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5. Radiative Transfer in the (Expanding)
Atmospheres of Early-Type Stars,

and Related Problems

JOACHIM PULS

Abstract

In many cases, the quantitative spectroscopy of early-type stars requires to account for
their line-driven winds, and theoretical models of such winds are based on a consistent
calculation of the radiative line acceleration. Both topics ask for a thorough understand-
ing of radiative transfer in expanding atmospheres. In this chapter, we concentrate on
three issues, and compare, when possible, with corresponding results for plane-parallel,
hydrostatic conditions: First, we investigate how sphericity alone affects the radiation
field in those cases where Doppler shifts can be neglected (continua). Subsequently, we
consider the impact of velocity fields on the line transfer, both by applying the so-called
Sobolev approximation, and by presenting the more exact comoving-frame approach.
Restrictions and extensions of both methods are discussed. Finally, we concentrate on
the coupling between radiation field and occupation numbers via the NLTE rate equa-
tions. We illustrate the basic problem within the conventional lambda iteration, which
is then solved by means of the so-called Accelerated Lambda Iteration (ALI), and by a
‘preconditioning’ of the rate equations.

5.1 (Very Brief) Introduction

One of the most striking observational features of early-type stars are their quasi-
stationary UV P Cygni profiles (Figure 5.1), which indicate fast outflows, and, together
with other diagnostics, only small variability of global quantities such as mass-loss rate,
Ṁ , and terminal velocity, v∞.
These winds and their characteristic quantities have to be explained, diagnostic tools

have to be developed, and predictions have to be given. All these tasks are comprised in
the theory of expanding atmospheres1.

Beginning with the theoretical work by Lucy and Solomon (1970) and Castor et al.
(1975, “CAK”), it turned out that the winds from early-type stars are driven by radiative
line acceleration, and subsequent diagnostics revealed that typical mass-loss rates lie in
the range 10−7. . .10−5M�yr

−1, with v∞ between 200 and 3,000 km s−1, fairly propor-
tional to the corresponding photospheric escape speeds.2

In order to account for the presence of these winds when synthesizing theoretical
spectral energy distributions (SEDs) (quantitative spectroscopy!), and to enable the
calculation of the line acceleration required to set up theoretical models, the radiative
transfer in expanding media needs to be formulated and understood, which is the topic of
the following chapter. Particularly, there are two effects that give rise to major differences
compared to plane-parallel, hydrostatic calculations used, e.g., for the analysis of late-type

1 In addition to the references provided in the following, we also recommend the textbooks
by Mihalas (1978) and Hubený and Mihalas (2014).

2 For specific reviews on the topic of line-driven winds, see Kudritzki and Puls (2000) and
Puls et al. (2008).
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Figure 5.1. Three UV P Cgyni profiles of the C iv resonance line from the O4 supergiant
ζ Pup obtained (several years apart) with the International Ultraviolet Explorer (IUE) space
mission. Note how the overall shape of the spectrum (indicating a terminal velocity, v∞, of
roughly 2,500 km s−1) remains fairly constant.

stars (see Chapters 2 and 6): sphericity, which affects the radiation field and (wind-)
density, to be covered in Sections 5.2 and 5.3, and velocity fields, which mostly affect the
line transfer, via the induced Doppler shifts, to be discussed in Section 5.4.

5.2 From p-p Symmetry to Spherical Atmospheres with
Velocity Fields

As long as Δr/R∗ � 1, with Δr the vertical extent of the atmosphere and R∗ the
stellar radius, plane-parallel (p-p) symmetry can be assumed, at least in a 1-D treatment.
Such an approach is valid, e.g., for the solar photosphere, when refraining from a precise
description of convection. Since the curvature of the stellar atmosphere is neglected in
a p-p approach, the angle between a photon’s path and the isocontours of important
quantities such as density and temperature remains constant throughout the atmosphere.
On the other hand, when Δr/R∗ >∼ 1, as in the solar corona or in the winds of early-type
stars or red giants/supergiants, at least spherical symmetry needs to be adopted, but in
any case the aforementioned angle changes drastically when propagating from the bottom
to the top of the atmosphere.

5.2.1 Coordinate Systems and Symmetries

When using a cartesian coordinate system, a vector r is expressed via r = xex+yey+zez,
while in a spherical coordinate system r = ΘeΘ+ΦeΦ+rer, where ex, ey, ez and eΘ, eΦ,
er form a right-handed, orthonormal base. In such systems, the specific intensity depends
on I(x, y, z, t;n, ν) and I(Θ,Φ, r, t;n, ν), respectively, where n is the direction vector, ν
the frequency, and t the time. Related symmetries are the plane-parallel one, where all
physical quantities depend only on z, e.g., I(r, t;n, ν) → I(z, t;n, ν), and the spherical
symmetry, with physical quantities depending only on r, e.g., I(r, t;n, ν) → I(r, t;n, ν).
Since the specific intensity has direction n into dΩ, additional angles θ, φ with

respect to (ex, ey, ez) or (eΘ, eΦ, er) are required, with polar angle, θ = �(ez,n) or
θ = �(er,n), respectively (see Figure 5.2). Thus, Iν can be expressed as Iν(x, y, z, t; θ, φ)
or Iν(r,Θ,Φ, t; θ, φ).
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Figure 5.2. Directional angles, θ, φ, and solid angle element dΩ = dφ sin θ × dθ, as used
to calculate the specific intensity Iν(r,n, t) at point P, for both a cartesian and a spherical
coordinate system (see text).

Both in plane-parallel and spherical symmetry, the intensity does not dependent on
azimuthal direction, φ (again Figure 5.2), and we finally obtain Iν → Iν(z, t; θ) or
→ Iν(r, t; θ), respectively.

5.2.2 Hydrostatic Equilibrium

In plane-parallel atmospheres without winds (e.g., Kurucz atmospheres), but also in
atmospheric models aiming at a description of early-type stars with thin winds (e.g.,
TLUSTY or DETAIL/SURFACE; see Appendix A); the pressure/density stratification
is conventionally prescribed assuming hydrostatic equilibrium, namely

∂P

∂z
= ρ(z) (−ggrav + grad(z)) , (5.1)

where ggrav = GM∗/R
2
∗ and again Δz(photosphere) � R∗. Integration of (5.1) gives

either

Ptot(z) = ggrav ·m,

where Ptot = Pgas + Prad and the mass column density is defined as m ≡
∫∞
z

ρ(z)dz, or,
neglecting grad and adopting a constant surface temperature T∗,

ρ(z) ≈ ρ(z = 0) e−z/H ,

with photospheric scale height

H =
kBT∗

μ mH ggrav
=

2 v2sound(T∗)

v2esc
R∗.

Here vsound =
√
kBT/μ mH is the isothermal speed of sound (of order of few km s−1),

μ the mean molecular weight, and vesc =
√
2GM∗/R∗ the photospheric escape velocity

(usually of order of several 100 km s−1). Alternatively, neglecting again grad,

ρ(m) ≈ 1

H
m, i.e., log ρ = logm− logH. (5.2)
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When velocity fields are taken into account, conservation of mass leads to the equation
of continuity

∂ρ

∂t
+∇ · (ρv) = 0,

which for a steady one-dimensional spherical flow reduces to

4π r2ρ v = const = Ṁ, (5.3)

where Ṁ is the (constant) mass-loss rate through a spherical surface.
From the conservation of momentum, one obtains Euler’s equation

∂ρ

∂t
+∇ · (ρvv) = −∇P + ρ gext. (5.4)

By vv we denote the dyadic product, and gext the total external acceleration. From
vector calculus it holds that ∇ · (ρvv) = v [∇ · (ρv)] + [ρv · ∇]v. For a one-dimensional
spherical flow, (5.4) reduces to the equation of motion

ρ v
∂v

∂r
= −∂P

∂r
+ ρ gextr . (5.5)

The LHS of (5.5) is the advection term due to inertia. The comparison of (5.5) – where
gravity and radiative acceleration are taken into account – with (5.1), namely

∂P

∂r
= ρ(r)

(
−GM∗

r2
+ grad(r)

)
− ρ(r)v(r)

∂v

∂r

and

∂P

∂z
= ρ(z)

(
−GM∗

R2
∗

+ grad(z)

)
,

shows the importance of the advection term.

5.2.3 When Is a (Quasi-)Hydrostatic Approach Justified?

By using the equation of state P = (kBT/μmH)ρ = v2sound ρ and the equation of continuity
(5.3), the equations of motion and of hydrostatic equilibrium can be rewritten as follows:

(
v2sound(r)− v2(r)

) ∂ρ
∂r

= −ρ(r)

(
ggrav(r)− grad(r) +

dv2sound
dr

− 2v2(r)

r

)
[hydrodyn.]

v2sound(z)
∂ρ

∂z
= −ρ(z)

(
ggrav(R∗)− grad(z) +

dv2sound
dz

)
[hydrostatic].

By comparing both equations, we note that the ‘only’ difference is an additional term
∝ v2 both on the left and right side of the equation of motion, and we conclude that for
v � vsound – i.e., in deeper photospheric regions, well below the sonic point where v(rS) =
vsound – the hydrodynamic density stratification approaches the (quasi-)hydrostatic one.
Thus, p-p atmospheres using hydrostatic equilibrium yield reasonable results even in

the presence of winds, as long as the studied features (continua, lines) are formed below
the sonic point (see also the following subsection).
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5.2.4 Unified Atmospheres

The concept of ‘unified atmospheres’ (= wind + photosphere) was founded by Gabler
et al. (1989). Nowadays, two flavors of such a description are present:
(a) The complete stratification is adapted from theoretical wind models based on the

(modified) CAK theory (Friend and Abbott, 1986; Pauldrach et al., 1986), such
that either Ṁ and v∞ of the models agree with the required input values, or
the stratification results from a self-consistent calculation w.r.t. grad (without the
possibility to choose arbitrary combinations of wind and stellar parameters as
input). Both methods are used within the atmosphere code WM-basic (Pauldrach
et al., 2001). The disadvantage of this approach is that it is difficult (or even
impossible) to manipulate the density/velocity stratification in case the theory is
not applicable or too simplified.

(b) A quasistatic photosphere is combined with an empirical wind structure (PoWR,
CMFGEN, PHOENIX, FASTWIND; see Appendix A), with the disadvantage that
the transition region is somewhat ill defined. Specifically, in deep layers ρ(r) is
calculated from (quasi-)hydrostatic equilibrium (5.1) (with R∗ replaced by r), and
the corresponding velocity is derived via

v(r) =
Ṁ

4πr2ρ(r)
for v � vsound (roughly: v < 0.1vsound).

In the outer layers, at first v(r) is defined using the semi-empirical ‘beta velocity law’ for
radiation driven winds (e.g., Pauldrach et al. 1986, and Figure 5.3),

v(r) = v∞
(
1− bR∗

r

)β
, (5.6)

with 0.5 < β <∼ 2 . . . 3, and b derived from the transition velocity. In this regime, then,
the density results from

ρ(r) =
Ṁ

4πr2v(r)
.

