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ABSTRACT

Aims. To provide a fast and easy-to-use formalism for treating thereduction in effective opacity associated with optically thick clumps
in an accelerating two-component medium.
Methods. We develop and benchmark effective-opacity laws for continuum and line radiative transfer that bridge the limits of optically
thin and thick clumps. We then use this formalism to i) designa simple method for modeling and analyzing UV wind resonancelines
in hot, massive stars, and ii) derive simple correction factors to the line force driving the outflows of such stars.
Results. Using a vorosity-modified Sobolev with exact integration (vmSEI) method, we show that, for a given ionization factor, UV
resonance doublets may be used to analytically predict the upward corrections in empirically inferred mass-loss ratesassociated with
porosity in velocity space (a.k.a. velocity-porosity, or vorosity). However, we also show the presence of a solution degeneracy: in a
two-component clumped wind with given inter-clump medium density, there arealwaystwo different solutions producing the same
synthetic doublet profile. We demonstrate this by application to SiIV and PV in B and O supergiants and derive, for an inter-clump
density set to 1 % of the mean density,upward empiricalmass-loss corrections of typically factors of either∼ 5 or∼ 50, depending on
which of the two solutions is chosen. Overall, our results indicate that this solution dichotomy severely limits the useof UV resonance
lines as direct mass-loss indicators in current diagnosticmodels of clumped hot stellar winds.
We next apply the effective line-opacity formalism to the standard CAK theory ofline-driven winds. A simple vorosity correction
factor to the CAK line force is derived, which for normalizedvelocityfilling factor fvel simply scales asf αvel, whereα is the slope
of the CAK line-strength distribution function. By analytic and numerical hydrodynamics calculations, we further show that in cases
where vorosity is important at the critical point setting the mass-loss rate, the reduced line force leads to alower theoreticalmass
loss, by simply a factorfvel. On the other hand, if vorosity is important only above this critical point, the predicted mass loss is not
affected, but the wind terminal speed is reduced, by a factor scaling as f α/(2−2α)

vel . This shows that porosity in velocity space can have a
significant impact not only on the diagnostics, but also on the dynamics and theory of radiatively driven winds.
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1. Introduction

It has been known for several years now, that the powerful line-
radiation driven winds of hot, massive stars are inhomogeneous
and highly structured on small spatial scales (see overviews in
Puls et al. 2008; Hamann et al. 2008; Sundqvist et al. 2012b).
Such wind clumping arises naturally from the strong line-
deshadowing instability – the LDI, a fundamental property of
line driving (e.g., Owocki & Rybicki 1984, 1985) – and affects
both theoretical models and the diagnostic radiative transfer
tools needed to derive stellar and wind properties from observed
spectra of massive stars. For example, neglect of clumping typi-
cally leads to observationally inferred mass-loss rates that differ
by more than an order of magnitude for the same star, depending
on which spectral diagnostic is used to estimate this mass loss
(Fullerton et al. 2006).

Today’s diagnostic wind models normally account for inho-
mogeneities by simply assuming a one-component medium con-
sisting of optically thin clumps of a certain volume filling fac-
tor (e.g., Hillier 1991; Puls et al. 2006). However, if individual
clumps become optically thick, this leads to an additional leak-

age of light – not accounted for in the filling factor approach
– through porous channels in between the clumps. Such poros-
ity can occur either in the second and third spatial dimensions,
or for spectral lines invelocity-spacedue to Doppler shifts in
the rapidly accelerating wind (velocity-porosity, or “vorosity”,
Owocki 2008). In Papers I and II of this series (Sundqvist et al.
2010, 2011), we developed detailed multi-dimensional wind
models to study the effects of vorosity on the formation of, in
particular, the strong UV “P-Cygni” lines that are the classi-
cal trademarks of massive star winds. A key general result from
these studies is that clumps indeed easily become opticallythick
in such UV lines, and that the associated additional leakageof
photons leads to weaker line profiles than predicted by smooth
or volume filling factor models (see also Oskinova et al. 2007;
Hillier 2008;Šurlan et al. 2012, 2013). But constructing realistic
ab-initio radiation-hydrodynamic wind simulations that account
naturally for spatial and velocity-field porosity is an extremely
challenging and time-consuming task. Thus there is also a big
need now for developing simplified, paramterized models that
can be more routinely applied to diagnostic work on large sam-
ples of hot stars with winds, as well as be used to investigategen-
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eral effects on the theoretical predictions and dynamics of such
winds. This paper develops such a simplified formalism, using
effective quantities to simulate the reduction in opacity associ-
ated with optically thick clumps. In contrast to our earliermodels
(Sundqvist et al. 2010, 2011), this “effective opacity”approach
has the great advantage that it can be readily implemented into
the already existing NLTE (= non-local thermodynamic equilib-
rium) atmospheric models normally used to analyze observed
spectra of hot stars with winds.

Sect. 2 develops and benchmarks effective-opacity laws to
treat both continuum and line radiative transfer in accelerating,
stochastic two-component media of (almost) arbitrary density
contrasts. Sect. 3 then applies this effective opacity to line forma-
tion in hot stellar winds, investigating the influence of velocity-
porosity on UV line diagnostics. Sect. 4 uses the same formalism
to derive simple correction factors of the effects of such vorosity
on the line force driving the outflows of hot, massive stars, pro-
viding simple scaling relations for the effects on the global wind
parameters mass-loss rate and terminal speed. Finally, Sect.5
summarizes main results and gives our conclusions.

2. Basic effective-opacity formalism

Although the primary aim of this paper is to develop a gen-
eral and useful formalism forline opacity in accelerating,
clumped two-component media, it is instructive to first con-
sider the conceptually simpler case ofcontinuumopacity. Below
we present full effective-opacity bridging laws for such con-
tinuum absorption in a two-component medium with arbi-
trary density-contrast. This extends our previously developed
”porosity models” (Owocki et al. 2004; Owocki & Cohen 2006;
Sundqvist et al. 2012a), which have assumed one of the compo-
nents to be effectively void, and also provides physical insights
important for our following studies of line absorption.

2.1. Continuum absorption: A void interclump medium

Let us first very briefly review the case of an ensemble of clumps
embedded in an effectively void ”inter-clump medium”. For
a given clump optical depthτcl and meanfree path between
clumps (a.k.a. the porosity length)h, the “effective” opacity (per
unit length) is (e.g., Feldmeier et al. 2003; Owocki et al. 2004)

χeff =
1− e−τcl

h
. (1)

Here τcl = 〈χ〉h, with mean opacity〈χ〉 and porosity length
h ≡ lcl/ fvol, with lcl the characteristic length scale of clumps and
fvol the clump volume filling factor. Integrating the clump inter-
action probabilityP = 1− e−τcl over an exponential distribution
in optical depths (or equivalently overlcl, assuming a constant
clump opacity),

f (τ) =
e−τ/τ0

τ0
, (2)

with

〈τ〉 =
∫ ∞

0
τ f (τ)dτ = τ0, (3)

then gives the “inverse” bridging law for the effective opacity
(Sundqvist et al. 2012a),

χeff

〈χ〉
=

1
1+ τ0

=
1

1+ τcl
. (4)

In this equation,〈χ〉 is the mean opacity calculated from a
smooth model, or a structured model assuming optically thin
clumps, andτ0 = τcl = 〈χ〉h now represents themean
clump optical depth. In this paper, we assume thisτcl is sta-
tistically isotropic. This results in an isotropic effective opac-
ity (Sundqvist et al. 2012a), as favored by recent empirical
investigations of X-ray line profile shapes in O-star winds
(Leutenegger et al. 2013). Note that the porosity-associated re-
duction in effective opacity in this clump+void continuum model
thus depends only on porosity lengthh.

2.2. Continuum absorption: Full bridging law for
two-component media

Eqn. 4 above neglects absorption in the inter-clump (ic)
medium. This is most probably a good assumption for con-
tinuum radiative transfer in stellar winds with clumping prop-
erties set by the LDI, but may be questionable for situa-
tions in which deep-seated atmospheric clumping might be ex-
pected, for example envelope inflation of stars that approach the
Eddington limit (Gräfener et al. 2012; Gräfener & Vink 2013),
or porosity-mediated continuum-driven mass loss in such stars
(Owocki et al. 2004). We therefore next generalize the poros-
ity model above to consider also the case where both com-
ponents may contribute to the total opacity. For mean density
〈ρ〉 = fvolρcl + (1− fvol)ρic, we approximate the opacity in such
general two-component media with (see Appendix A)

χeff

〈χ〉
=

1+ τcl fic
1+ τcl

, (5)

wherefic ≡ ρic/〈ρ〉 denotes the contrast between inter-clump and
mean density. Because of mass conservation, the clump optical
depth for mass absorption coefficientκ and mean opacity〈χ〉 =
κ〈ρ〉 now formally is

τcl = ρclκlcl = 〈χ〉h
(

1− (1− fvol) fic
)

, (6)

however in most cases of interest the correction factor 1− (1 −
fvol) fic will be near unity, so that〈ρ〉 ≈ ρcl fvol andτcl ≈ 〈χ〉h
still are good approximations. We further note in this context
that for processes with a density-independent mass absorption
coefficient κ (like bound-free absorption of X-rays), the mean
opacity 〈χ〉 = κ〈ρ〉 is not directly affected by the presence of
optically thin clumps, whereas for processes withκ ∝ ρ (like
thermal free-free emission), this mean opacity is enhancedby a
clumping factorfcl ≡ 〈ρ2〉/〈ρ〉2 ≈ 1/ fvol (where the last approx-
imation assumes a negligible contribution from the inter-clump
medium) as compared to a homogeneous model.

