model ofλ Cep. This rate (̇M=1.5×10−6 M⊙/yr) is
approximately two times lower than the corresponding theoreti-
cal one obtained using the mass-loss recipe in Vink et al. (2000)
(Ṁ=3.2×10−6 M⊙/yr). In the outermost wind, we for now ad-
here to the constraints onfcl derived from radio emission by
Puls et al. (2006), scaled with respect to the mass-loss ratede-
rived here. In the inner wind, both the distinct shape of Hα in
λ Cep3 and the cores of the higher Balmer lines may be used as
tracers of structure. The Hα absorption trough followed by the
steep incline to rather strong emission can only be reproduced
by our models if clumping is assumed to start quite late (see
also Puls et al. 2006; Bouret et al. 2008), at a velocity marginally
lower than predicted by the RH models, however with a much
steeper increase with velocity (see Fig. 5). Also, in the particular
case ofλ Cep, the upper limit of the mass-loss rate derived by

3 which only resembles the P Cygni shapes of the UV resonance
lines, since it is formed differently.

Puls et al. (2006) (̇M=3.0×10−6 M⊙/yr, inferred by assuming a
smooth outermost radio emitting wind) results in densitiesso
high in the lowermost wind that the Hα trough never reaches be-
low the continuum flux. Moreover, additional constraints come
from the cores of the higher Balmer lines; the higher the den-
sities in the lowermost wind, the stronger the re-filling of the
photospheric absorption profile by wind emission. Here as well
the upper limit from Puls et al. provides shallower than observed
line cores. Thus, if we requirefcl=1 at the wind base, and if our
interpretation of the abrupt shift from absorption to emission in
Hα as due to clumping is correct, rather tight constraints on the
mass-loss rate may be obtained using only optical diagnostics.

The Hα time series of Markova et al. (2005) reveal that both
the height of the emission peak and the depth of the absorp-
tion trough depend on the observational snapshot, variations can
reach 0.04 in residual flux units. Therefore it is not critical that
neither the peak nor the trough is perfectly reproduced by our
models in Fig.7 (which displays a ‘representative’ observational
snapshot). On the other hand, the observations do not indicate
any significant variation in theposition of the emission peak.
This might be an issue, because the late onset of clumping red-
shifts the emission peak too much (at least when neglecting
differential rotation, see Sect. 5.1), whereas an earlier onsetof
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clumping fails to produce an absorption trough. The offset in the
position of the emission peak is larger than the estimated uncer-
tainty in the radial velocity correction, which may indicate that
clumping is only partly responsible for the shape of the Hα core.
Indeed, other interpretations have been suggested, and we com-
ment on this in Sect. 5.1.

The line shape of Heii 4686 is well reproduced by our
stochastic models, but not the emission strength. The line re-
acts similarly to clumping as Hα. In order to increase the central
emission to the observed level we would have to raise the clump-
ing factor in the inner wind even more, which in turn would pro-
duce stronger than observed Hα emission as well as shallower
than observed Hβ and Hγ cores. Since hydrogen generally has
more reliable and robust departure coefficients than helium, we
have given higher weights to fits of hydrogen lines. Interestingly,
He II 4686 shows a similar offset as Hα in the position of the
emission peak.

The PV resonance lines are much more sensitive to the wind
structure parameters (see Sect. 3.1) than to the mass-loss rate.
Hence these lines should be used only as a consistency check of
mass-loss rates derived from other diagnostics. Using the struc-
ture parameters given in Table 2, our stochastic models yield
reasonable fits of the PV lines. We use values ofδt and xic as
in Paper I, including a higherδt in the outer wind to account for
clump-clump collisions, but are able to adopt a higher valueof
|δ3/δ3β|, which however is still lower than predicted by the RH
models. This higher value stems from that we here consider also
optical diagnostics and from these derive a lower mass-lossrate
and higher clumping factors than what was assumed in Paper I,
essentially meaning that larger velocity spans then can be used
when fitting the Pv lines.

fcl in the inner wind is drastically different from that pre-
dicted by our RH model forλ Cep (Fig.5), and indicates that
present-day RH simulations fail to predict observationally in-
ferred clumping factors, at least for the inner wind. Regarding
the outermost wind, let us point out that the RH simulations
used here only extend tor ≈ 35, at which fcl is still decreas-
ing. Simulations by Runacres & Owocki (2002), which extend
to much larger radii, indicate that the clumping factor settles at
≈ 4 in the outermost wind.fcl ≈ 4 is consistent with our derived
mass-loss rate and the constraints from radio emission derived
by Puls et al. (2006) (see above). This suggests that the outer-
most wind is better simulated by current RH models than the
inner one.

