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ABSTRACT

Aims. We aimed at finding a physical explanation for the occurresfa@acroturbulence in the atmospheres of hot massive stars,
phenomenon found in observations since more than a decaglethunexplained.

Methods. We computed time series of line profiles for evolved masd&essdroadened by rotation and by hundreds of low-amplitude
nonradial gravity-mode pulsations which are predictedeekcited for evolved massive stars.

Results. In general, line profiles based on macrotubulent broadecémgmimic those subject to pulsational broadening. In stver
cases, though, good fits require macroturbulent veloditiaspass the speed of sound for realistic pulsation andglguMoreover,
we find that the rotation velocity can be seriously undenested by using a simple parameter description for macroterice rather
than an appropriate pulsational model description to fititreprofiles.

Conclusions. We conclude that macroturbulence is a likely signature efttllective &ect of pulsations. We provide line diagnostics
and their typical values to decide whether or not pulsatibn@adening is present in observed line profiles, as well@®eedure to
avoid an inaccurate estimation of the rotation velocity.

Key words. Stars: supergiants — Stars: early-type — Stars: variagkrseral — Stars: atmospheres — Line: profiles — Techniques:
spectroscopic

1. Introduction of the phenomenon of high-quality observations are supersonic in many of thdistl
macroturbulence stars, which would point to highly dynamical atmospheric-mo
) . tion whose cause is unknown (Ryans et al. 2002, Lefever et al.
Stars are gaseous bodies that transfer hydrogen into heligpp7, Markova & Puls 2008). Here, we provide a natural phys-
through nuclear burning in their core during the largest par ica| explanation for this phenomenon in terms of the coilect
their lives. A variety of evolved stars results after the @x$+ effect of numerous stellar pulsations of low amplitude.
tion of the core hydrogen burning. It is the birth mass of ttae s Velocity fields of very diferent scales occur in the atmo-
]Ehﬁ‘t determines which evolutic()jnafyh path thehevol\t/)(_edhstalr Wl& heres of stars. Apart from the rotational velocity whieim ¢
;bg\\/% tgﬁrgélgrerr?gisce()sn(:selzgﬁ mvggsi\?éasr?a\r,\é ;()):reforlr:: SS;E;SGS\}EW from Zero spee.d up to the critical value, line synthesdes
nuclear burning cycles u.ntil their core is composed of iafter &S0 mclude_a certain amountmﬁcrotur_bulence(of ordera few_
which they collapse as supernova. While this broad pictdire kms™) to brln_g the observed_ profiles in the spectra of stars into
stellar evolution is well understood.and in agreement witti-v ggreement with the data. Microturbulence is defined as a phe-
. ) . nomenon related to velocity fields with scales shorter thmn t
ous types of observations, we still lack knowledge of imaort ean free path of the photons in the atmosphere (e.g., Gray
aspects of the physics and dynaml_cs inside massive staxs ang'o% for a thorough explanation). Microturbulence andt.'rolit,a
their consequences for the s_;tellgr life. - .are usually treated as time-independent processes letading
One patrticular shortcoming in the description of the phys'?)rofile broadening.

of stellar atmospheres of massive stars is the need to inteod i
an ad-hoc velocity field, termed macroturbulence, at thitaste !N contrastto microturbulenceacroturbulenceefers to ve-

surface in order to bring the observed shape of spectras lif@City fields with a scale larger than the mean free path of the
into agreement with observations. While evidence for the oghotons (with mesoturbulence as the intermediate situatio
currence of such macroturbulence in hot stars was estatllis®§-9-, Gray 1978). Macroturbulence was mainly introducedi an
since more than a decade (Howarth et al. 1997), there is stiitdied in the context of cool stars (e.g, Gray 1973, 1978819

no physical explanation for this phenomenon availables Tni-  Yarious descriptions have been proposed in the literatsee (
satisfactory situation has become ever more problematiceas Gray 2005 for an overview), among which an isotropic model
data improved in quality in terms of resolving power and algn and a radial-tangential model are the most common ones. Both
to-noise (@) ratio and in quantity in terms of the number ofhese models will be considered here.

stars that have been studied with high-resolution spexims Values for the micro- and macroturbulence are usually de-
It turns out that the macroturbulent velocities requireexplain  rived from line-profile fits of single snapshot spectra. Hexe
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are focused on such applications to massive hot stars, whdsethe computation of the excited oscillation frequenciethe

microturbulent velocities are usually below 15kmse.g., stellar model;

McErlean et al. 1998; Villamariz & Herrero 2000). The pub-3. the computation of the oscillation eigenfunctions inlthe-

lished values of macroturbulence, on the other hand, ar@lysu  forming region of the stellar atmosphere;

well above this value, reaching up to 90 km §Lefever et al. 4. the computation of the observed line profile as seen by-a dis

2007; Markova & Puls 2008). An important omission so far in  tant observer, whose line of sight is inclined with respect t

the derivation of macroturbulence is that time-dependeluor the symmetry axis of the oscillations.

ity phenomena also occur, besides rigid surface rotatidriam

bulence. The best known example of such a phenomenon is stel-For points 1 and 2 we considered a realistic case and com-

lar pulsation, which causes asymmetric line-profile vaois puted a stellar evolution model which is representativetfier