To verify the bridging-law ansatz eqn. 5, we compare to
an exactexpression (derived analytically by Pomraning 1991,
see also Levermore et al. 1986) for the emergent intensity in
stochastic two-component media with spatially constant opac-
ities and with length scales of the individual components dis-
tributed exponentially1, as in our eqn. 2. Appendix A gives the
formidable expression for this emergent intensity, along with a
translation of the parameters used by Pomraning et al. to those
used in this paper. Extensive testing comparing the analytic re-
sult with the simple bridging law eqn. 5 shows excellent agree-
ment for a broad range of conditions, as illustrated by the opacity
curves as functions of clump optical depth in the left hand panel
of Fig. 1 (in which we also plot comparisons using a 3D-box

1 Typically, such media are referred to asMarkovian binary mixtures,
see Pomraning (1991).
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Fig. 1. Ratios of effective to mean opacity/optical depth for continuum absorption (left) and line absorption (middle, right), as
functions of clump optical depth and for the parameters given in the panels and inter-clump density parametersfic = 0, 0.01, and
0.2 (where thefic = 0.2 curve is the upper one in each panel). Note that the clump velocity span isδ3 = δ3sm in the middle panel and
δ3 = 5δ3sm in the right one. Red dashed lines show the effective opacity/optical depth laws indicated in the figure, blue triangles show
results from the 3D-box experiments described in the text, and the black solid lines in the left panel show the analytic expression
given in Appendix A.

model, as described in the following subsection). We note inpar-
ticular how previously known cases all are correctly reproduced
by the new bridging law:

– optically thin clumps:τcl << 1 → χeff = 〈χ〉
– two equal components:fic = 1 → χeff = 〈χ〉
– a negligible inter-clump medium density:

fic = 0→ χeff = 〈χ〉/(1+ τcl) (eqn. 4).

Another interesting limit to examine is that of optically thick
clumps and a tenuous but non-negligible inter-clump medium. In
this case the product-term in eqn 5 decouples to yieldχeff/〈χ〉 ≈
1/τcl + fic. This simple expression illustrates explicitly how in
the case of such black clumps the inter-clump medium may be
viewed as gradually filling in the porous channels between the
clumps. In contrast to the clump+void model, in which the opac-
ity itself saturates atχeff = 1/h (and thus becomes indepen-
dent of the mean opacity), in this general two-component model
the ratio between the effective and mean opacities saturates, at
χeff/〈χ〉 = fic (see also Owocki et al. 2004). This means that,
independent of the size ofh, the medium can always become
optically thick provided the mean opacity is high enough. Fig. 1
demonstrates that the opacity-ratio curve assuming a larger den-
sity contrastfic = 0.01 is almost indistinguishable from that as-
suming a void inter-clump medium, whereas thefic = 0.2 curve
indeed approaches thisχeff/〈χ〉 ≈ fic limit for very optically
thick clumps.

2.3. Line absorption in rapidly accelerating media

Due to the Doppler effect, the formation of spectral lines in
a clumped, accelerating medium differs conceptually from the
continuum case studied above. Namely, for example in the su-
personic, rapidly accelerating outflows of hot stars, each line
photon can only interact with the wind material within a very
narrow spatial range, set by the Sobolev lengthLSob = 3th/3

′ for
thermal speed3th and velocity gradient3′. The small extent of
this resonance zone makes it possible for line photons to leak
through the wind via porous channels in velocity space, without
ever interacting with the clumps. Hence we dub such leakage of
light in velocity spacevelocity-porosity, or vorosity.

The clump optical depth in a spectral line. The difference be-
tween spatial porosity and velocity-porosity becomes particu-
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Fig. 2. Sketch of the vorosity effect in a model with clump
column massδm, clump velocity spanδ3, and mean velocity
separation between clumps∆3. In the case of an inter-clump
medium with negligible mass, all line photons with resonance
frequencies that do not coincide with any velocitiesδ3 covered
by the clumps will escape the wind without ever interacting
with it, through the porous channels in velocity space set by
fvor ≡ δ3/∆3. Note that in the special case of the radially com-
pressed model discussed in text,δm = δmsm, whereδmsm is the
column mass contained within∆3 in the initially smooth wind,
which has here been swept up in the clump.

larly evident through the calculation ofτcl. As for the continuum
case, we in this paper take this line clump optical depth to be
isotropic. Assuming then that the velocity spanδ3 of individual
clumps is greater than a few thermal widths (3th ≈5-10 km/s for
a metal ion in a hot star wind), the clump optical depth of a spec-
tral line, normalized in terms of the radial Sobolev opticaldepth
τSob in a smooth (sm) model (or one with optically thin clumps,
if κ ∼ ρ) can be written as

τcl

τSob
=
δm
δmsm

∣

∣

∣

∣

∣

δ3sm

δ3

∣

∣

∣

∣

∣

, (7)

where theδm’s and δ3’s are the column masses and velocity
spans of the clump and and the smooth wind, respectively. Note
here thatδmsm andδ3sm as defined in eqn. 7 must be computed
from the same length scale, but that the ratioδ3sm/δmsm (and
thus the ratioτcl/τSob) is independent of the choice of this scale.
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In a first general model, we nowchooseδ3sm to be the ve-
locity span a clumpwould haveif it followed the smooth wind
velocity law (so thatδm/δmsm = ρcllcl/(〈ρ〉lcl) = ρcl/〈ρ〉), eqn. 7
can be further expressed as (see also Sundqvist et al. 2010, 2011)

τcl

τSob
=

1
fvol |δ3/δ3sm|

(

1−(1− fvol) fic
)

≈ 1
fvol |δ3/δ3sm|

=
1

fvor
, (8)

where the second expression here again neglects the small cor-
rection factor due to the inter-clump medium, and the third ex-
pression introduces the velocity clumping factorfvor. This ve-
locity clumping factor is defined as the ratio of the velocityspan
of clumps to their mean velocity separation∆3 (see Fig. 2, and
also Owocki 2008),

fvor ≡
∣

∣

∣

∣

∣

δ3

∆3

∣

∣

∣

∣

∣

, (9)

which is obtained in eqn. 8 by assuming clumps that, on average,
have their central positions distributed in velocity-space accord-
ing to the smooth wind expansion rate. In this case∆3 ≈ 3′smh,
using the definition of the porosity lengthh ≡ lcl/ fvol as themean
free path between clumps, which then results infvol |δ3/δ3sm| =
(lcl/h)|δ3/(3′smlcl)| = |δ3/∆3| = fvor.

While eqn. 8 is a quite general expression forτcl, a concep-
tually better understanding of howfvor determines the velocity-
porosity effect can be obtained by considering a simple model
of radially compressed clumps consisting of swept up material
from an initially smooth wind (similar to predictions of present-
day LDI simulations). For this model then (see sketch in Fig.2),
the initially smooth wind contained within∆3will have a column
mass∆m= δmsm = δm, so that

τcl

τSob
=
δm
δmsm

∣

∣

∣

∣

∣

δ3sm

δ3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∆3

δ3

∣

∣

∣

∣

∣

=
1

fvor
. (10)

Moreover, we can of course also in this model choose to instead
define the smooth wind quantities on the clump length scale, so
that in this caseδ3 = (δ3/δ3sm)3′smlcl and, since the mean free
path between clumps in Fig. 2 still ish = ∆3/3′sm, the velocity
clumping factorfvor = fvol |δ3/δ3sm|. This shows that this one-
dimensional radially compressed model is fully consistentwith
the more general eqn. 8. Note also thatfvor as defined here is an
un-normalizedquantity, which only for the case that the velocity
field inside the clumps follows the smooth wind velocity law
becomes a normalized quantity.

In summary, the key point is that the final expression for the
clump optical depth dependsonlyon this velocity clumping fac-
tor (and a correction factor for the mass contained in the inter-
clump medium).