Comparison with the microclumping technique. Here we
compare the stochastic models from above with microclumped
models calculated with the same clumping factors. When us-
ing the microclumping technique, the PV resonance lines are
not directly affected by the structured wind. The mass-loss rate
adopted in the previous paragraph then produces much too
strong absorption in these lines, see Fig. 7. Moreover, the high
clumping factor in the inner wind adopted in our stochastic mod-
els results in so high densities that the clumps become optically
thick in Hα and Heii 4686 as well. This generally leads to weaker
emission for the stochastic models than for the microclumped
ones (Sect. 3.2), andfcl’s drastic increase from 1 to 28 makes
the deviation from the microclumping approximation prominent
in this particular case. We have confirmed that the same emission
strength reduction results when using our simplified analytic ap-
proach (Sect. 3.2), which supports the rather strong emission re-
duction that we find in the Hα core as well as indicates that our

analytic approach indeed might be a promising tool for a consis-
tent implementation into atmospheric NLTE codes.

In order to obtain reasonable fits of the PV lines within the
microclumping approximation we had to lower the mass-loss
rate significantly, toṀ=0.4×10−6 M⊙/yr (this is the so-called
‘Pv problem’, see also Fullerton et al. 2006). In turn this meant
that extreme clumping factors,fcl ∼ 400, in the inner wind were
required to meet the observed amount of Hα wind emission.
However, we have not been able to achieve a consistent fit of the
optical diagnostics using these highly microclumpedfastwind
models: if for example Hα is fitted then the Heii4686 emission
is much too weak. Overall, the results in this section support
the view that the extremely low empirical mass-loss rates previ-
ously indicated from Pv might be a consequence of neglecting
optically think clumping when synthesizing resonance lines.

5. Discussion

5.1. Are O star mass-loss rates reliable?

Theoretical rates. The time/spatial averaged mass-loss rate of
our λ Cep RH model differs from the rate of the correspond-
ing smooth start model (used for initialization) by less than 5 %.
From this one might expect that the clumped stellar wind should
not significantly affect theoretical mass-loss rates based on the
line-driven wind theory. However, Krtička et al. (2008) (see also
Muijres et al. 2010, submitted to A&A) made some first tests
and included wind inhomogeneities in a (steady-state) theoreti-
cal wind model of an O star. They found that the predicted mass-
loss rate increased when clumps were assumed to be optically
thin, because of increased recombination rates that shifted the
ionization balance to lower ionic states with more effective driv-
ing lines. On the other hand, their tentative attempts to account
for optically thick clumps in thecontinuumopacity as well as
for clumps with longer length scales than the Sobolev lengthre-
duced the line force and led to lower predicted rates.

The reduced profile strengths of resonance lines (which are
the main drivers of the wind) found here should in principle also
reduce the line driving in theoretical steady-state wind models,
but let us point out that many lines that significantly contribute to
the total driving force might still be saturated because of the non-
void interclump medium. Nevertheless, it is clear that a thorough
investigation of the impact of clumping on predicted mass-loss
rates is urgently needed. The mass-loss rate forλ Cep derived
here is approximately a factor of two lower than the theoretical
rate predicted by the mass-loss recipe in Vink et al. (2000).

Empirical rates. Our empirical mass-loss rate forλ Cep is 4.5
times lower than the rate inferred from synthesizing Hα using a
smooth wind model (Repolust et al. 2004). The best constraints
on the mass-loss rate in our analysis come from the distinct
shape of the Hα line core and the higher Balmer lines (Sect. 4.3).
Rotation in our models is treated by the standard convolution
procedure. Butλ Cep is a fast rotator (Table 1), so differential
rotation might influence the formation of the line profiles, par-
ticularly the Hα core. Bouret et al. (published in Bresolin et al.
2008) found that the Hα line in ζ Pup can be fitted by assum-
ing that clumping starts close to the wind base,if differential
rotation is treated consistently. Sinceζ Pup andλ Cep display
similar Hα profiles, it is possible that the same effect could be at
work also in the latter star, and thereby that the rather lateonset
of and the rapid increase of clumping in our stochastic modelof
λCep could be somewhat exaggerated. Naturally, this could then
also affect the inferred mass-loss rate, since with a modified run
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of the clumping factor another rate might be required to obtain a
simultaneous fit of the observed diagnostic lines.