Finally, a certain transition zone is defined to ensure a smooth transition from the deeper
to the outer layers. This unified description is quite flexible, and the corresponding
input/fit parameters are Ṁ , v∞, β, and the transition velocity. A comparison of a
hydrostatic and unified atmospheric structure is presented in Figure 5.4. We stress that at
the same τRoss or m, the wind density (for v >∼ vsound) is lower than the hydrostatic one.

5.2.5 Plane-Parallel or Unified Atmospheres?

Since the calculation of unified atmospheres plus corresponding SEDs is much more
time consuming than the calculation of plane-parallel ones, it is reasonable to check
beforehand which approach is required. Accounting for the formation region of optical
lines (see Figure 5.4), unified models become vital if τRoss >∼ 10−2 at the transition
between photosphere and wind (roughly located at 0.1vsound). Using a typical velocity
law (β = 1), as a rule of thumb

Ṁmax = Ṁ(τRoss = 10−2 at 0.1vsound) ≈ 6 · 10−8M�yr
−1 · R∗

10R�
· v∞

1000 km s−1 .

If the actual Ṁ < Ṁmax for the considered object, most diagnostic features are formed
in the quasihydrostatic part of the atmosphere, and plane-parallel models can be used.
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Figure 5.3. Velocity fields for unified O-star models with a comparatively thin wind. Dotted:
hydrodynamic solution following Pauldrach et al. (1986); solid: analytical velocity law (5.6) with
similar terminal velocity and β = 0.8, extended towards larger depths using a quasihydrostatic
approach.

Figure 5.4. Electron density as a function of τRoss, for different atmospheric models of an
O5-dwarf. Dotted: hydrostatic model atmosphere, cf. (5.2); solid, dashed: unified models with
a thin and a moderately dense wind, respectively. In case of the denser wind, the cores of the
optical lines (τRoss ≈ 10−1 − 10−2) are formed at significantly different densities than in the
hydrostatic model, whereas the unified, thin-wind model and the hydrostatic one would lead to
similar results.
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Typically, this refers to the optical spectroscopy of late O-dwarfs and B-stars up to
luminosity class II (for early subtypes) or Ib (mid/late subtypes).

5.3 Radiative Transfer: From p-p to Spherical Symmetry

5.3.1 Basic Considerations

In the following, we will mostly restrict ourselves to 1-D problems, since multi-D problems
are beyond the scope of this overview. At first we will summarize the major changes in
the description/properties of the radiation field when switching from a plane-parallel to
a spherically symmetric situation.
Basically, the specific intensity and its moments are similarly defined when proceeding

from the p-p height coordinate, z, to the radial distance, r.

I(z, μ) → I(r, μ) with μ = cos θ and θ = �(er,n),

where here and in the following notation, the ν and t dependence has been sup-
pressed. From the adopted symmetry (independence from the azimuthal direction, e.g.,
Figure 5.2), the nth moment of the specific intensity, namely

Mn =
1

2

+1∫
−1

I(r, μ)μndμ,

is equally defined as in the p-p case when z → r. For n = 0,1,2, we obtain the mean
intensity, the Eddington flux and the second moment, J(r), H(r) and K(r), respectively.
The flux(-density) vector,

F =
(
0, 0, 4πH)T ,

has only an r-component different from zero, which is proportional to the Eddington flux.
Regarding the radiation stress tensor, P, only the diagonal elements are different from

zero (as in the p-p case), and the only difference thus far refers to the divergence of the
stress tensor (which is related to the radiation force; see (5.11)). While in p-p symmetry,
only its z-component is different from zero, and

(∇ ·P)z =
∂pR
∂z

, with pR (radiation pressure scalar) =
4π

c
K(z),

in spherical symmetry only the r-component is different from zero, and

(∇ ·P)r =
∂pR
∂r

+
3pR − u

r
, with u (radiation energy density) =

4π

c
J(r).

Behaviour at large distances from the surface: optically thin envelopes. An important
difference between p-p and spherically symmetric configurations relates to the behaviour
of the radiation field at large distances from the stellar surface, which in case of spherical
symmetry is affected by geometrical dilution. To estimate corresponding effects, let’s
assume an optically thin envelope, i.e., Iν(r) := const for a specific ray, and that the
radiation field leaving the effective photosphere, Reff , is isotropic: I+,phot

ν (Reff , μ) :=
const = I+ν (Reff):

⇒ Mn =
1

2

+1∫
−1

Iν(μ)μ
ndμ → 1

2

+1∫
μ∗

I+ν (Reff)μ
ndμ =

1

2
I+ν (Reff)

(
1− μn+1

∗
)

n+ 1
.
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In this case, for the 0th moment we find Jν ≈ WI+ν (Reff), with dilution factor

W =
1

2
(1− μ∗) and μ∗ =

√
1−
(
Reff

r

)2

(5.7)

where μ∗ is the cosine of the (half) cone angle subtended by stellar disk, θ∗, which can
be calculated via sin θ∗ = Reff/r. Now, for r 
 Reff ,

μn+1
∗ →

(
1− n+ 1

2

(
Reff

r

)2
)
,

and any moment

Jν = Hν = Kν = . . . . → 1

4
I+ν (Reff)

(
Reff

r

)2

.

In other words, all moments become equal, and the Eddington factors (ratios of moments)
converge to unity for r 
 Reff . This is specific for (spherical) envelopes at large distances,
and different from corresponding plane-parallel results. (Exercise: perform the same
calculation for plane-parallel conditions and large z.)

The equation of radiative transfer (RTE). Independent from any coordinate system and
discarding general relativity (GR) effects, the RTE reads(

1

c

∂

∂t
+ n · ∇

)
Iν(r,n, t) = ην(r,n, t)− χν(r,n, t)Iν(r,n, t), (5.8)

where ην is the total emissivity, χν the total opacity, and n · ∇ the directional derivative
Δ
= d

ds along path s.
In plane-parallel geometry, n · ∇ → μd/dz , since the actual path is longer than the

height difference, ds = dz/μ, and we obtain, when discarding the time-dependence for
stationary conditions,

μ
d

dz
Iν(z, μ) = ην(z, μ)− χν(z, μ)Iν(z, μ) (plane-parallel, stationary).

In spherical geometry, μ is no longer constant along a certain direction n. Restricting
ourselves to spherical symmetry,

n · ∇ ⇒ μ
∂

∂r
+

(1− μ2)

r

∂

∂μ
,

which can be shown by using the so-called p-z geometry (see the following section). For
stationary processes, we then have(

μ
∂

∂r
+

(1− μ2)

r

∂

∂μ

)
Iν(r, μ) = ην(r, μ)− χν(r, μ)Iν(r, μ) (sph. symm., stationary).

Moments of the RTE. The zero- and first-order-moment equations are obtained by inte-
grating the RTE over dΩ or by multiplying with n/c and integrating over dΩ, respectively,
and are very useful and insightful for many problems/applications.
In the general case, the zero-order-moment equation reads

4π

c

∂

∂t
Jν +∇ · Fν =

∮
(ην − χνIν) dΩ. (5.9)
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After integrating over frequency, the RHS of this equation becomes zero (‘radiative
equilibrium’), as long as only radiation energy is transported. For time-independent
problems, this then refers to ‘flux-conservation’, ∇ · F = 0, with F the total flux.

For plane-parallel, stationary and static conditions, (5.9) collapses to

dHν

dz
= ην − χνJν ,

whereas for spherically symmetric, stationary, and (quasi-)static conditions, it reads

1

r2
∂(r2Hν)

∂r
= ην − χνJν . (5.10)

We stress that the two preceding equations are valid only in case of (quasi-)static atmo-
spheres, since otherwise the opacities become angle dependent, due to the apparent
Doppler shifts (see Section 5.4), and cannot be put in front of the angular integrals.
Thus, the latter two equations cannot be used in case of stellar winds, and the more
general formulation of the RHS of (5.9) has to be accounted for. In an approximate
way, though, these equations might still be applied for pure continuum problems in
the presence of velocity fields, if an exact treatment of ionization edges plays a minor
role.
The general first-order-moment equation is given by

1

c2
∂

∂t
Fν +∇ ·Pν =

1

c

∮
(ην − χνIν)ndΩ, (5.11)

where now the frequency-integrated RHS is just the negative of the total radiation force,
−frad = −ρgrad (force exerted by radiation field onto the material).
The limit for plane-parallel, stationary and static conditions reads

dKν

dz
= −χνHν ,

while for spherically symmetric, stationary and (quasi-)static conditions we find

∂Kν

∂r
+

3Kν − Jν
r

= −χνHν . (5.12)

The same caveats concerning (quasi-)static conditions as such as the preceding apply
also here. We note as well that for static conditions the emissivity contribution to the
radiation force vanishes, if the emission is isotropic as assumed here (since there are no
Doppler shifts in this case).

5.3.2 Solution Methods

Ray-by-ray solution – p-z geometry. The following elegant method (based on Hummer
and Rybicki, 1971) to solve the RTE for spherical atmospheres can be only applied to
spherically symmetric problems, and for conditions where Doppler shifts do not play
a decisive role, i.e., where opacities and emissivities can be assumed as isotropic (e.g.,
continuum formation in winds, if interactions of edges with other processes do not play
a role). In brief, the methods works as follows (compare with Figure 5.5):

• Define p-rays (with impact parameter p) tangential to each discrete radial shell.

• Augment those with a bunch of (equidistant) p-rays resolving the core.
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Figure 5.5. Sketch of p-z geometry (adapted from Mihalas, 1978). See text.

• Use only the forward hemisphere, i.e.,

zdi =
√

r2d − p2i with zdi ≥ 0.

In this way, all points zdi, i = 1,NP, are located on the same rd-shell, i.e., have the
same physical parameters, in particular emissivities and opacities (due to spherical
symmetry and neglect of Doppler shifts).

Now one solves the RTE along each p-ray. From first principles,

±dI±ν (z, pi)

dz
= ην(r)− χν(r)I

±
ν (z, pi)

with + for μ > 0 and − for μ < 0, using appropriate boundary conditions (core vs.
noncore rays) and standard methods (finite differences, etc.). After being calculated,
I±ν (zdi(rd), pi), i = 1,NP, samples the specific intensity at the same radius, rd, but at
different angles,

±μdi =
zdi
rd

,

starting at |μdi| = 1 for i = 1 and d = 1,NZ (central ray, pi = 0) until μdi = 0 (tangent
ray, where pi = rd and thus zdi = 0). In other words, along individual rd-shells, the
specific intensities I±ν (rd, μ) = I±ν (zd, μ) are sampled for all relevant μ, and corresponding
moments can be calculated by integration.
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Feautrier variables. In fact, the RTE is not solved for I±ν separately, but for a linear
combination of I+ν and I−ν , using the so-called Feautrier variables, uν and vν , which allows
to construct a second-order scheme (higher accuracy, diffusion limit for large optical
depths can be easily represented), similar as in the plane-parallel case:

uν(z, p) =
1

2
(I+ν (z, p) + I−ν (z, p)) mean intensity like

vν(z, p) =
1

2
(I+ν (z, p)− I−ν (z, p)) flux like

⇒ ∂vν
∂z

= χν(Sν − uν),
∂uν

∂z
= −χνvν

⇒ ∂2uν

∂τ2ν
= uν − Sν (2nd order, with dτν = −χνdz)

The source function Sν is defined in the customary way as ην/χν . Corresponding
boundary conditions have to be provided, of course. For the inner boundary and for core
rays, mostly a first-order condition using the diffusion approximation is applied, while for
noncore rays, a second-order condition is formulated, using symmetry arguments. For the
outer boundary, either I−ν (zmax, p) = 0 is set, or higher-order terms need to be accounted
for, in case of optically thick conditions (e.g., at and bluewards of the He ii edge). For
atmospheres illuminated by companions, etc., this needs to be adapted.
As it turns out, this formal solution for Iν(μ) (or uν(μ) and vν(μ)) and corresponding

angle-averaged quantities (moments) is (partly strongly) affected by inaccuracies, due to
the specific way of discretization within the p-z grid. However, the ratios of such moments
(= Eddington factors) remain much more precise, since the aforementioned errors cancel
to a major part.