Effective opacity bridging law for spectral lines. For line clump
optical depthτcl = τSob/ fvor × (1− fic(1− fvol)) ≈ τSob/ fvor, we
now (in analogy with the continuum case) suggest to write the
vorosity-modified effective line opacity as

χeff

〈χ〉
=

1+ τcl fic
1+ τcl

, (11)

where the correction factorτcl fic in the nominator now essen-
tially assumes that the inter-clump medium, on average, follows
the smooth wind expansion rate, and so fills in all holes in ve-
locity space not covered by the dense clumps. This simple treat-
ment of the inter-clump medium allows us to account for the fact
that UV line profiles in dense O-star winds often exhibit zero

residual flux (in particular at high velocities), which is direct ob-
servational evidence that at least some material must be present
at a wide range of wind velocities (e.g., Sundqvist et al. 2010).
Another inherent assumption in eqn. 11, retained throughout this
paper, is that the ionization states of the two components ofthe
medium can be approximated with one “effective” state (for a
first attempt to build a two-component model that relaxes this,
see Zsargó et al. 2008).

Eqn. 11, like the continuum opacity bridging law, gives the
expected results in previously studied limits, namely:

– optically thin clumps:τcl ≪ 1 → χeff = 〈χ〉
– two equal components:fic = 1 → χeff = 〈χ〉
– optically thick clumps and a negligible inter-clump medium:

fic = 0 τcl ≫ 1 → τeff = χeff/3
′
sm = fvor,

where the last limit is valid for rays in the radial directionand
illustrates how we perform the final radiative transfer calcula-
tions on a background smooth model, which is the simplify-
ing key point in developing this kind of effective-opacity for-
malisms. The limit shows further how in the absence of an in-
filling inter-clump medium, the effective line optical depth in
the radial direction saturates at a value given simply byfvor,
which means that the escape fraction of line photons in this case
is e− fvor. Physically, this is analogous to the escape fraction of
light in traditional radiative transfer models, but with the spatial
holes between randomly distributed atomic absorbers replaced
here by velocity holes between clumps that are randomly dis-
tributed about their mean in velocity space (see also discussion
in Sundqvist et al. 2011, their Appendix A). Sincefvor = 1 still
gives an escape fractione−1, this property shows the importance
of defining fvor as anun-normalizedquantity (not bound be-
tween 0 and 1) in such effective-opacity models, so that optically
thick conditions withfvor → ∞ can be reached.

It is, finally, important to realize that although the proposed
continuum and line effective-opacity laws have the same prin-
cipal forms, the conceptual difference between spatial porosity
and velocity-porosity is reflected in the calculation of theclump
optical depth, which for continuum opacity depends on porosity
lengthh, and for line opacity on velocity clumping factorfvor.

Benchmarking with 3D-box experiments. Before considering
the specific case of line formation in rapidly accelerating stel-
lar winds, we first test the general validity of the new bridging
law. For this purpose, we randomly distribute clumps in a 3D-
box according to (constant) pre-specified volume filling factors,
clump length scales, and opacities for both clumps and the inter-
clump medium. For each such randomization, a ray is fired from
the bottom of the box and the emergent intensityI computed at
the top. This procedure is then repeated until statistical errors in
the averaged intensities are sufficiently small, resulting in a fi-
nal effective optical depthτeff = − ln〈I〉. For clump length scales
distributed exponentially according to eqn. 2, we have verified
that for continuum opacity this set-up gives perfect agreement
with the analytic expression provided in Appendix A (and thus
also with the continuum effective-opacity bridging law), as illus-
trated by the blue triangles in the left hand panel of Fig. 1.

To study line formation, we add to the continuum set-up a
simple velocity field proportional to heightZ in the box, and
evaluate the Sobolev optical depth at the points where a given
line-frequency has been Doppler shifted into resonance (which
can be more than one due to the random distribution of clumps).
We assign an inter-clump optical depthτic only to rays that do
not intersect any clump. This effectively assumes an inter-clump
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medium densityρic/〈ρ〉 <∼ 0.2, so that clumps still dominate
the total absorption whenever they are intersected. To facilitate
comparisons, we re-formulate eqn. 11 in terms of the vorosity-
modified effective optical depth2

τeff

〈τ〉
≈ τeff
τSob

=
1+ τcl fic
1+ τcl

. (12)

The middle and right hand panels of Fig. 1 compare effective
optical depth curves of the line-opacity bridging law to the3D
box simulations, and show an overall good agreement. Whereas
the middle panel assumes a velocity span of clumpsδ3 that fol-
lows the underlying mean expansionδ3sm, the right panel shows
that the bridging law is valid also for velocity spans that deviate
from this expansion rate, here usingδ3 = 5δ3sm; since the opac-
ity curves in the two panels are plotted against the clump optical
depth∝ τSob/ fvor, they automatically adjust for the different as-
sumed velocity filling factors and so appear similar in the figure.
As in the continuum case, the figure shows that the effective op-
tical depth approaches〈τeff〉/τSob ≈ fic for very optically thick
clumps. In summary, these 3D box experiments thus provide
good general support for the proposed effective-opacity bridg-
ing law to treat line opacity in a rapidly accelerating, stochastic
two-component medium.

Backed up by these results, we next consider two applica-
tions of the effective-opacity bridging law developed in this sec-
tion, namely: i) a very simple method for computing and analyz-
ing UV resonance lines from the winds of hot, massive stars, and
ii) an equally simple method for estimating the vorosity effect on
the driving line force of such winds.

3. Application I: Line diagnostics

The standard Sobolev with exact integration (SEI, Lamers etal.
1987) method for computing UV wind resonance lines uses the
Sobolev approximation to first obtain the source function, af-
ter which the formal integral of radiative transfer is solved ex-
actly to compute the emergent flux spectrum. This section first
develops a simple vorosity-modified SEI method (vmSEI), by
using the effective-opacity bridging law introduced above, and
then demonstrates how it may be analytically applied to obtain
vorosity corrections for empirically inferred mass-loss rates.

3.1. A vorosity-modified SEI method

The opacity of a trace element in a UV wind resonance line can,
for mass-loss ratėM and wind terminal speed3∞, ion fractionq
of the considered elementi, and abundance with respect to hy-
drogenαi = ni/nH, be conveniently expressed as a dimensionless
opacity-parameter (Hamann 1981)

κ0 =
Ṁq

R⋆32∞

πe2/mec
4πmH

αi

1+ 4YHe
fluλ0, (13)

where it has been assumed that the entire ion population resides
in the ground state (normally a safe assumption for the linescon-
sidered in this paper, e.g. Puls et al. 2008). In eqn. 13,R⋆ is the

2 The mean optical depth in the random-box experiment can be com-
puted from the specific probabilities that a clump or the inter-clump
medium is hit. After integrating over an exponential distribution in
clump length scales, this results in〈τ〉 = fvor/(1+ fvor)τcl+1/(1+ fvor)τic.
Accounting additionally for the fact that more than one clump can be hit
due to overlaps in velocity space, we approximate〈τ〉 ≈ fvorτcl + 1/(1+
fvor)τic = τSob(1+ fic/(1+ fvor)) ≈ τSob for the fic <∼ 0.2 considered here.

stellar radius,YHe the helium number abundance,flu the oscil-
lator strength of the transition, andλ0 the rest wavelength. With
this parametrization, the radial Sobolev optical depth in asmooth
wind becomes

τSob(r) =
κ0

r2wdw/dr
, (14)

wherer is measured in units ofR⋆ andw = 3/3∞. To account for
the effects of optically thick clumping, we now simply replace
the opacity parameterκ0 with the radius dependent (but angle
independent) effective opacity

κeff(r) =

(

1+ τcl fic
1+ τcl

)

κ0. (15)

For pre-specified velocity clumping factorfvor and inter-clump
medium density parameterfic, implementing eqn. 15 in a SEI
code thus reduces to evaluating the clump optical depthτcl(r) =
τSob/ fvor × (1 − (1 − fvol) fic) ≈ τSob/ fvor at each radial grid
point. Using the obtained effective opacity the source functions
are then calculated from the angle dependent effective Sobolev
optical depthτSob

eff (r, µ) = κeff/(r2wQ), with Q ≡ µ2dw/dr + (1−
µ2)w/r for directional cosineµ, and the formal integral finally
solved following the standard SEI approach.

For a modestly overlapping resonance doublet and a stan-
dard wind velocity law3 w = (1− 0.99/r)β, here withβ = 1, the
two leftmost panels of Fig. 3 compare line profiles computed us-
ing this vmSEI approach with profiles computed using the stan-
dard SEI model, for intermediate and strong lines withκ0 = 1
and 100. The figure shows clearly the basic velocity-porosity ef-
fect, namely weaker line-profiles for a given line-strengthpa-
rameterκ0, consistent with all previous work on the effects of
optically thick clumps on UV wind lines (Oskinova et al. 2007;
Sundqvist et al. 2010, 2011;Šurlan et al. 2012, 2013).

