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ABSTRACT

Context. Knowledge about hot, massive stars is usually inferred from quantitative spectroscopy. To analyse non-spherical phenomena,
the existing 1D codes must be extended to higher dimensions, and corresponding tools need to be developed.
Aims. We present a 3D radiative transfer code that is capable of calculating continuum and line scattering problems in the winds of hot
stars. By considering spherically symmetric test models, we discuss potential error sources, and indicate advantages and disadvantages
by comparing different solution methods. Further, we analyse the ultra-violet (UV) resonance line formation in the winds of rapidly
rotating O stars.
Methods. We consider both a (simplified) continuum model including scattering and thermal sources, and a UV resonance line
transition approximated by a two-level-atom. We applied the short-characteristics (SC) method, using linear or monotonic Bézier
interpolations, for which monotonicity is of prime importance, to solve the equation of radiative transfer on a non-uniform Cartesian
grid. To calculate scattering dominated problems, our solution method is supplemented by an accelerated Λ-iteration scheme using
newly developed non-local operators.
Results. For the spherical test models, the mean relative error of the source function is on the 5 − 20 % percent level, depending on
the applied interpolation technique and the complexity of the considered model. All calculated line profiles are in excellent agreement
with corresponding 1D solutions. Close to the stellar surface, the SC methods generally perform better than a 3D finite-volume-
method; however, they display specific problems in searchlight-beam tests at larger distances from the star. The predicted line profiles
from fast rotating stars show a distinct behaviour as a function of rotational speed and inclination. This behaviour is tightly coupled
to the wind structure and the description of gravity darkening and stellar surface distortion.
Conclusions. Our SC methods are ready to be used for quantitative analyses of UV resonance line profiles. When calculating optically
thick continua, both SC methods give reliable results, in contrast to the alternative finite-volume method.
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1. Introduction

Understanding of hot, massive stars is a basic prerequisite for in-
terpreting fundamental properties of our Universe. Already dur-
ing their lifetimes, such stars influence the evolution of galax-
ies via feedback of ionizing radiation and radiatively driven
winds, and they enrich the interstellar medium (ISM) with met-
als. But also, their deaths are of large impact. Depending on ini-
tial mass and mass loss, OB stars either explode as supernovae
or end up as ‘heavy’ stellar-mass black holes (Heger et al. 2003).
Obviously, supernova explosions enrich the ISM with metals
even further. Additionally, the associated shock fronts possibly
trigger star formation, resulting in a new generation of (massive)
stars.

With the advent of gravitational wave (GW) observations
(e.g. the black hole merger GW150914 observed at the ad-
vanced Laser Interferometric Gravitational-Wave Observatory
(aLIGO), Abbott et al. 2016), the formation of heavy stellar-
mass black holes becomes of key interest. Since massive stars
are frequently found to be members of multiple star systems
(see, e.g. Mason et al. 2009, Sana et al. 2013), they might ex-
plain the occurrence of GW events in the correct mass range. At
least the formation of heavy black holes from single-star evolu-
tion, however, requires comparatively moderate mass loss rates

(e.g. in low metalicity environments, or mass-loss quenching by
magnetic fields, Petit et al. 2017, Keszthelyi et al. 2017).

Current knowledge of OB stars is inferred from quanti-
tative spectroscopy, that is, by comparing observed spectra
with synthetic ones, the latter being obtained from numeri-
cally modelling their stellar atmospheres (photosphere + wind).
State of the art atmospheric modelling is performed by assum-
ing spherical symmetry (e.g. CMFGEN: Hillier & Miller 1998;
PHOENIX: Hauschildt 1992; PoWR: Gräfener et al. 2002; WM-
basic: Pauldrach et al. 2001; FASTWIND: Puls et al. 2005 and
Rivero González et al. 2012).

Several effects may alter the geometry of hot star atmo-
spheres, affecting both the photospheric and wind lines. For
instance, binary interaction (see, e.g. Vanbeveren 1991 and
de Mink et al. 2013 for a discussion about evolutionary aspects,
and Prilutskii & Usov 1976, Cherepashchuk 1976, Stevens et al.
1992 for the effects of colliding winds) influences the line for-
mation in such objects. Another example is the phenomenon of
magnetic winds (e.g. ud-Doula & Owocki 2002, ud-Doula et al.
2008, Petit et al. 2013), for which the resonance line forma-
tion has been extensively discussed in Marcolino et al. (2013),
Hennicker et al. (2018), and David-Uraz et al. (2019), for in-
stance. Additionally, (non-radial) pulsations may impact the ge-
ometry of hot star atmospheres.
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In this paper, we focus on (rapidly) rotating stars. In addi-
tion to polar velocity components that affect the radiative line-
driving, such stars and their winds are influenced by centrifugal
forces and gravity darkening. For a detailed discussion, we refer
to Sect. 5.

To analyse these effects, and to distinguish between differ-
ent theories (resulting in, e.g. prolate vs. oblate wind structures),
multi-D radiative transfer codes that include a treatment of (ar-
bitrary) velocity fields are required. In hot star winds, a key
challenge is the implementation of scattering processes. Such
problems are most easily handled by an accelerated Λ-iteration
scheme, that is, by calculating the radiation field for known
sources and sink terms (the so-called formal solution), and iter-
ating the updated sources and sinks until convergence (Cannon
1973).

In order to obtain the formal solution in multi-D, the fol-
lowing two major methods exist, each having specific ad-
vantages and disadvantages. Firstly, within the finite-volume
method (FVM, see Adam 1990 for the first application in the
context of radiative transfer problems), the calculation vol-
ume is discretized into finite sub-volumes. All required phys-
ical values at the cell centres are then considered as suitable
averages within each cell. This way, a relatively simple solu-
tion scheme can be derived, which, however, is only of low
order. Thus, the FVM breaks down for large optical depths
(Hennicker et al. 2018, hereafter paper I). Nevertheless, it is still
useful for qualitative interpretations (see, e.g. Lobel & Blomme
2008 for an application to corotating interaction regions in
the winds of rotating stars). Secondly, within the character-
istics methods, the formal solution is obtained by exact in-
tegration of the equation of radiative transfer along a ray.
One distinguishes between the ‘long-characteristics’ method
(LC, Jones & Skumanich 1973, Jones 1973), and the ’short-
characteristics’ method (SC, Kunasz & Auer 1988). The LC
method follows a particular ray from the boundary to the consid-
ered grid point, whereas the SC method considers rays only from
cell to cell. All required quantities at each upwind point are ob-
tained from interpolation. While the LC method is computation-
ally more expensive than the SC method, the latter introduces
numerical errors from the interpolation scheme. To date, few 3D
codes that apply one or the other technique already exist, such as
Phoenix/3D (Hauschildt & Baron 2006 and other publications in
this series) and IRIS (Ibgui et al. 2013), which, however, are ei-
ther proprietary, or do not include a suitable Λ-iteration scheme.
For additional information on other codes, we refer to Sect. 1 of
paper I.

In this paper, we present a newly developed 3D SC code,
which is capable of treating arbitrary velocity fields, and in-
cludes an accelerated Λ-iteration scheme to handle continuum
and line scattering problems. In Sect. 2, we discuss the basic
assumptions of the code. The numerical methods are described
in Sect. 3. In Sect. 4, we perform a detailed error analysis by
comparing our 3D results for spherically symmetric atmospheres
with corresponding 1D solutions. Additionally, we present com-
parisons with the 3D finite-volume method from paper I, when
appropriate. As a first application to non-spherical winds, we
calculated UV resonance line profiles for different models of ro-
tating stars in Sect. 5, and discuss the implications. Our conclu-
sions are summarized in Sect. 6.

2. Basic assumptions

In this paper, we use the same basic assumptions as in paper I,
that is we aim to solve the time-independent equation of radiative

transfer (e.g. Mihalas 1978), formulated in the observer’s frame:

n∇Iν(r, n) = χν(r, n)
(

S ν(r, n) − Iν(r, n)
)

. (1)

Iν describes the specific intensity for a given frequency ν and
direction n, and χν and S ν are the opacities (in units of cm−1)
and source functions for continuum and line processes. For our
following tests, we either consider a pure continuum case with
source function

S C = (1 − ǫC)Jν + ǫCBν , (2)

and thermalization parameter ǫC, or a line (within an optically
thin continuum) approximated by a two-level-atom (TLA). A
generalization to a multitude of lines, coupled via correspond-
ing rate equations, is one of our next objectives. Within the TLA
approach, the line source function reads:

S L = (1 − ǫL)J̄ + ǫLB (3)

ǫL =
ǫ′

1 + ǫ′
, ǫ′ =

Cul

Aul

[

1 − exp
(

− hν

kBT

)

]

. (4)

J̄ is the ‘scattering integral’ (see Eq. (25)), and Cul and Aul de-
scribe the collisional rate and Einstein coefficient for sponta-
neous emission, respectively. In this paper, ǫL is considered as
input parameter. The profile function Φx is approximated by a
Doppler profile:

Φx =
1
√
πδ

exp

[

−
( xcmf

δ

)2
]

=
1
√
πδ

exp

[

−
( xobs − n · V

δ

)2
]

, (5)

where xcmf and xobs denote the frequency shift from line centre in
the comoving and observer’s frame, in units of a fiducial Doppler
width, ∆ν∗

D
= ν0v

∗
th
/c. V is the local velocity vector in units of

v∗
th

, and

δ =
1

v∗
th

√

2kBT

mA

+ v2
micro

(6)

is the ratio between the local thermal velocity (accounting for
micro-turbulent velocities) and the fiducial thermal velocity.
This description of the profile function allows for a depth-
independent frequency grid (see also paper I).

Finally, we express the continuum and line opacities in terms
of the Thomson-opacity, χTh = neσe, and depth-independent in-
put parameters, kC, kL:

χC = kC · χTh (7)

χL = kL · χTh · Φx =: χ̄LΦx , (8)

where the line-strength kL is related to the frequency integrated
opacity χ̄0 = ∆ν

∗
D
χ̄L = kL∆ν

∗
D
χTh (e.g. paper I, Eqs. (10) and

(12), and with [χ̄0] = (cm s)−1). In the following, we present
(efficient) numerical tools for solving the coupled equations (1)
and (2)/(3). Since a direct solution is computationally prohibitive
for 3D atmospheres due to limited memory capacity, we apply
an acceleratedΛ-iteration (ALI) scheme that overcomes the con-
vergence problems of the classicalΛ-iteration for optically thick,
scattering dominated atmospheres by using an appropriate ap-
proximate Λ-operator (ALO).

3. Numerical methods

The most time-consuming part of the ALI scheme consists of
calculating the formal solution. In paper I, we have shown that
a formal solution obtained using the FVM suffers from various
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numerical inaccuracies related to numerical diffusion and to the
order of accuracy, the latter influencing the solution particularly
in the optically thick regime. To avoid these errors, we imple-
ment an integral method along short characteristics. When com-
pared with a long-characteristics solution scheme, the compu-
tation time becomes reduced by roughly a factor of N/2, with
N the number of spatial grid points (per dimension), since the
LC method integrates the equation of radiative transfer along
the complete path from the boundary to a considered grid point.
Thus, LC methods become feasible only on massively paral-
lelized architectures.

We follow the same approach as in paper I, and solve the
equation of radiative transfer on a non-uniform, 3-dimensional
Cartesian grid. In contrast to curvilinear coordinate systems, the
direction vector n then becomes constant with respect to the spa-
tial grid, thus avoiding the otherwise required angular interpo-
lation of upwind intensities and a complicated bookkeeping of
intensities (and corresponding integration weights) for different
directions. Furthermore, the sweep through the spatial domain
is considerably simplified, and can be performed grid point by
grid point along the x, y, and z coordinates, since the intensities
(required for the upwind interpolation) are always known on the
previous grid layer. To enable a straightforward implementation
of non-monotonic velocity fields, we use the observer’s frame
formulation.