The variable Eddington factor method. Thus, the conventional method to solve the RTE in
spherically symmetric atmospheres (again: no Doppler shifts!) is to consider the moments
equations (only radius-dependent), and to use the Eddington factors from the (previously
described) formal solution to close the relations. This procedure ensures high accuracy
(because of direct solution for angle-averaged quantities and second-order scheme), while
the Eddington factors (from the formal solution) quickly stabilize in the course of global
iterations. One additional advantage of using the moments equations is that the optimum
diagonal accelerated lambda operator (see Section 5.5.2) can be easily calculated in
parallel with the solution (and without major computational effort). Using the zero-order
and first-order moment of the RTE ((5.10) and (5.12)), and the conventional Eddington
factor fν = Kν/Jν , we obtain

∂(r2Hν)

∂τν
= r2(Jν − Sν) and

∂(fνJν)

∂τν
− (3fν − 1)Jν

χνr
= Hν ,

now with dτν = −χνdr. Introducing a sphericality factor qν via

ln(r2qν) =

r∫
rcore

[
3fν − 1

r′fν

]
dr′ + ln(r2core), (5.13)

the second equation becomes

∂(fνqνr
2Jν)

∂τν
= qνr

2Hν ,
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and can be combined with the first one to yield a second-order scheme for r2Jν ,

∂2(fνqνr
2Jν)

∂X2
ν

=
1

qν
r2(Jν − Sν), with dXν = qνdτν .

For comparison, the corresponding equation in p-p symmetry is given by

∂2(fνJν)

∂τ2ν
= (Jν − Sν),

and is just the limit of the spherically symmetric case, for qν → 1 and r2 → R2
∗.

5.4 Line Transfer in (Rapidly) Expanding Atmospheres

The basic problem for line transfer in rapidly expanding (or accreting) atmospheres is
the Doppler shift (discarded in Section 5.3) that affects both opacities and emissivities,
giving rise to an intricate coupling of location, frequency and angle. As detailed later,
a very high resolution in the radial grid (Δv = O(vth/3)) is required when standard
(observer’s frame) RT methods are applied3, with vth the thermal speed of the considered
ion. E.g., for v∞ = 2,000 km s−1, and vth = 8 km s−1 (representative for CNO-elements
in a hot star wind), this leads to ≈750 radial grid points4.

In such cases, only the RTE for the specific intensity should be solved (maybe cast to
‘Rybicki form’ if a separation into scattering and thermal part is possible), while the use
of the aforementioned variable Eddington factor method is prohibitive, since it does not
account for Doppler shifts.
In the following, we mostly consider the pure line case (except when stated differently),

assuming that the continuum is optically thin (which is not so wrong for ‘normal’ OB-star
winds, but invalid, e.g., for WR-star winds with much larger mass-loss rates).
Moreover, we assume pure Doppler broadening, which captures the essential broadening

effect when calculating NLTE occupation numbers, etc., by means of scattering integrals,
J̄ (see (5.15)). For the calculation of emergent profiles, however, other broadening func-
tions that describe also the line wings in a realistic manner (e.g., Stark and Voigt profiles)
should be used if necessary.

5.4.1 Notation: Line Opacity and Profile Function

The inclusion of Doppler shifts leads to complications and possible confusion. Thus,
before tackling the actual problem, we must define the notation we are going to use5.
The line opacity, as a function of radial distance r and frequency ν, can be expressed as

χν(r) = χ̄L(r)φ(ν, r) , with φ(ν, r) =
1

ΔνD(r)
√
π
exp

[
−
(

ν − ν̃

ΔνD(r)

)2
]

and ΔνD(r) =
ν̃vth(r)

c
for a Doppler profile.

Here the profile function φ(ν, r) is normalized with respect to frequency, and has dimen-
sions [φ] = T ; ν̃ is the line-center frequency, and vth includes any kind of microturbulence
(if present). The line opacity integrated over frequency is given by

3 Many such methods also require a very high resolution in μ.
4 This problem becomes mitigated when a large “microturbulence” of order 100 km s−1(due

to an inhomogeneous wind structure) is accounted for (e.g., Hamann, 1980; Puls et al., 1993).
5 Further specifications will be given in Appendix B.
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χ̄L(r) =
πe2

mec
flu

(
nl − nu

gl
gu

)
,

where l and u denote the lower and upper levels of the transition, flu the oscillator
strength, nl and nu the occupation numbers of the levels, and gl and gu the corresponding
statistical weights. We stress that [χ̄L] = L−1T−1, while [χν ] = L−1.

When the material in the atmosphere is in motion with respect to the frame of
an external observer at rest, matter particles “see” the radiation field at frequencies
corresponding to their own comoving frame (CMF), and opacity and emissivity become
angle dependent in the observer’s frame, due to Doppler shifts. In fact, the atoms absorb
and emit photons at frequency

νCMF = ν − (ν̃/c) n · v(r),

where ν is the frequency in the observer’s frame, and nonrelativistic velocities are
assumed. In spherical geometry, it holds that n · v(r) = μv(r). The profile function,
evaluated at CMF frequencies, is then

φ(νCMF, r) =
1

ΔνD(r)
√
π
exp

[
−
(
ν − ν̃ − μ ν̃ v(r)/c

ΔνD(r)

)2
]
.

For simplicity’s sake, in the following we will assume that vth is spatially constant6 and
define, in the observer’s frame, the frequency shift measured in Doppler units as

x ≡ ν − ν̃

ΔνD
with ΔνD =

ν̃vth
c

.

With the preceding choice, the transformation between observer’s frame and CMF is

xCMF = x− μv′(r), with v′(r) =
v(r)

vth
∈
(
0,

v∞
vth

>> 1

)
,

so that

φν(xCMF, r) = φν(x− μv′, r) =
1

ΔνD
√
π
exp
[
− (x− μv′(r))

2
]
,

The preceding profile function, whose dimension is still T , depends primarily on
xCMF.
In order to simplify the following discussion, it is convenient to include the factor

(ΔνD)
−1 into the opacity, so that the profile function, in units of Doppler shift, is now

dimensionless (and normalized with respect to x), whilst [χ̄L(r)/ΔνD] = L−1. We then
have

χν(xCMF, r) =
χ̄L(r)

ΔνD
φ(xCMF, r) , with φ(xCMF, r) =

1√
π
exp
[
− (x− μv′(r))

2
]
,

and
χ̄L(r)

ΔνD
=

χ̄L(r)λ̃

vth
.

Since μv′(r) ∈ [−v∞/vth],+v∞/vth], x must vary within the same range (essentially,
x ∈ [−∞,+∞]), and not only within a range of a few thermal Doppler widths7.

6 The generalization to a depth-dependent vth will be considered in Appendix B.1.
7 Several integrals involving φ(x) are presented in Appendix B.2.



“9781108499538c05” — 2019/8/30 — 12:53 — page 164 — #14

164 Joachim Puls

5.4.2 Sobolev Theory

The resonance zone. Since μv′(r) enters into the argument of φ, we must know (for
instance, for computing the optical depth) the variation of the former quantity along a
path ds, i.e., dμv′(r)/ds. (Recall that n ·∇ = d/ds.) We consider again a p−z geometry,
in which the z-axis shall be parallel to n, and obtain

dμv′(r)

ds
→ dμv′(r)

dz

∣∣∣∣
p

= μ
dv′

dr

dr

dz

∣∣∣∣
p

+
dμ

dz

∣∣∣∣
p

v′ = μ2 dv
′

dr
+ (1− μ2)

v′

r
.

Note that contrasted to Section 5.3.2, μ < 0 implies here that z < 0, so that for negative
angles we consider the back hemisphere of the p− z system. Moreover it holds that

μ2 dv′

dr
+ (1− μ2)

v′

r
> 0 for v′ > 0 and

dv′

dr
> 0.

Thus, in spherical symmetry μv′(r) increases monotonically along any given direction n,
as long as v′(r) > 0 is monotonically increasing.
Now, as the optical depth is defined by

τx(z) =

z∫
zmin

χ̄L(z
′)

ΔνD
φ (x− [μv′] (z′), z′) dz′,

it depends on the argument of the profile function, and it is clear that line processes are
only effective in a (very) localized region, the so-called resonance zone, whenever φ(xCMF)
is nonnegligible, i.e., when (x− μv′) ∈ [−ΔxDop,+ΔxDop] ≈ [−3, 3] (see Figure 5.6).

In order to achieve a proper representation of the line transfer process, both frequencies
x and projected velocities μv′(z) must be highly resolved, on scales corresponding to
vDop. If, on the one hand, the μv′(z)-spacing were too coarse, the resonance zones would
be missed or not resolved, the intensities would remain constant (or too large), and the
quantity Ī (related to the scattering integral, and required later on; see Figure 5.6) would
become too large. With regard to Figure 5.6, this would mean that in the most extreme
case, all three curves (intensities) would remain constant, at a value equal to I0, resulting
in a dramatic overestimate of Ī. If, on the other hand, the x-spacing was too coarse, the
variation of I(x) (from ‘neighboring’ resonance zones) would be insufficiently sampled.
For our example, this could mean that the left and/or right curves were absent (due to
missing frequencies), and the middle curve would not be centered, since there might be
no frequency where x− μv′ is exactly zero.

In spherical geometry, the first point is a specific problem, since the general spacing
refers to the radial grid (and not to specific p-rays), and a high resolution in v′(r) does
not guarantee a high resolution in μv′(z). In models using cartesian coordinates (μ=const
along a specific ray), the first point leads to the condition that Δμ = Δx/v′max, i.e., an
intricate coupling of frequency and angle.