The influence of X-ray andxuv/euv radiation as created by
shocked wind regions (Feldmeier et al. 1997) on the occupa-
tion numbers is not included in our analysis. These contributors
are not important for calculations of hydrogen occupation num-
bers (Pauldrach et al. 2001), but their significance for the ioniza-
tion fractions of phosphorus is still debated (Krtička & Kubát
2009; Waldron & Cassinelli 2010). We have used the alterna-
tive unified atmospheric codewm-Basic (Pauldrach et al. 2001),
which treats X-ray andxuv/euv radiation butnot wind clump-
ing, to estimate the impact of X-rays on the Pv ionization frac-
tions. We find that effects are negligible at wind velocities lower
than 3/3∞ ≈ 0.5 but profound at higher velocities, with the
Pv ionization fraction significantly reduced when X-rays (and
of course the correspondingxuv/euv radiation tail) are included.
This suggests that a proper treatment of these hot radiationbands
might resolve the earlier discussed ‘blue absorption dip’ prob-
lem, which is clearly visible in the Pv line profiles calculated
from RH models (Fig. 6, but note that we overcame this prob-
lem in our stochastic models by increasing the distances between
clumps in the outermost wind, see Table 3).

5.2. Structure properties of the clumped wind

We identify two main problems when confronting synthetic
spectra from the time-dependent RH simulations of the line-
driven instability with observed lines in the UV and optical: i)
the absorption toward the blue edge of unsaturated UV reso-
nance lines is too deep in the simulations, and ii) the emission
in the core of Hα is much too weak as compared to the emission
in the wings. The first problem is related to the high predicted
velocity spans in the RH models, and was extensively discussed
already in Paper I. Moreover, in Sect. 5.1 we commented on that
even if the large velocity spans turn out to be stable features, this
problem might be overcome by a proper treatment of X-rays in
the calculations of ionization fractions.

The second problem arises because the predicted clumping
factors in the inner wind are too low as compared to those in
the outer wind (Fig. 5). However, let us point out that veloc-
ity as well as density perturbations in the inner wind of our
RH simulation may be overly damped, because we use the so-
called smooth source function (SSF) approximation when cal-
culating the contribution to the line force from the diffuse, scat-
tered radiation field. In simulations that relax the SSF approxi-
mation and account for gradients in the perturbed source func-
tion (via an ‘escape-integral source function’ formulation, EISF,
Owocki & Puls 1996, 1999), the structure in the inner wind is
more pronounced and also develops closer to the photosphere.

In any case, however, it is questionable ifself-excitedin-
stability simulations will be able to reproduce the observed
clumping patterns (which have been found also in earlier in-
vestigations based on the microclumping approximation, e.g.,
Bouret et al. 2005; Puls et al. 2006), especially considering that
our RH model ofλ Cep actually already is triggered (Table 1),
using Langevin perturbations mimicking photospheric turbu-
lence (Feldmeier et al. 1997). Thus, while observations tracing
the outer wind seem to confirm the structures predicted by the
line-driven instability, observations tracing the inner wind might
require the consideration of an additional triggering mechanism
to be reproduced, which perhaps must be stronger than what
is currently assumed. For example, Cantiello et al. (2009) pro-
posed that gravity and/or acoustic waves emitted in sub-surface
convection zones may travel through the radiative layer and

10−11 10−10 10−9 10−8 10−7 10−6

<q>dM/dt [MSun/yr]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
λ/

W
λ,

S
at

Fig. 8. Equivalent widths,Wλ (normalized to the value for a sat-
urated line), for the absorption part of the Nv resonance line at
1240 Å, as functions of the product of the ionization fraction of
Nv, 〈q〉, and the mass-loss rate. The solid line is calculated from
smooth models and the dashed line from structured ones. The
black dots denoteWλ’s for models corresponding to a smooth
model with〈q〉Ṁ = 10−9, see text.

induce clumping already at the wind base. However, regard-
ing gravity waves, it is not certain that these would have high
enough frequencies (i.e., higher than the atmosphere’s acoustic
cutoff frequency) that they can be radially transported through
the wind. Another possibility for a strong clumping triggermight
be non-radial pulsations in the photosphere. Certainly it would
be valuable to investigate to what extent such triggers, within
a line-driven instability simulation using the EISF formulation,
could produce clumping patterns in the inner wind more com-
patible with the observations.