Moreover, for the models with void inter-clump medium the
absorption in the lines saturates at a level above zero, at∼ e− fvor

(as discussed in Sect. 2.3), whereas in the case offic = 0.1
the strongκ0 = 100 line recovers the absorption blackness of
the smooth model. Another important result of vorosity evi-
dent from the figure, is that the relative strength between the
blue and red components can differ significantly from the ex-
pected factor of 2 in optical depth (stemming from the oscilla-
tor strength ratio, see also Prinja & Massa 2010; Sundqvist et al.
2011; Prinja & Massa 2013); this last property is examined in
detail in Sect. 3.3.

3.2. Comparison to Monte-Carlo simulations

We next compare this new vmSEI model to profiles computed
using an extension (to treat doublets) of the method developed
by Sundqvist et al. (2010). This creates a multi-dimensional
stochastic wind by taking 1-D snapshots and phasing them ran-
domly in patches of a parameterized angular size, here 3 de-
grees, and then computes synthetic spectra via a Monte-Carlo
radiative transfer technique. These stochastic wind models are
created such that they preserve the basic properties of LDI
simulations, while still allowing for different quantitative wind
structure properties by the adjustment of a number of input
parameters , as given by Table 1. In the test cases displayed
in Fig. 3, we have assumed a “velocity-stretch” porosity law
(e.g., Sundqvist et al. 2012a)h/R⋆ = w, a clump onset radius
rcl = 1.1R⋆, and shock jump velocity3j = 0.1w, where the shock

3 0.99 corresponds to3min = 0.013∞ for aβ = 1 velocity field.
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Fig. 3.Synthetic UV line profiles in units of normalized frequencyXν = (ν/ν0 − 1)c/3∞, and for velocity separation3sep/3∞ = 1.35
between the line-centers of the two doublet components (which corresponds to the separation of the PV resonance doubletin a wind
with 3∞ = 2000km/s). For the line-strengths and clumping parameters indicated in the panels and described in table 1 and in text,
the black lines show profiles computed using the vmSEI methoddeveloped here, the red dashed lines (two leftmost panels) show
results from the standard SEI method (assuming a smooth wind), and the blue dashed lines (two rightmost panels) show results from
the Monte-Carlo method by Sundqvist et al. (2010). Note thatthe velocity clumping factors indicated in the panels are based on the
original definition eqn. 9 rather than the modified eqn. 16.

Table 1. Input parameters in the Monte-Carlo, multi-dimensional, stochastic wind simulations by Sundqvist et al. (2010, 2011).

Parameter Clump volume Clump velocity Porosity Inter-clump Shock jump
filling factor span length density parameter velocity

Symbol fvol |δ3/δ3sm| h fic 3j

jump velocity in the vmSEI model is simulated using the same
“turbulent” velocity parameter3turb as in the traditional SEI ap-
proach. The rightmost two panels of Fig. 3 show an overall good
agreement between the two methods, providing general support
for the usage of the much simpler effective-opacity method for
the quantitative analysis of hot stellar wind spectra.

One feature in the stochastic models not captured by the vm-
SEI approach is the redward excess emission in strong lines.
This excess is caused by photon trapping within the resonance
zones and by increased back-scattering due to multiple such
resonance zones (Lucy 1984; Puls et al. 1993; Sundqvist et al.
2010), which allows light to escape primarily when emitted on
the red side of the line profile; such multi-scattering effects can-
not be simulated within the simple effective opacity method de-
veloped in this paper, but does not affect theabsorptionline
strength that is the primary focus here (and in general when us-
ing unsaturated resonance lines as diagnostic tools). Moreover,
in particular theκ0 = 100 line with a void inter-clump medium
shows a prominent absorption-dip towards the blue edge of the
profile (see also Sundqvist et al. 2010;Šurlan et al. 2012). In the
stochastic wind models, overlapping clumps in velocity space
and the finite extent of the line profile lead to an increase in
fvor at high velocities, and so results in more efficient absorp-
tion in the outermost wind than in the accelerating parts of it.
To account for this absorption effect in the vmSEI model, we
re-write the velocity clumping factor as (Sundqvist et al. 2011,
their Appendix A)

fvor ≈
∣

∣

∣

∣

∣

δ3 + 3th

∆3

∣

∣

∣

∣

∣

= fvol

∣

∣

∣

∣

∣

δ3

δ3sm

∣

∣

∣

∣

∣

+
LSob

h
. (16)

This equation shows that, for a given inter-clump density, the
other vorosity-related input parameters in the stochasticwind
models (see Table 1) can be combined into one, the velocity
clumping factor fvor. It also demonstrates how the absorption-
dips in the stochastic models result from the very large Sobolev
lengths in the outermost wind, which give the radiative trans-
fer a pseudo-continuum character that reduces the velocity-
porosity effect (which requires rapid acceleration). In this re-
spect, we note also that the Monte-Carlo calculations performed
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τ b
/T

b
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τ b
/T

b

Fig. 4. vmSEI optical depth correction factorsτb/Tb as func-
tion of fiducial resonance doublet optical depth ratioTb/Tr. The
black solid and dotted lines are computed using eqns. 20 and 24,
and the blue dashed and red dashed-dotted lines show the two
solution branches from solving eqn.22 for inter-clump density
parametersfic = 0.01 and 0.1.

by Sundqvist et al. (2011) directly on LDI simulations confirm
that the dip is present also in such hydrodynamical wind models
calculated from first principles.

It is important to realize here, however, that usingfvor as an
empirical input-parameter when calculating the effective opac-
ity, or as a fit parameter when modeling observed line profiles,
automaticallyaccounts for this outer-wind absorption effect (if
present).

We next demonstrate how, indeed, unsaturated resonance
doublets can be used to directly diagnose the radial behavior of
the velocity filling factor, as well as to derive vorosity correc-
tions for empirically inferred mass-loss rates.

3.3. An analytic method for vorosity mass-loss corrections

As first pointed out in the context of hot star winds by
Massa et al. (2008), in a homogeneous (or optically thin
clumped) wind the optical depths of the individual components



J.O. Sundqvist et al.: Mass loss from inhomogeneous hot starwinds 7

1.0 1.2 1.4 1.6 1.8 2.0
Tb/Tr

1

10

100

<
τ b

/T
b>

1.0 1.2 1.4 1.6 1.8 2.0
Tb/Tr

1

10

100

<
τ b

/T
b>

Fig. 5.The two solution branches for vmSEI mass loss times ion
correction factors for the B supergiant sample of Prinja & Massa
(2010) and inter-clump density parameterfic = 0.01 (see text).

of a resonance doublet must be set by the ratio of their oscillator
strengths. On the other hand, in a wind consisting of some mix-
ture of thin and thick clumps (and a potentially non-void inter-
clump medium), this is no longer necessarily the case. By al-
lowing the oscillator strength ratio in the standard SEI model to
be a free parameter (or alternatively examining only completely
separated doublets, see Prinja & Massa 2010, 2013), we can em-
pirically infer “fiducial” Sobolev optical depthsTb andTr for the
blue and red components. We show below how these fiducial op-
tical depths derived from asmoothwind model then can be used
to analytically obtainfvor and correction factors to the product
of mass-loss rate and ion fraction.

A void inter-clump medium. Neglecting first absorption within
a tenuous inter-clump medium, we demand thatTb and Tr be
equal to the vorosity-modified effective optical depths,

Tb = τ
b
eff =

τb

1+ τb/ fvor
, (17)

Tr = τ
r
eff =

τb/2
1+ τb/(2 fvor)

, (18)

where for simplicity we have denoted the Sobolev optical depth
by τ, and, of course, in the physics-based vorosity model the
real oscillator strength ratiofb/ fr must be used; to allow for an
analytic investigation, we here assumefb/ fr = 2, which is true
for most UV resonance lines of interest (for example PV, CIV,
SiIV). For givenTr and Tb then, we thus have two equations
and two unknowns and can solve immediately for the velocity
clumping factor and the vorosity correction in optical depth,

fvor = Tb
1

2− Tb/Tr
, (19)

τb

Tb
=

(Ṁq)vmSEI

(Ṁq)SEI
=

1
Tb/Tr − 1

. (20)

All quantities in these equations arelocal, i.e., by scanning the
observed line profile one findsTb andTr as a function of radius
and so alsofvor(r) and the optical depth correction (τb/Tb)(r).

Analysis of the remarkably simple eqns. 19 and 20 shows
that in the physical limitTb/Tr → 2, the vorosity mass-loss
(times ion fraction) correction goes to unity andfvor → ∞; this is
expected since in this case the smooth wind conditions should be
recovered, and in this clump+void model the only way to achieve

this is by making all clumps optically thin, i.e.τcl = τ/ fvor → 0,
which requiresfvor → ∞. In the opposite limitTb/Tr → 1, the
mass-loss correction approaches∞ and fvor → Tb; such huge
mass-loss correction for this case is also as expected, since we
showed in Sect. 2.3 that in this limitτeff = fvor, and the profile-
strength then becomesindependentof mass loss.