‘Standard’ Sobolev theory. As discussed in the previous paragraph, line processes (con-
trasted to continuum ones) occur in a very localized region within a rapidly expanding
medium. V. Sobolev (1960; but work done already during World War II) was the first to
obtain a completely local approximation that is quite accurate (and can be extended to
become even more precise). The following reasoning follows (in part) Owocki and Puls
(1996); for an alternative and very insightful derivation, see Rybicki and Hummer (1978).
For simplicity, in this reasoning, we do the following:
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Figure 5.6. Radiative line transfer in expanding atmospheres: resonance zones and related
aspects, for the case of pure absorption. Displayed is the specific intensity along an arbitrary ray,
as a function of [μv′](z) = μ(z)v′(r(z)) (v′ > 0 for outflows). The three curves show the variation
of the intensity when crossing the corresponding resonance zones, for observer’s frame frequencies
x1 (central curve), x1 +Δx (rightmost curve), and x1 −Δx (leftmost curve), respectively. The
centers of the resonance zones are marked by dashed vertical lines. The evaluation of the quantity
Ī(z1) (see insert) is indicated as well. For this quantity, the intensities from different frequencies
contribute as follows: at the considered location z1, I(x1 + Δx) (rightmost curve) has just
entered its own resonance zone, I(x1) needs to be evaluated at the center of the resonance zone
corresponding to μv′(z1) = x1, and I(x1 −Δx) (leftmost curve) has almost passed its resonance
zone. Obviously, the largest contribution is provided by I(x1, z1). Note the intricate coupling
between location and frequency.

• Concentrate on outflows, i.e., v(r) > 0 (but dv/dr < 0, as occurring, e.g., in flows
with embedded shocks, is not excluded).

• Adopt, as before, a spatially constant thermal speed, vth(r) := vth
• Define χl(r) = χ̄L(r)/ΔνD.

Under such conditions, the optical depth difference between two points z1 and z2 (along
impact parameter p) is given by

t(x, p, z1, z2, ) =

max(z1,z2)∫
min(z1,z2)

χl(r
′)φ(x− μ′v′(r′)) dz′ (5.14)

with (as usual) μ′ = z′/r′, and r′ =
√

z′2 + p2. Then, without any approximation,

Iν(x, p, z)

= Icore e
−t(x,p,z,zB)︸ ︷︷ ︸

direct component, only present
forμ>0 and p≤R∗

+

t(x,p,z,zB)∫
0

S(r′)e−t(x,p,z,z′)dt(x, p, z, z′)

︸ ︷︷ ︸
diffuse component (radiation scattered/emitted in the wind)

with

zB =

{
z∗ for z > 0, p ≤ R∗
−∞ else
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This equation is valid for both outwards (μ ≥ 0) and inwards (μ < 0 ) rays, depending
on the sign of z. (Here, we use a p-z geometry extending over both hemispheres, with
z > 0 for the front, and z < 0 for the back hemisphere.)
To calculate the scattering integrals, required to couple with the rate equations, we

first integrate over φ(x)dx,

Ī(μ, r) =

+∞∫
−∞

Iν(x, μ, r)φ (x− μv′(r)) dx, and then over dμ,

J̄(r) =
1

2

+1∫
−1

Ī(μ, r) dμ

(5.15)

Now we consider that the integrands provide a contribution only if x ≈ μ′v′(r′) (5.14)
or x ≈ μv′(r) (5.15), respectively, due to the behaviour of φ. For the optical depth
difference, this means that

t(x, p, z, zB , )=

max(z,zB)∫
min(z,zB)

χl(r
′)φ (x− μ′v′(r′)) dz′ ≈ χl(r0)

zmax∫
zmin

φ (x− μ′v′(r′)) dz′, (5.16)

where r0 is the position of the corresponding resonance zone, which (at least in principle)
needs to be calculated from

[μ′v′] (r0) = x, i.e.,±
√

1− p2

r20
v′(r0) = x (nonlinear eq.),

which has a unique solution for strictly monotonic flows (otherwise there is more than one
resonance zone). The RHS of (5.16) constitutes the heart of the Sobolev approximation:
line opacities (and source functions, discussed later in this section) are assumed to be
constant over the resonance zones!
Furthermore, we switch from an integration over dz′ to an integration over CMF

frequency, dxCMF = d(x− μ′v′(r′)),

dxCMF

dz

∣∣∣∣
p

= − d(μv′)

dz

∣∣∣∣
p

= (see Section 5.4.2) = −
(
μ2 dv

′

dr
+ (1− μ2)

v′

r

)
=: −Q(r, μ).

For Q > 0, we have the following situation: by considering the boundaries, xCMF(z) =
x − μv′(r), xCMF(zB) → ∞ (bluewards of blue edge of resonance zone), and by putting
Q(r′, μ′) in front of the integral (using the same argument as before), we arrive at

t(x, p, z, zB) ≈ χl(r0)

xCMF(z)∫
xCMF(zB)

−1

Q(r′, μ′)
φ(xCMF) dxCMF ≈

≈ χl(r0)

Q(r0, μ0)

∞∫
x−μv′(z)

φ(ξ) dξ = τS(r0, μ0) Φ(x− μv′(r)) (5.17)

This result can be generalized to also include negative values of Q, if we define

τS(r0, μ0) =
χl(r0)

|Q(r0, μ0)|
=

χ̄L(r0)

ΔνD
∣∣μ2 dv′

dr + (1− μ2) v
′

r

∣∣
r0,μ0

(5.18)
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as the Sobolev optical depth, evaluated at the resonance zone. In the most general case,
Q is the directional derivative of the velocity in direction n, i.e.,

|Q| = |n · ∇(n · v′)| =
∣∣∣∣dv′ldl

∣∣∣∣ , if l has direction n.

For a further understanding of Equations (5.17) and (5.18), a few comments might be
relevant:

• Φ(∞) = 0 (blue – starwards – side of resonance zone), and Φ(−∞) = 1 (red side of
resonance zone), as long as v > 0. Thus:
t(x, p, z, zB) → 0 for z ‘before’ the resonance zone, and I(z) = Icore.
t(x, p, z, zB) → τS for z ‘behind’ the resonance zone, and I(z) ≈ Icore exp(−τS)
(without emission, compare with Figure 5.6).

• For pure Doppler-profiles, Φ(x) = 1
2erfc(x).

• Since v′ is the velocity in units of the thermal speed, and since ΔνD = vth/λ̃, we can
alternatively write

τS(r0, μ0) =
χ̄L(r0) λ̃∣∣μ2 dv

dr + (1− μ2) vr
∣∣
r0,μ0

,

when v and r are measured in actual units (then v/r has units of s−1).
Since also the integrand of the diffuse component contributes only for x ≈ μ′v′,

t(x,p,z,zB)∫
0

S(r′) e−t(x,p,z,z′) dt(x, p, z, z′) → S(r0)

t∫
0

e−t′dt′ = S(r0)
(
1− e−t

)
,

the specific intensity can be approximated by

Iν(x, p, z) ≈ Icore(p)e
−τS(r0,μ0)Φ(xCMF) + S(r0)

(
1− e−τS(r0,μ0)Φ(xCMF)

)
. (5.19)

This means that behind the resonance zone (where Φ(xCMF) = 1),

Iν(x, p, zbehind) ≈ Icore(p)e
−τS(r0,μ0) + S(r0)

(
1− e−τS(r0,μ0)

)
= const,

while before the resonance zone (where Φ(xCMF) = 0),

Iν(x, p, zbefore) ≈
{

Icore(p)=const for p ≤ R∗
0 else

Only inside the resonance zone, the optical depth increases and the intensity varies
accordingly (again, compare with Figure 5.6).
We stress that to calculate the specific intensity in Sobolev approximation (required,

e.g., for the emergent profile), the location of the resonance zone has to be evaluated for
each frequency and impact parameter!
Now comes the second ‘trick’. As already outlined, we first calculate

Ī(r, μ) =

+∞∫
−∞

[
Icore(p)e

−τS(r0,μ0)Φ(xCMF) + S(r0)
(
1− e−τS(r0,μ0)Φ(xCMF)

)]
φ(xCMF(r, μ))dx
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Again, we find a contribution only for xCMF ≈ 0, i.e., x ≈ μv′(r). Thus, we can replace
r0 by r and μ0 by μ: only those frequencies/resonance zones contribute that are located
at (or close to) the considered location (r, μ).
Realizing that φ(xCMF)dx = −dΦ with Φ(xCMF = x − μv′) → 1 for x → −∞ and

Φ(xCMF = x− μv′) → 0 for x → ∞, we find

Ī(r, μ) ≈
1∫

0

[
Icore(p)e

−τS(r,μ)Φ(xCMF) + S(r)
(
1− e−τS(r,μ)Φ(xCMF)

)]
dΦ =

= Icore(p)
1− e−τS(r,μ)

τS(r, μ)
+ S(r)

(
1− 1− e−τS(r,μ)

τS(r, μ)

)
,

which is thus purely local. Finally, by integrating over dμ, and accounting for the limits
regarding the first term,

J̄(r) = βc(r)Icore + (1− β(r))S(r), with (5.20)

βc(r)Icore =
1

2

1∫
μ∗

Icore(μ, ν̄)
1− e−τS(r,μ)

τS(r, μ)
dμ, and

β(r) =
1

2

1∫
−1

1− e−τS(r,μ)

τS(r, μ)
dμ (escape probability).

We note the following:
(i) The angular integration does not require a highly resolved angular grid, since the

interaction between x, μ and r has already been accounted for.

(ii) The core intensity has to be emitted (evaluated) at the core for an observer’s (rest)
frame frequency of ν̄ ≈ ν̃ (1 + μv(r)/c), in order to display a local CMF-frequency
of νCMF ≈ ν̃ at [μv(r)], corresponding to a local xCMF = 0. This ensures that
the resonance zone is illuminated by the full core intensity, and that there are no
self-shadowing effects (at least if there are no line-overlap effects).

Sobolev optical depth for prototypical resonance lines. The Sobolev optical depth at (r, μ),

τS(r, μ) =
χl(r)

|Q(r, μ)| =
χ̄L(r)

ΔνD
∣∣μ2 dv′

dr + (1− μ2) v
′

r

∣∣ ,
results for radial rays (μ = 1) in

τS(r) = χ̄L(r)λ̃/|dv/dr|.

For ground-state opacities of main ionization stages as present in many UV resonance
lines, we have χ̄L(r) ∝ n1(r) ∝ ρ(r), and, exploiting the continuity equation, ρ(r) =
Ṁ/(4πr2v(r)), and the typical β-velocity law, we obtain

τS(r) ∝
1

r2 v(r) dv
dr

=
1

βbR∗v2∞

(
v(r)

v∞

) 1
β−2

,
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Figure 5.7. Principle of P Cygni-profile formation, for a strong resonance line, remaining
optically thick until a maximum velocity, vm. Due to Doppler shifts, all observer’s frame
frequencies corresponding to [+vm,−vm] can contribute. (i) Absorption in region A in front
of the stellar disk (approaching material → blue frequencies). (ii) Asymmetric emission from
regions A/B in front hemisphere (blue emission due to approaching material), and region C
(side lobes) in back hemisphere (red emission due to receding material). The emission itself is
caused by line scattering; see the leftmost sketch.

with b = 1 − (vmin/v∞)1/β . For β = 0.58, this implies τS(r) = const, while for a more
typical situation with β = 1, τS(r) ∝ v∞/v(r), and the optical depth decreases by roughly
(and only) a factor of 100 from inside to outside. This explains why a typical UV P Cygni
line, e.g., C iv 1548/1550 (Figure 5.1), remains optically thick throughout the complete
wind, displaying a saturated absorption trough even for frequencies corresponding to v∞
(see also Figure 5.7).