6. Additional considerations

In this section, we discuss two applications for the analytic
formulation of line formation in clumpy winds presented in
Sect. 3.1.

6.1. Weak wind stars

The so-called weak wind problem is associated with observa-
tions of (primarily) O-dwarfs of late types, which appear tohave
mass-loss rates much lower than what is predicted by the line-
driven wind theory, and also much lower than other ‘normal’ O
stars of earlier spectral types. However, a major problem with
wind diagnostics in this domain is that the primary optical di-
agnostic, Hα, becomes insensitive to changes in the mass-loss
rates, so that only upper limits can be inferred from this line.
Therefore one must for these objects quite often rely solelyon
the intrinsically stronger UV resonance lines. For a comprehen-
sive discussion on the weak wind problem, see Puls et al. (2008).

In the following, we demonstrate the potential impact of op-
tically thick clumping on diagnostic resonance lines in weak
wind stars using the analytic formulation developed in Sect. 3.1.
We use one component of the Nv doublet at 1240 Å, assume
a solar nitrogen abundance (Asplund et al. 2005), and take a
generic O-dwarf with parametersR⋆=8.0R⊙, 3∞=1500km s−1,
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andYHe = 0.1. Since in this section we only discuss predictions
for the product of mass-loss rate and ionization fractionq for
resonance lines, no effective temperature needs to be specified
(see Eqs. 1-2). The Nv doublet was among the lines utilized in
the study of Marcolino et al. (2009), and also our chosen param-
eters correspond well to the parameters for the five stars ana-
lyzed and found to have very weak winds (more than an order
of magnitude lower than predicted by theory) in that study. To
avoid problems regarding the onset of clumping and the afore-
mentioned ‘blue absorption dip’, we consider only the veloc-
ity interval 3/3∞ = 0.25 − 0.75. Absorption-part line profiles
for structured winds are calculated using Eq. 4 and adoptingthe
same structure parameters as in Sect. 3.1 (fv=0.25,xic=0.0025,
δt=0.5, and a smooth ‘β=1’ velocity field).

Fig. 8 shows the curve-of-growths for structured and smooth
models, respectively, as functions of the mean ionization frac-
tion of Nv times the mass-loss rate,〈q〉Ṁ. Clearly, mass-loss
rates derived from smooth models may be severely underesti-
mated also for stars with weak winds. For example, if we for
this star were to infer〈q〉Ṁ = 10−9 M⊙/yr from a smooth model,
the corresponding rate inferred from a structured one wouldbe
(〈q〉Ṁ)struc = 3.8 × 10−8 M⊙/yr = 38(〈q〉Ṁ)smooth (see Fig. 8).
Thus, if using smooth models (or microclumped, since micro-
clumping has no effect on the resonance lines as long as no sig-
nificant changes occur in the ionization fractions), one could eas-
ily derive mass-loss rates more than an order of magnitude lower
than corresponding rates derived from structured models (see
also Oskinova et al. 2007 and Paper I), and thereby one could
also misinterpret observations as suggesting that mass-loss rates
are much lower than predicted by theory.

We emphasize, however, that this simple example merely
demonstrates how optically thick clumpingmight be impor-
tant also for resonance line diagnostics in so-called weak wind
stars, and that,if the winds are clumped, one must be care-
ful not to simply assume that strongly de-saturated resonance
lines also imply optically thin clumps. The actual mass-loss
reductions will depend critically both on the assumed ioniza-
tion fractions and on the adopted structure parameters. Thus, a
multi-diagnostic study (to constrain the structure parameters),
including a detailed consideration of X-rays (to obtain reliable
ionization fractions), is required for more quantitative results.
Nevertheless, we may safely say that, because of these inher-
ent problems in UV line diagnostics, it is important to put fur-
ther constraints on the weak wind problem by exploiting other
diagnostics that are sensitive to mass loss but neither haveopti-
cally thick clumps nor are affected by X-rays (as is probably true
for, e.g., the infrared Brα line, Najarro et al. 2010, submitted to
A&A, see also Puls et al. 2009).