We note also that while the velocity clumping factor depends
on the actual empirically inferred profile strengthTb, the quan-
tity τb/Tb dependsonly on the ratioTb/Tr. This very simple
property makes it particularly appealing to consider the behav-
ior of such vorosity corrections for mass loss, which we indeed
focus on in the analysis below.

Adding an absorbing inter-clump medium. Adding a non-void
inter-clump medium that contributes to the total opacity gives
for the equations to be solved,

Tb = τ
b
eff =

τb + (τb)2 fic/ fvor

1+ τb/ fvor
, (21)

Tr = τ
r
eff =

τb/2+ (τb)2 fic/(4 fvor)
1+ τb/(2 fvor)

. (22)

For given fic this is now a quadratic system with two distinct
solution branches. It is readily solved by any mathematicalsoft-
ware package, but the solutions are too complex to be given
explicitly here. For a givenfic, real-valued roots exist above a
givenTb/Tr threshold, as illustrated by Fig. 4. The blue dashed
curves in Fig. 4 further show that for physically reasonableval-
ues fic <∼ 0.1, the first solution branch is characterized by simply
a small correction factor to the previous expression (eqn. 20)
neglectingfic. But as also seen from the figure (the red dashed-
dotted curves), the other solution branch represents fundamen-
tally different values of mass-loss corrections. We can under-
stand this by considering the limiting case of optically thick
clumps and a tenuous inter-clump medium, for which the bridg-
ing law above can be approximated withτeff ≈ fvor+ ficτ, result-
ing in

fvor = Tr(2− Tb/Tr), (23)

τb

Tb
=

(Ṁq)vmSEI

(Ṁq)SEI
=

2(1− Tr/Tb)
fic

. (24)

This solution now offers a second possibility, in addition to
eqn. 20, to recover the smooth wind results asTb/Tr → 2,
namely by absorption within the inter-clump medium. The scal-
ing of mass-loss correction now is∼ 1/ fic, as illustrated by
the black dotted curves in Fig. 4. Physically, this scaling comes
from the fact that almost all absorption now takes place in the
inter-clump medium that fills the velocity-gaps between dense
clumps, which for typical valuesfic ≈ 0.01 can lead tovery
large mass-loss corrections.

The two branches thus represent real solution degeneracies
in the two-component clumped models, physically characterized
by absorption in either i) a mixture of optically thin and thick
clumps, or ii) optically thick clumps where the velocity gaps are
being filled in by the inter-clump medium. Calculations using
the vmSEI model confirm that line profiles from the two solution
branches are indeed identical. This essentially implies that when
using resonance doublets as diagnostic tools in a two-component
clumped wind, there will always be two possibilities to repro-
duce the same line-profile doublet, even if one invokes additional
constraints (either theoretical, or from alternative diagnostics)
about the inter-clump medium.
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3.4. Vorosity mass-loss correction of Si iv in B supergiants

Prinja & Massa (2010) derivedTb/Tr ratios (averaged within
0.23∞ ≤ 3 ≤ 0.83∞) for a sample of B-supergiants using the
well separated Siiv doublet. We here simply take their derived
ratios and apply the formalism developed above to obtain the
vorosity corrections for mass loss times ion fraction. Since indi-
vidual values forTb andTr are not provided by Prinja & Massa,
we do not derive corresponding values forfvor in this subsec-
tion. For the supersonic wind, LDI simulations typically predict
a very tenuous inter-clump medium, on orderfic ≈ 0.01, al-
lowing us to use the simplified eqns. 20 and 24 for the analysis
here (instead of the more complicated full solution to eqn. 22).
We further neglect stars in the sample with unphysically derived
values, i.e. those few stars withTb/Tr > 2 or Tb/Tr < 1. Fig. 5
shows our result, giving for the first solution branch a reasonable
average factor of∼ 5 for the upward mass loss correction factor.
The same analysis for the second solution branch gives an av-
erage scaling∼ 50/ f 0.01

ic , with the inter-clump medium density
parameter measured in units of our standard choice 0.01. The
results also reveal a large scatter about the mean, indicating that
the clumping properties of such B supergiants may vary quite
significantly from star to star.

3.5. Vorosity mass-loss corrections of PV in ζ Pup and λ Cep

Using observed spectra fromCopernicus and FUSE
(Fullerton et al. 2006), we next perform explicit line-profile
fitting of the unsaturated phosphorus V (PV) resonance doublet
at λλ1118,1128 in the prototypical Galactic O supergiantsζ
Pup, O4I(n)f, andλ Cep, O6I(n)fp. Usingβ = 0.7 (λ Cep)
and β = 0.5 (ζ Pup) velocity laws (Fullerton et al. 2006)4 ,
we first use a normal SEI model with line-strengthκ0 and the
oscillator strength ratiofb/ fr = Tb/Tr in 20 discrete velocity
bins of 0.053∞ each as free input parameters. After a simpleχ2

minimization, the obtained best-fit parameters are translated to
velocity clumping factors and new values for the line-strength
κ0 according to the method outlined in previous subsections.

Focusing first onζ Pup, the left panel in Fig. 6 shows profile
fits for the two solution branches of the vmSEI model (black
solid and blue dashed lines), and a comparison best-fit smooth-
wind model with a fixed oscillator strength ratio 2 (black dotted
line). We note from the figure that the vmSEI model fits still
are not perfect; indeed, a completely perfect fit to the observed
Copernicusline spectrum would in some velocity bins require
values of fb/ fr = Tb/Tr above 2 or below 1, translating then to
unphysical values of the velocity filling factor. Nonetheless, the
vmSEI model is a clear improvement over the standard smooth-
wind SEI fit. The black solid and blue dashed curves illustrate
the degenerate results from the two solution branches, hereagain
assumingfic = 0.01. Averaged over velocity bins within 0.33 ≤
3∞ ≤ 0.83, the first solution results in a mass-loss times PV ion
fraction correction factor forζ Pup of〈Ṁq〉vmSEI/〈Ṁq〉SEI = 6,
and anormalized velocity filling factor

fvel ≡
δ3

δ3 + ∆3
=

fvor

1+ fvor
, (25)

of 〈 fvel〉 = 0.65. The second solution displayed in the figure,
however, has amuchhigher〈Ṁq〉vmSEI/〈Ṁq〉SEI = 60, and cor-
respondingly a lower〈 fvel〉 = 0.2. As discussed in the pre-
vious subsection, the mass-loss corrections from such second

4 A velocity field exponentβ = 0.5 indeed seems somewhat low, but
assuming such steep wind acceleration actually provides the best fits to
the shapes of the PV lines inζ Pup.

branch solutions are further scalable infic, here according to
〈Ṁq〉vmSEI/〈Ṁq〉SEI ≈ 60/ f 0.01

ic .
Forλ Cep (the right panel in Fig. 6), the first solution branch

gives a very modest 20 % upward correction in mass loss times
ion fraction, accompanied by a high〈 fvel〉 = 0.81. Note fur-
ther that the best-fit here is almost indistinguishable fromthat
using the SEI smooth-wind model with a fixedfb/ fr = 2; this
is because the line-strength ratio of the PV blue to red compo-
nents inλ Cep corresponds almost to a factor of two in opti-
cal depth, which leaves essentially no room for velocity-porosity
on the first solution branch (see Fig. 4). On the other hand, us-
ing the second solution tree again results in equally good fits
(see the dashed blue line), and in large mass-loss corrections
〈Ṁq〉vmSEI/〈Ṁq〉SEI = 90/ f 0.01

ic , as well as a very low velocity
filling factor 〈 fvel〉 = 0.04 for the standard casefic = 0.01.

Physically, these results again reflect the fact that in a two-
component clumped stellar wind, there are two possibilities of
obtaining the same line profile: either by absorption in mod-
erately optically thick clumps (with clump optical depths re-
flected in the observed line-strength ratio), or by filling inthe
velocity-gaps between optically thick clumps (which shifts the
line-strength ratio – whichalways is unity for such optically
thick clumps – to that observed).

It is tempting here to argue that the first solution branch
is the physically more viable, since the inter-clump densities
fic ∼ 0.01 typical of LDI wind simulations otherwise would
lead to very large,∼ 100, upward corrections in mass loss. As
shown above, applying the first solution forζ Pup leads to a fac-
tor of ∼ 6 in upward correction of the smooth wind mass-loss
rate times PV ion fraction. Applying this to the PV rate obtained
by Fullerton et al. (2006) results in〈q〉PVṀ ≈ 2.6× 10−6 M⊙/yr,
which for 〈q〉PV ≈ 0.5 − 1, as predicted by present day NLTE
atmosphere codes likefastwind (Puls et al. 2005), gives a rate
in good agreement with other recent mass loss determinations
of this star (Najarro et al. 2011; Bouret et al. 2012;Šurlan et al.
2013; Hervé et al. 2013; Cohen et al. 2014).