(e.g., Aerts & De Cat 2003). A natural step is thus to invesvolved pulsating B1lb star HD 163899 with the Code Liegeoi

tigate whether the needed macroturbulence may be connedtglolution Stellaire (Scuflaire et al. 2008). This model has

with the omission of pulsational broadening in the line &gnt the following parametersTe; = 18 200K, logg = 3.05,

sis codes used for fundamental parameter estimation. inféec R/R, = 17.8, log(L/Le) = 4.5, M/My = 13,Z = 0.02 and

pulsating stars along the main sequence, one also needd toatage of thirtheen million years. It approximates well tioe p

some level of macroturbulence whenever one ignores (sojne sifion of HD 163889 in the Hertzsprung-Russell diagram ¢Sai

the detected pulsations in line-profile fitting of time-rwsal or et al. 2006). We determined its excited pulsation modes of az

averaged spectra (e.g., Morel et al. 2006). We investidgase timuthal order zero with a non-adiabatic pulsation code MAD

hypothesis in the present paper. (Dupret 2001). We considered all modes up to degree ten, as

it is well-known that partial geometrical cancellatioffiexts in-

. . crease with increasing mode degree (e.g., Chapter 6 of Aerts

2. Computations of pulsationally broadened al. 2009 for a full description of thesdfects) and, moreover,
spectral line profiles we needed to keep the computation time feasible. We found 241

Massive stars are exposed to pulsations during severabphd80des with degreé from 1 to 10 to be excited. All of them
of their life. On or near the main sequence, these pulsaticas &€ 9ravity modes, with frequencies ranging from 0.08 t@0.6
usually driven by a heat mechanism acting in the metal op4d.CleS Per day, aresult typical for gravity modes.

ity bump at a temperature near some 200,000 degrees (exg., Co Regarding points 3 and 4, it was shown by De Ridder et al.
et al. 1992, Pamyatnyh 1999). In the recent and rapidly gro\g@_ooz) that _the temperature anq gravity variations in the-li
ing research field of asteroseismology, observed pulsatioa forming region due to the pulsations do ndite&t the line pro-
exploited by scientists to probe the badly known physicat prflle variations of a non-rotating star appreciably. Th|scdua|9n _
cesses inside stars (e.g., Cunha et al. 2007, Aerts et &)208/as based on the computation of temperature and gravity vari
just as it was done in helioseismology for the Sun (e.g., Gougtions for the stellar interior and for the atmosphere, gmha
et al. 1996). Asteroseismology was proven to be a valid ol 9 & matching in a connecting layer which separates themegi
study the interior of massive main-sequence stars (e.gts Aévhere the dtusion approximation breaks down from the stellar
et al. 2003) and may imply a unique opportunity to probe tgterior where itis valid (l_Dupret et al. 2002)._ Th|s_]ustn‘|d1e
internal layers, including the deep convection zone arahed USe of the basic line profile theory as descrl_bed in Aerts et al
hydrogen-burning shell, of evolved stars as well. The discp (1992). That framework allows the computation of the veioci
of gravity-mode pulsations in the B1lb supergiant HD 163gggj9envectors of the modes in the line-of-sight for a linémbt
from spacebased high-precision photometry measured hth gfirkenl_ng law. It makes use of the velocity perturb_athnaln
Canadian space mission MOST (Saio et al. 2006) and in a saifigle line-forming layer of the atmosphere to predict tine |
ple of 40 B supergiants (Lefever et al. 2007) are steps indiais profile variations, while ignoring temperature, gravitydaota-
rection. We refer the reader to Aerts et al. (2009) for a thgho tional dfects. Ideally, rotationalféects should be mcluded inthe
description of stellar pulsation in all of its aspects, intihg the COmMputations, given that the ratio of the rotation to pudsefre-

particular properties of the eigenfrequencies and eigestions dUencies can be of order one. Theories including a non-ati@ab
of pressure and gravity modes. treatment of rotationalffects due to the Coriolis force are avail-

It is well known that stellar pulsations imply a time-able for the stellar interior, where thefiilision approximation

dependent variation of the shape of spectral lines (e.gisAdS valid (e.g., Lee 2001, Townsend 2005). A study as the one
& De Cat 2003 for a review, Chapters 4 and 6 of Aerts et &y Dupret et al. (2002) which treats the velocity and tempera
2009). Despite this, the estimation of the rotational andnma tUre perturbations of a rotating star in the very outer aphese
turbulent velocity in evolved massive stars have so far lijsualS Not yet available. Developing it is beyond the scope of the
been done from a single snapshot of the stellar spectrum, &4gsent work, which is simply to generate profiles due to pul-
assuming that no time-dependent phenomena are preseat. HEHIONS with properties similar to those observed and pinétr
we investigate to what extent stellar pulsatiofieet the estima- them as macroturbulence. _ _

tion of the surface rotation and macroturbulent velocitiden Rotation splits the frequencies of modes infa-2 multiplet
ignoring pulsations, as was often done so far in the liteeatuCOmMponents (e.g., Aerts et al. 2009). As there is currertly n

Hereto, we computed numerous sets of line profiles due to ptfleory to provide us with the excitation of rotationally iseld
sations expected in B supergiants. modes, nor with the amplitudes of the modes, we assume that al

modes with azimuthal ordersranging from-¢ to ¢ are excited

with equal amplitudes in the line-forming region and we assu
2.1. Input for the simulations these amplitudes to b, o (¢ + 1)1 in the notation by Aerts
Simulating line profile variations due to excited oscittats of a €t @- (1992). We checked that changing these assumpti@ss do
star requires the following steps: not alter the conclus_lons pres_ented here, by considersugthé

case where only axisymmetric or sectoral modes would be ex-
1. the computation of an equilibrium stellar structure mpde cited and by choosing fierent amplitude laws. Provided that a
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Fig. 1. Noiseless pulsationally and rotationally broadened msfithin lines) are compared with the profile without putsasi
but with rotational broadening (dashed line). The inpubpaaters are the stellar inclination angle, the amplitudd@individual
modes, and the projected rotation velocitya(v sini). Their values are as follows: a: (§@.0, 25), b: (60, 1.0, 45), c: (20, 1.0, 45),
d: (60,0.5,65), e: (60,0.5,85), f: (60, 0.2, 125), wherea andvsini are expressed in knis(see text for a definition of). Note
that the line features in panels d, e, f become less visiblkea§N ratio decreases. They essentially disappear fdr<&100 (see
also Fig[B).