SC methods have been successfully implemented already
for 3D non-LTE (NLTE) radiative transfer problems in cool
stars (e.g. Vath 1994, Leenaarts & Carlsson 2009, Hayek et al.
2010, Holzreuter & Solanki 2012). These codes, however,
are mostly designed for planar geometries, and only ac-
count for subsonic and slightly supersonic velocity fields.
For scattering problems including highly supersonic velocity
fields, there exist, to our knowledge, only the 2D codes by
Dullemond & Turolla (2000) (planar/spherical), van Noort et al.
(2002) (planar/spherical/cylindrical), Georgiev et al. (2006) and
Zsargó et al. (2006) (spherical). The only 3D SC code including
arbitrary velocity fields, IRIS (Ibgui et al. 2013), has also been
formulated for planar geometries, and lacks the implementation
of a Λ-iteration scheme thus far. As has been shown in all these
studies, the final performance of the SC method crucially de-
pends on the choice of the applied interpolation schemes.

3.1. The discretized radiative transfer equation along a ray

The equation of radiative transfer along a given direction can be
written as

dI

dτ
= S − I , (9)

where dτ := χds is the optical-depth increment along a ray
segment ds. Here and in the following, we suppress the nota-
tion for the frequency dependence, and explicitly distinguish be-
tween continuum and line only when appropriate. Eq. (9) is in-
tegrated along a ray propagating through a current grid point p
with Cartesian grid indices (i jk) and corresponding upwind point
u(i jk). The geometry for a 3D Cartesian grid is shown in the upper
panel of Fig. 1. In the following, upwind and downwind quanti-
ties corresponding to a considered grid point (i jk) are indicated

by q
(i jk)
u and q

(i jk)

d
, while local quantities are denoted either as

q
(i jk)
p or simply qi jk. For a given ray segment, we then obtain:

Ii jk = I
(i jk)
u e−(τp−τu) +

∫ τp

τu

e−(τp−τ)S (τ)dτ

= I
(i jk)
u e−∆τu + e−∆τu

∫ ∆τu

0

etS (t + τu)dt , (10)

with upwind optical-depth increment ∆τu := τp − τu ≥ 0,
and t := τ − τu. For the SC solution scheme, the location
of the reference point, τ = 0, plays no role, since only the
optical-depth increments, ∆τu and ∆τd (see below), are re-
quired. To calculate the source contribution, the source function
is commonly approximated by first- or second-order polynomi-
als (Kunasz & Auer 1988, van Noort et al. 2002), Bézier curves
(Hayek et al. 2010, Holzreuter & Solanki 2012, Auer 2003) or
cubic Hermite splines (Ibgui et al. 2013). While the 2nd- (and
higher) order methods reproduce the diffusion limit in optically
thick media, they suffer from overshoots and need to be mono-
tonized with some effort to ensure that any interpolated quantity
remains positive between two given grid points. Monotonicity
is usually obtained by manipulating the interpolation scheme
whenever overshoots occur. Thus, the actual interpolation cru-
cially depends on the specific stratification of the considered
quantity (e.g. the source function). The Λ-operator then be-
comes non-linear, because its elements now explicitly depend on
the stratification of source functions (via corresponding interpo-
lation/integration coefficients). Within any Λ-iteration scheme,
this non-linearity can lead to oscillations. In extreme cases, ‘flip-
flop situations’ (Holzreuter & Solanki 2012, their Appendix A)
may occur, which do not converge at all.

For the source contribution, we implement both a linear ap-
proximation as the fastest and most stable method (monotonicity
is always provided), and a quadratic Bézier approximation (see
Appendix B) for higher accuracy1, which allows us to preserve
monotonicity in a rather simple way. The Bézier interpolation is
constructed from two given data points and one control point,
the latter setting the slope of the interpolating curve. The control
point is located at the centre of the data-points abscissae, with
the ordinate calculated by accounting for the information of a
third data point to yield the parabola intersecting all three data
points. Whenever overshoots occur, the value of the control point
will be manipulated to ensure monotonicity (see Fig. B.2). The
corresponding formulation is given in Appendix B, Eqs. (B.7)-
(B.10). Applying these equations to describe the behaviour of
the mean intensities along the optical path, and identifying the
indices (i − 1), (i), (i + 1) with the upwind, current, and down-
wind points, we find, after reordering for the t0, t1, t2 terms:

S (t + τu) = S
(i jk)
u +

[

(ω − 2)

∆τu

S
(i jk)
u

+
(1 − ω)∆τu + (2 − ω)∆τd

∆τu∆τd

S
(i jk)
p +

(ω − 1)

∆τd

S
(i jk)

d

]

· t

+

[

(1 − ω)

∆τ2
u

S
(i jk)
u +

(ω − 1)(∆τu + ∆τd)

∆τ2
u∆τd

S
(i jk)
p

+
(1 − ω)

∆τu∆τd

S
(i jk)

d

]

· t2 , (11)

1 In this paper, different interpolation schemes are tested by consider-
ing simplified (though physically relevant) continuum and line scatter-
ing problems. We emphasize that our code will be further developed to
enable the solution of more complex, multi-level problems in 3D. For
such problems, highly accurate interpolation schemes are required to
describe the variation of the mean intensities along a ray.
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with downwind optical-depth increment, ∆τd = τd − τp ≥ 0. The
parameter ω defines the ordinate of the control point (Eq. (B.4)).
Within the Bézier interpolation, we emphasize that ω may ex-

plicitly depend on S
(i jk)
u , S

(i jk)
p , and S

(i jk)

d
to ensure monotonicity,

and not solely on the grid spacing. A major advantage of this pa-
rameterization is that we can globally define a minimum allowed
ω that can be adapted during the iteration process. The flip-flop
situations discussed above can then be avoided by gradually in-
creasing ωmin towards unity (ω ≡ 1 corresponds to a linear in-
terpolation), that is, by suppressing the curvature of the Bézier
interpolation. This way, we can construct an always-convergent
iteration scheme, though with the drawback of using less accu-
rate interpolations.

Integrating Eq. (10) together with a source function de-
scribed by Eq. (11), we obtain the discretized equation of ra-
diative transfer:

Ii jk = ai jkS
(i jk)
u + bi jkS

(i jk)
p + ci jkS

(i jk)

d
+ di jkI

(i jk)
u , (12)

with

ai jk := e0 +
ω − 2

∆τu

e1 +
1 − ω
∆τ2

u

e2

bi jk :=
(1 − ω)∆τu + (2 − ω)∆τd

∆τu∆τd

e1 +
(ω − 1)(∆τu + ∆τd)

∆τ2
u∆τd

e2

ci jk :=
ω − 1

∆τd

e1 +
1 − ω
∆τu∆τd

e2

di jk := e−∆τu

e0 := e−∆τu

∫ ∆τu

0

etdt = 1 − e−∆τu

e1 := e−∆τu

∫ ∆τu

0

tetdt = ∆τu − e0

e2 := e−∆τu

∫ ∆τu

0

t2etdt = ∆τ2
u − 2e1 .

The calculation of the upwind and downwind ∆τ-steps proceeds
similarly, where now the opacity is integrated using the Bézier
interpolation. Using Eqs. (B.3), (B.4) for the upwind interval,
and Eqs. (B.11), (B.12) for the downwind interval, one easily
obtains:

∆τu =

∫ p

u

χ(s)ds =
∆su

3
(χu + χ

[u,p]
c + χp) (13)

∆τd =

∫ d

p

χ(s)ds =
∆sd

3
(χp + χ

[p,d]
c + χd) , (14)

where ∆su, ∆sd describe the path lengths of the upwind and

downwind intervals, respectively, and χ
[u,p]
c , χ

[p,d]
c refer to the

opacity at the control points in each interval.

3.2. Grid refinement

Since the opacity of a line transition depends on the velocity
field through the Doppler effect, regions of significant opacity
may become spatially confined in a highly supersonic wind with
strong acceleration. Thus, a grid refinement along the short char-
acteristic might be required to correctly account for all so-called
resonance zones. Because the profile function is approximated
by a Doppler profile and rapidly vanishes for |xcmf/δ| & 3, a res-
onance zone is here defined by a region where xcmf/δ ∈ [−3, 3].

A numerically sufficient condition to resolve all such reso-
nance zones along a given ray is to demand that |∆xcmf |/δ =

|∆Vproj|/δ . 1/3 if a resonance zone lies in between the points

[u(i jk), p], where ∆Vproj is the projected velocity step along the
ray in units of v∗

th
. Assuming a linear dependence of the projected

velocities on the ray coordinate s, this condition directly trans-
lates to an equidistant refined spatial grid along the ray. For short
ray segments (as is mostly the case within our calculations), ne-
glecting the second-order (curvature) terms of the projected ve-
locity influences the solution only weakly. The line source func-
tion on the refined grid is obtained by Bézier interpolation in
s-space (Eqs. (B.7)-(B.9)):

S L(sℓ) = S ℓ = ãℓS
(i jk)
u + b̃ℓS

(i jk)
p + c̃ℓS

(i jk)

d
, (15)

where the index ℓ refers to the points on the refined grid, and
u(i jk), p(i jk), d(i jk) describe the original geometry of the short char-
acteristic. χ̄L is obtained analogously, and the required ∆τℓ
steps are calculated with the trapezoidal rule, for simplicity.
Contrasted to the Sobolev method (which also assumes a lin-
ear velocity law along the ray segment, e.g. Rybicki & Hummer
1978), our grid refinement procedure explicitly accounts for
variations of the opacity and the source function.

Using Eq. (12) for the inter-grid points, such that the (local)
upwind, current, and downwind quantities are now described by
the indices [ℓ − 1, ℓ, ℓ + 1], we obtain:

Iℓ = Iℓ−1e−∆τℓ +
(

aℓãℓ−1 + bℓãℓ + cℓãℓ+1

)

S
(i jk)
u (16)

+
(

aℓb̃ℓ−1 + bℓb̃ℓ + cℓb̃ℓ+1

)

S
(i jk)
p (17)

+
(

aℓc̃ℓ−1 + bℓc̃ℓ + cℓ c̃ℓ+1

)

S
(i jk)

d
(18)

:= Iℓ−1e−∆τℓ + α̃ℓS
(i jk)
u + β̃ℓS

(i jk)
p + γ̃ℓS

(i jk)

d
. (19)

For a number of Nref refinement points (including the upwind
and current point) within the interval [u(i jk), p(i jk)], the intensity
at point p(i jk) is finally given by:

Ii jk = I
(i jk)
u e−

∑Nref
m=2
∆τm + S

(i jk)
u

Nref
∑

m=2

α̃me−
∑Nref

n=m+1
∆τn

+ S
(i jk)
p

Nref
∑

m=2

β̃me−
∑Nref

n=m+1
∆τn + S

(i jk)

d

Nref
∑

m=2

γ̃me−
∑Nref

n=m+1
∆τn , (20)

where the upwind and current points always correspond to the
indices m = 1 and m = Nref , respectively, and the sum over m is
performed over Nref−1 intervals. The discretized radiative trans-
fer equation for the refined grid obviously has the same form as
for the standard short characteristic (Eq. (12)), with different co-
efficients though.

3.3. Upwind and downwind interpolations

To solve the discretized equation of radiative transfer, the opac-
ities χC(u,d), χ̄L(u,d), source functions S C(u,d), S L(u,d), and velocity
vectors V(u,d), are required at the upwind and downwind points,
together with the incident intensity, Iu. We emphasize that the
subscript C describes continuum quantities, and should not be
confused with the subscript c denoting the control points of the
interpolation scheme.