But as discussed above, forλ Cep this solution leads to only
a modest 20 % upward correction, which (again using the re-
sults of Fullerton et al. 2006) yields〈q〉PVṀ ≈ 0.3×10−6 M⊙/yr.
Since 〈q〉PV ≈ 0.5 − 1 is predicted also for this star, this
would imply a very low mass-loss rate, a factor of several
lower than that derived from similar velocity-porosity models by
Sundqvist et al. (2011) (who essentially ignored the additional
information contained in the doublet-ratio) and byŠurlan et al.
(2013). Indeed, the rate obtained by the latter authors corre-
sponds to the second solution branch found in this paper, which
for their very high assumedfic = 0.15 gives a correction factor
∼ 5 for λ Cep and〈q〉PVṀ ≈ 1.4× 10−6 M⊙/yr . This is in good
agreement with thėM = 1.6× 10−6 M⊙/yr obtained from the in-
dependent models by̌Surlan et al. (2013). (Actually, also the rate
these authors obtain forζ Pup corresponds to the second branch
solution; theirṀ = 2.5× 10−6 M⊙/yr for fic = 0.15 again agrees
well with the rate derived in the analysis above when assuming
the second branch solution.) In Sect. 5, we further discuss conse-
quences of these severe degeneracies when empirically deriving
mass-loss rates from UV wind lines.

4. Application II: Line-driven wind theory

Having analyzed in detail how velocity-porosity affects UV
spectral line diagnostics, we next examine the related question
of how such vorosity might affect the line force driving the out-
flows of hot, massive stars.
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Fig. 6.Observed and modeled PV spectra ofζ Pup, observations fromCopernicus, andλ Cep, observations fromFUSE. Black solid
and blue dashed lines are vmSEI model fits from the first and second solution branches, respectively (see text), the dottedblack
lines are fits from a smooth-wind model, and red dashed lines are the observations.

In principle, this effect should be naturally contained
within time-dependent, non-Sobolev simulations of the line-
deshadowing instability. However, many uncertainties regard-
ing, e.g., triggering of LDI structure (Sundqvist & Owocki
2013), the treatment of the diffuse force (Owocki & Puls 1999),
and multi-dimensional effects (Dessart & Owocki 2003) are
present in suchab-initio structured wind models. Of particular
relevance for the study here, is that the current generationof LDI
simulations seems not to properly resolve the internal clump ve-
locity structures, leading to an overprediction of the clump ve-
locity spansδ3 and to less vorosity than generally needed to re-
produce observations (Sundqvist et al. 2010, 2011). Considering
these difficulties in creating structured wind models from first
principles, we in this section take an alternative approachand
examine how vorosity might affect theglobal wind properties
mass-loss rate and terminal speed, by implementing the effective
opacity formalism developed above into the standard, Sobolev-
based, theory of line-driven winds.

4.1. Basic CAK theory

Let us begin by very briefly review the standard CAK
(Castor et al. 1975) theory for line driving, cast here in the
Gayley (1995) formalism (see also Owocki 2004, for a detailed
derivation). For dimensionless line strengthq = κ3th/(κec) of the
line-center mass absorption coefficientκ in units of the electron
scattering opacityκe, the CAK model assumes a power-law dis-
tribution of driving lines,

q
dN
dq
=

1
Γ(α)

(

q

Q̄

)α−1

, (26)

whereQ̄ is the Gayley (1995) line normalization,α the CAK-
power index, andΓ the gamma function.

For a single line of strengthq, the line force can be written
in terms of the electron scattering accelerationge = κeF/c, with
radiative fluxF, as

gq = qgewν0
1− e−qt1

qt1
, (27)

wheret1 = κeρc/(d3/dr) is the radial Sobolev optical depth for
a line with q = 1, andwν0 ≡ ν0Lν/L weights the placement of
the line within the luminosity spectrumLν. As usual in CAK
theory we here assume a distribution of driving lines inversely
proportional to frequency about the flux maximum, so thatwν0 ≈
1. The total CAK line force is then obtained by integrating this
single line force over the number distribution eqn. 26,

gcak =

∫ ∞

0
gq

dN
dq

dq=
Q̄ge

(1− α)(t1Q̄)α
. (28)

4.2. Vorosity correction to CAK line force

To correct this for vorosity, we apply the formalism developed
in previous sections, and now write the effective opacity of line-
strengthq for clump optical depthτcl = tq/ fvor as

qeff

q
=

1+ τcl fic
1+ τcl

. (29)

Anticipating our following results, we re-write this in terms of
thenormalized velocity filling factor fvel (see previous section),
and further neglect a tenuous inter-clump mediumfic ≪ 1 on
the driving line force, obtaining after re-arranging:

qefft1 ≈
fvelqt1

fvel + (1− fvel)qt1
. (30)

Applying qeff instead ofq in the second expression of eqn. 28
now gives the vorosity-modified CAK line force.

The evaluation can be most conveniently carried out in terms
of a correction factor to the standard CAK force,

gvor

gcak
=

1− α
Γ(α)

∫ ∞

0

[

1− Exp

(

− fvelx
fvel + (1− fvel)x

)]

xα−2dx, (31)

where the integration dummy variablex = qt1.
Numerical evaluation of eqn. 31 shows this has the remark-

able simple scaling

gvor

gcak
≈ ( fvel)

α , (32)
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Fig. 7. gvor/gcam line forces as functions offvor, for full nu-
merical integration of the vorosity-modified CAK force eqn.31
(black) and the simple scaling relation eqn. 32 (blue), forα =
2/3.

as shown by Fig. 7, which compares this simple approximation
to a full integration of eqn. 31 forα = 2/3.

Eqn. 32 thus provides a physically well motivated ratio-
nale for studying the global influence of vorosity on line driven
winds. For clumping close to the wind base, however, the as-
sumption of neglecting the inter-clump medium’s contribution to
the line force might be questionable. But in the absence of good
theoretical predictions or reliable diagnostic results for this wind
region, we retain throughout this section the assumption ofa line
force dominated by the dense clumps, also in models involving
vorosity in near photospheric layers. This allows us to study the
basic physical effects and to derive simple scaling relations.

4.3. Analytic scaling relations for vorosity effect on global
wind properties

To provide such an analytic rationale for the effects of voros-
ity on the global wind parameters mass-loss rate and terminal
speed, we consider the steady-state equation of motion for a
wind driven by a point source of line radiation, in sphericalsym-
metry and in the zero sound speed limit,

3

d3
dr
= −GM(1− Γe)

r2
+ gcak, (33)

whereGM(1 − Γe)/r2 is the effective gravitational acceleration
for Eddington parameterΓe = κeL/(4πGMc), and where the ra-
diative line acceleration is assumed to be accurately givenby
CAK theory. We next introduce the gravitationally scaled iner-
tial acceleration,

y′ ≡ r2
3d3/dr

GM(1− Γe)
, (34)

and note that for an inverse radius coordinatex ≡ 1−R⋆/r, y′ =
dy/dxwith y = 32/32esc for effective escape speed3escreduced by
the electron scattering term. This allows us to write the equation
of motion in the dimensionless form

y′ = −1+C(w′)α, (35)

with the constant

C ≡ 1
1− α

( L

Ṁc2

)α
(

Q̄Γe

1− Γe

)1−α

. (36)

Solving eqn. 35 for the tangential intersection between line force
and inertia plus gravity now gives the CAK critical solutionfor
the maximalmass-loss rate and wind velocity law3 ∝ 3esc

√
x

Table 2.Input parameters used in the hydrodynamical wind sim-
ulations described in the text.

Parameter Symbol Value

Luminosity L/L⊙ 8.0× 105

Mass M/M⊙ 50
Radius R⋆/R⊙ 20
Sound speed a 23 km/s
CAK power-index α 0.65, 0.5
Line normalization Q̄ 2000
Electron scattering
mass absorption κe 0.345 cm2/g

(see, e.g., Kudritzki et al. 1989; Owocki 2004, for two alter-
native derivations). More generally though, this point-source
model should be corrected for the finite extent of the stellardisc,
where

fd(r) =
(1+ σ)1+α − (1+ σµ2

⋆)1+α

(1+ α)σ(1+ α)α(1− µ2
⋆)

(37)

for µ2
⋆ = 1 − R2

⋆/r
2 andσ = d ln 3/d ln r − 1 is the finite-disc

correction factor (Pauldrach et al. 1986; Friend & Abbott 1986)
to the CAK line force. Sincefd increases outwards fromr =
R⋆ (to a certain maximum, typically located atr ∼ 1.5R⋆), the
stellar surface now represents a nozzle (“throat”) from which
it is hardest to accelerate the material. This fixes the maximal
allowed finite-disc mass loss to

Ṁfd
cak =

L
c2

α

(1+ α)1/α(1− α)

(

Q̄Γe

1− Γe

)1/α−1

, (38)

which is a factor 1/(1+ α)1/α lower than the point-source rate.
Since the mass loss in such finite-disc models quite generally is
set close to the wind base, vorosity starting well above the stel-
lar surface should not affect this scaling. However, if vorosity is
important also at low wind radii, the constant setting the maxi-
mal mass-loss rate will involve an additional factor,C ∼ 1/ f αvel.
Due to the scalingC ∼ 1/Ṁα then (eqn. 36), the net effect of
velocity-porosity is thus to decrease the mass-loss rate bysim-
ply a factorfvel(rcp), where the velocity filling factor is evaluated
at the “critical point” determining this rate.