sufficient number of modes are included in the line broadenirgntaminated by non-Gaussian broadening (such as Staall-bro
computations (typically at least a few hundred), our cosidns ening in the case of hydrogen and helium lines) or wifidas,
remain the same and are thus independent of the adopted and (iii) it is the line selected for almost all of the pulsatiearly
plitude distribution. The conclusions are not dependenthen B stars so far as it turned out to be best suited to derive pludir
particular stellar model either. sation characteristics (Aerts & De Cat 2003). On the othadha
In total, the 241 excitedn = 0 modes give rise to 2965 our approximation of a constant Gaussian intrinsic lineliesp
multiplet components. We computed the collectifieet of all that our analysis is valid for any metal line of this width fret
these 2965 gravity modes on simulated line profiles. Thelsimuspectrum. We computed time series of profiles for 50 timings
tions were made such as to mimic théeet on the Silll 4553A taken from a concrete line profile studytéfl et al. 1999) with a
line in the spectrum of a star with the fundamental paramtstal time span of 65 days.
ters of HD 163899. In our simulations, we approximated the e simulated various time series of 50 profiles each, tak-
Silll4553A line by a Gaussian profile of width 10km'sand ing into account pulsational and rotational broadeningjdes
equivalent width of 0.25A, and we adopted a linear limb darkhe intrinsic broadening of the spectral line. In our conagions,
ening law with a fixed co@icient equal to 0.364 across the linewe considered five values of the projected rotation velocsini
These values were also fixed when computing the fits to the p(25,45,65,85,125knT8). We limited to this range of sini, for
sationally broadened profiles. In this way, we are sure that ovhich the equatorial rotation velocities remain below 50%he
conclusions on the macroturbulence are néected by adopt- critical velocity of the stellar model (305 kmY. As can be seen
ing a wrong microturbulence or by a varying limb darkenin@ Fig. 1 of Aerts et al. (2004), this impliesiciently small rel-
codficient across the spectral line. We limited ourselves to tuative changes of the local radius, temperature, gravity)ami-
ing towards this one Si spectral line, since (i) it is an intfpot  nosity to ignore the centrifugal force in the computatiorthod
diagnostical line of intermediate strength, (ii) it is (ast) not equilibrium structure model of the star.
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100 = ‘ b ‘ ‘ oo Chapter 6 of Aerts et al. (2009). Aerts et al. (1992) and Aerts

90 - o Z - g’; t: :4 . (1996) provided a thorough discussion of these quantities a

8o L . ia-o05kms! A their suitability to interprete them in terms of pulsatidret
o= 10kms! ory, thus allowing an identification of the spherical wavenu

|

|
70 i § bers ¢, m) from observed time series of moment variations. We
60 L ; ] computed these three quantities for the simulated line Ipsyfi

| mainly to show their relation with the derived macroturimile

: velocity values obtained when ignoring the pulsationablblen-
w0k 4 ing, as will be discussed in Sdct.R.2. The first momepis the
radial velocity of the star, integrated over the stellacgigith re-
spect to the centre of mass of the star (i.e. it varies aroahgbv

850

30 B

20 - . zero during the pulsation cycle); it is thus directly congide to
0| | the measured radial-velocity variations reported in ttegditure
1 which are usually based on Gaussian fits to the profiles.
0 | I Mttt | I == . iy =

o 10 20 30 40 50 60 70 80 90 100 _In order to end up with peak-to-peak radial-velocity vari-
ations of order 20km3, as measured for several supergiant
B stars from metal lines, numerous of the individual surface
elements must experience a far larger individual pulsatien