All required quantities are obtained from a 2D Bézier inter-
polation (see Appendix C) on the surfaces that intersect with a
given ray. The intersection surfaces depend on the considered di-
rection and the size of the upwind and downwind grid cells. For
a given direction

n =

















nx

ny
nz

















=

















sin θ cosφ
sin θ sin φ

cos θ

















, (21)
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PSfrag replacements

Au
Bu
Cu
Du
Eu
Fu
Gu
Hu
Iu
Ju

Ku
Lu

Mu
Nu
Ou
Pu
Qu
Ru
Su
n

Ad
Bd
Cd
Dd
Ed
Fd
Gd
Hd
Id
Jd

Kd
Ld

Md
Nd
Od
Pd
Qd
Rd
Sd
n

p(i jk)

Eu Fu

Nu
Ou

Nd
Od

Hd Id

αx

βy

γz

n

u(i jk)

p(i jk)

d(i jk)

PSfrag replacements

Au
Bu
Cu
Du
Eu
Fu
Gu
Hu
Iu
Ju

Ku
Lu

Mu
Nu
Ou
Pu
Qu
Ru
Su
n

Ad Bd

Cd

Dd
Ed

Fd

Gd Hd Id

Jd Kd

Ld

Md
Nd Od

Pd

Qd

Rd

Sd

n

p(i jk)

Eu
Fu
Nu
Ou

Nd
Od
Hd
Id
αx
βy
γz
n

u(i jk)

p(i jk)

d(i jk)
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Fig. 1. Geometry of the SC method for a particular ray with di-
rection n propagating from the upwind point u(i jk) to a consid-
ered grid point p(i jk). The downwind point d(i jk) is required to set
the slope of a Bézier curve representing the opacities and source
functions along the ray. The middle and lower panel display all
possible downwind and upwind intersection surfaces for a short
characteristic at a grid point p(i jk). For rays intersecting the xy-,
xz-, and yz-planes, the 2D Bézier interpolation is obtained from
given quantities at grid points located in the cyan, red, and ma-
genta shaded surfaces, respectively. The coordinate system is in-
dicated at the upper left, where α, β, γ determine the direction of
the coordinate-axes and are defined in Sect. 3.3.

where θ is the co-latitude (measured from the Cartesian z-axis),
and φ is the azimuth (measured from the x-axis), the distances

from a considered grid point to the neighbouring xy-, xz-, and
yz-planes are calculated from trigonometry and yield:

∆s(u)
xy =

zk − zk−γ

nz

∆s(d)
xy =

zk+γ − zk

nz

∆s(u)
xz =

y j − y j−β

ny
∆s(d)

xz =
y j+β − y j

ny

∆s(u)
yz =

xi − xi−α

nx

∆s(d)
yz =

xi+α − xi

nx

,

with α, β, γ set to ±1 for direction-vector components nx, ny, nz ≷

0, respectively. The intersection surface on the upwind
and downwind side are then found at the minimum of
∆s

(u,d)
xy ,∆s

(u,d)
xz ,∆s

(u,d)
yz , and the corresponding coordinates are eas-

ily calculated.

For each surface, the interpolation requires nine points
within the corresponding plane (see Fig. 1 and Eq. (C.1)). In
each considered plane, we generally use grid points running
from (index-2) to (index) to determine upwind quantities, while
downwind quantities are calculated from (index-1) to (index+1).
Such a formulation greatly simplifies the calculation of the Λ-
matrix elements (see Appendix D). In Fig. 1, we show an ex-
ample for a ray intersecting the xy-plane at the upwind side.
The 2D Bézier interpolation for the upwind point then con-
sists of three 1D Bézier interpolations along the x-axis using
the points (Ju,Ku,Lu), (Du,Eu, Fu), (Mu,Nu,Ou), followed by
another 1D Bézier interpolation along the y-axis at the upwind x-
coordinates. With the 2D Bézier interpolation given by Eq. (C.1),
we find for each required quantity qu,d:

q
(i jk)
u = w

(i jk)

A
qi−2α, j−β,k−2γ + w

(i jk)

B
qi−α, j−β,k−2γ + w

(i jk)

C
qi, j−β,k−2γ

+ w
(i jk)

D
qi−2α, j−β,k−γ + w

(i jk)

E
qi−α, j−β,k−γ + w

(i jk)

F
qi, j−β,k−γ

+ w
(i jk)

G
qi−2α, j−β,k + w

(i jk)

H
qi−α, j−β,k + w

(i jk)

I
qi, j−β,k

+ w
(i jk)

J
qi−2α, j−2β,k−γ + w

(i jk)

K
qi−α, j−2β,k−γ + w

(i jk)

L
qi, j−2β,k−γ

+ w
(i jk)

M
qi−2α, j,k−γ + w

(i jk)

N
qi−α, j,k−γ + w

(i jk)

O
qi, j,k−γ

+ w
(i jk)

P
qi−α, j−2β,k−2γ + w

(i jk)

Q
qi−α, j,k−2γ

+ w
(i jk)

R
qi−α, j−2β,k + w

(i jk)

S
qi−α, j,k + wi jkqi jk (22)

q
(i jk)

d
= w̃

(i jk)

A
qi−α, j+β,k−γ + w̃

(i jk)

B
qi, j+β,k−γ + w̃

(i jk)

C
qi+α, j+β,k−γ

+ w̃
(i jk)

D
qi−α, j+β,k + w̃

(i jk)

E
qi, j+β,k + w̃

(i jk)

F
qi+α, j+β,k

+ w̃
(i jk)

G
qi−α, j+β,k+γ + w̃

(i jk)

H
qi, j+β,k+γ + w̃

(i jk)

I
qi+α, j+β,k+γ

+ w̃
(i jk)

J
qi−α, j−β,k+γ + w̃

(i jk)

K
qi, j−β,k+γ + w̃

(i jk)

L
qi+α, j−β,k+γ

+ w̃
(i jk)

M
qi−α, j,k+γ + w̃

(i jk)

N
qi, j,k+γ + w̃

(i jk)

O
qi+α, j,k+γ

+ w̃
(i jk)

P
qi+α, j−β,k−γ + w̃

(i jk)

Q
qi+α, j,k−γ

+ w̃
(i jk)

R
qi+α, j−β,k + w̃

(i jk)

S
qi+α, j,k , (23)

where the coefficients w(i jk) and w̃(i jk) refer to the upwind and
downwind interpolations corresponding to a considered point
(i jk). Depending on the intersection surface, ten out of these
19 coefficients are set to zero. For the upwind interpolation,
we have already included the local coefficient (i jk), which is
only required when boundary conditions need to be specified
(Sect. 3.4). We note that all (non-zero) interpolation coefficients
may depend on the specific values of a considered quantity at
the given grid points, via the interpolation parameter ω to en-
sure monotonicity. As in Sect. 3.1, also these monotonicity con-
straints result in non-linear Λ-operators.
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Fig. 2. Boundary conditions for rays propagating in the xz-plane
at y-level ( j) with three different directions n1, n2, n3, and up-
wind points u1, u2, u3. For point u1, the intensity is set to Iu = I+c
and all remaining quantities are obtained by bilinear interpo-
lation from points (i − 1, j, k − 1), (i, j, k − 1), (i − 1, j, k), and
(i jk). The required quantities at point u2 are found from Bézier
interpolation using the values at (i − 2, j, k − 1), (i − 1, j, k − 1),
(i, j, k − 1). The (unknown) quantities inside the core are indi-
cated by red dots, and need to be reasonably approximated (see
text). For direction n3, the unknown intensity inside the core,
I−c , is directed inwards. Such situations occur only for ray direc-
tions (nearly) parallel to the spatial grid, and thus are relatively
seldom.

3.4. Boundary conditions

Since the inner boundary is usually not aligned with the 3D
Cartesian grid (e.g. a spherical star at the origin), the upwind
(and downwind) interpolations need to be adapted near the stel-
lar surface. For the upwind point, the following two situations
may occur (see Fig. 2 for an example in the xz-plane). Firstly,
the considered ray originates from the stellar surface (direction
n1 in Fig. 2). In this case, we use a core-halo approximation and
set Iu = I+c = Bν(Trad), with I+c the emergent intensity from the
core, and Trad the radiation temperature. Unless explicitly noted,
we assume Trad = Teff throughout this work. All other quan-
tities are obtained from trilinear interpolation using the points
(Eu, Fu,Hu, Iu,Nu,Ou, Su, p

(i jk)) in Fig. 1, where representative
estimates need to be defined at the core points (those points that
are located inside the star). In hydrodynamic simulations, the
analogue of these points are so-called ‘ghost points’. Secondly,
the considered ray originates from a plane spanned by grid points
that are partially located inside the star (direction n2 in Fig. 2).
Then, the interpolation is performed as in Sect. 3.3, using again
representative estimates at the core-points.

Inside the core, we define I+c = S L = S C = Bν(Trad) and set
I−c and all velocity components to zero, where I−c is the inward
directed intensity which needs to be specified only in rare situa-
tions (Fig. 2, direction n3). The opacities inside the star are found
by extrapolation from the known values outside the star. While
this procedure certainly introduces errors (e.g. by over- and un-
derestimating the upwind source function in optically thin and

Table 1. Mean relative error (defined in Sect. 4.2) of the mean
intensity for a zero-opacity model, obtained using the Lebedev,
Gauss-Legendre, and trapezoidal integration method, the latter

with nodes from Lobel & Blomme (2008). For ∆Jex and ∆JSC,
the incident intensities have been calculated exactly and from the
SC method using linear upwind interpolations, respectively.

Trapez Legendre Lebedev

NΩ 1037 2105 968 2048 974 2030

∆Jex [%] 12.1 8.0 14.3 9.4 11.2 7.7

∆JSC [%] 11.3 10.8 10.9 10.9 10.8 10.8

thick cases, respectively), it is still favourable to extrapolating
all values directly onto the stellar surface, mainly due to per-
formance reasons2. In addition to the error introduced by the
predefined values inside the core, the calculation of ∆sr is a cer-
tain issue, where ∆sr is the distance of the current grid point to
the stellar surface. Since the radiative transfer near the stellar
surface is (in most cases) very sensitive to the path length of a
considered ray,∆sr needs to be known exactly. Depending on the
shape of the surface, ∆sr can be calculated analytically, or needs
to be determined numerically. A numerical solution, however,
might be time consuming and should be avoided when possible.
Downwind quantities are always calculated from Eq. (23), using
the estimates at the core points as defined above when necessary.

3.5. Angular and frequency integration

To obtain the mean intensity at each grid point in the atmosphere,
we solve the discretized equation of radiative transfer for many
directions and numerically integrate via:

Ji jk =
1

4π

∫

Ii jkdΩ =
∑

l

wlIi jk(Ωl) , (24)

where wl is the integration weight corresponding to a considered
directionΩl = (θl, φl). The angular integration is particular chal-
lenging for optically thin atmospheres, since in such situations
each (spatial) grid point is illuminated by the stellar surface,
and the distribution of intensities Ii jk(θ, φ) becomes a 2D step-
function in the θ − φ-plane (if no upwind interpolation errors
were present). Depending on the considered position, the shape
of Ii jk(θ, φ) greatly varies. Thus, elaborate integration methods
are required to resolve the star and its edges at any point of the
atmosphere.

Lobel & Blomme (2008) use the trapezoidal rule with a de-
creasing number of polar grid points at higher latitudes to rea-
sonably distribute the direction vectors on the unit sphere. For
the 3D FVM, we have shown in paper I that a Gauss-Legendre
integration performs (slightly) better. However, the correspond-
ing directions are always clustered in certain regions since the
nodes of the Gauss-Legendre quadrature are fixed. Additionally,
the Gauss-Legendre integration should only be applied when
the distribution of intensities can be described by high order
polynomials, that is, when Ii jk(θ, φ) is smoothed out (e.g. by
numerical diffusion). When numerical diffusion errors are sup-

2 For a given grid point, the number of neighbouring grid points that
can be used for extrapolation is not a priori clear, and depends on the
shape of the stellar surface, and the considered direction of the ray.
Indeed, there are 64 special cases that would have to be implemented
explicitly. This is computationally not feasible.
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pressed (e.g. by using elaborate upwind interpolation schemes),
the Gauss-Legendre integration should not be used (see Table 1).