6.2. Resonance line doublets

Massa et al. (2008) pointed out that additional empirical con-
straints on wind structure may be obtained by considering the
observed profile-strength ratios of resonance linedoublets. The
line strength parameter,κ0, of such doublets is in proportion to
the oscillator strengths of the individual components,f , which
for the cases of interest here aref b/ f r = 2, with superscripts
b and r denoting the blue and red line components, respec-
tively. However, if clumps are optically thick for the investigated
lines, the resulting profile-strength ratio may deviate quite sig-
nificantly from the one implied by smooth modeling (see dis-
cussion in Paper I). For example, in the case of very optically
thick clumps and a void interclump medium, Eq. 4 simply gives
Ra,x = 1 − ξx, i.e. the profile strength becomes independent of

κ0. The analogy for continuum diagnostics, or for line diagnos-
tics in anon-acceleratingmedium, is the well-known result that
for a medium consisting of infinitely dense absorbers embedded
in a vacuum, the effective opacity is independent of the atomic
opacity (see footnote 4 in Appendix A). Also for such a situation
would the inferred profile-strength ratio be exactly one.

A major advantage of this line diagnostic is that the depen-
dence on X-rays should cancel out. Recently, Prinja & Massa
(2010) extended the Massa et al. work to include a large num-
ber of B supergiants, for which they, from the Siiv λλ1400 res-
onance doublet, derived empirical line-strength ratios,κb0/κ

r
0, us-

ing smooth wind models. The stars showed a wide spread be-
tween unity and the predicted factor of two, with the major-
ity of them lying in the range 1.0 to 1.5, and with an overall
mean of 1.46 (standard deviation∼0.31). In the following, we
shall discuss this diagnostic under the assumption that thedou-
blet components are well separated, so that each component can
be treated as a single line, which is reasonable for, e.g., the just
mentioned silicon lines in typical B-supergiants and for Pv in
OB-stars.

We now show that our analytic formulation for resonance
line formation indeed predicts profile-strength ratios on the same
order as those discussed above. Following the preceding section,
we assume a solar abundance for silicon, make use of a generic
B-supergiant withR⋆=30.0R⊙, 3∞=800 km s−1, andYHe = 0.1,
adopt the same structure parameters as in the previous section,
and consider only the velocity interval3/3∞ = 0.25− 0.75. We
then assume that for this generic star we derive〈q〉Ṁ = 5× 10−9

from the Siiv resonance doublet formed in astructuredwind
model. By once more exploiting the curve-of-growth (as in
Fig. 8, but now for the two components of Siiv), we can then
easily translate the structured results to corresponding smooth
ones. We find a ratio (κb0/κ

r
0)smooth≈ 1.4, which agrees well with

the results derived by Prinja & Massa (2010).
The doublet ratios are, in fact, almost ideal diagnostics re-

garding structure properties, since all other dependencies cancel
out. Therefore ratios deviating from two might be the cleanest
indirect signatures of optically thick clumping that we presently
have, and may in principle be used to extract empirical informa-
tion on the behavior ofξ. We write the ratio of the blue and red
absorption-part line profile at frequencyx as

Rb
a,x

Rr
a,x
=

(1− ξx)e−(2τric,x) + ξxe−(2τrcl,x)

(1− ξx)e−τ
r
ic,x + ξxe−τ

r
cl,x
. (8)

Generally, this equation can be solved forξx only if the line op-
tical depths and the interclump densities are known (the latter
for example from observations of saturated resonance lines, see
Paper I). However, under certain circumstances we can eliminate
the need for such external knowledge. For example, assuming
thatall clumps are optically thick, we may write

Rb
a,x

Rr
a,x
= e−τ

r
ic,x =

Rr
a,x

1− ξx
→ ξx = 1−

(Rr
a,x)

2

Rb
a,x
. (9)

Applying the last expression to our line profiles computed for
Si iv using Eq. 4 reveals a mean value ofξ = 0.48 in a velocity
bin 3/3∞ = 0.4 − 0.5, which agrees well with the actual mean
(calculated from the assumed structure parameters),ξ = 0.51.
Thus, this approximation can provide a quite good direct empir-
ical mapping ofξ, without any knowledge about optical depths
etc. Another case for which the profile-strength ratio can bedi-
rectly related toξ is that of a completely transparent background
medium (i.e., a void interclump medium in our case). That lim-
iting case of Eq. 8 has been long recognized and used by the
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quasar community (e.g., Ganguly et al. 1999), for the formation
of intrinsic, narrow absorption-line doublets.