Fig. 2. Distribution of the projected pulsational velocity oveeth locCity. In the case of radial pulsations and in the approxima
stellar surface as measured by a distant observer whoseflinetion of the adopted linear limb darkening law, this means tha
sight is inclined by 60 with respect to the rotation axis of thethe entire surface moves up and down with a velocity of about
star, for four distributions of the pulsational amplitudggsee 20x 1.5 = 30kms™. This also implies that measured radial-
text for further explanation). velocity variations above typically 40 km'sare the results of
shock phenomena in the atmosphere of radial B-type puksator
leading to a so-called “stillstand” in the radial-velocityrve in
We adopted an inclination anglebetween the rotational the case of radial modes. Examples can be found in Aerts et al.
axis and the line-of-sight of 60 but we also considered 20 (1995), Saesen et al. (2005) and Briquet et al. (2009) for the
for the case ofsini = 45kms?. The symmetry axis of the g Cep stars BW Vul¢! CMa and V1449 Aq|, respectively. Such
pulsations was taken equal to the rotational axis, as isllysuastillstand was so far not observed for B supergiants, so we ex
done in pulsation studies of non-magnetic stars. Regaittlieg pect the majority of the surface elements to move subsadyical
pulsational broadening, we considered four distributiimnghe (which does not imply that some elements may encounter super
intrinsic amplitude of the modes in the line-forming regionsonic speeds).
Vp = a/(¢ + 1) with a = 1.0,0.5,0.2,0.1kms™, again using For non-radial gravity modes, a wide variety of surface ve-
the notation of Aerts et al. (1992). This means that the tadiacities occurs across the stellar surface and shock phenam
component of the pulsational velocity vector is proporiibto are much harder to detect in integrated quantities, suchcas m
vp while the transversal component is proportionalgll with  ments or equivalent widths. We show in Fij. 2 the distributio
K = GM/w?R® with G the gravitational constanil andR the of the line-of-sight components of the total pulsationdbedy
mass and radius of the star, andhe angular frequency of the vectors, which result from the addition of all the individueac-
mode (see, e.g., Aerts et al. 2009). For the adopted model t@es of the 2965 modes, for each of the surface elements (gléno
consider here, this—values of the considered modes range froms|Vous(R, 6, ¢, t)|), for the four amplitude sets corresponding to
0.3 to 25. The choice of these amplitude distributions wademathe foura-values. The addition of the numerous eigenvectors can
to end up with a realistic peak-to-peak variation of the ahdiresultin positive or negative projected velocity, depegdin the
velocity as in published observed time series of the few supg@hases of the modes and on the pldR@(¢) on the surface. We
giant B stars for which such data are available — see Figs 5 axpect that, in most of the surface points and for most ofithe t
6 in Kaufer et al. (1997), Figs 2 and 3 in Prinja et al. (2004) arings, positive and negative contributions tend to lead tmaed
Fig. 2 in Markova et al. (2008). These studies have led taatadivalue of the overall pulsation velocity due to cancellingosi-
velocity variations with peak-to-peak amplitudes betwBemd tive and negative mode velocities, since we assumed thére to
20kms?. Our amplitude distributions far, were taken accord- no phase relation between the modes. It can be seen frofd Fig. 2
ingly, i.e., the collective gect of the 2965 gravity modes with that, for all four amplitude sets, the majority of the sudate-
the amplitude distributions we adopted results in radibeity ments indeed are seen to move subsonicallyaFerl.0kms?,
variations similar to the observed ranges (68ein Fig.[6 dis- supersonic speeds in the line-of-sight are encountereadon-
cussed in Sedi. 2.2). In this way, we are sure to have generatiglerable fraction of the surface elements, but still irs lsn
realistic profile variations, irrespective of the limitatis of the half of them such that the radial-velocity variations remiag-
line profile theory discussed above. A summary of the input p@w 20kms? (see Figlb discussed in Séct]2.2). The adopted
rameters of the simulated line profile sets, along with sofne @amplitude distributions thus lead to realistic peak-t@ipam-
their computed quantities discussed below, is given iné@bl plitudes for the radial velocity. In this way, we are sure twt
The radial velocity is an integrated quantity over the atell overestimate thefiects of pulsations on the derivation of the
surface. Pulsating stars have time-dependent asymmigteic | macroturbulent velocity values.
profile variations. It is common to characterise the linefifgo We considered profile sets without noise and with white
shapes by their three lowest-order moments, which représen noise resulting in 8\ ratios of 200 and 500. This brings the
centroid velocity(v), the width(v?) and the skewnes&?). A total number of simulates profiles to 3600 (50 timings, 6 com-
practical guide to compute these quantities, as well as thei binations ¥¢sini, i), 4 amplitude distributions and 3 noise lev-
mal definition in terms of the surface velocity eigenfunnip els). Examples are provided in Fig. 1 and lead to the cormtusi
is provided in De Ridder et al. (2002) and more extensively that some of the simulated profiles are considerafigcted by

v (R8¢, (km s™h

puls
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the collective &ect of the gravity modes. In particular, the line
wings are broader than those that would occur for a star thes d
not have pulsations.

2.2. Estimation of the macroturbulent velocities

Various possibilities to describe macroturbulence haenlpze- 10 : s L
sented in the literature. We refer to Gray (2005) for a thgiou x ‘ : r
discussion. In this work, we considered an isotropic marhnat-
lence described by a Gaussian velocity distribution (deshets | ‘ I
Aiso), as well as an anisotropic description for which the radial 5 o -
and tangential velocity fields in general have fistent ampli- ] ‘ [
tude denoted a8r and Ar (a so-called radial-tangential model
—see Eq. (17.6), p.433in Gray 2005). For the anisotropicehod

fits, we considered the two extreme cases of allowdago be 0
free whileAr = 0 andAr = 0 while Ar was allowed to take any
value. In this way, each of the three models for the macroturb ™
lence is described by one free parameter.

For all the simulated profiles, we determinesini and the Fig.5. Distribution of £, which is a measure of the fit quality
macroturbulencemacro While ignoring the presence of pulsa-averaged over the line profile and expressed in continuuta &ni
tional broadening, as is done in the literature, by adoptingsee Eql{ll), for 3600 fits without macroturbulence (full Jined
goodness-of-fit approach. The normalized profiles broadiengith macroturbulence (eithéso, Ar, or At whichever gave the
by both rotation and gravity-mode pulsations are denoted lmwestX,,, dotted line).