We have tested a multitude of other quadrature schemes,
including trapezoidal and (pseudo)-Gaussian rules on
triangles, and the so-called Lebedev quadrature (see,
e.g. Ahrens & Beylkin 2009, Beentjes 2015, and refer-
ences therein). The Lebedev quadrature is optimized to exactly
integrate the spherical harmonics up to a certain degree, with a
(nearly) optimum distribution of direction vectors on the unit
sphere. In Table 1, we summarize the errors for an optically thin
atmosphere using different integration methods. The incident
intensities have been obtained exactly (i.e. by setting Ii jk = Ic

and Ii jk = 0 for core and non-core rays, respectively), or from
the 3D SC method using linear interpolations. Considering
the SC solution scheme, the solution has only been slightly
improved (if at all) when doubling the angular grid resolution
from NΩ ≈ 1000 to NΩ ≈ 2000, for all applied integration
methods. We note that the mean relative error does not converge
to zero due to the upwind interpolation scheme (see Sect. 4.1).
For the exact solution of the optically thin radiative transfer, the
Lebedev-integration method performs best, and is therefore used
within all our calculations. When calculating line transitions,
the location of resonance zones depends on the considered
direction. Thus, we generally use NΩ = 2030 direction vectors
to ensure that no resonance zone has been overlooked. The
corresponding angular resolution is typical when calculating 3D
radiative transfer problems in extended stellar atmospheres. For
instance, Lobel & Blomme (2008) used NΩ = 6400 within their
3D finite-volume method.

To obtain the scattering integral, we apply the trapezoidal
rule for the frequency integration. The scattering integral then
reads:

J̄i jk =
1

4π

∫

dΩ

∫ x
(max)

obs

x
(min)

obs

dxIi jkΦ
(i jk)
x =

∑

l

wl

∑

x

wxIi jkΦ
(i jk)
x ,

(25)

with x
(min)

obs
and x

(max)

obs
the required frequency shift in the ob-

server’s frame obtained from the maximum absolute velocity
occurring in the atmosphere (see also paper I), and wx the cor-
responding frequency integration weight. To resolve the pro-
file function at each point in the atmosphere, we demand that
|∆xobs|/δ . 1/3. Since the profile function depends on the ratio
of fiducial to actual thermal width, the fiducial velocity should be
set to the minimum thermal velocity present in the atmosphere.

3.6. Λ-iteration

In Sect. 3.1, we have already noted that the Λ-operator becomes
non-linear due to monotonicity constraints (implemented by the
interpolation parameter ω). In this section, we present a suitable
workaround, beginning with a recapitulation of some fundamen-
tal ideas.

3.6.1. Λ-matrix elements

With the discretized equation of radiative transfer,
Eqs. (12)/(20), and the upwind and downwind quantities
obtained from Eqs. (22) and (23), the intensity at each spatial,
angular, and frequency grid point can be calculated for a given
source function. We use the standard Λ-formalism to write the
formal solution of the intensity, mean intensity, and scattering

integral as:

I = ΛΩ,ν[S C,L] (26)

J = Λν[S C] (27)

J̄ = Λ[S L] , (28)

with subscripts Ω and ν defining the dependence of the Λ-
operator on direction and frequency, respectively. In the fol-
lowing, we focus on the line transport. The continuum can be
derived analogously. When all interpolation parameters ω have
been determined (for a given stratification of source functions
and intensities), the Λ-operator is an affine operator described
by the Λ-matrix and a constant displacement vector ΦB repre-
senting the propagation of boundary conditions (for a detailed
discussion, see paper I, Puls 1991, and references therein). The
Λ-matrix elements can then be obtained by:

Λm,n = J̄m(SL = en,ΦB = 0) , (29)

with the n-th unit vector en, and matrix indices m, n related to the
3D indices (i, j, k) by

m = i + Nx( j − 1) + NxNy(k − 1) , (30)

where Nx and Ny denote the number of spatial grid points of the
x and y coordinate, respectively. Eq. (30) simply transforms a
data cube to a 1D array. The m, n-th matrix-element describes
the effect of a non-vanishing source function at grid point n onto
grid point m. We emphasize that Eq. (29) holds only for pre-
calculated interpolation parameters ω, obtained from an already
known stratification of source functions.

3.6.2. Accelerated Λ-iteration

The classical Λ-iteration scheme is defined by calculating a for-
mal solution for a given source function using Eq. (28), followed
by the calculation of a new source function by means of Eq. (3).
For optically thick, scattering dominated atmospheres, however,
this iteration scheme suffers from severe convergence problems
(see Fig. 5 for the convergence behaviour of spherically sym-
metric test models). To overcome these problems, we apply an
acceleratedΛ-iteration scheme based on operator-splitting meth-
ods (Cannon 1973). Within the ALI, the Λ-operator is written as

Λ = Λ(A) + (Λ − Λ(A)) , (31)

where the first term is an appropriately chosen ALO acting on

the new source function, S
(k)

L
, and the second term acts on the

previous one, S
(k−1)

L
. For the converged solution, this scheme be-

comes an exact relation. Using also, and in analogy to the ex-
act Λ-operator, an affine representation for the approximate one,
Λ(A) [S ] = Λ∗ · S + ΦB (cf. above), and evaluating Λ(A) at the
previous iteration step, k − 1, we obtain:

S
(k)

L
= ζ · J̄ (k)

+Ψ

≈ ζ · Λ(A)

k−1
[S

(k)

L
] + ζ · (Λk−1 − Λ(A)

k−1
)[S

(k−1)

L
] +Ψ

= ζ ·
(

Λ
∗
k−1S

(k)

L
+Φ

(k−1)

B
+ J̄

(k−1) − Λ∗k−1S
(k−1)

L
−Φ(k−1)

B

)

+ Ψ . (32)

Here, the iteration indices k−1 and k are indicated as sub- or su-
perscripts, ζ := 1−ǫL is a diagonal matrix, andΨ := ǫL ·Bν(T) is
the thermal contribution vector. From Eq. (32), it is obvious that
the ΦB terms cancel. For multi-level atoms, we emphasize that
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Λ and Λ(A) may change within the ALI-cycle due to the varia-
tion of opacities (induced by the subsequently updated occupa-
tion numbers). Furthermore, both operators might also change
even for the simplified TLA approach considered in this paper,
since the corresponding matrix elements depend on the source
functions via the interpolation parametersωk−1, ωk. Rearranging
terms, we find:

(1 − ζ · Λ∗k−1)S
(k)

L
= ζ · ( J̄

(k−1) − Λ∗k−1 · S
(k−1)

L
) +Ψ . (33)

Eq. (33) is solved to obtain a new source function S
(k)

L
(see be-

low). Since, however, Λ∗
k−1

has been optimized only to ensure
monotonicity in a specific step k − 1 (based on source function

S
(k−1)

L
), the iteration scheme can oscillate due to oscillations in

Λ
∗
k

and Λ∗
k−1

. Even worse, the new source function might be-
come negative. To overcome these problems, non-linear situ-
ations need to be avoided (by providing almost constant Λ∗-
matrices over subsequent iteration steps). The following ap-
proach has proved to lead to a stable and convergent scheme:
We apply purely linear interpolations (ωk−1 = ωk = 1 and
thus Λ∗

k
= Λ∗

k−1
) in the first four iteration steps to obtain an

already smooth stratification of source functions. Additionally,
we globally define a minimum allowed interpolation parameter
and demand that ω > ωmin. Then, ω becomes constant (namely
ω = ωmin) in (most) critical situations, and again,Λ∗

k
approaches

Λ
∗
k−1

. Whenever negative source functions or oscillations occur
within the iteration scheme, ωmin is gradually increased to one.
With this approach, we obtain an always convergent iteration
scheme, with a formal solution obtained by using linear interpo-
lations only in most challenging cases.

3.6.3. Constructing the ALO

The rate of convergence achieved by the accelerated Λ-iteration
scheme increases with the number of Λ-matrix elements in-
cluded in the ALO. To minimize the computation time of the
complete procedure, the choice of the ALO is always a compro-
mise between the number of matrix-elements to be calculated,
and the resulting convergence speed. While the inversion of a
diagonal ALO reduces to a simple division, a multi-band ALO
needs to be inverted with some more effort. When taking only
the nearest neighbours into account, however, the ALO becomes
a sparse matrix, and can be efficiently inverted by applying the
Jacobi-Iteration for sparse systems (see paper I). For 3D calcula-
tions, a multi-band ALO is required to obtain a rapidly converg-
ing iteration scheme (see Hauschildt & Baron 2006 and paper I
for solutions obtained with the LC method and the FVM, re-
spectively), and thus implemented within our 3D SC framework.
To calculate the corresponding Λ-matrix elements (including
all upwind and downwind interpolations), we extend the proce-
dure developed by Olson & Kunasz (1987) and Kunasz & Olson
(1988). A detailed derivation is given in Appendix D. Eqs. (D.1)-
(D.27) correspond to the exact Λ-matrix elements for a local
point and its 26 neighbours, and thus should give an excellent
rate of convergence when included in the ALO (see, e.g. the
26-neighbour ALO of Phoenix/3D, Hauschildt & Baron 2006).
Furthermore, all elements can be calculated in parallel to the for-
mal solution. This property becomes important when the ALO
varies during the iteration scheme, that is, when applying mono-
tonic Bézier interpolations (as discussed above), or when ac-
counting for multi-level atoms (for which the occupation num-
bers and thus opacities might change during the iteration)3.

3 For the simplified continuum and the TLA considered in this paper,
the linear interpolation scheme is particularly advantageous in terms of

In this paper, we analyse the convergence speed of the ALI
for a diagonal ALO given by Eq. (D.14), a ‘direct-neighbour’
(DN)-ALO given by Eqs. (D.5), (D.11), (D.13), (D.14), (D.15),
(D.17), (D.23), and a ‘nearest-neighbour’ (NN)-ALO obtained
from all Eqs. (D.1)-(D.27). We note that only a moderate im-
provement of the computation time can be expected when us-
ing the diagonal or DN-ALO, since the diagonal and direct-
neighbour elements depend on several other neighbours through
the inclusion of downwind interpolations. Since, however, the
downwind-integration weight is generally negative, neglecting
these terms will overestimate the considered matrix elements,
possibly resulting in a divergent iteration scheme. On the other
hand, when using purely linear interpolations (for the source
contribution and upwind interpolations), the calculation of the
ALO is greatly simplified since all coefficients ci jk and wA, wB,
wC, wD, wG, wJ, wK, wL, wM, wP, wQ, wR vanish. For third-order
upwind/downwind interpolations as used in IRIS (Ibgui et al.
2013), the calculation of the ALO coefficients becomes com-
putationally prohibitive at some point. Considering both inter-
polation techniques used in this paper, the calculation of the di-
agonal, DN-, and NN-ALO, in parallel to the formal solution
requires 20%, 30%, and 40% of the total computation time.

Finally, we have implemented the Ng-extrapolation (Ng
1974, Olson et al. 1986) to improve the convergence speed fur-
ther. As in paper I, the Ng-acceleration is applied in every fifth
iteration step in order to use independent extrapolations.