However, let us point out that this theoretical example only
demonstrates that our basic formalism appears reasonable.In a
real application, there will be a contribution also from there-
emissionpart of the line profile, i.e., what we actually measure
from an observation is the total line profileRx = Ra,x + Rem,x.
Thus, to empirically inferξx from Eq. 9 (which involvesRa,x =

Rx − Rem,x), we must either simply neglect the re-emission con-
tribution (which generally will not be possible) or actually cal-
culateRem,x, as predicted by astructuredwind model. For reso-
nance lines (as opposed to recombination lines, see Sect. 3.2), a
simplified approach forRem,x in clumpy winds is still to be de-
veloped; it is a very demanding task because of the source func-
tion’s scattering nature. In principle though, a treatmentcorre-
sponding to the ‘smooth source function’ formalism used in our
time-dependent RH simulations (see Sect. 5.2) might be a rea-
sonable first approximation.

7. Summary and future work

We investigate diagnostic features for deriving mass-lossrates
from the clumped winds of hot, massive stars, without relying
on the microclumping approximation. It is found that present-
day RH simulations of the line-driven instability are not able to
consistently fit the UV and optical diagnostics in a prototypi-
cal O-supergiant. By creating empirical stochastic wind models,
we achieve consistent fits mainly by increasing the clumping
in the inner wind. A mass-loss rate is derived that is approxi-
mately a factor of two lower than what is predicted by theory.
The best constraints come from the optical diagnostics. TheUV
resonance lines are much more sensitive to the wind’s structure
parameters (i.e., to the clumping factor, the interclump medium
density, etc.) than to the mass-loss rate, and should, thus,not be
the preferred choice when deriving empirical mass-loss rates.

We discuss both recombination line and resonance line for-
mation in detail. Resonance lines always suffer the effects of
optically thick clumping in typical diagnostic lines, and their
profiles are thereby weaker for models with a detailed treat-
ment of clumping than for models that rely on the microclump-
ing approximation. Recombination lines are less affected be-
cause of the lower optical depths in typical diagnostic lines.
However, emission strength reductions as compared to micro-
clumped models are significant for stars with high mass-loss
rates (e.g., Wolf-Rayet stars) and can be so for O stars as well,
if, for example, strong clumping is present in the lower wind, as
illustrated by our diagnostic study ofλ Cep.

An analytic method to model these lines in clumpy winds,
without any restriction to microclumping, is suggested and
shown to yield results consistent with those from detailed
stochastic models. Some first results are given, illustrating the
potential significance of optically thick clumps for diagnostic
lines in weak wind stars, and confirming recent results that
profile-strength ratios of resonance line doublets may be used
as tracers of wind structure and optically thick clumping. We in-
tend to refine this method and incorporate it into suitable NLTE
unified atmospheric codes, in order to investigate effects of opti-
cally thick clumping on the occupation numbers.

It is pivotal that 3D, time-dependent RH models of the line-
driven instability be developed, with an adequate treatment of
the 3D radiation transport. New models are required to investi-
gate whether the structure predicted by present-day simulations
is stable or a consequence of current physical assumptions and
simplifications.

Acknowledgements.We thank the anonymous referee for detailed comments
and suggestions. J.O.S gratefully acknowledges a grant from the International
Max-Planck Research School of Astrophysics (IMPRS), Garching, and also cur-
rent financial support from the DFG cluster of excellence.

References
Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in Astronomical Society of

the Pacific Conference Series, Vol. 336, Cosmic Abundances as Records of
Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes III& F. N. Bash, 25–

Bouret, J., Lanz, T., Hillier, D. J., & Foellmi, C. 2008, in Clumping in Hot-Star
Winds, ed. W.-R. Hamann, A. Feldmeier, & L. M. Oskinova, 31–

Bouret, J.-C., Lanz, T., & Hillier, D. J. 2005, A&A, 438, 301
Bresolin, F., Crowther, P. A., & Puls, J., eds. 2008, IAU Symposium, Vol. 250,

Massive Stars as Cosmic Engines
Cantiello, M., Langer, N., Brott, I., et al. 2009, A&A, 499, 279
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157
Cohen, D. H., Leutenegger, M. A., Wollman, E. E., et al. 2010,MNRAS, 405,