(1j, p1(4j)) and those broadened by rotation and macroturbu-

lence by @j, p2(4j)), with j = 1,...,N an index labelling the

velocity pixels within the profile. For the computationof we . L )

considered each of the three optiokso, Ar, andAr. Each of separate values q[smh Wh|9h is as expected given th_at the pul-
the profilesp; andp, were given the same equivalent width. W@atllonal_broadenlng was simply added to the rotatlonaldaroa}
computed the line deviation paramet®&rbased on the classical€Ning without any coupling between the two. One would typi-

statistical technique of residuals: cally improve the fit quality from eye inspection by incorpbr
ing macroturbulence faX,, > 0.008; this corresponds with the

. o dotted lines in panels b,d,e,f in Fig. 3 whose counterpaitt wi

- 2 inesi i

S(VSiNi, Viacr) = J T Z [pl(/lj) _ pz(/lj)] . (1) macroturbulence represented by the dashed lines implyi@anot
i=1

ble reduction inZy, (for comparison, the dotted lines in panels

a and ¢ hav&,, = 0.0058 and 0.0056, respectively, and would
This quantity is the standard deviation of the residual profiProbably not give rise to the introduction of macroturbaiep
|pl — pzl' averaged over all Ve|0city pixe|s in the line prof"e,lt Cap b.e seen from the distribution fﬁfniln FlgE thatthe fit
expressed in continuum units. It is thus a measure of thedit quduality is very good for the large majority of profiles when al
ity, directly interpretable in terms of the//$ ratio of measure- lowing for macroturbulent broadeningn 89% of the cases, the
ments. The Opt|ma| choice of the paramete{gimi’vmacm) is fit with macroturbulence haSm< 0.008. If we do not include
then found by carefully screening the 2-dimensional patamemacroturbulence, 59% of the fits hag < 0.008.
space invsini andvimacro (in steps of 1 kms! for each ofvsini Returning back to Fi§l4, we deduce that the lowEgt
and Vmacrg and by identifyingZyn = Minwsinivm..g X, Where values were reached faiso, Az, and At in 1224, 1343, and
Vmacro Can be any of\so, Ar or Ar. Moreover, we allowed two 1033 of the cases, so these descriptions are basicallyaeoiv
options to fit the pulsationally broadened profile the one such in appropriateness to mimic pulsational broadening. It lsan
that the wavelength position of the minimummfandp, coin- seen from Fid.}4 that the radial mod&k needs higher values
cide and the one such that their first momefWsare in best to achieve a good fit compared with the isotropic and tangen-
agreement. Note that these two options are equivalent anlytial model. This is logical, because the pulsation velesitof
the case of symmetric profiles. For each generated profile, e modes are dominantly horizontal in nature. There areesom
performed these six fitting exercises, keeping in each ¢asfitt differences between the fit quality in a global sense for three
with the lowestE,(VSini, Vimacro @s the best one. We then comconsidered models, but the main conclusion is thatmissing
pared the parameterggini, Vimacro) Of the best fitting profilgp,  broadening caused by the pulsations can often only be compen
with the inputvsini of p; and analysed the values ..o Six Sated by quite large values of the macroturbulence
prototypical examples of best fits are shown in Elg. 3. In Fig.[@ we show the value of the macroturbulence with the

In Fig.[4 we show the outcome of the fit to the 3600 simuewestZ,, along with the first and third velocity moment, of the

lated profiles, for the three models we considered for theoracsimulated profiles. As Figl4, this plot illustrates that tredue
turbulence. For all three models, it was found that the isicln  of the macroturbulence can be very large, compatible withtwh
of an ad-hoc macroturbulence parameter leads to bettendits tis found in the literature, if one ignores pulsational breridg,
those obtained when only allowing rotational broadeningjclv  even though the centroid velocity variatiof induced by the
has to be the case given that there is one more degree of figgsations are modest. The reason for this is that the linkhwi
dom. This is visible from Fid.J5 where we show the distribatiois a function of the square of the velocity, and the line skessn
of T, deduced from fits with and without allowing a parameis represented by?). Thus, one needs to compensate the line
ter for macroturbulence. Figure 5 contains all simulatefifgs; width and line wing shape by a large value for the macroturbu-
these two global distributions are the same as those forvbe fience whenever one wants to achieve a good profile fit.
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Fig. 3. Six pulsationally broadened profiles witHidirent $N ratio (full lines) are compared with their best fit includiboth rotation
and macroturbulence (dashed lines) and rotation along&e(titine). The values for the input rotation velocity, théatamn velocity
from a fit without macroturbulence, and from a fit with isotiomacroturbulencey(sini(in), v sini(fit, Vmacro = 0); vsini(fit) , Vmacro) s
are as follows: a: (227;8 14), b: (4544;1123), c: (125126;12510), d: (6564; 49 24), e: (4557;532), f: (8582;14 44),
where all velocities are expressed in knh.s The fits without macroturbulence (dotted lines) lead to emetiable values of sini
(see text for explanation).

The reported absence of line asymmetries in the literaturero. Thus, the values @ty and(v®) of metal lines measured
must be compatible with our physical line-broadening modetith a high resolution and high/8 ratio are well suited to de-
First of all, most spectroscopic studies in which symmedriz- cide if an observed line profile is subject to time-depentieat
files are mentioned rely on visual inspection of only one speasymmetry whenever this is not obvious from visual inspecti
trum, while line profile variability (and thus asymmetry)as As a guide, we provide the ranges of the values of the moments
most always found when multiple-epoch observations amrtak of the generated profile sets in Talble 1. The valuewfor the
Visual inspection of the fits in the top and bottom of the righgix profiles shown as full lines in Figl 3 are al1.1, b: 0.8, c:
column in Fig[B reveals line asymmetry from one snapshe0.3, d:-1.0, e:—1.4, and f: 1.9 kms!. The corresponding val-
spectrum, while the other four profiles might give the impresies of(v3) are a:-1805, b: 226, c: 9964, d:45658, e-36972,
sion of being symmetric. Typically, the profiles simulatedhw and f: 12470kms 3. All these values would be zero in the case
a = 1.0kms* would be detectable by visual inspection of thef symmetrical profiles subject to white noise. The deviai®
profiles. However, when one computes diagnostic line quargimall, of order a few km', for (v), because this quantity mea-
ties, it often becomes obvious that the lines deviate from-sy sures the centroid of the line and thus is independentsafi
metry even if seemingly symmetric by eye. The best diagoostind the microturbulence, while these two quantities tfeca
parameters to characterise line asymmetry in the case of puf) (see Aerts et al. 1992).
sations are the line moments. While line bisectors and itgloc
spans are often used in the cool star and exoplanet comesiniti