The wind terminal speed, on the other hand, can be affected
also in cases of a vorosity onset radius above this critical point.
Considering eqn. 35 for a sudden onset of vorosity in the super-
sonicy′ ≫ 1 regime, gives the scaling3/3esc∝ f α/(2−2α)

vel , which
for a standardα = 2/3 results in a linear relation3 ∝ fvel. While
the quantitative speed reduction from such outer wind vorosity,
of course, will depend on the exact onset radius, this simplescal-
ing illustrates that the effect on the terminal speed can be quite
significant.

4.4. Hydrodynamical wind models with vorosity modified
CAK line force

To back up the analytic scaling results above, we next examine
effects on mass loss and terminal speed by numerically solving
the hydrodynamic conservation equations of mass, momentum,
and energy, using the vorosity-corrected CAK line force just de-
veloped. This line force is implemented into the hydrodynamics
code VH-1 (developed by J. Blondin and collaborators) accord-
ing to:

gline(r) = gcak(r) fd(r) ( fvel(r))α , (39)
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Fig. 8. Mass-loss rates in units of 10−6 M⊙/yr (on a logarithmic
scale) and terminal speeds in units of3∞ in standard, non-vorous
finite-disc models. The triangles and squares denote hydrody-
namical calculations (described in text) with vorosity onset radii
rvor = 1.3R⋆ > rcp (triangles) andrvor = 1.01R⋆ < rcp (squares).
Blue symbols assumeα = 0.5 and red symbolsα = 0.65. The
black solid lines then use the corresponding analytic formulae
described in text to predict the mass-loss rate and terminalspeed
scalings.

where we assume a normalized velocity filling factor

fvel(r) = f∞vel + (1− f∞vel)Exp(−103(r/rcl − 1)); r ≥ rcl, (40)

in order to allow for a smooth transition above a vorosity on-
set radiusrcl. To facilitate comparison with the sudden onset of
vorosity assumed when deriving the analytic scaling relations,
we have inserted a factor 103 in the exponential term in eqn. 40,
which ensures that the terminal velocity filling factorf∞vel is
reached quickly afterrcl. Below rcl, fvel is simply set to unity.
Using this line force and assuming for simplicity an isothermal
wind with sound speeda = 23 km/s, the hydrodynamical con-
servation equations are evolved until a stable steady-state wind
solution is reached.

For the parameters in Table 2, typical of an early O super-
giant in the Galaxy, Fig. 8 compares mass-loss rates in these
numerical models with those predicted by the analytic scaling

Ṁvor = Ṁfd
cak fa fvel(rcp), (41)

wherefvel(rcp) is the normalized velocity filling factor at the crit-
ical point determining the mass-loss rate, and where we have
also corrected for the finite sound speeda according to the per-
turbation analysis by Owocki (2004) (see also Appendix A of
Owocki & ud-Doula 2004):

fa = 1+
4
√

1− α
α

a
3esc
. (42)

The left panel of Fig. 8 reveals very good agreement between
the numerical models and this simple analytic scaling formula
(within 2-3 %), for both investigated values of the CAK power
indexα. We note in particular how, indeed, the mass-loss rate
is not affected by vorosity with an onset radius above the critical
point, which in these finite-disc hydrodynamical simulations lies
only a few percent above the stellar surface.

The right panel of Fig. 8 shows the reduction in3∞, and
demonstrates the clear anti-correlation between mass lossand
terminal speed. When vorosity is important below the critical
point, the terminal speed is not affected since the wind then has
adjusted to the reduced line force by lowering the mass loading.
On the other hand, when vorosity is turned on above this critical
point, the wind reacts to the lower line force in the outer parts
by reducing its terminal speed by an amount that follows closely
the analytic scaling3∞ ∝ ( fvel)α/(2−2α), as illustrated by the black
solid lines in the right panel of the figure.

4.5. Ionization correction

The computations above assume the line driving parametersQ̄
andα are constant throughout the wind. To account for potential
effects on the wind driving from a radially varying ionization
balance, Abbott (1982) introduced another correction factor to
the CAK line force, which he took to be∝ (n11

e /W)δ for elec-
tron densityne measured in units of 1011/cm3, geometric dilu-
tion factorW, and ionization power indexδ. Sincene ∝ ρ, this
leads to a new scaling of the line force∼ 1/ρα−δ (see eqn. 28),
and the corresponding scaling relations forṀ are affected only
by a different exponentαeff = α − δ (though the absolute values
for the predicted rates may change by some additional factors
of order unity, see e.g. Pauldrach et al. 1986). But in a clumped
stellar wind with negligible inter-clump medium, the electron
density has to be evaluated inside the dense clumps, whereby
ne ∝ 〈ρ〉/ fvol and another factor of (fvol)δ enters the line force
expression. Inserting this into the analysis above then leads to
an upward correction in the CAK mass-loss rate, by a factor
(1/ fvol)δ.

We note here these two competing effects from clumping on
the line force; whereas the vorosity-associated reduced line force
can lead to alower mass-loss rate, the shift in ionization bal-
ance stemming from the clumped wind leads to anincreasein
this rate for typical values ofδ. In O stars withδ ≈ 0.1 (e.g.,
Pauldrach et al. 1986), the latter results in an upward corrected
rate by approximately 25 %, assuming a typical volume fill-
ing factor fvol ≈ 0.1. Physically, this results from the increased
amount of recombination in such clumped models, which drives
the ionization balance toward lower ion stages with more effi-
cient driving lines (see also Muijres et al. 2011).

5. Summary and Conclusions

We have developed and benchmarked an effective-opacity for-
malism for line (and continuum) radiative transfer in accelerat-
ing two-component media of (almost) arbitrary density contrasts
and clump optical depths. The formalism gives results consis-
tent with our previous, more elaborate models (Sundqvist etal.
2010, 2011), but is simple enough that it can be readily included
in the already existing NLTE radiative transfer codes normally
used for quantitative modeling and analysis of spectra fromhot
stars with winds. In addition to the clump volume filling factor
fvol, which enters also standard descriptions assuming optically
thin clumps, the formalism here is based on two further param-
eters: fic, defined as the ratio of the inter-clump density to the
mean density, andτcl, the clump optical depth. Of course, the
method can also be used for the case of a negligible inter-clump
medium, by simply settingfic = 0. A crucial point is the calcula-
tion of τcl, which forcontinuumtransfer depends on the porosity
length h, but for line transfer on the velocity clumping factor
fvor (see Sect. 2). This difference reflects the physics of the addi-
tional leakage of light associated with optically thick clumps in
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an accelerating supersonic medium, which for the continuumis
set byspatialporosity but for lines by porosity invelocity space
(a.k.a. velocity-porosity, or vorosity).

The effective-opacity law for spectral lines is then incorpo-
rated into a vorosity-modified Sobolev with exact integration
(vmSEI) method, and used to analyze unsaturated UV wind res-
onance line doublets. For a given inter-clump densityfic, an ana-
lytic investigation shows that in clumped two-component winds,
two solutions exist that give identical synthetic line profile dou-
blets. For a given profile-strength ratio between the two individ-
ual line components, the two solution branches correspond phys-
ically to i) absorption within moderately optically thick clumps
with τcl determined by the blue-to-red profile-strength ratio, and
ii) absorption within optically thick clumps (τcl ≫ 1), and the
observed profile-strength ratio reproduced by infilling absorp-
tion in the inter-clump medium. Direct applications to SiIVin
the B supergiant sample of Prinja & Massa (2010) and to PV in
the O supergiantsζ Pup andλ Cep demonstrate this severe solu-
tion dichotomy. For the B supergiants andζ Pup the physically
more realistic first solution branch gives reasonable mean up-
ward corrections of∼5 in mass loss times ion fractions, bring-
ing the PV mass-loss rate forζ Pup into good agreement with
other recent studies focusing on other wavebands than the UV
(e.g., Najarro et al. 2011; Hervé et al. 2013; Cohen et al. 2014).
The same solution forλ Cep, however, gives only a very modest
∼ 20% upward correction. This would imply a very low mass-
loss rate of this star, since it seems unlikely that the PV ionfrac-
tions ofλ Cep andζ Pup should be very different. On the other
hand, applying the second solution branch and assuming a much
higher inter-clump density,∼ 15% of the mean density, results
in a correction factor∼ 4− 5 for also this star; we show that the
independent models by̌Surlan et al. (2013) indeed correspond to
this solution.