3.7. Parallelization and timing

To minimize the computation time of our 3D code, we have im-
plemented an elaborate grid construction procedure using a non-
uniform grid-spacing that still enables a reasonably high spatial
resolution (see Appendix A). Furthermore, when calculating line
transitions, we have parallelized the code using OpenMP as in
paper I. The parallelization is implemented over the frequency
grid. We note that OpenMP creates a local copy of the 3D arrays
representing the intensity and the (nearest-neighbour)Λ-matrix.
With 27 Λ-matrix elements (per spatial grid point) included for
the ALO calculations, the (spatial) resolution becomes therefore
memory limited. A typical resolution of Nx = Ny = Nz = 93,
however, is still feasible, and gives reasonable results. For the
models calculated in Sect. 4.2, typical computation times are

t
(linear)

SC
≈ 2 h and t

(Bézier)

SC
≈ 6 h per iteration when applying the 3D

SC methods on an Intel Xeon X5650 (2.67 GHz) machine with
16 CPUs. As a reference, the FVM from paper I ‘only’ required
roughly 50 minutes. A more meaningful comparison, however, is
the computation time per iteration, per CPU, and per angular and
frequency grid point using the same spatial grids for all methods.
For an equidistant grid with Nx = Ny = Nz = 71 grid points,

we find computation times of tFVM ≈ 0.037s, t
(linear)

SC
≈ 0.138s,

and t
(Bézier)

SC
≈ 0.448s. Thus, the computation times of the 3D

SC methods using linear/Bézier interpolations are increased by
a factor of roughly four/twelve, when compared to the 3D FVM.
These differences originate from the computationally more chal-
lenging upwind/downwind interpolations, the integration of the
discretized equation of radiative transfer on (possibly) refined
grids along a given ray, and from the calculation of an ALO in-
cluding 26 neighbouring elements (instead of the 6 direct neigh-
bours as used for the 3D FVM).

computation time, since the corresponding ALO remains constant over
all iteration steps, and therefore needs to be calculated only once.

8



L. Hennicker et al.: 3D short-characteristics method in the winds from OB stars

4. Spherically symmetric models

With the numerical tools developed in Sect. 3, we are able to
tackle 3D continuum and line scattering problems for arbitrary
velocity fields. In the following, we discuss the performance of
the code when applied to spherically symmetric test models. We
compare the solutions obtained from the 3D SC method using
linear and Bézier interpolations (hereafter denoted by SClin and
SCbez, respectively), with those obtained from the 3D FVM
and from accurate 1D solvers4. Although we are using the same
models as in paper I, the FVM solutions might differ slightly
from those presented in this paper, since we are using a different
grid, optimized for the 3D SC method.

4.1. Searchlight-beam test

A first test of our 3D SC methods is the searchlight-beam test
(e.g. Kunasz & Auer 1988). Within this test, we set the opacity
to zero and consider the illumination of the atmosphere by a cen-
tral star for a single direction. For consistency (cf. paper I), the
direction vector corresponds to θ = 45◦, φ = 0◦. Since the dis-
cretized equation of radiative transfer, Eq. (12)/(20), reduces to

Ii jk = I
(u)

i jk
, this test extracts the effects of the applied interpola-

tion schemes for the upwind intensity. The upper panel of Fig. 3
shows the propagation of the specific intensity scaled by Ic in
the xz-plane. Due to the upwind interpolation, the beam emerg-
ing from the stellar core becomes widened. These interpolation
errors are connected with numerical diffusion, and could only be
avoided by applying a LC method. To obtain a quantitative mea-
sure of this effect, the lower and middle panel of Fig. 3 display
the specific intensity along the given direction at the centre of
the beam, and the specific intensity through a circular area per-
pendicular to the ray direction as a function of impact parameter
p. The corresponding exact solutions are given by a constant and
rectangular function, respectively.

Along the beam centre, the SC methods perfectly reproduce
the exact solution, whereas the FVM solution decreases signif-
icantly due to the finite grid-cell size (see paper I). Considering
the intensity through the perpendicular area, both SC methods
perform better than the FVM, with slight advantages of the
SCbez method when compared with the SClin method. Within
the 3D SC methods, however, energy conservation is violated
for our zero opacity models, because the (nominal) specific in-
tensity jumps from I+c to zero for rays intersecting the stellar
surface or not, due to the core-halo approximation. As a con-
sequence, almost all interpolations (and interpolation schemes)
overestimate the specific intensity5. For optically thick models
(where I+c at the core plays a negligible or minor role), this ef-
fect should decrease though. The associated error can be quanti-
fied by calculating the corresponding flux, that is, by integrating
the specific intensity for a given direction over a correspond-
ing perpendicular area (defined as a circle with virtually infinite
radius). We emphasize that the flux as defined here constitutes
the most demanding test case, and should not be confused with

4 The 1D solution for the continuum transport is found from the
Rybicki-algorithm (combined with the solution of the moment equa-
tions using variable Eddington factors, see, e.g. Mihalas 1978). To cal-
culate the line, a comoving-frame ray-by-ray solution scheme in pz-
geometry is applied, ensuring convergence with a diagonal ALO.

5 In contrast, the number of photons entering and leaving a given
grid cell is (nearly) conserved within the FVM by definition. This state-
ment, however, is not completely true for the FVM as formulated by
Adam (1990), Lobel & Blomme (2008), Hennicker et al. (2018), since
all these authors apply an (averaged) upwind approximation.

Fig. 3. Searchlight-beam test for direction n = (1, 0, 1) and a
typical grid with Nx = Ny = Nz = 133 grid points. Upper panel:
Contour plot of the specific intensity as calculated with the SC
method using Bézier interpolations in the xz-plane (cf. paper I,
Fig. 3, for the finite-volume method). Middle panel: Specific in-
tensity through the perpendicular area indicated by the straight
line in the upper panel. The blue, red, and green profiles cor-
respond to the FVM, SClin, and SCbez methods, respectively.
The dashed line indicates the theoretical profile. Bottom panel:
As middle panel, but along the centre of the searchlight beam.
We note that the SC methods reproduce the exact solution at the
centre of the beam, whereas the FVM solution decreases signif-
icantly for r & 2.5 R∗.
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Fig. 4. Photon flux as a function of direction angle φ (with fixed
θ = 45◦) through corresponding perpendicular areas, and with
the opacity set to zero. The central distance of all areas to the
stellar surface has been set to 2 R∗. The same colour coding as in
Fig. 3 has been used.

the flux density (i.e. the first moment of the specific intensity).
Fig. 4 shows the resulting fluxes (normalized by the nominal
value) for searchlight beams with different directions defined by
θ = 45◦ and φ ∈ [0◦, 90◦]. For different directions φ, the search-
light beams propagate through different domains of the spatial
grid with accordingly different grid-cell sizes. Due to the dis-
tinct behaviour of numerical diffusion errors within these do-
mains, the total flux varies as a function of φ. Overall, the total
fluxes for the SClin and SCbez methods are larger than theoreti-
cally constrained, whereas the FVM gives (despite a small error)
reasonable results. This effect is largest in regions far from the
star and for diagonal directions. Thus, particularly in these re-
gions, also the mean intensities (for optically thin atmospheres)
are expected to be overestimated. The same problem arises when
calculating line transitions, since photons may freely propagate
over large distances before a resonance region is hit. Numerical
diffusion errors can only be avoided by increasing the grid reso-
lution, or using higher order upwind-interpolation methods.

4.2. Spherically symmetric stellar winds

In this section, we test the performance of the 3D SC method
when applied to spherically symmetric, stationary atmospheres.
For consistency, the same test models as in paper I have been
calculated, with the wind described by a β-velocity law and the
continuity equation:

v(r) = v∞
(

1 − b
R∗

r

)β

b = 1 −
(vmin

v∞

)1/β

ρ(r) =
Ṁ

4πr2v(r)
.

For stellar and wind parameters, R∗ = 19 R⊙, Ṁ = 5 ·
10−6 M⊙yr−1, β = 1, vmin = 10 km s−1, v∞ = 2000 km s−1, the
density stratification and the velocity field are completely deter-
mined. For the considered scattering problems (ǫC = ǫL = 10−6),
effects of the temperature stratification are negligible. The con-
tinuum and (frequency integrated) line opacities have been cal-

culated from Eqs. (7) and (8), with the electron density derived
for a completely ionized H/He plasma with helium abundance
NHe/NH = 0.1. We have calculated three different continuum
models by scaling the opacity with kC = [1, 10, 100], respec-
tively. These models correspond to an optically thin, marginally
optically thick, and optically thick atmosphere, with radial op-
tical depths τr = [0.17, 1.7, 17]. The line transport has been
calculated for a weak, intermediate, and strong line, with line-
strengths kL = [1, 103, 105]. To minimize the computation time,
we use a microturbulent velocity vmicro = 100 km s−1 through-
out this paper. Such a large velocity dispersion mimicks the ef-
fects of multiply non-monotonic velocity fields resulting from
the line-driven instability (paper I and references therein). The
atomic mass has been set to mA = 12 mp. Finally, the emergent
intensity from the stellar core is calculated from Trad = Teff =

40 kK.

4.2.1. Convergence behaviour

Fig. 5 shows the maximum relative corrections of the mean in-
tensity (left panel) and line source function (right panel) after
each iteration step. Different methods (SClin, SCbez, and FVM),
and different acceleration techniques (classical Λ-iteration, and
diagonal-, direct-neighbour-, nearest-neighbour-ALO with the
Ng-extrapolation switched on or off) have been applied. We dis-
play the continuum and line calculations for kC = [10, 100] and
kL = [10, 105], respectively, using Nx = Ny = Nz = 93 spa-
tial and NΩ = 974 angular grid points (to save computation time
when calculating the slowly converging classicalΛ-iteration). In
the following, we only discuss the convergence behaviour of the
SClin and SCbez methods, as the FVM has already been anal-
ysed in paper I. We usually stop the iteration scheme when the
maximum relative corrections become less than 10−3 between
subsequent iteration steps, emphasizing that a truly converged
solution is only found when the curve describing subsequent rel-
ative corrections is sufficiently steep6. For instance, the classical
Λ-iteration (with Λ∗ = 0) fails to converge for strong scattering
lines (Fig. 5, lower right panel), since the relative corrections be-
come almost constant in each iteration step (‘false convergence’,
cf. Hubeny & Mihalas 2014).

Overall, and as expected, the number of iterations needed
to obtain the converged solution is decreasing with increasing
number of matrix elements used to define the ALO (see also
Hauschildt et al. 1994 and Hauschildt & Baron 2006 for multi-
band ALOs coupled to a 1D-SC and 3D-LC formal solution
scheme, respectively). In most cases, the convergence of the
SClin is faster than that of the SCbez method, because the in-
terpolation scheme is intrinsically more localized (with stronger
weights assigned to local Λ-matrix elements). The FVM always
performs best, since only the direct neighbours directly influence
the formal solution within this method.

For parameters kC, kL ≤ 10 (Fig. 5, upper panels), all ALOs
yield a converged solution within Niter ≈ 10 iteration steps.
When applying the SCbez method, the first peak results from
switching the linear interpolations to Bézier interpolations at the
fifth iteration step. This peak is less pronounced for parameters

6 For linearly convergent iteration schemes, the steepness of the con-
vergence curve is described by the relative corrections in subsequent
iterations steps, ∆k/∆k−1 = const. =: q. To obtain a solution within a
reasonable amount of computation time, we may demand that q . 0.8,
corresponding to a reduction of relative errors by a factor of 10−3 every
30th iteration step.
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Fig. 5. Convergence behaviour of the standard spherically symmetric model calculated with the 3D FVM (blue) and the 3D SC
method using linear (red) or Bézier (green) interpolations. The left and right panels show the convergence behaviour of the contin-
uum and line transfer for ǫC = ǫL = 10−6, respectively. While the upper row displays the optically thin models with kC = 10 and
kL = 10, the lower row has been calculated using kC = 100 and kL = 105. Different acceleration techniques have been applied,
where the NN-ALO is implemented only for the SC method.

kC, kL = 100, 105, since the maximum relative corrections are
still relatively large in the first few iteration steps.

For the optically thick continuum model (Fig. 5, lower left
panel), the number of iterations until convergence is reduced

from N
diag

iter
≈ 75 to NDN

iter
≈ 65 and NNN

iter
≈ 45 when using

the diagonal, DN-, and NN-ALO within the SClin and SCbez
method, respectively. The Ng-extrapolation significantly reduces
Niter further, and is required to obtain the converged solution in
. 20 iteration steps.