such parameters are not suited to be interpreted in termslof i) yone from a few spectra spread at least a few days in time, be

sational parameters while moments are (e.g., Aerts et 82,19.,,,q¢ jine blending of course also causes a deviation from sy
Dall et al. 2006, Hekker et al. 2006). In practice one can hee tmetry. Such deviation is time-independent, though, wHike

property that the odd moments of a symmetrical line profié agjgnature of pulsational broadening is always time-depand

The use of the odd moments for asymmetry detection has to
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Fig.4. X, (in continuum units) for the three models of macroturbuéefgo, Ar, andAr, for the four amplitude distributions (left
toright:a = 0.1,0.2,0.5, 1.0 kms™, see also Tab[d 1).

and has typical periodicities of several hours to a few days Even in that case;sini may be quite wrong when derived from
hot massive stars. profiles which are pulsationally broadened.

In view of the importance of having an approprigtgni es-
) . . timate, we also resorted to the popular Fourier Transfori) (F
2.3. Consequences for the rotational velocity estimate method. This method was introduced by Gray (1973, 1975). It
was evaluated specifically for hot massive stars by Sim@eD
& Herrero (2007). It allows to estimatesini from the first mini-
fhum of the FT of aline profile. What is often forgotten, howeve
is that its basi@ssumptions that the line profiles argymmetric
‘which is not the case when pulsations (or other phenomeea lik
spots) occur (e.g., Smith & Gray 1976). We thus investigated
how robust the method is when this condition is not met. We ap-

An important conclusion based on Hig. 6 is that the inclusibn
macroturbulence to obtain a line fit may result in a serious u
derestimation of the true projected rotational velocitsgspec-
tive of which description fovmacroiS used. We encountered mis
matches compared with the inpusini above 100kmd. The
question thus arrises if it is not wiser to excludeacroparame-

terto sear_ch th_e best valuewddini or to resort to other methodsp"ed the method to all the 3600 pulsationally broadenedilps
to determine this parameter. and derivedvsini by careful visual inspection of their FTs. A
The rotation velocities derived from a fit to the pulsatidyal few of the FTs are shown in Figl 9 while the global mismatch
broadened profiles with the inclusion of macroturbulence (vin vsini is compared with the one obtained from the goodness-
selected the version dfso, Ar, andAr which led to the low- of-fit method forvmacro = 0 in the right panel of Figl7. We
estX,, for the plot) and without it are compared with the inpusee that the FT method outperformes the goodness-of-fibdeth
vsini in the left panel of Fid.]7. It can be seen that the mismatethenvnacro is allowed for. On the other hand, the ability of the
of the rotation velocity ranges from -20 to 40 kni $or fits with-  FT method to estimatesini is also dfected by the pulsational
out allowing a parameter for macroturbulent broadenindenihi broadening for a fraction of the simulated profiles and adsal$
ranges from-120 to 40 kms! if a parameter for macroturbu-to too low estimates fovsini. The dfsets between the input
lence is allowed. From this we concluidés better to avoid the value ofvsini and its estimate from the goodness-of-fit method
inclusion of macroturbulence in a goodness-of-fit approash with vimacro = 0 on the one hand, and from the FT method on
in Eq. (@) when the goal is to achieve a good estimatesiiv  the other hand, are above 10 km &1 16% and 26% of the 3600
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Fig. 6. The macroturbulence (eith&yso, Ar, Or At) resulting in the minimak,,,, as well as the first and third moments, as a function
of the excess of the rotational velocity estimate comparédtive input value, derived from line profile fits ignoringethresence of
pulsational broadening, for the four amplitude distribag (left to right:a = 0.1,0.2,0.5, 1.0 kms™, see also Tablg 1). For profiles
unafected by pulsational broadening, each of the macroturbeléw, and(v®) is zero.

cases, respectively. For mismatches above 20&ihese num- Vpacro for each of the simulated profiles. We find an overesti-
bers decrease to 6% and 12%, and above 30k further de- mation of the rotation fronx, for low inputvsini, because we
crease to 1.7% and 5% occurs. need to compensate for the pulsational broadening anddhis c

As illustrated in FiglD for a few cases, the results of the Fanly be achieved by fitting a profile with a highesini than the
method improve appreciably when applied to the best fit of tfifgput value. When allowing for a macroturbulence, howewer,
line profile including only microturbulent and rotationablad- cover the entire range of projected rotation velocitiesveen
ening, i.e., without allowing macroturbulence. The reasdhat, Zero and values up to some 20 km bove the input value of
in this case, one approxima’[es the true pu|sati0na||y moad vsini, i.e., for several cases a serious underestimation oftiee tr
asymmetric profile by one which is symmetric and has less g®tational velocity occurs. This mismatch increases whithin-
tended wings such that the basic assumption of the FT mesho®¥tVvsini and occurs whenever the wings of the profiles are sev-
fulfilled. It was already emphasized long ago by Mihalas @97 eraly broadened due to a positive interference of the modas w
that the FT method has limitations of applicability whenigas the largest horizontal velocity amplitude at some timingshie
broadening functions are convolved and result in skew gsfil beat cycle antbr when large line asymmetries occur (see, e.g.,
which is the situation we encounter here for the gravity nsodedanels d, e, f of Fig.I3 which typically have large valueg a)).