In summary, it is very likely that all previous attempts of
obtaining mass-loss rates from fitting UV spectra by means of
clumped stellar wind models – including our own – suffer from
the uniqueness problem found in this paper (e.g., Oskinova et al.
2007; Sundqvist et al. 2011;̌Surlan et al. 2013). Empirically it
seems possible to break these degeneracies only by a real multi-
diagnostic study, in which several diagnostics are considered si-
multaneously. In particular, X-ray absorption is a very promising
mass-loss indicator (Cohen et al. 2010, 2011; Hervé et al. 2013;
Cohen et al. 2014), since it has been shown that this diagnos-
tic seems to be free of most issues associated with wind clump-
ing (Sundqvist et al. 2012a; Hervé et al. 2013; Leuteneggeret al.
2013). Another interesting possibility is to target stars with very
dense winds, like Wolf-Rayet stars or Luminous Blue Variables
in their quiet stage, where effects should be larger and additional
diagnostics are available (for example electron scattering wings,
which are too weak to be of diagnostic value in the OB-star
winds studied here).

Of course, to some extent these degeneracies are artefacts
of present-day diagnostic models, which treat clumping by us-
ing a set of adjustable input parameters rather than comput-
ing clumping properties from first principles. In an ideal situ-
ation, one would instead use simulations of the structured wind
to quantitatively predict, e.g., vorosity and inter-clumpmedium
properties. However, as discussed in previous sections, presently
such predictions are quantiatively very uncertain. For exam-
ple, the relatively dense inter-clump medium in the highly su-
personic wind indicated by the second branch solutions dis-
cussed above (fic > 0.1), is inconsistent with basic predic-
tions of the fundamental, inherent instability of line-driving
(e.g., Owocki et al. 1988; Feldmeier 1995; Owocki & Puls 1996;

Sundqvist & Owocki 2013) that is the likely cause of clumping
in this wind region, and which predicts much lower inter-clump
densities.

We next incorporated the effective-opacity formalism also
into the standard CAK theory of line-driven winds, showing that
vorosity leads to a reduced line force scaling simply with the
normalized velocity filling factorfvel ≡ fvor/(1+ fvor) as f αvel, for
CAK power indexα. By analytic and numerical hydrodynam-
ics calculations, we then derived scaling relations for theanti-
correlated behavior of the global wind parameters mass-loss rate
and terminal speed: For vorosity starting below the wind “criti-
cal point”, the mass-loss rate is reduced by factor offvel but the
terminal speed remains unaffected, whereas for vorosity starting
above this critical point the mass-loss rate is unaffected but the
terminal speed reduced by3∞ ∝ f α/(2−2α)

vel . We finally also pro-
vide a simple correction factor accounting for the expectedshift
in ionization in a clumped wind, which for a negligible inter-
clump medium scales aṡM ∝ (1/ fvol)δ, with Abbott’s ionization
parameterδ (≈ 0.1 for a typical O star wind).

These analytic scalings are qualitatively consistent withthe
numerical simulations by Muijres et al. (2011), who modeledthe
effects of clumping and porosity in velocity space by using a
smooth wind velocity law and assigning clump length scales5

l, and found general trends of higher mass-loss rates from the
shifted ionization balance and lower rates from the inclusion of
velocity porosity. A detailed comparison is not possible, how-
ever, since their Monte-Carlo models only predict the totalwind
kinetic energyṀ32∞, and so cannot separate between a change in
terminal wind speed and a change in mass-loss rate.

The upshot from the study here is thus that while voros-
ity generally gives anupwardcorrection in empirical mass-loss
rates derived from spectral fitting (true for all diagnostics, when
compared to models assuming optically thin clumps), it could
also, if there is substantial vorosity at the wind critical point,
cause adownwardcorrection in mass-loss rates predicted by
line-driven wind theory.

Such downward corrections would be consistent with the
recent empirical mass-loss determination of nearby, bright
O-stars by Cohen et al. (2014) (using presumably clumping-
insensitive X-ray diagnostics), who find rates that are on average
a factor of∼ 3 lower than current theoretical predictions, and
also with the many observational (e.g., Lépine & Moffat 2008;
Puls et al. 2006; Bouret et al. 2012; Cohen et al. 2014) and the-
oretical (Sundqvist & Owocki 2013) findings that strongly indi-
cate clumping in near photospheric layers. A reduced line force
would further help explain also the long-standing problem of
winds from late-type O main-sequence stars, which seem to be
much weaker than predicted by standard theory (see overviewin
Puls et al. 2008).

Future papers in this series will i) develop more refined the-
oretical wind models to account quantitatively for the velocity-
porosity effect, and ii) employ the effective-opacity formalism
developed in this paper in multi-wavelength, multi-diagnostic
NLTE studies of hot star winds in an attempt to break the se-
vere degeneracies discussed above.

6. Appendix A

Let us consider a two-component (i = 1, 2) mixture described
by homogeneous Markovian statistics, with spatially constant

5 More precisely, they assigned overdensities of clumpsCc and mean
separationsL, giving clump length scalesl ∼ L/C1/3

c and clump velocity
spansδ3 ∼ (d3/ds)l, along path lengths.
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opacitiesχi and probabilitiespi = λi/(λ1 + λ2) of at any
given point along a ray being in componenti, whereλi is the
mean chord length of materiali. In this scenario, the stochas-
tic radiative transfer equation can be solved analyticallyfor the
mean intensity〈I〉 (e.g., Levermore et al. 1986). The book by
Pomraning (1991) provides the full derivation; here we merely
give the result, along with a translation of the parameters used
by Pomraning and collaborators to those used in this paper.

The result for the averaged intensity at a distances along a
ray is

〈I〉 =
( r+ − σ̂
r+ − r−

)

e−r+s +

(

σ̂ − r−
r+ − r−

)

e−r−s, (43)

with

2r± = 〈χ〉 + σ̂ ±
√

(〈χ〉 − σ̂)2 + 4βM , (44)

σ̂ = p1χ2 + p2χ1 +
1
λ2
+

1
λ1
, (45)

βM = (χ2 − χ1)2p2p1, (46)

and average opacity〈χ〉 ≡ χ1p1 + χ2p2.
Assuming clumps to be component 1, we follow the ar-

guments by Sundqvist et al. (2012a) and identifyfvol = p1,
(1 − fvol) = p2 (see also Pomraning 1991),p2λ2 = h, and fi-
nally χ1 = χcl andχ2 = χic. As demonstrated by the left panel
of Fig. 1, these identifications indeed give perfect agreement for
the effective opacityχeff = − ln〈I〉/s when compared to the nu-
merical 3D box experiments in Sect. 2.

We note further that also Pomraning (1991), by means of a
mean-free path argument, derives an “effective opacity” approx-
imation for their two-component model:

χPom
eff =

〈χ〉 + χ1χ2ℓc

1+ (p1χ2 + p2χ1)ℓc
, (47)

with correlation lengthℓc = λ1λ2/(λ1 + λ2). Translated to the
notation used in this paper, eqn. 47 becomes

χPom
eff

〈χ〉
=

1+ ficτcl/(1− fvol)

1+ τcl(1+
fvolχic

(1− fvol)χcl
)
, (48)

assuming hereχic/〈χ〉 = fic. In the limit of fvol ≪ 1 (for χic ≤
χcl), eqn. 48 simplifies to the effective-opacity law adopted in
Sect. 2:
χPom

eff

〈χ〉 ≈
1+ ficτcl

1+ τcl
=
χSPO

eff

〈χ〉 . (49)

Testing has shown that this simple bridging law for approximat-
ing the effective opacity actually reproduces the analytic and
the numerical intensity test-calculations in Sect. 2 somewhat
better than the more complicated one suggested by Levermore
and Pomraning (eqn. 47). In particular, eqn. 49 also represents
a very simple extension of an “intuitive” law that corrects the
clump+void model (see Sect. 2) by simply adding a tenuous
inter-clump medium withfic ≪ 1:

χeff

〈χ〉
≈ 1

1+ τcl
+ fic =

1+ τcl fic + fic
1+ τcl

. (50)

In contrast to this expression though, the effective opacity law
used in this paper (obtained by simply dropping the alone-
standingfic term in the last expression of eqn. 50) also preserves
the “smooth” medium limitχeff = 〈χ〉 for fic = 1.
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