For the strong line, the convergence behaviour becomes
slightly improved, because the radiative transfer is localized to
(narrow) resonance regions. Thus, already the diagonal and DN-

ALO yield a solution within N
diag

iter
≈ 50 and NDN

iter
≈ 35 iteration

steps. Again, the NN-ALO with the Ng-extrapolation scheme
switched on performs best, and reduces the number of iteration
steps until convergence to . 20.

In total, we conclude that a NN-ALO together with the Ng-
extrapolation is required for the SClin and SCbez methods, in
order to obtain a fast convergence behaviour of the iteration
scheme. This ALO also performs excellently for extreme test-
cases, that is, for optically thick continua and strong lines in
scattering dominated atmospheres.

4.2.2. Continuum and line solution

In the following, we discuss the errors resulting from the up-
wind and downwind interpolations, and from the integration of
the discretized radiative transfer equation. We apply the NN-
ALO together with the Ng-extrapolation to ensure convergence.
When calculating the line, we used Nx = Ny = Nz = 93 spatial
grid points. Since the continuum transport has been calculated
at only one frequency point, we applied a higher grid resolution
with Nx = Ny = Nz = 133 for such problems. Fig. 6 shows the
continuum and line solutions together with corresponding rela-
tive errors obtained for the spherically symmetric model when
calculated with the FVM, SClin, and SCbez methods, and com-
pared to the ‘exact’ 1D solution. The mean and maximum rela-
tive errors are shown for different regions in Table 2, where the
mean and maximum relative errors of any quantity are defined
throughout this paper by

∆q :=
1

N

N
∑

i=1

|qi − q
(exact)

i
|

q
(exact)

i

∆qmax := max
∀i∈[1,N]

|qi − q
(exact)

i
|

q
(exact)

i

,
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Fig. 6. Solutions for the standard spherically symmetric models as calculated with the 3D FVM (blue) and 3D SC methods using
linear (red) or Bézier (green) interpolations, compared to an accurate 1D solution (black solid line). The dots represent the solutions
at specific grid points (with different latitudes and longitudes), where only a subset of all grid points is displayed to compress the
image. Corresponding errors are indicated at the bottom of each chart. The top panel shows the mean intensity for the continuum
transfer as a function of radius, with ǫC = 10−6, and kC = [1, 10, 100] from left to right. The bottom panel shows the line source
function with ǫL = 10−6, and kL = [100, 103, 105] from left to right.

Table 2. Mean and maximum relative errors of the FVM and
SClin, SCbez methods, when applied to spherically symmetric
test models. The mean relative errors are listed for different re-
gions with r ∈ [R∗, 3 R∗], r ∈ [3 R∗,Rmax], and r ∈ [R∗,Rmax],
from top to bottom.

∆J [%] for r ∈ [R∗, 3 R∗] ∆S L [%] for r ∈ [R∗, 3 R∗]

kC τr FVM SClin SCbez kL FVM SClin SCbez

100 0.17 3.4 6.2 6.6 100 8.7 2.0 2.4

101 1.17 18 1.2 2.2 103 9.4 2.0 2.6

102 17.0 120 9.7 5.7 105 10 3.3 2.2

∆J [%] for r ∈ [3 R∗,Rmax] ∆S L [%] for r ∈ [3 R∗,Rmax]

kC τr FVM SClin SCbez kL FVM SClin SCbez

100 0.17 5.2 4.4 4.3 100 4.8 5.9 4.7

101 1.17 22 10 3.7 103 5.9 10 5.1

102 17.0 120 36 16 105 12 19 6.2

∆J [%] for r ∈ [R∗,Rmax] ∆S L [%] for r ∈ [R∗,Rmax]

kC τr FVM SClin SCbez kL FVM SClin SCbez

100 0.17 4.4 5.2 5.4 100 6.3 4.5 3.9

101 1.17 20 6.0 3.0 103 7.2 7.0 4.2

102 17.0 120 2 3 11 105 11 13 4.7

∆Jmax [%] for r ∈ [R∗,Rmax] ∆S L,max [%] for r ∈ [R∗,Rmax]

kC τr FVM SClin SCbez kL FVM SClin SCbez

100 0.17 17 51 49 100 27 46 45

101 1.17 36 39 14 103 73 50 45

102 17.0 150 46 24 105 70 65 55

with N the number of grid points within the considered region.

For the continuum models, the solutions obtained from the
3D SC methods are superior to the solution obtained from the
FVM in most cases. Particularly near the stellar surface (at
r . 3 R∗), both SC methods are in good agreement with the
1D solution (see Fig. 6, top panel, and bottom of each chart
for the radial dependence of the relative errors). When consid-
ering the most challenging problem of optically thick, scattering
dominated atmospheres, the mean relative errors of the SClin
and SCbez method for the complete calculation region are on
the 20- and 10 %-level, respectively. For such models, the FVM
breaks down due to the order of accuracy (see paper I), and a
(high order) SC method is indeed required to solve the radiative
transfer with reasonable accuracy. For marginally optically thick
continua, the mean relative errors of the SClin and SCbez meth-
ods are on the 5 %-level and below. While the FVM allows for a
qualitative interpretation of the radiation field for such models,
the SC methods should be used for quantitative discussions. The
optically thin model calculations give mean relative errors of the
order of 5 % for all methods, with the maximum relative error
being lowest for the FVM. Since, additionally, the computation
times of the SClin and SCbez methods are typically highest (see
Sect. 3.7), the FVM is to be preferred when calculating optically
thin continua. We note that all errors originate from the inter-
play between upwind and downwind interpolations of opacities,
source functions, and intensities, and from the integration of the
discretized radiative transfer equation. Numerical diffusion and
the associated violation of energy conservation influences the
converged solution particularly in the optically thin regime.

The mean relative errors for the line transition are of the or-
der of 5 − 10 %, with increasing accuracy from strong to weak
lines, and slight advantages of the SCbez method when com-
pared to the SClin method. The radial stratification of relative
errors for each considered line is shown in the bottom panel of
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Fig. 6, bottom of each chart. While the FVM gives largest er-
rors near the stellar surface (at r . 3 R∗), both SC techniques
are in excellent agreement with the 1D solution in such regions.
At larger radii, however, the SC solutions are generally over-
estimated when compared to the 1D solution due to numerical
diffusion errors. The distinct behaviour of the applied solution
schemes in different atmospheric regions finally determines the
quality of emergent flux profiles.

4.2.3. Emergent flux profile

The converged source functions are used to calculate the emer-
gent flux profile using the same postprocessing LC solver as in
paper I. Based on Lamers et al. (1987), Busche & Hillier (2005),
Sundqvist et al. (2012), this method solves the equation of ra-
diative transfer in cylindrical coordinates with the z-axis being
aligned with the line of sight of the observer’s direction under
consideration. All quantities required on the rays are found by
trilinear interpolation from the 3D grid, and the equation of ra-
diative transfer is integrated using linear interpolations. To ex-
tract the error resulting from the FVM and SC methods alone,
we interpolated the ‘exact’ 1D solution onto our 3D grid and
calculated the reference profile using the same technique. The
continuum has been calculated from a zero-opacity model given
by the unattenuated illumination from the projected stellar disc.
Then, the differences of line profiles are exclusively related to
the differences of line source functions. Fig. 7 shows the line
profiles with corresponding absolute and relative errors for the
intermediate (kL = 103) and strong (kL = 105) line, obtained
from the converged source functions from above.

The line profiles are in good agreement with the 1D solu-
tion for both applied SC methods, with slight advantages of the
SCbez method when compared to the SClin. Major (relative) de-
viations arise particularly at large frequency shifts on the blue
side due to the enlarged source functions in corresponding res-
onance regions (i.e. at large radii in front of the star). At such
frequency shifts, however, the line profile is mainly controlled
by absorption, and the absolute error remains small. At low
frequency shifts, the emission peak becomes slightly overesti-
mated, particularly when considering the strong line. The corre-
sponding resonance regions are mainly located near to the star
(at low absolute velocities) and in the whole plane perpendicular
to the line of sight (with low projected velocities). For the in-
termediate line, the emission from this plane at large radii only
plays a minor role due to relatively small optical-depth incre-
ments along the line of sight. Thus, both SC methods are in ex-
cellent agreement with the 1D reference profile. With increasing
line strength, however, the emission from the outer wind region
contributes significantly to the line formation, and the discrep-
ancies between the 1D and the SClin/SCbez methods become
more pronounced. For all test calculations, the Bézier method
performs best, closely followed by the SClin method, and (far
behind) the FVM.

With Fig. 7 and the argumentation from above, we conclude
that (at least) a short-characteristics solution scheme is required
to enable a quantitative interpretation of ultra-violet (UV) reso-
nance line profiles, where both the linear and Bézier interpola-
tion techniques perform similarly well. The less accurate (how-
ever computationally cheaper) FVM can still be applied for qual-
itative discussions.

Fig. 7. Emergent flux profiles of an intermediate (kL = 103, top
panel) and strong (kL = 105, bottom panel) line. The blue, red,
and green curves correspond to the solution of the FVM, SClin,
and SCbez methods, respectively. The reference profile (black
solid line) has been derived from the ‘exact’ 1D source function
interpolated onto the 3D Cartesian grid. Corresponding relative
and absolute errors are shown at the bottom of each chart. For all
profiles, the continuum level has been determined from a zero-
opacity model.

5. Rotating winds

As a first application of the 3D SC method to non-spherical
atmospheres, we consider the UV resonance line formation in
the winds of (fast) rotating O stars. Fast rotation has two im-
mediate consequences on the stellar geometry and wind struc-
ture. Firstly, the surface of any rotating star becomes distorted,
with Req/Rpole approaching 3/2 for rotational speeds near the
critical velocity (Collins 1963 assuming a Roche model, and
the critical velocity defined by Eq. (36) for Ω = 1). Secondly,
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the emergent flux depends on the (local) effective gravity (cor-
rected for the centrifugal acceleration), and thus, decreases to-
wards the equator (‘gravity darkening’, see von Zeipel 1924, and
Maeder 1999, Maeder & Meynet 2000 for uniform and shellu-
lar rotation, respectively). The first attempt to model the winds
of fast rotating OB stars was made by Bjorkman & Cassinelli
(1993). These authors considered a purely radial line force, and
neglected gravity darkening and the surface distortion. Within
these approximations, a ‘wind compressed disc’ is formed in the
equatorial plane. Cranmer & Owocki (1995) and Owocki et al.
(1996) included the effects of non-radial line-forces into their
2D radiation-hydrodynamic simulations, and showed that the
formation of the disc becomes suppressed due to a small, but
significant polewards acceleration, giving rise to an associated
polar velocity component that prevents the formation of a disc.
When also accounting for gravity darkening (i.e. a decreased
radial acceleration in equatorial regions), Owocki et al. (1996)
further showed that a prolate wind structure develops, with de-
creased equatorial mass loss and velocity (see also the review
by Owocki et al. 1998). Maeder (1999) proposed that an oblate
wind structure might still be possible, when accounting for a
polar variation of the ionization equilibrium induced by grav-
ity darkening (the so-called κ-effect). This effect becomes par-
ticularly important when the local effective temperature drops
below the bi-stability jump temperature7. Petrenz & Puls (2000)
extended the hydrodynamic calculations from above by allowing
for spatially varying line force multipliers, and showed that no
major differences from the prolate wind structure arise, at least
for OB stars above Teff & 20 kK with an optically thin Lyman
continuum. Recently, Gagnier et al. (2019) reinvestigated the ef-
fects of rotation using 2D ESTER models (see Rieutord et al.
2016 for a description of this code). Using a different imple-
mentation of gravity darkening (consistent with the so-called
ω-model by Espinosa Lara & Rieutord 2011, which basically
results in a slower decrease of effective temperature with co-
latitude than obtained from the von Zeipel theorem), these au-
thors predict either a ‘single-wind regime’ (with enhanced po-
lar mass loss) or a ‘two-wind regime’ (with enhanced mass loss
at latitudes where the effective temperature drops below the bi-
stability jump temperature). To understand which of the different
models represents reality best (in different temperature regimes),
one needs to compare synthetic profiles with observations. In
this respect, investigating the effects of prolate and oblate wind
structures is particularly important to distinguish between differ-
ent theories.