2391
Crowther, P. A. 2007, ARA&A, 45, 177
Dessart, L. & Owocki, S. P. 2002, A&A, 383, 1113
Dessart, L. & Owocki, S. P. 2003, A&A, 406, L1
Dessart, L. & Owocki, S. P. 2005, A&A, 437, 657
Feldmeier, A. 1995, A&A, 299, 523
Feldmeier, A., Oskinova, L., & Hamann, W.-R. 2003, A&A, 403,217
Feldmeier, A., Puls, J., & Pauldrach, A. W. A. 1997, A&A, 322,878
Fullerton, A. W., Massa, D. L., & Prinja, R. K. 2006, ApJ, 637,1025
Ganguly, R., Eracleous, M., Charlton, J. C., & Churchill, C.W. 1999, AJ, 117,

2594
Herrero, A., Puls, J., & Villamariz, M. R. 2000, A&A, 354, 193
Hillier, D. J. 1991, A&A, 247, 455
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Appendix A: Analytic treatment of line formation in
clumped hot star winds

Resonance lines. We propose to write the absorption part of a
resonance line formed (from a radial ray) in a clumped wind as

Ra = ξe
−τcl + (1− ξ)e−τic , (A.1)

whereξ is defined as thefraction of the velocity field over which
photons may be absorbed by clumps, the optical depths are those
for the clumped (subscript cl) and rarefied (subscript ic) medium,
and dependencies on the normalized, dimensionless frequency x
have been suppressed for simplicity (cf. Sect. 3.1 in main paper).

Following Owocki (2008) we define thevelocity filling fac-
tor fvel as the fraction of the velocity field covered by clumps
(in full analogy with the volume filling factorfv). That is, fvel is
the ratio of the velocity span of the clump,δ3, to the velocity
separation between two clump centers,∆3,

fvel ≡
δ3

∆3
. (A.2)

In our stochastic models we have the clump velocity spanδ3 ≈
|δ3/δ3β|(d3β/dr)δr and from the definition offv (see Paper I)δr ≈
fv∆r, with ∆r = 3βδt the radial distance between two clump
centers. Similarly one may approximate∆3 ≈ (d3β/dr)∆r, which
leads to

fvel ≈ |
δ3

δ3β
| fv. (A.3)

Thus, a smooth velocity law (δ3=δ3β) implies fvel= fv. The ab-
solute value sign becomes important in any compressive wind
region, since optical depths must always be positive (see below).

Actually, Eq. A.1 is in form equivalent to the analytic trans-
fer solution derived by Levermore et al. (1986), for the ensemble
averaged intensity in a two-phase [i = A, B] Markovian model of
a static purely continuum absorbing medium in the limit thatthe
characteristic length scalesl i of the fluid packets of both com-
ponents are much longer than the domain of integration4, if we
just substitutelA , lB → δ3,∆3. Thus, from this analogy it is clear
that we may setξ = fvel as long as the Sobolev-like require-
mentδ3 >> C3t is satisfied, whereC3t is the velocity extent over
which a photon of frequencyx may be absorbed (that is, the
velocity extent of a resonance zone). This limiting situation cor-
responds to the case that the line profile can be represented by
a delta function, so that the sharp edges of the resonance zones
prevent any absorption at frequencies not Doppler shifted to the
very line center, resulting in a localized radiative transfer. The
optical depths in Eq. A.1 are then understood to be the Sobolev
ones. That is,τcl = τsm/ fvel andτic = τsm(xic/ fvel), with τsm the
optical depth in the smooth case (Eq. 2).

However, especially in the outer wind (but, depending on the
onset of clumping, also in the innermost wind, see Fig. 2) we
will generally haveδ3 < C3t and the effective fraction of the ve-
locity field over which photons can be absorbed by clumps will
increase. The exact form of the radiation transport is then likely
to be very complex. Nonetheless, let us in a first attempt try to

4 We mention in passing that the Levermore et al. model also yields
the resulte−s/h, with s the path length, for the normalized intensity in
the limit of infinitely dense absorbers in a background vacuum. This
is equivalent to the result for a fully porous wind obtained by, e.g.,
Owocki et al. (2004).

simply modifyξ in order to account for the essential effects. We
write

ξ ≈
δ3 +C3t
∆3

, (A.4)

where the factorC3t now represents a sort of correction to the
limiting case ofδ3 >> C3t. A linear addition is chosen because
the basic equation determining whether or not a photon actually
can be absorbed (i.e., whether or not it is located within itsreso-
nance zone) isxcmf = xobs− 3, with xcmf andxobs the co-moving
and observer’s frame frequencies, respectively.