The FT method is reliable in filtering out the valuewsfini from ~ The right panel of Fid.I8 shows that large values/gfco occur

the observed spectral lines, when the rotational broadeisin for all input values ofvsini, but the most extreme values for
very dominant while the pulsational amplitudes are very (as VmacroOccur typically for the broader profiles due to rotation and
in panel ¢ of FigiP) or when broadening due to spots or presstiie larger pulsational amplitudes (see also[Rig. 4).

modes occurs, which leave the line wings almost unaltereld an \We come to the important conclusion that, in the case of line
affect mainly the central parts of the lines. profile broadening due to gravity modesjni estimates are best

In Fig.[8 we compare the input value w$ini with the value derived from a simple goodness-of-fit to observed profiles, i
deduced from a fit with and without allowing a parameter farluding only microturbulence and rotational broadenind an
macroturbulence; we also show the corresponding valuesnocroturbulence.
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Table 1. Ranges of the intervals for the macroturbulence and monwdritee 72 sets of simulated line profiles with pulsational
broadening (3 values of the¢!$for each of the combinations ¢ sini, &), with v, = a/(¢ + 1). See text for further explanation.

i vsini a Vmacro V) (V) (V)

° kms?! kms?! kms? kms? km? s2 km®s

20 45 0.1  [0,14] [05,0.7] [588,611] [-920,1645]

20 45 02 [021] [1.014] [618,674] [-1826,3287]

20 45 05  [7,44] [2.4,3.6] [788,1091]  [-7956,12931]

20 45 1.0 [21,67] [4.8,7.1] [1360,2543] [-32298,64385]

60 25 0.1 [0,7] [0.3,04] [248,272] [-558,544]

60 25 02 [012] [0.7,07] [255,328] [-804,1586]

60 25 05 [11,29] [-1.6,1.8]  [326,691] [-3872,10999]

60 25 1.0  [24,56] [3.3,3.6] [573,1942] [-16257,59011]

60 45 0.1 [0,8] [-0506] [576,602] [-971,1081]

60 45 02 [017] [0.9,1.2] [591,656] [-1987,2804]

60 45 05 [11,33] [2.3,2.9] [688,1068] [-8721,9546]

60 45 1.0  [26,67] [4.7,5.9] [982,2599]  [-41304,29635]

60 65 01  [0,23] [03,0.7] [10951143]  [-1725,3343]

60 65 02 [0,28] [0.7,1.5] [1106,1225]  [-3999,6820]

60 65 05 [653] [1.7,3.6] [1176,1672] [-12753,19100]

60 65 1.0  [2570] [3.3,7.3] [1466,3266] [-42861,56467]

60 85 0.1  [0,14] [05,08] [L793,1848]  [-3349,6224]

60 85 02 [033] [1.0,1.7] [1794,1912]  [-7028,11406]

60 85 05 [12,61] [-2.4,4.1] [1853,2314] [-20976,27259]

60 85 1.0 [27,81] [4.7,8.3] [2173,3772] [-61905,93998]

60 125 0.1 [0,22] [06,0.7] [37453865]  [-8440,11892]

60 125 02  [055] [1.1,1.4] [3707,3956] [-16857,23578]

60 125 0.5 [14,79] [-2.7,3.4] [3665,4422] [-44830,64179]

60 125 1.0  [10,97] [5.5,6.7] [3810,6007] [-124040,166820
o w, 1% ]
et 1ot .
= 1| o4+
>§ o i o -
£ o ol +
N {1
> g‘ | . 78‘ | |

—-120 —100 —80 -60 —40 -20 0 20 40 71‘20 ‘ 71‘00 7;30 7(‘50 7;,() 7‘20 ‘ [‘) ‘ 2‘0 ‘ 4‘0

vsini(fit with v

mccro)

— vsini(in)

(km s™")

vsini(FT) — vsini(in) (km s™")

Fig.7. Left: the estimated minus input rotation velocity from a fitwout macroturbulence as a function of a fit with macroturbu
lence, for the simulations described in the text. The twifedént symbols indicate simulations for the four amplituggributions
a=0.1,0.2,0.5(c), 1.0(+) kms as explained in the text and listed in Table 1. Right: thenestizd minus input rotation velocity
from a fit without macroturbulence as a function of the valagwed from the Fourier Transform method.

3. Implications

potential possibility to explain macroturbulence. Unforately,

excitation computations (Miglio et al. 2007) still undeieste

) . ) the number of excited modes. Our results are thus also releva
The idea that macroturbulence originates from stellargtidss  for evolved stars in the Magellanic Clouds.

is not new. In fact, Lucy (1976) already suggested pulsataza

As an important side result of our study, we conclude that

he did not have the observational capabilities nor the thete rotational velocities of evolved massive stars can bewssy
retical development to study thefects of pulsations on line underestimated by using line profile fits based on a desoripti
profiles. Recent observations of massive stars with the CoRim terms of macroturbulence. Ironically, this finding istjoppo-
space mission indeed reveal the occurrence of hundredd-of fsite to previous arguments that, by neglecting macroterind,
sation modes with white-light amplitudes in the range 0.8d athe derivedvsini values are significantly overestimated. In or-
0.1 mmag which went unnoticed in ground-based data (Degroder to avoid erroneous estimates/aini, we advise to compute

et al. 2009a,b). Moreover, the discovery of massive pulsato the moments of the line profiles as well as to compare the val-