As a consequence of the distinct wind structure resulting
from a particular model, the wind lines of rotating stars are ex-
pected to differ as a function of rotational speed and inclination.
To predict UV resonance line profiles of fast rotating stars, we
calculated the source function of a prototypical resonance line
transition including the effects of gravity darkening and surface
distortion for models with different rotational velocities. As a
first step, we used a wind description that is consistent with the
prolate wind model. For all calculations, we applied the SClin
method.

Fig. 8. Contours of the density in the xz-plane (z being the ro-
tation axis) for a prototypical rotating O star with L∗ = 106 L⊙,
M∗ = 52.5 M⊙, Rp = 19 R⊙, and vrot = 432 km s−1 (correspond-
ing to Ω = 0.9). The density has been scaled by values from
the non-rotating model with Ω = 0. While the thick solid line
corresponds to the surface of the (distorted) star, the dashed line
would correspond to a spherical surface. Additionally, the veloc-
ity vectors are displayed.

Table 3. Specific parameters used and obtained for the rotating
wind models. For a given stellar luminosity L∗ = 106 L⊙, stellar
mass M∗ = 52.5 M⊙, and polar radius Rp = 19 R⊙, rows two
to eight display the rotation parameter Ω, the equatorial radius
Req, the polar and equatorial effective temperature Teff,p, Teff,eq,

the total mass loss rate Ṁ, and the polar and equatorial terminal
velocity v∞,p, v∞,eq, for different equatorial rotation speeds vrot.

vrot [km s−1] 0 210 294 432

Ω 0 0.5 0.7 0.9

Req [Rp] 1 1.04 1.09 1.22

Teff,p [kK] 41.84 42.44 43.07 44.66

Teff,eq [kK] 41.84 40.61 39.28 35.20

Ṁ [10−6 M⊙yr−1] 2.70 2.73 2.79 2.93

v∞,p [km s−1] 2781 2989 3255 3159

v∞,eq [km s−1] 2781 2651 2556 2273

5.1. Wind model

To obtain a model for the structure of rotating winds, we applied
a 2D version of the VH-1 code8 developed by J. M. Blondin and
co-workers. Our model includes the effects of gravity darken-
ing and surface distortion (see below). Using a 1D input model
derived from radiation driven wind theory including finite cone
angle corrections (Castor et al. 1975 and Pauldrach et al. 1986)
for the first time step, the radiation hydrodynamic equations (ac-
counting for non-radial line forces) are solved until a (quasi)
stationary solution is obtained (see Cranmer & Owocki 1995
and Owocki et al. 1996 for the description of the line force).
Assuming azimuthal symmetry, the resulting 2D density and ve-
locity structure is then used as input for our 3D SC code. Table 3
summarizes specific parameters used and obtained for our model

7 The jump temperature is theoretically motivated by a stronger ra-
diative line-driving due to lower ionization stages of iron for Teff .

Tjump ≈ 25 kK (Vink et al. 1999). More recently, Petrov et al. (2016)
predicted a somewhat lower jump temperature, Tjump ≈ 20 kK.

8 http://wonka.physics.ncsu.edu/pub/VH-1/
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Fig. 9. Density and radial velocity as a function of distance from the stellar surface in polar (first and third panel) and equatorial
(second and fourth panel) regions, for different rotation parameters Ω.

calculations. While the surface integrated mass flux, Ṁ, becomes
only slightly increased with increasing rotational speed, the po-
lar (equatorial) terminal velocities are significantly enhanced
(reduced). For the fastest rotating model (vrot = 432 km s−1),
Fig. 8 shows corresponding density contours in the xz-plane.
The z-axis is aligned with the rotation axis. To explicitly show
the prolate wind structure, we have scaled the density by the
density resulting from the non-rotating (spherically symmetric)
model, as a function of distance from the stellar surface. For
different rotational speeds, Fig. 9 displays the density and ra-
dial velocity along the polar axis and along an (arbitrarily de-
fined) axis in the equatorial plane. When compared with the
spherically symmetric wind, the densities of the rotating mod-
els are enhanced in polar regions, and become reduced along the
equator. Further, the radial velocity along the polar axis remains
nearly the same, except in regions far from the star, where the
terminal velocity of all rotating models becomes enhanced with
increasing vrot. We note that one would expect clearer differences
of the (radial) velocity fields for different rotation rates, due to
different accelerations induced, particularly, by the different ra-
diative fluxes resulting from gravity darkening, and, though to
a lesser extent, by the specific density structure and rotational
velocities. Such differences can be barely observed within our
simulations, most presumably because the wind structure in po-
lar regions has not completely settled to a stationary state at the
last time steps. In contrast, the radial velocity in equatorial re-
gions is significantly reduced at all distances, when compared to
the non-rotating wind, and the deviations from spherical symme-
try become more pronounced with increasing rotational velocity.
Although we have averaged the hydrodynamic simulations over
the last 20 time steps, the atmospheric structure still suffers from
small numerical artefacts.

To calculate the stellar surface distortion, we consider the
gravitational potential of the star accounting for the effects of
centrifugal forces. Under reasonable assumptions, we can ap-
proximate this potential by a Roche model (e.g. Collins 1963,
see also Cranmer & Owocki 1995):

Φ(r,Θ) = −GM∗

r
− ω

2r2 sin2(Θ)

2
, (34)

with angular velocity ω. The surface of the star is defined on
equipotential lines and can be calculated by setting Φ(Rp,Θ =

0) = Φ(R∗(Θ),Θ), with Rp the polar radius. Solving the resulting
cubic equation, one finds:

R∗(Ω,Θ) =
3Rp

Ω sin(Θ)
cos

(π + cos−1(Ω sin(Θ)
)

3

)

, (35)

withΩ = ω/ωcrit the ratio of the actual to the critical (‘breakup’)
angular velocity. Defining the rotational speed at the equator vrot

as input parameter, one easily obtains (cf. Cranmer & Owocki

1995, their Eq. 27):

Ω =
vrot

Req

1

ωcrit

(36)

Req =
Rp

1 − v2rotRp/2GM∗
, (37)

with equatorial radius Req. Following Maeder & Meynet (2000),
we use the actual stellar mass to calculate the equatorial ra-
dius and critical velocity without correcting for Thomson-
accelerations. Additionally, we note that our stellar models are
well below the Eddington limit (Γ = 0.5). Thus, the critical
angular velocity is simply given by ωcrit = (8GM∗/27R3

p)1/2.
Instead of using Eq. (35) in our final implementation, we ap-
proximated the stellar surface by a spheroid with semi-major
axes a = b = Req and semi-minor axis c = Rp. Such a for-
mulation greatly simplifies the calculation of the intersection of
a given ray with the stellar surface (required for the boundary
conditions, see Sect. 3.4). For the most extreme test case consid-
ered here (Ω = 0.9), the maximum error on R∗(Θ) due to this
approximation is well below the 2%-level, and rapidly decreases
for lower rotational velocities.

To calculate the intensity emerging from the stellar core, we
set I+c (Θ) = Bν(Teff(Θ)), with the effective temperature as a func-
tion of co-latitude. For a given luminosity of the star, L∗, we ob-
tain (see also Petrenz & Puls 1996):

Teff(Θ) =
[ L∗

2πσBΣ
|g|4βZ

]1/4
(38)

Σ =

∫ π

0

|g|4βZ
R2
∗(Θ) sin(Θ)

−gr/|g|
dΘ ,

with σB the Stefan Boltzmann constant, and the surface inte-
grated effective gravity Σ derived from g(Θ) = −∇Φ(R∗(Θ),Θ).
The parameter βZ describes the gravity darkening law in terms
of Teff(Θ) ∝ |g(Θ)|βZ . As originally formulated by von Zeipel
(1924), βZ = 1/4. Though βZ might be significantly lower
(e.g. Domiciano de Souza et al. 2014, Gagnier et al. 2019), for
simplicity we nevertheless used βZ = 1/4. As long as we as-
sume constant ionization fractions, the effect of βZ on the line
profiles will be minor anyway.

5.2. Line formation

For our test models, we used vmicro = 100 km s−1, and calculated
the frequency integrated opacity from Eq. 8 for an intermedi-
ate and a strong line with line-strength parameter kL = 103 and
kL = 105. To obtain the source function, we applied the 3D SClin
method and set ǫL = 10−6. The resulting (normalized) line pro-
files are shown in Fig. 10 for different rotational velocities and
inclination angles. Additionally, we display the continuum flux
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Fig. 10. Predicted emergent flux profiles for the rotating star models with Ω = [0, 0.5, 0.7, 0.9] (see Table 3). The upper and lower
panels show the intermediate and strong line with kL = 103 and kL = 105, respectively. The inclination angle has been set to
sin(i) = [0, 0.707, 1] from left to right.

Fig. 11. Continuum fluxes for different inclinations sin(i) =
[0, 0.707, 1] from left to right, and different rotation parameters
(using the same colour coding as in Fig. 10). The continuum
fluxes have been scaled by the corresponding flux obtained from
the non-rotating model.

used for normalization in Fig. 11. Due to gravity darkening and
the surface distortion, the continuum depends on the rotation rate
and inclination, with largest fluxes found for high rotation rates
and low inclinations (resulting from the higher temperatures in
polar regions and a larger projected stellar disc). In Figs. 10 and
11, the x-axes have been normalized to an (arbitrarily chosen)
terminal velocity v∞ = 3000 km s−1. The behaviour of the line

profiles can be qualitatively explained with the hydrodynamic
structure:

(i) For pole on observers (sin(i) = 0, left panel of Fig. 10), the
absorption column in front of the star is enhanced with increas-
ing rotational velocity due to the larger densities (and opacities)
in polar regions. Thus, the absorption trough (of unsaturated
lines) becomes more pronounced. The absorption edge of the
intermediate lines is found at slightly lower velocities than ex-
pected from the hydrodynamic simulations, because the optical
depths of the corresponding resonance regions are too low to effi-
ciently contribute to the absorption. When considering the strong
lines, the optical depth is larger, and the absorption edge is more
consistent with the actual terminal velocity. For both applied line
strength parameters, the emission peak becomes weaker with in-
creasing rotation rate, particularly at low projected velocities on
the red side of the line centre (for negative xobs). This effect can
be partly explained by the reduced emission from the equato-
rial plane, due to the lower densities in these regions. More im-
portantly, however, is the increased continuum flux that mainly
determines the (normalized) height of the emission peak.

(ii) When increasing the inclination towards equator-on ob-
servers (sin(i) = 1, right panel of Fig. 10), the behaviour is re-
versed. For such directions, the continuum plays an only minor
role, since the lower (equatorial) effective temperatures of the ro-
tating models are nearly compensated by the enlarged projected
stellar disc. With increasing rotation parameter, the absorption
trough of the intermediate line becomes reduced and shifted to-
wards lower terminal velocities, consistent with the hydrody-
namical model. When considering the strong line, the absorption
becomes saturated, and only the impact of the different termi-
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Fig. 12. Predicted emergent flux profiles for the rotating star
models with Ω = [0.5, 0.6, 0.7, 0.8, 0.9], and different inclina-
tion angles such that v sin(i) = 200 km s−1 for all models. The
upper and lower panel display the intermediate (kL = 103) and
strong (kL = 105) line, respectively.

nal velocities can be observed. Additionally, and for both line
strengths, the absorption slightly extends towards the red side,
because of (negative) projected line of sight velocities near the
stellar surface induced by rotation. For the fastest rotating model
withΩ = 0.9, this effect becomes suppressed due to an increased
emission from the (dense) prolate wind structure. This latter ef-
fect is only moderate for lower rotational speeds. Based on the
current hydrodynamic wind structure, we would therefore ex-
pect to observe either rather low terminal velocities or relatively
deep absorption troughs for fast rotating stars, and we are able,
at least in principle, to check the theory by comparing our syn-
thetic spectra with (past or future) UV observations. This point,
however, is beyond the scope of this paper.