The factorC accounts for the fact that the ‘effective reso-
nance zone’ over which photons can be absorbed by clumps is
larger than that provided by3t (at least for relatively strong lines).
Photon absorption atx within clumps is given by the distribution
function e−τcl,x , with expectation valueτcl,x = 1. Therefore we
may estimateC using the ‘effective profile width’, determined
by solving for the co-moving frame frequency at which unity
optical depth is reached,if a clump is present,

τcl
1− erf[xcmf/3t]

2
= 1, (A.5)

where erf is the error function. The effective profile width then
is C = 2xcmf/3t, wherexcmf is given by the solution to Eq. A.5.
Note thatC now is allowed to be velocity dependent,C→ C(3).
In addition, the expression for the clump optical depth should
now be modified,τsm/ fvel → τsm/ξ, to account for the fact that
individual clumps no longer cover a complete resonance zone.

With C determined we can castξ in the convenient form

ξ ≈ fvel +Cη, (A.6)

whereη ≡ 3t/∆3 is the effective escape ratio. Note the difference
between this definition ofη and that given in Paper I. The two
are related as

η = (1− fvel)/ηold, (A.7)

whereηold denotes our earlier definition. The advantage of re-
definingη is that we may now separate out the porosity depen-
dence inξ, writing

η =
3t

∆3
≈
3t/(d3β/dr)

∆r
=

Lr

h
, (A.8)

with h = δr/ fv = ∆r = 3βδt the porosity length of the medium
in our geometry andLr = 3t/(d3β/dr) the radial Sobolev length
for a smooth velocity field. The coupling between vorosity and
porosity becomes clear viaη.

As defined,η may in principle take arbitrarily high values,
so for the examples in this paper we simply setξ = 1 when-
everξ ≥ 1, because in a wind with a smooth velocity field the
clumps obviously cannot absorb photons over a velocity space
larger than that covered by theβ velocity law. On the other hand,
if we allow for clumps to be randomly positioned in velocity
space, overlapping velocity spans will lead to a change in the
effective coverage fractions. If velocity perturbations are suffi-
ciently large, one may simply substituteξ → (1−e−ξ) and permit
ξ to take arbitrarily high values. However, it is clear neither if ve-
locity perturbations will be sufficiently large nor how to handle
the case when more than one clump is crossed within a reso-
nance zone. Thus we for now consider only the simple case of a
smooth velocity field, deferring to future work a careful study of
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these randomization effects. In any case, we note that our formal-
ism recovers the smooth optical depthτsm in the limit∆3 << C3t
(as expected because then the individual clumps obviously are
optically thin).

Finally, Eq. A.1 has the proper behavior in the limiting cases
of a smooth or microclumped wind. For the former (xic=1 and
τcl=τsm),

Ra = e−τsm, (A.9)

and for the latter (τcl << 1) some simple algebra yields,

Ra ≈ 1− τsm, (A.10)

where we recall that this last result is expected because res-
onance line formation depends linearly on the density (see
Sect. 2.1).

Recombination lines. The absorption part of recombination
lines such as Hα may also be approximated as described above.
Furthermore, since the source function in these lines can bepre-
scribed (see Sect. 2), we can make a similar approximation for
the re-emission part

Rem = Sξ(1− e−τcl ) + S(1− ξ)(1− e−τic), (A.11)

whereS is the source function at the resonance point in units of
the continuum intensity. The total line profileRx is then given by
Rx = Ra,x + Rem,x. It is important to realize that the re-emission
profile is much more influenced by non-radial photons than is the
absorption part profile. Thus we replace the radial approximation
for ξ with a corresponding line-of-sight expression,ξ → ξz, by
substitutingLr → Lz andh→ h/µ, where curvature effects for a
clump have been neglected, and now obtain the final line profiles
by performing the standard integration over a pre-specifiednum-
ber of P-rays. The optical depths from the previous paragraph
must be replaced by corresponding ones for recombination lines
(see Sect. 3.2), where of course care must be taken for the now
angular dependentτ.

Also Eq. A.11 has the proper behavior for smooth as well
as for microclumped winds. In the same manner as for the reso-
nance lines, we obtain for the former

Rem = S(1− e−τsm), (A.12)

and for the latter

Rem ≈ Sτsmfcl, (A.13)

which is expected because recombination line formation de-
pends on the square of the density (see Sect. 2.1).

Comparisons between the analytic approximations outlined
here and numerical simulations using our stochastic wind mod-
els and detailed radiative transfer codes are given in the main
paper.
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