Limiting cases: source functions for purely scattering resonance lines. Very often, the
source functions of the aforementioned resonance lines are dominated by line-scattering,
and in such cases (see also Section 5.5),

S(r) = J̄(r) =
βc(r)Icore

β(r)
.

(a) In the optically thin limit, i.e., (locally) weak resonance lines, τS(r, μ) � 1,

1− e−τS(r,μ)

τS(r, μ)
→ 1, and S(r) =

βc(r)Icore
β(r)

→ WIcore,

with dilution factor W (5.7). Thus, for large distances from the stellar core,(
r

R∗

)2

S(r) → Icore
4

= const,

and the source function dilutes quadratically. This can be also understood in terms
of an alternative argumentation: For an optically thin line, J̄ ≈ Jν , and for an
optically thin continuum as assumed here Jν → WIcore (see Section 5.3.1). Since
S = J̄ , we thus have S = WIcore.

8 This corresponds to a velocity field in line-driven winds when neglecting the so-called finite
cone-angle correction factor, e.g., Castor et al. (1975).
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(b) In the optically thick limit, τS(r, μ) 
 1, which applies to strong UV resonance
lines (discussed previously),

1− e−τS(r,μ)

τS(r, μ)
→ 1

τS(r, μ)
,

and (after few calculations),

S(r) =
βc(r)Icore

β(r)
→
(
R∗
r

)2

Icore
3

4 + 8
(
d ln v
d ln r

)−1 for large radii.

Since for large radii and a β velocity law d ln v/d ln r ∝ R∗/r, the source function of an

optically thick resonance line becomes proportional to (R∗/r)
3
, and decreases faster than

in the optically thin case. Also, this behaviour is important to understand the absorption
troughs of UV P Cygni lines at high velocities.

Radiative line acceleration. In Sobolev approximation, the radiative line acceleration due
to one line is provided by9

grad =
4π

c

χ̄L

ρ

1

2

∫
Ī(μ)μdμ ≈ 2π

c

χ̄L

ρ

1∫
μ∗

Icore(μ, ν̄)
1− e−τS(r,μ)

τS(r, μ)
μdμ,

since the contribution from the source term (even in μ) cancels when integrating over
μdμ with μ ∈ [−1, 1]. In particular,

grad ∝ χ̄L

ρ
, and NOT ∝ χ̄L

ρΔνD
(see Appendix B.2).

In the optically thick case, τS = χ̄L/(ΔνD |Q(r, μ)|) 
 1,

grad
τS�1→ 2π

c

χ̄L

ρ

1

χ̄L/ΔνD

1∫
μ∗

Icore(μ, ν̄) |Q(r, μ)|μdμ,

and the line acceleration becomes independent of χ̄L

grad
τS�1→ 2πΔνD

cρ

1∫
μ∗

Icore(μ, ν̄) |Q(r, μ)| μ dμ,

with |Q(r, μ)| =
∣∣μ2dv′/dr + (1− μ2)v′/r

∣∣.
Sobolev length. The Sobolev length is roughly the (half-)width of the resonance zone.
More precisely, it is the length scale on which v(r) changes by one vth unit, accounting
for the most decisive part of the line profile:

Δv = vth :=

∣∣∣∣dvdr
∣∣∣∣LSob ⇒ LSob =

vth
|dv/dr| =

1

|dv′/dr| for radial rays, and

Δv = vth :=

∣∣∣∣d(μv)dz

∣∣∣∣LSob ⇒ LSob =
vth∣∣μ2 dv

dr + (1− μ2) vr
∣∣ = 1∣∣μ2 dv′

dr + (1− μ2) v
′

r

∣∣
9 Compare with (5.11), and account for the fact that when integrated over frequency, there is

no force associated with emission, since there is no net momentum transfer due to an emission
process presumed to be isotropic; see also Castor (1974).
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for spherical symmetry. Most generally, the Sobolev length in direction n is

LSob =
vth

|n · ∇(n · v)|

We note that for low microturbulent velocities, LSob depends on m
−1/2
ion , i.e., decreases

significantly from H to Fe.

Range of validity of the Sobolev approximation. Let’s define a characteristic length scale,
lx, for a macrovariable x, defined via

dx

dr
lx = x, i.e., lx =

(
d lnx

dr

)−1

.

To warrant the validity of the Sobolev approximation (SA), LSob must be smaller than lx,∣∣∣∣LSob

lx

∣∣∣∣ =
∣∣∣∣ d lnxdv/vth

∣∣∣∣ < 1.

As an important example, we consider the (frequency-integrated) line opacity, assumed
within the SA as being roughly constant over the resonance zone when evaluating the
optical-depth integrals. For many (UV) resonance lines, χ̄L(r) ∝ ρ(r) (discussed previ-
ously), and a typical velocity field reads v(r) = v∞(1− R∗

r )β , with β ≈ 1, and neglecting
the quantity b ≈ 1 that plays no role here. Then,∣∣∣∣LSob

lχ̄L

∣∣∣∣ = vth
v

+
2vth
v∞

r

R∗
,

and the Sobolev approximation is valid (regarding an opacity ∝ ρ) as long as the following
are true:

(i) v(r) > vth (sometimes, the SA is also called a supersonic approximation, though
in view of this result it should be called superthermal).

(ii) r/R∗ < v∞/(2vth) = O(100), i.e., for all relevant radii.
As it turns out, a similar condition applies for the source function. The following are the
only regions (in a smooth wind) where the SA inevitably fails:

• The subthermal region, where the density increases exponentially within a very
extended resonance zone

• The transition zone between the quasihydrostatic photosphere and wind, where the
resonance zone is still broad, but the velocity field has a significant curvature, and
not a constant gradient10.

Interestingly, the SA is almost perfectly valid in a supernova remnant, due to its homol-
ogous expansion, v ∝ r, i.e., a constant gradient. However, when applied to line-driven
winds, the SA fails in correctly describing the reaction of the line acceleration onto distur-
bances. Most important, the so-called line-driven instability (LDI) cannot be represented
in the framework of the SA (e.g., Owocki and Rybicki, 1984).

5.4.3 Extensions of the Sobolev Theory

Particularly in the 1980s and 1990s, the ‘standard’ Sobolev theory (adopting an optically
thin continuum and constant velocity gradients, line opacities and source functions over
the resonance zone) has been extended towards more complex physical scenarios.

10 Unfortunately, this zone is very important for the radiative line acceleration, and is badly
described when using the SA (see Owocki and Puls, 1999).
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Coupling with continuum. Hummer and Rybicki (1985) accounted for continua of arbi-
trary optical depth, and coupled the line with the continuum transfer. In this case,

J̄(r) = βc(r)Iinc + (1− β(r))SL(r) + (Sc(r)− SL(r)) Ū(τS, βP),

with βc(r)Iinc =
1

2

1∫
−1

I inc(r, μ)
1− e−τS(r,μ)

τS(r, μ)
dμ,

(5.21)

and I inc(r, μ) the intensity incident to the considered location (resonance zone), usually
the continuum intensity. In (5.21), β(r) is the (conventional) escape probability11, Sc(r)
the continuum source function and Ū(τS, βP) a function describing the actual coupling of
the opacities in the resonance zone, with βP = χc

χ̄L/ΔνD
the ratio between continuum and

line opacity. The function Ū can be obtained, e.g., from precalculated tables (Taresch
et al., 1997).
Often the last term in (5.21) can be neglected, but at least the first term (modified

compared to the previous expressions) needs to be considered when the continuum is
nonnegligible. To evaluate this term, one either uses the intensities from the continuum
transfer, or one applies the following reasoning (unpublished thus far):

βc(r)Iinc =
1

2

1∫
−1

I inc(r, μ)
1− e−τS(r,μ)

τS(r, μ)
dμ

τS�1,dv/dr>0→ 1

2χl

1∫
−1

I inc(r, μ)

[
μ2 dv

′

dr
+ (1− μ2)

v′

r

]
dμ =

=
1

χl

[
Kν(r)

(
dv′

dr
− v′

r

)
+ Jν(r)

v′

r

]
=

=
1

χl
Jν(r)

[
fν(r)

(
dv′

dr
− v′

r

)
+

v′

r

]
= Jν(r)

1

τS(r, μ =
√
fν(r))

,

where all moments refer to continuum quantities (calculated in the spirit of Section 5.3.2),
and fν(r) =

Kν

Jν
is the (conventional) Eddington factor. Including the optically thin case,

one finds, to a good approximation

βc(r)Iinc ≈ Jν(r)
1− e−τS(r,μ=

√
fν(r))

τS(r, μ =
√
fν(r))

,

and avoids the angular integration by evaluating the integrand at μ =
√
fν(r)

12.

Inclusion of source-function gradients. As firstly shown by Sobolev (1957) and Castor
(1974), the inclusion of source-function gradients is important when calculating the line
acceleration. Though a constant source function does not contribute (due to cancel-
lation effects when integrating over μdμ, discussed previously), corresponding gradi-
ents do contribute, and might become decisive, particularly in the inner wind regime
(see also Owocki and Puls, 1999). Puls and Hummer (1988) improved on the previous

11 Escape probabilities for static atmospheres are discussed in Section 1.10.
12 A similar reasoning yields a fair approximation for the escape probability, β(r) ≈

1−e−τS(r,μ=
√

1/3)

τS(r,μ=
√

1/3)
.
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works, and included corresponding continuum terms that turned out to be significant
as well.

Inclusion of multiline effects. Multiline effects are essential when calculating the total
line acceleration,

∑
i g

i
rad, present in a wind (Puls, 1987). In addition to ‘conventional’

line-overlap effects (similar rest-wavelengths of different lines), lines can also interact with
each other due to Doppler-induced frequency shifts. E.g., for the same νobs, there might
be an interaction between a line with ν̃1 from the inner wind and a line with ν̃2 from the
more outer part, if

ν̃1 − ν̃2
ν̃1

≈ (μv)2
c

− (μv)1
c

> 0.

In other words, the radiation incident at (μv)2 (determining the radiation field for the
line with ν̃2) has already been processed before, by the bluewards line with ν̃1 at (μv)1.
See also Friend and Castor (1983).

Nonmonotonic velocity fields. lead to more than one resonance zone, and need to be
considered, e.g., when calculating the approximate line acceleration in time-dependent
winds. Also in this case, the basic Sobolev theory can be adapted to include such effects
(see Rybicki and Hummer, 1978, for the case of two coupled resonance zones, and Puls
et al., 1993, for a generalization and application to instable-wind models).

SEI (Sobolev with exact integration). When calculating line profiles (specifically, UV P
Cygni lines; for the profile formation principle, see Figure 5.7), and using the SA to
determine both the source function and the emergent profile, the resulting accuracy is
quite low, when compared to more ‘exact’ methods. A better approach is to calculate
the scattering integral (and thus the source function, either in a complete NLTE or a
two-level approach) using the SA, and then to derive the emergent line profile from an
‘exact’ formal solution13 using such a source function.
To our knowledge, this had been first noted by Hamann (1981), and was explicitly

suggested by Lamers et al. (1987), under the acronym SEI. Such an approach was also,
and independently, used by Puls (1987), for the case of a large number of overlapping
(UV) lines, in the context of NLTE wind modeling/spectrum synthesis.