low-metallicity environments (e.g., Kotaczkowski et aDd5,

ues ofvsini from fits with and without allowing macroturbu-

Narwid et al. 2006, Sarro et al. 2009) also shows that currdaht broadening both by a goodness-of-fit approach and by the
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Fig. 9. Fourier transforms reduced to velocity units for the prefite Fig[3. The full and dotted lines have the same meaning as i
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Fig.[3. The dashed-dotted lines represent the results affdgowith the input rotational velocity and the sam@Satio as the full
lines. By using the first (i.e., leftmost) minimum of the Fuitransform to derive sini, profiles d@ected by pulsational broadening
would mostly result in too low values compared to the actimgdu(t) ones (corresponding to the first minima of the dastettied
lines). On the other handsini values derived from profile fits assumingacro = O (dotted) often compare quite well to the actual

values.
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Fourier method. In this way, the probability of a wroagini  Dupret, M.-A. 2001, A&A, 366, 166
estimate is re|ative|y low. Dupret M.-A., De Ridder J., Neuforge C., et al. 2002, A&A, 3863
It is remarkable that the link between pulsational broadgni S0udh, D. ., Kosovichev, A. G., Toomre, J., et al. 1996, Scz, 1296

. . . S Gray, D. F. 1973, ApJ, 184, 461
and macroturbulence, and itffiect on the derivation o¥sini,  gray b’ F 1975 ApJ, 202, 148

was never thoroughly investigated, particularly since she- Gray, D. F. 1978, Sol. Phys., 59, 193
face rotational velocity derived from line profile fitting lmsti- Gray, D. F. 2005The Observation and Analysis of Stellar Photospheres, 3rd
tutes a crucial stellar parameter which is used to evaluate s Edition, Cambridge University Press

. . Hekker S., Aerts C., De Ridder J., & Carrier F. 2006, A&A, 4981
lar evolution theory. Several authors, among which Huntet.e Howarth, I. D., Siebert, K. W.. Hussain, G. A. J., Prinja, R.1097, MNRAS,

(2008), claim to have found too low observed rotational gelo 284, 265
ties for evolved massive stars compared with theoreti@dipr  Hunter, I., Lennon, D. J., Dufton, P. L., et al. 2008, A&A, 4B31
tions. Our physical model of collective pulsational broaidg Kaufer, A., Stahl, O., Wolf, B., etal. 1997, A&A, 320, 273

may help resolve this discrepancy. Accurate derivationthef Kotaczkowski,  Z., Piguiski, A, ~Soszyhski, 1. et al. 2006
. . . . Mem. Soc. Astron. Italiana, 77, 336
rotational velocity of massive stars are also relevantédbn- | o¢ 'y 2001, ApJ, 557, 311

text of Gamma-Ray-Burst progenitor studies (e.g., Yoonl.et @efever, K., Puls, J., & Aerts, C. 2007, A&A, 463, 1093
2006). In view of our results, we strongly advise to use multiucy, L. B. 1976, ApJ, 206, 499
epoch observations, because that is the best way to estingatgarkova, N., & Puls, J. 2008, A&A, 478, 823

. . rkova, N., Prinja, R. K., Markov, H., et al. 2008, A&A, 48711
effect of pulsational broadening. One should attempt to take Hean, N. D.. Lennon. D. J., & Dufton, P. L. 1998, A&A, 33513

least ten spectra with a resolution above 30,000 ariNa&io  wiglio, A. Montalban, J., & Dupret, M.-A. 2007, MNRAS, L21
above 200, spread ovefdirent nights, and consider the broadmihalas, D. 1979, MNRAS, 189, 671
ening of diferent metal lines, to achieve a valid estimate of thdorel T., Butler K., Aerts C,, et al. 2006, A&A, 457, 651
surface rotation. Narwid A., Kotaczkowski Z., Pigulski A., & Ramza T. 2006, MiA§ 77, 342
. . . . Pamyatnykh, A. A. 1999, Acta Astron., 49, 119

Our present study was based on simulations in which Wenja R k., Rivinius, Th., Stahl, O., et al. 2004, A&A, 4TR7
considered pulsational line broadening due to velocityyver Ryans, R. S., Dufton, P. L., Rolleston, W. R. J., et al. 200RRAS, 336, 577
bations ignoring the Coriolis force, which were then intetpd Saesen S., Briquet M., & Aerts C. 2006, CoAst, 147, 109
as macroturbulence. The resulting simulated profiles wene ¢ Saio, H., Kuschnig, RH Gautschy, A., et al. 2006, ApJ, 630,11
structed in such a way as to lead 10 realisti radial-vefoifi- ~ Sao b Debosscher . Lobes . ers © 2000, 2
ations. It might be worth to investigate how the inclusiontted  simen-Diaz, S., & Herrero, A. 2007, A&A, 468, 1063
collective dfect of non-adiabatic temperature and gravity varigmith, M. A., Gray, D. F. 1976, PASP, 88, 809
tions in the line-forming region of a star subject to the Gtisi Stefl, S., QBSSHCB&ZES?”GNE AAélgggg’%gRAs' 305, 505
force will affect the line wing broadening and its interpretatio ﬁ:’;”mssr?zy’M_'R_" Herrero, A. 2000, AGA. 357, 507
in terms of macroturbulence. Irrespective of the limitaiof voon s - Langer, N., & Norman, C. 2006, A&A, 460, 199
presentline profile theory, our conclusion is clear: igngtime-
dependent pulsational line broadening in line profile fitsradp-
shot spectra may lead to the need to introduce an ad-hoc-veloc
ity field to account for the missing broadening in the line ggn
This implies the risk of a wrong estimation of the projected r
tational velocity of the star.
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