5.4.4 Comoving Frame (CMF) Transport

Obviously, the calculation of the radiation field in an environment with significant (super-
sonic) velocity fields is either time consuming, if performed in the observer’s frame (many
grid points, frequencies and angles), or only approximate (but fast), when done using the
SA. In the latter case, there are additional difficulties when considering not only one
isolated line in an optically thin continuum, but more realistic situations as occurring in
NLTE atmosphere modeling (many lines, various continua, multiline effects, etc.).
A quite simple and fast way out of this dilemma is possible when the velocity field is

monotonic, after transforming to the comoving frame14.

13 When calculating the formal solution via an integral method, it is advantageous to remap all
quantities onto a microgrid of resolution ≈ vth/3, to ensure a correct treatment of the resonance
zone (e.g., Santolaya-Rey et al., 1997).
14 A CMF solution is also possible for nonmonotonic velocity fields, at least in principle, but

the algorithm becomes very complex.
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The stationary RTE in the CMF: heuristic derivation. We start in the observer’s frame,
using the p-z geometry (now again for the front hemisphere only):

±dI±(z, p, ν)

dz
= ην

(
r, ν
(
1− μv

c

))
− χν

(
r, ν
(
1− μv

c

))
I±(z, p, ν),

where in the following all CMF quantities are denoted by a sub- (or super-)script “0” (not

to be confused with the denotation for the resonance zone), e.g., ν0
Δ
= νCMF = ν (1−μv/c).

A velocity field produces Doppler shifts, aberration and advection terms (discussed
later in this section); formally, all of these are O(v/c) effects, but for lines the Doppler
shifts become already significant if v = O(vth), due to the rapid change of the profile
function. In the following heuristic approach, we concentrate on these Doppler shifts
alone and neglect the rest (see also Lucy, 1971).
Since ν0 = ν0(ν, z) = ν (1− μv/c), the spatial derivative in the RTE needs to account

for the change of ν0 with z (see Figure 5.8):

d

dz

∣∣∣∣
ν

=
∂

∂z

∣∣∣∣
ν0

+
∂

∂ν0

∣∣∣∣
z0

∂ν0
∂z

∣∣∣∣
ν

, with
∂ν0
∂z

∣∣∣∣
ν

= −ν

c

∂(μv)

∂z

O(v/c)
≈ ∓ν0

c
Q̃(r, μ). (5.22)

Here, we have approximated r ≈ r0 and μ ≈ μ0, and accounted for the fact that when
using z > 0 exclusively, ∂(μv)/∂z = ± Q̃(r, μ) for μ > 0 and μ < 0, respectively.
Q̃ corresponds to our ‘conventional’ Q (e.g., (5.18)), but is evaluated using v instead
of v′.

Figure 5.8. Transformation of the observer’s frame spatial derivative (5.22), (d/dz)ν=const:
While in the observer’s frame we proceed from A to B with ν = const, and in the CMF we

proceed via A
ν0=const→ C, followed by C

z0≈z=const→ B.
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Thus, the RTE becomes

. . . in spherical symmetry, and using a p-z geometry, with r0 ≈ r, z0 ≈ z, μ0 ≈ μ,

±∂I±0 (z, p, ν0)

∂z
− ν0Q̃(r, μ)

c

∂I±0 (z, p, ν0)

∂ν0
= η0(r, ν0)− χ0(r, ν0)I

±
0 (z, p, ν0). (5.23)

While the spatial derivative enters with ± for outwards and inwards radiation, respec-
tively, the frequency derivative has the same sign in both cases. This, again, is due to
the fact that the gradient of (μv) is always positive in a spherically expanding medium
(as long as v(r) is monotonically increasing), irrespective of direction.

. . . in spherical symmetry with r0 ≈ r, μ0 ≈ μ

μ
∂I0(r, μ, ν0)

∂r
+

(1− μ2)

r

∂I0(r, μ, ν0)

∂μ
− ν0Q̃(r, μ)

c

∂I0(r, μ, ν0)

∂ν0

= η0(r, ν0)− χ0(r, ν0)I0(r, μ, ν0),

. . . and in plane-parallel symmetry with z0 ≈ z, μ0 ≈ μ

μ
∂I0(z, μ, ν0)

∂z
− ν0μ

2(dv/dz)

c

∂I0(z, μ, ν0)

∂ν0
= η0(z, ν0)− χ0(z, ν0)I0(z, μ, ν0).

• The full transformation of the RTE (including time-dependent terms) can be found,
e.g., in Castor (1972).

• Mihalas et al. (1976) showed that aberration terms (involving changes in direction
μ) and advection terms (arising ‘from gradients or from a “sweeping up” of radiation
by the transformation’ to the CMF) can be neglected when v � c as considered here,
while the frequency derivatives are most important. Thus far, the preceding equations
are sufficient as long as v � c (but: SN remnants with v/c <∼ 0.04 . . . 0.15(!)).

• In the preceding equations, particularly I0, η0, and χ0 are comoving frame variables,
and η0 and χ0 are isotropic.

• Consequently, for each line (if treated as a single one), only a small frequency range
covering the variation of φ(≈ ±3vth) needs to be considered.

• If only one line is considered, the RT is performed exclusively in the corresponding
resonance zone.

• The CMF RTE is a partial differential equation (PDE) of hyperbolic type, and poses
an initial boundary value problem, i.e., it requires boundary conditions in space and
initial values in frequency.

• For larger frequency ranges, it might be useful to differentiate via

ν0Q̃(r, μ)

c

∂

∂ν0
=

Q̃(r, μ)

c

∂

∂ ln ν0
.

Characteristics of the homogeneous equation.Often, the CMF equation of RT (e.g., (5.23))
is expressed in terms of Doppler units with respect to v∞, x0 = ν0 − ν̃/Δν∞, and
Δν∞ = ν0 v∞/c, where ν̃ is an arbitrary reference frequency close to ν0 (e.g., the line-
center frequency, if only one line is considered). Measuring v in units of v∞ (v′′ = v/v∞),
and accounting for

dx0 =
c

v∞

ν̃

ν0

dν0
ν0

≈ c

v∞ν0
dν0 =

dν0
Δν∞

,
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we find

±∂I±0 (z, p, x0)

∂z
− P (r, μ)

∂I±0 (z, p, x0)

∂x0
= η0(r, x0)− χ0(r, x0)I

±
0 (z, p, x0) (5.24)

with

P (r, μ) =
d(μv′′)

dz
=

(
μ2 dv

′′

dr
+ (1− μ2)

v′′

r

)
.

The characteristics of the homogeneous (RHS = 0) PDE are the curves (generally:
hypersurfaces) along which I±0 remains constant if there is no absorption/emission, and
need to be known, e.g., if we want to investigate the interaction (irradiation) of two lines
(from red edge of first to blue edge of second line), in case of a negligible continuum.
For the type of PDE considered here, these characteristics are given by (see standard
textbooks)

dx0

dz
= ∓P (z),

and integration results in

0 < Δx0 = x0,B − x0 = ∓
zB∫
z

P (z)dz = ∓ [μv′′(zB)− μv′′(z)] = ∓Δμv′′. Thus,

I±0 (μv′′(z), x0) = I±0 (μv′′(zB), x0,B) = I±0 (μv′′(z)∓Δx0, x0 +Δx0).

See Figure 5.9. Without absorption and emission, all photons are ‘only’ redshifted
with regard to the CMF, from x0 + Δx0 to x0, both when propagating outwards from
μv′′(z)−Δx0 to μv′′(z), and when propagating inwards from μv′′(z) + Δx0 to μv′′(z).
The corresponding observer’s frame intensity at x, I±(z, x), remains constant, of course.

Figure 5.9. Characteristics of the homogeneous RTE in the CMF (5.24). See text.



“9781108499538c05” — 2019/8/30 — 12:53 — page 177 — #27

Radiative Transfer in the (Expanding) Atmospheres of Early-Type Stars 177

Sobolev limit. From the comoving frame RTE, (5.24), one can also derive the Sobolev
limit. Since we are in the CMF, this equation needs to be solved only in those regions of
x0 where the profile function is nonnegligible. This, however, corresponds to the resonance
zone, where the SA assumes that all macrovariables (except v) are spatially constant. In
this spirit, when neglecting the spatial derivative, the Sobolev limit can be easily obtained.
We will show this here for the case of one purely absorbing line with transition

frequency ν̃ and positive μ (no continuum), the generalization is left as an exercise for
the reader (or see Lucy, 1971; Puls, 1991). From

−P (r, μ)
∂I+0 (z, p, x0)

∂x0
= −χ0(r, x0)I

+
0 (z, p, x0),

where (z, r, μ) refer to the resonance zone, we obtain15

ln
[
I+0 (z, p, x0)/I

inc
0 (z, p, x0,B)

]
=

χ̄L(r)

Δν∞P (r, μ)

x0∫
x0,B

φ(x)dx

I+0 (z, p, x0) = I inc0 (z, p, x0,B) exp [−τS(r, μ) Φ(x0)] ,

q.e.d. (One might compare with (5.19), and note that the preceding solution is already
evaluated in the resonance zone.)

Solution methods. The basic approach to numerically solve the CMF RTE in spherically
expanding atmospheres is similar to the treatment of the (quasi-)isotropic continuum
(Section 5.3.2).
Method 1 (formal solution): Here, ‘only’ the discretized CMF RTE for the Feautrier
variables u0 and v0 is solved, with u0 = 1

2 (I
+
0 + I−0 ) and v0 = 1

2 (I
+
0 − I−0 ). In p-z

geometry, we thus have (cf. (5.24))

∂u0

∂z
− P

∂v0

∂x0
= −χ0v

0

∂v0

∂z
− P

∂u0

∂x0
= χ0(S0 − u0),

(5.25)

where x0 is the CMF frequency in Doppler units with respect to v∞, and P (r, μ) =

(dμv/v∞)/dz =
(
μ2 dμv/v∞

dr + (1− μ2) v/v∞
r

)
.

(5.25) is a system of two coupled, first-order PDEs, where (almost) all variables are
to be evaluated in the CMF and depend on z (as a function of impact parameter p), r
and x0.
Spatial boundary values are specified as before (see Section 5.3.2), plus a ‘blue-wing’

boundary condition at the bluemost frequency, from the solution of a pure continuum
transport. Special attention needs to be paid if the integration extends over a larger
frequency range (more than one line), by a careful formulation of the outer boundary
condition for optically thick conditions16 (e.g., bluewards from the He ii Lyman edge);
otherwise, numerical artefacts might be created and transported through the spatial and
frequency grid.

15 Since x0 is in units of v∞, the corresponding profile function is normalized with regard to
Δν∞
16 Unfortunately, such formulations are usually not published.
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The preceding PDEs are discretized using either of the following:

• A fully implicit scheme17 (second-order in space, first-order in frequency), that is
unconditionally stable (Mihalas et al., 1975).

• A semi-implicit (Crank–Nicholson) scheme, which is of higher accuracy, since it is of
second order in frequency. If used in the formulation by Hamann (1981) (and not in
the formulation by Mihalas et al., 1975), this is unconditionally stable as well.

Method 2 (variable Eddington factors): Here one uses the CMF-moments equations to
obtain the moments of the radiation field (in the CMF). Contrasted with the correspond-
ing observer’s frame equations for isotropic opacities/emissivities (Section 5.3.1), also the
third moment of the specific intensity, N0

ν , enters the equations:

1

r2
∂
(
r2H0

ν

)
∂r

− ν0
c

[
v

r

∂(J0
ν −K0

ν )

∂ν0
+

dv

dr

∂K0
ν

∂ν0

]
= η0(ν0)− χ0(ν0)J

0
ν

∂K0
ν

∂r
+

3K0
ν − J0

ν

r
− ν0

c

[
v

r

∂(H0
ν −N0

ν )

∂ν0
+

dv

dr

∂N0
ν

∂ν0

]
= −χ0(ν0)H

0
ν

By means of the sphericality factor qν (5.13) and the Eddington factors f0
ν = K0

ν/J
0
ν and

g0ν = N0
ν /H

0
ν (calculated from the formal solution), we obtain again a coupled system of

first-order PDEs for r2J0
ν and r2H0

ν , that can be solved by discretization:

−
∂
(
r2H0

ν

)
∂r

+
ν0
c

[
dv

dr
− v

r

]
∂
(
f0
ν r

2J0
ν

)
∂ν0

+
ν0
c

v

r

∂
(
r2J0

ν

)
∂ν0

= χ0(ν0)
(
r2J0

ν − r2S0
ν

)

−
∂
(
qνf

0
ν r

2J0
ν

)
qν∂r

+
ν0
c

[
dv

dr
− v

r

]
∂
(
g0νr

2H0
ν

)
∂ν0

+
ν0
c

v

r

∂
(
r2H0

ν

)
∂ν0

= χ0(ν0)r
2H0

ν

In this case, a Rybicki scheme might be used if the source function can be separated into
scattering and true absorption/emission components18.

Radiative acceleration. To calculate the radiative acceleration, in the observer’s frame we
would need to evaluate (see (5.11))

grad =
1

cρ

∫
dν

∮
(χ (ν(1− μv/c)) Iν(μ)− η (ν(1− μv/c)))ndΩ,

since the (line-)opacities and emissivities are angle dependent when a velocity field is
present.
Because of the isotropy of χ0

ν and η0ν in the comoving frame, however, this expression
becomes considerably simplified when evaluated in the CMF,

g0
rad =

4π

cρ

∫
χ0
νH

0
νdν, since

∮
χ0
νI0(μ, ν0)ndΩ = 4πχ0

νH
0
ν , and

∮
η0νndΩ = 0.

Interestingly (and fortunately), one can show (e.g., Mihalas, 1978, chapter 15.3), that
this expression is not only valid when used within the fluid frame (=CMF) equations
of motion, but also, to order (v/c), in the corresponding inertial frame formulation.
Namely, when the moments of the radiation field contained in the coupled matter–
radiation equation of motion are expressed in terms of their CMF counterparts, and if the
CMF moments equations (which we have just shown) are used, a delicate cancellation of

17 For this scheme, an almost optimum local approximate lambda operator (ALO) can be
calculated in parallel (see the next section and Puls, 1991).
18 See equations (1.46) and (1.47) in Section 1.9.4.
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terms ensures that also in the inertial frame the preceding expression for g0
rad

O(v/c)→ grad

can be used for the radiative acceleration.

5.5 Accelerated Lambda Iteration (ALI) and ‘Preconditioning’

The content of this section is not directly related to radiative transfer, but important
if an NLTE treatment19 of the plasma is required. This is particularly true for the
atmospheres of hot stars, where the radiative rates dominate over the collisional ones
in the line-forming region, due to a strong radiation field (and low densities in the stellar
wind). Part of this section overlaps with the contents of Sections 3.7 and 3.8, but most
issues are discussed here with special emphasis on the conditions in rapidly expanding
atmospheres, providing an additional perspective.
Basically, there are two methods to obtain a consistent solution for the radiation field

and the occupation numbers: (i) the complete-linearization method (Auer and Mihalas,
1969), used, e.g., in CMFGEN (Appendix A); and (ii) the ALI (Werner and Husfeld,
1985), used, e.g., in PoWR, WM-basic and FASTWIND (also Appendix A). Generally,
the ALI method is easier to programme and has a faster performance per iteration step,
but often requires more iterations than complete linearization.
The basic idea of the original (not accelerated) lambda iteration is as follows: One

(a) starts with guessing values for the occupation numbers (e.g., from LTE or simplified
NLTE conditions); (b) calculates corresponding opacities and source functions; (c) solves
the RTE and calculates the mean intensities and scattering integrals; and (d) solves the
rate equations involving Jν and J̄ , i.e., calculates new occupation numbers. Subsequently,
steps (b) to (d) are carried out again, and the process is iterated until (at least in terms
of wishful thinking) convergence is obtained.
In practice, however, the convergence of this iteration (if at all achieved) is particularly

slow for optically thick, scattering dominated processes, and it is rather difficult or
even impossible to define an appropriate convergence criterion. These difficulties base
on the fact that during each iteration, information is propagated only over Δτν ≈ 1. The
Accelerated Lambda Iteration has been developed to get rid of these problems.

5.5.1 A Simple Example

To obtain more insight into the difficulties outlined earlier, we first concentrate on a
simple showcase, namely a purely scattering line (e.g., a UV-resonance line) in Sobolev
approximation. Then, we have the following:

(i) S = J̄ Most simple ‘rate equation’
(e.g., from two-level atom without collisions)

(ii) J̄ = (1− β)S + βcIcore ‘Formal solution’ (Sobolev solution for line
transfer in optically thin continua, see (5.20))

Let’s assume that the opacities are known and remain constant over the iteration, which
is not too wrong for resonance lines.

Method A: Using (i) and (ii) in parallel, it is possible to obtain a consistent analytic
solution,

S = (1− β)S + βcIcore ⇒ S =
βcIcore

β
(balance between irradiation and escape)

19 This accounts for the coupling between radiation field and occupation numbers via rate
equations.
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Method B: Alternatively, we apply the lambda iteration. We start with a guess value for
the source function, S0, and calculate the scattering integral, J̄0, using (ii). Then we
determine a new iterate for the source function, S1, using (i):

S1 = (1− β)S0 + βcIcore.

Generally,

Sn = (1− β)Sn−1 + βcIcore
Sn−1 = (1− β)Sn−2 + βcIcore

}
Sn − Sn−1 := ΔSn = (1− β)ΔSn−1, (5.26)

and for optically thick lines where β → 1/τS and thus β � 1, it turns out that ΔSn ≈
ΔSn−1, i.e., no reasonable convergence criterion can be defined.
From this example, two questions are obvious: When do we consider the solution

as converged? And how does the direct solution (Method A) and the Lambda-iterated
solution (Method B) compare? To answer these questions, we investigate the limiting
value of Sn for n → ∞.

Sn = (1− β)Sn−1 + βcIcore = (1− β)
[
(1− β)Sn−2 + βcIcore

]
+ βcIcore =

= . . . = (1− β)nSo + βcIcore
[
(1− β)n−1 + (1− β)n−2 + · · ·+ 1

]
.

Accounting for
n−1∑
i=0

qi = 1−qn

1−q , we obtain

Sn = (1− β)nS0 + βcIcore
1− (1− β)n

β

n→∞→ βcIcore
β

,

i.e., indeed the Lambda-iterated solution (from Method B) converges (very slowly) to the
correct one from Method A (and becomes independent from the start value).
How many iteration steps are required? For β � 1, we can approximate (1 − β)n ≈

(1 − nβ), and to ensure convergence, we must have (1 − β)n → 0, i.e., n >∼ 1/β → τS .
Thus, we would need roughly the same number of iterations as the size of τS , which (i)
can be very large for resonance lines, n ≈ τS up to O(105 . . . 106), and (ii) shows that
indeed, per iteration step, information corresponding to only Δτ = 1 is propagated.

5.5.2 Accelerated Lambda Iteration

Generalizing the aforementioned simplified problem, we need to fulfil the following
requirement for a consistent solution of the coupled problem (RT and rate equations)

Sn

via rate equations︷︸︸︷
= f(Jn) = f

⎛
⎜⎝
formal solution︷ ︸︸ ︷

Λ [Sn]

⎞
⎟⎠ ,

which is a nonlinear and, except for the Sobolev case, nonlocal problem. In contrast, the
lambda iteration provides us with

Sn = f(Jn−1) = f(Λ
[
Sn−1

]
),

which displays the well-known convergence problems. We stress that Λ is an affine
operator20, due to the boundary conditions.

20 Linear transformation plus displacement.
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In the following, we consider continuum (J) and line problems (J̄) in parallel. A
generalization of results for continuum quantities to line conditions is straightforward,
by solving for all line frequencies and integrating over the profile function.
For values on a 1-D spatial grid (with N grid points), we may rewrite the formal

solution of RT in form of an affine relation,

J = Λ · S+Φ,

where J, S and Φ are vectors of length N , and Λ is a matrix with N ×N elements. Φ
corresponds to the boundary conditions, J(S = 0).
If required, the elements Φi and Λij might be derived (in 1-D) from N + 1 formal

solutions for S = 0, S = e1, . . . ,S = eN , respectively, where

ej = (0, . . ., 0, 1, 0, . . ., 0)T

is the unit vector in direction j.
ALI is based on the idea of operator splitting (e.g., Cannon, 1973), namely to split21

Λ = ΛA +
(
Λ−ΛA

)
,

the lambda operator into an approximate operator (with a linear component that should
be easily invertible) and a rest part. Then we can approximate

Jn ≈ ΛA [Sn] +
(
Λ−ΛA

) [
Sn−1

]
,

where equality is obtained for n → ∞, when Sn−1 → Sn.
This is the essential clue, since now we have a relation (at step n) between Jn and Sn,

and not only between Jn−1 and Sn−1.
Also the ALO, ΛA, needs to be of affine type, i.e., ΛA [S] = Λ∗ ·S+Φ∗, but even then

Jn = [Λ∗ · Sn +Φ∗] + Jn−1 −
[
Λ∗ · Sn−1 +Φ∗] , i.e.,

Jn = Λ∗ · Sn +ΔJn−1, with ΔJn−1 = Jn−1 −Λ∗ · Sn−1, (5.27)

only the linear part of the ALO, Λ∗, needs to be specified, assuming that Φ∗ remains
constant over the iteration.
We note that ΔJn−1 depends only on Sn−1, and can be calculated from the formal

solution for Jn−1 (and specified Λ∗).

ALI in practice. To illustrate how ALI works in practice, we consider a continuum problem
with scattering, or – again – a two-level atom,

S = ξJ+ψ,

where ξ is a diagonal matrix (containing the scattering fractions, 0 ≤ ξii ≤ 1), and ψ is
a vector (containing the Planck functions). Then,

Sn = ξ
(
Λ∗Sn +ΔJn−1

)
+ψ,

21 Similar to the Jacobi iteration in boundary value problems.
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and we obtain an explicit expression for Sn,

Sn = (1− ξΛ∗)
−1 (

ξΔJn−1 +ψ
)
= (1− ξΛ∗)

−1 (
ξ(Λ−Λ∗)Sn−1 +ψ

)
, (5.28)

which constitutes the ALI scheme for simple source functions (those that can be analyt-
ically separated into a scattering and thermal part).
With ΔSn := Sn − S∞ (deviation from the ‘true’ source function S∞, in contrast to

the definition in (5.26)), we finally find (after a few algebraic manipulations)

ΔSn = AΔSn−1, with amplification matrix A = (1− ξΛ∗)
−1

(ξ(Λ−Λ∗)) .

One can show that under typical conditions A has a complete set of real and orthogonal
eigenvectors, and real eigenvalues λ (e.g., Puls and Herrero, 1988). Expanding ΔS in
terms of these eigenvectors, for large n we obtain ΔSn ≈ λn

maxΔS0, where λmax =
±max(|λi|), and the minus sign applies when the corresponding eigenvalue is negative.
Thus, the ALI scheme converges if |λmax| < 1. For static problems, Olson et al. (1986)
showed that in particular

|λmax| < 1, if Λ∗ = diag(linear part ofΛ).

A very elegant method to calculate the corresponding Λ∗ has been provided by Rybicki
and Hummer (1991, appendix). For the case of CMF line transfer, on the other hand,
Puls (1991) developed an almost optimum, purely local ALO (see Figure 5.10).

• Both of these ALOs can be calculated in parallel with the corresponding RT, on very
fast timescales.

• Since the CMF line transfer has an essentially local character in rapidly expanding
atmospheres (taking place only in the narrow resonance zone), a local ALO is
sufficient when solving the rate equations under such conditions.

• For local ALOs, an overestimation of the exact diagonal leads to divergence in most
cases.

Figure 5.10. Local ALO, Λ∗, from Puls (1991), and corresponding ALI cycle, for a CMF line
source function in an expanding atmosphere. The displayed example refers to a strong, purely
scattering line. Left: relative deviation (absolute value, logarithmic) among (i) solid – the exact
diagonal of the Lambda operator and Λ∗ (relative differences mostly below 10−6); (ii) dotted –
the exact diagonal and (1− β) (cf. 5.29); and (iii) dashed – the exact diagonal and (1− β − Ū),
when using the SA with continuum. Since (1 − β) overestimates the exact diagonal in most
regions (not visible since absolute values are displayed), it cannot be used as an ALO. Right:
Relative corrections ΔSn/Sn for subsequent iterations, as a function of radius. Adapted from
Puls (1991). Reproduced with permission © ESO.
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For non-local ALOs and more sophisticated iteration schemes (e.g., required in multi-
D calculations), we refer to Trujillo Bueno and Fabiani Bendicho (1995) and references
therein. See also Hennicker et al. (2018).

Comparison between ALI scheme and Sobolev approach (line case). Assuming a local
ALO, for each depth point we have the correspondence

ALI: J̄n = Λ∗Sn + ΔJ̄n−1︸ ︷︷ ︸
J̄n−1−Λ∗Sn−1

Sobolev: J̄n = (1− β)Sn + βcIcore

⎫⎪⎬
⎪⎭Λ∗ Δ

= (1− β), and ΔJ̄n−1 Δ
= βcIcore (5.29)

We note that when comparing with the SA with continuum, this correspondence would

read Λ∗ Δ
= (1− β − Ū). See Figure 5.10 and (5.21).

5.5.3 Implementation into Rate Equations – ‘Preconditioning’

In the last section of this overview, we discuss how the ALI approach is implemented
into the rate equations. We start with the definition of the so-called net line rate, Zul,
quantifying the net transition rate for a line transition with upper and lower levels u, l,
and corresponding occupation numbers, nu, nl, respectively:

Zul = nuAul

(
1− J̄

S

)
,

where Aul is the Einstein coefficient for spontaneous emission, and Zul > 0 if the
downward transitions dominate. The corresponding line source function is given by

S =
nuAul

nlBlu − nuBul
,

with Einstein coefficients for absorption, Blu, and induced emission, Bul.

Without ALI, and applying the conventional (not accelerated) lambda iteration, Sn would
be calculated using J̄n−1 in the rate equations,

J̄n−1

Sn
= J̄n−1

(
nlBlu − nuBul

nuAul

)

⇒ Zul = nu ·
(
Aul +BulJ̄

n−1
)

︸ ︷︷ ︸
downward line rate

−nl ·
(
BluJ̄

n−1
)

︸ ︷︷ ︸
upward line rate

,

where the second equation denotes the downward and upward rates for the considered
line transition within the rate matrix.

With ALI and local ALO, Sn is calculated using J̄n = Λ∗Sn +ΔJ̄n−1:

J̄n

Sn
= Λ∗ +

ΔJ̄n−1

Sn

⇒ Zul = nuAul

(
1− Λ∗ − ΔJ̄n−1

Sn

)
=

= nu ·
(
Aul(1− Λ∗) +BulΔJ̄n−1

)
︸ ︷︷ ︸

downward line rate

−nl ·
(
BluΔJ̄n−1

)
︸ ︷︷ ︸

upward line rate
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A comparison of the line rates,

Aul → Aul(1− Λ∗)

BulJ̄
n−1 → BulΔJ̄n−1

BluJ̄
n−1 → BluΔJ̄n−1,

shows that all rates become smaller in the ALI formulation, since the inefficient part (the
optically thick line core, where upward and downward rates are equal) is analytically
cancelled, and only the efficient part (the optically thin wings) survives. This modification
of the line rates when using the ALI scheme has been named ‘preconditioning’ by Rybicki
and Hummer (1991), and the corresponding rates are sometimes called ‘effective’ or
‘reduced’ rates.

Reduced rates for Sobolev transport. Similar to the preceding reasoning, we now investi-
gate the consequence of using the SA scattering integrals in the rate equations,

Zul = nu

(
Aul +BulJ̄

)
− nlBluJ̄ =

= nu (Aul +Bul [(1− β)S + βcIcore])− nlBlu [(1− β)S + βcIcore] = · · · =

= nu (Aulβ +BulβcIcore)− nlBluβcIcore.

Also here, the contribution from the optically thick core cancels analytically. By com-
paring this contribution with the analogous result from the ALI approach, we again find
the correspondence (see (5.29))

Λ∗ Δ
= (1− β), and ΔJ̄n−1 Δ

= βcIcore.

If one would use the Sobolev approximation with continuum (5.21), this correpondence
would read

Λ∗ Δ
= (1− β − Ū), and ΔJ̄n−1 Δ

= βc(r)Iinc +ŪSc.

5.6 Further Issues and Applications

Due to space (and time) limitations, a variety of additional issues could not be treated
in this overview. In the following, we will provide important keywords in this context
(certainly not a complete list), marked in italics if directly related to specific RT problems
in early-type stellar atmospheres.

• Temperature structure: radiative equilibrium vs. thermal electron balance

• Energy equation, adiabatic expansion and cooling in the outermost wind

• LDI and impact of a diffuse radiation field

• Inhomogeneous winds, shocks and X-ray emission

• Examples/applications
– Supersonic ‘microturbulence’ vs. nonmonotonic v-fields
– Supersonic macro turbulence
– (Quasi-)recombination lines
– Optical-depth invariants and scaling relations
– Hα in O-stars and AB-supergiants
– Impact of wind on weaker lines, and specifically N iiiλ4640
– IR/radio excess
– IR lines: inverted levels (or close to inversion)
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– X-rays: impact on resonance lines/‘superionization’
– Emission lines in WRs

• Wind inhomogeneities/clumping
– Micro- and macroclumping, porosity
– Clumping in RTE
– Hα vs. He iiλ4686
– Velocity-porosity
– Clumping – coupling with rate equations

• Outlook
– Multi-D problems/formulation
– Time dependence, relativistic treatment
– Nonradial line forces (e.g., in rotating winds)
– Polarization (linear, circular → B-fields)

5.7 Appendix A: NLTE Model Atmosphere Codes for Hot Stars

Table 5.1 compares presently available atmospheric codes that can be used for the
spectroscopic analysis of hot stars. Since the codes detail/surface and TLUSTY calculate
occupation numbers/spectra within hydrostatic, plane-parallel atmospheres, they are
“only” suited for the analysis of stars with negligible winds (see also end of Section 5.2).
The different computation times are majorly caused by the different approaches to deal
with line-blocking/blanketing. The overall agreement between the various codes (within
their domain of application) is quite satisfactory, though certain discrepancies are found
in specific parameter ranges, particularly regarding EUV ionizing fluxes (Puls et al., 2005;
Simón-Dı́az and Stasińska, 2008).

5.8 Appendix B: Further Comments on the Line Profile Function

5.8.1 Appendix B.1: Depth Dependent Thermal Speeds

To avoid a depth dependence of the frequency grid when measuring frequencies in depth
dependent Doppler units, one uses a fiducial thermal speed, v∗th, such that

x =
ν − ν̃

Δν∗D
with Δν∗D =

ν̃v∗th
c

.

Let

δ(r) =
ΔνD(r)

Δν∗D
=

vth(r)

v∗th
, then

ν − ν̃ − μv(r)ν̃/c

ΔνD(r)
=

x− μv′(r)

δ(r)
,

now with v′(r) = v(r)/v∗th (cf. Section 5.4.1). In this notation,

φν(xCMF, r) = φν(x− μv′, r) =
1

Δν∗Dδ(r)
√
π
exp

[
−
(
x− μv′(r)

δ(r)

)2
]
,

with units “per frequency” (s), or alternatively,

χν(xCMF, r) =
χ̄L(r)

Δν∗D
φ(xCMF, r),

with dimensionless

φ(xCMF, r) =
1

δ(r)
√
π
exp

[
−
(
x− μv′(r)

δ(r)

)2
]
, and

χ̄L(r)

Δν∗D
=

χ̄L(r)λ̃

v∗th
.
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5.8.2 Appendix B.2: Integrals Involving the Profile Function:
Which Normalization to Use?

• Spatial integrals of type
∫
χline(νCMF, r)fν(r)dr

→
∫

χ̄L(r)

ΔνD
φ(xCMF, r)fν(r)dr,

e.g., optical depth if fν(r) = 1.

• Frequency integrals of type
∫
fν(r)φ(νCMF, r)dν

→
∫

f(ν(x), r)φ(xCMF, r)dx,

e.g., scattering integrals, if fν(r) = Jν(r).

• Frequency integrals of type
∫
χline(νCMF, r)fν(r)dν

→ χ̄L(r)

∫
f(ν(x), r)φ(xCMF, r)dx,

e.g., in the context of line acceleration, grad(r), see Section 5.4.3
If applicable, one needs to use Δν∗D instead of ΔνD. Moreover,

φ(νCMF, r) =
φ(xCMF, r)

ΔνD
, i.e., φ(νCMF, r)dν = φ(xCMF, r)dx,

and φ(νCMF, r) = φν(xCMF, r) normalized with respect to frequency, whereas φ(xCMF, r)
normalized with respect to x.
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