Finally, if the projected rotational velocity is known
(e.g. from photospheric lines), one might even estimate the ac-
tual rotational velocity from UV resonance lines. This latter
point becomes clear from Fig. 12, where we predict the line pro-
files of models with different rotational speed for a given v sin(i)
(set here to 200 km s−1). Since, at least for the intermediate line,
the profile shapes differ, sin(i) could be derived if v sin(i) was
known. Of course, such constraints will become feasible only
if the underlying models correctly describe the wind structure
(including possibly varying ionization stages) of rotating stars.

6. Summary and conclusions

In this study, we have presented a 3D short-characteristics
method tailored for the solution of continuum- and line-
scattering problems in the winds of hot stars. To obtain the for-
mal solution, we have implemented a purely linear interpolation
scheme (for calculating upwind quantities and for the solution
of the radiative transfer equation along a ray), as well as a sec-
ond order, monotonic, Bézier technique. We use Cartesian coor-
dinates with a non-uniform grid spacing to ensure a reasonable
spatial resolution in important regions (i.e. where velocity and/or
density gradients are large). As a first step towards full NLTE
radiative transfer models, we consider a single resonance-line
transition (approximated by a two-level-atom) assuming an op-
tically thin background continuum, whereas for pure continuum
problems we use the thermalization parameter, ǫC, and split the
source function into a scattering and a thermal part. A general-
ization (including multi-level atoms) is planned for future appli-
cations.

To calculate strong scattering lines and optically thick, scat-
tering dominated continua, we have implemented an accelerated
Λ-iteration scheme using different non-local approximate Λ-
operators (ALOs), together with applying the Ng-extrapolation
method for subsequent iterations. With increasing complexity
of the ALO (i.e. from a purely diagonal ALO to a nearest-
neighbour ALO including also the 26 neighbouring terms), the
rate of convergence is improved. When applying the NN-ALO,
the converged solution is generally found within . 20 iteration
steps even for the most challenging test cases.

We have estimated the error of the applied methods in dif-
ferent regimes by calculating spherically symmetric test mod-
els within our 3D SC framework, and with a 3D finite-volume
method. To our knowledge, this is the first study, where differ-
ent 3D solution schemes for spherical problems have been com-
pared, and their precision explored. When rated against the so-
lution obtained from (accurate) 1D solvers, we found a mean
relative error for the converged continuum source function of
roughly 5 − 10 % and 5 − 20 % when using Bézier and linear
interpolations, respectively. Particularly for optically thick con-
tinua, the (first order) FVM method breaks down, and a (high
order) SC or LC method is required to accurately solve the ra-
diative transfer. When considering the solution of the line source
function for different line-strength parameters, the mean relative
errors of both SC methods are on the 10 %-level and below, with
slight advantages of the Bézier technique compared to purely
linear interpolations. The resulting synthetic line profiles are cal-
culated with a long-characteristics postprocessing routine using
the previously calculated converged source functions. The SC
method using Bézier interpolations almost perfectly matches the
1D reference profiles for all our models (i.e. for weak and strong
lines). When linear interpolations are used, we obtain slight devi-
ations originating mainly in the outer wind regions. In contrast,
the 3D FVM always overestimates the emission. Nevertheless,
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all methods have their own advantages and disadvantages, par-
ticularly when also accounting for the computation time (with
fastest turn-around times for the FVM method). Thus, the 3D
FVM method should be used for qualitative interpretations and
for finding (rough) estimates of the parameters of interest, while
the SC methods are to be preferred when aiming at a quantitative
analysis of line profiles, and for optically thick continua.

As a first application of the 3D SC code to non-spherical
problems, we considered the resonance line formation in the
winds of (fast) rotating O stars. Assuming azimuthal symme-
try, the hydrodynamic structure for a prototypical O star with
different rotation rates has been calculated by means of the 2D
VH-1 code. We have included the effects of surface distortion
and gravity darkening into our 3D radiative transfer framework.
Given the hydrodynamic models, we are able to predict the shape
of line profiles for different rotational speeds and inclination an-
gles. When compared with a (non-rotating) spherically symmet-
ric wind (obtained using the same stellar parameters), rotating
stars should either show relatively low terminal velocities (for
equator-on observers) or deeper absorption troughs (for pole-
on observers). The latter effect, however, would only be ob-
servable when considering intermediate (i.e. unsaturated) lines.
Additionally, we showed that the line profile shapes vary as a
function of rotational speed at a given v sin(i). Thus, assuming
that v sin(i) was known (e.g. from photospheric line modelling),
one could estimate the rotational speed, though with a rather
large uncertainty, since the differences of the line profiles are
only moderate. We emphasize that other effects (such as clump-
ing or a flatter gravity darkening law) may additionally shape
the line profiles. When analysing UV observations of fast ro-
tating stars, the 3D SC code developed in this work certainly
will help to understand the manifestations of various (afore-
mentioned) effects, and to distinguish between different theo-
retical predictions (e.g. prolate vs. oblate wind structures). Ideal
testbeds for future investigations of fast rotating winds are the
stars VFTS102 (O9 Vnnne, Dufton et al. 2011) and VFTS285
(O7.5 Vnnn, Walborn et al. 2012), both rotating at nearly their
critical velocity.

Finally, we note that our tools are, of course, not limited to
rotating stars. Indeed, almost any kind of stellar wind that de-
viates from spherical symmetry (with non-relativistic velocity
fields), such as magnetic winds or colliding winds in close bina-
ries, can be investigated.
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Fig. A.1. Probability density functions of radial (dashed) and x
(solid) coordinates for different spherical and Cartesian grids.
In this example, two spherical grids are given in 2D as input to
our 3D code, with uniformly (black) or logarithmically (red) dis-
tributed r-coordinates, and a uniformly distributed polar angle.
The corresponding distributions of x-coordinates are calculated
within our grid construction procedure (see text). Large values of
the probability density functions correspond to a high resolution
of x and r-coordinates.
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Appendix A: Grid construction

In this section, we describe the grid construction procedure used
within our 3D code. Generally, we assume the wind structure
(i.e. density, velocity field, and temperature) to be given by an in-
put model obtained from hydrodynamic simulations or external
(semi)-analytic calculations. Since the input grid is not necessar-
ily compatible with our 3D SC solver, and to minimize interpo-
lation errors when calculating upwind and downwind quantities,
we construct an own grid that uses the distribution of the input-
grid coordinates in an optimum way. When the input grid uses
spherical coordinates (r,Θ,Φ), we define a joint probability dis-
tribution

h(x, z) = f (r)g(Θ)|J| , (A.1)

where f (r) and g(Θ) are the probability density functions derived

from the distribution of the input coordinates, and |J| =
√

x2 + z2

is the Jacobian determinant. Since we consider only axisym-
metric atmospheres in this paper, we use the x-coordinate dis-
tribution also for the y-coordinates. To calculate the probabil-
ity density functions for x and z, we simply marginalize h(x, z)
over z and x, respectively. The discretized coordinates are finally
determined by demanding that the probabilities of selecting a
(continuous) coordinate in each (discrete) interval shall be the
same. Fig. A.1 shows the probability density functions of the
x-coordinates for two different input distributions of the radial
grid. Here, the polar angle Θ has been assumed to be uniformly
distributed for both examples.

Fig. B.1. Bézier curves (solid lines) for three given points b0, b1,
b2. The blue, red, and green lines represent the resulting curves
for different control points b1. The straight connections of the
control points with the data points are indicated by the dotted
lines.

Since the final number of core and non-core points depends
on the slope of the probability density of the radial grid, yielding
in worst cases a much larger number of core points than non-core
points, and because the total number of used points is memory-
limited, we define two input parameters Ncore and Nnon−core to
keep control on the final grid. For all test calculations (including
those presented in Sect. 4.2), the best solution has always been
found for a number of Ncore/Nnon−core ∈ [0.25, 0.5]. An explicit
choice of Ncore and Nnon−core corresponds to a re-normalization of
the probability density function in the regimes x, z ∈ [0,R∗] and
x, z ∈ [R∗,Rmax], where Rmax defines the border of the computa-
tional domain. We note that the same procedure can be used for
an input grid given in Cartesian coordinates, with the probabil-
ity density function of the input-grid coordinates derived directly
from the corresponding (discrete) distribution.

Appendix B: 1D Bézier interpolation

In this section, we discuss an interpolation technique using
quadratic Bézier curves (e.g. Auer 2003, Schwarz 1997). Such
curves are generally constructed from three given points b0, b1,
b2 (see Fig. B.1), and have the following useful properties:

(i) The boundary points, b0 and b2 are reproduced exactly by
the Bézier curve.

(ii) The straight connections (b1 − b0) and (b2 − b1) define the
tangent lines of the curve at b0 and b2, respectively.

(iii) Any point on the Bézier curve is located in the convex hull
of b0, b1, b2.

In a 2D plane described by coordinates x and y, the quadratic
Bézier curve is parameterized as:

b(t) =

(

x(t)
y(t)

)

= (1 − t)2
b0 + 2t (1 − t) b1 + t2

b2 , (B.1)

with t ∈ [0, 1], and b0 = (x0, y0), b1 = (x1, y1), b2 = (x2, y2).
With Eq. (B.1), the properties (i)-(iii) can be exploited to con-
struct a monotonic interpolation scheme by identifying b0,b2

with two given data points (x0, f0), (x2, f2), and defining b1 as
a free (and tunable) parameter. Thus, b1 is commonly named
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Fig. B.2. Different interpolation techniques for a set of three data
points at x-coordinates indicated by the dotted vertical lines. The
solid and dashed lines correspond to the interpolation in the dif-
ferent intervals [xi−1, xi] and [xi, xi+1], respectively. Linear in-
terpolations, quadratic interpolations (connecting all three data
points), and a monotonic Bézier curve (with ω calculated from
Eq. (B.5) in the interval [xi−1, xi]) are indicated in red, blue, and
green. Since the quadratic interpolation is already monotonic in
the interval [xi, xi+1], the monotonic Bézier curve coincides with
the dashed, blue line. Control points are indicated with coloured
asterisks.

control point, and is ‘only’ required to set the slope of the Bézier
curve. To reproduce the underlying function best, and to preserve
monotonicity of the resulting curve, the control point should be
chosen with care.

In the following, we present a Bézier-interpolation technique
for an interval x ∈ [xi−1, xi], given three data points, (xi−1, fi−1),
(xi, fi), (xi+1, fi+1). The interpolation formulas corresponding to
the interval x ∈ [xi, xi+1] are given in subsection B.2.

B.1. Interval [xi−1, xi]

A quadratic Bézier curve in the interval [xi−1, xi] is given from
Eq. (B.1):

(

x(t)
f (x (t))

)

= (1 − t)2

(

xi−1

fi−1

)

+ 2t (1 − t)

(

xc

fc

)

+ t2

(

xi

fi

)

, (B.2)

with (xc, fc) the control point. The abscissa of the control point,
xc, can be chosen arbitrarily (at least in principal). To obtain a
second-order interpolation scheme, however, xc needs to be lo-
cated at the centre of the data-point’s abscissae9, and is therefore
set to xc = (xi−1 + xi)/2. Then, the quadratic Bézier interpolation
scheme is given by:

f (x) = (1 − t)2 fi−1 + 2t(1 − t) fc + t2 fi (B.3)

t = (x − xi−1)/(xi − xi−1) ,

where t has been determined from the definition of xc and
Eq. (B.2). Since the straight connection of the control point
(xc, fc) with the data point (xi, fi) defines the tangent line of the

9 If xc was located at xc = xi−1 + 3/4(xi − xi−1), for instance, one can
easily show that the resulting Bézier curve never reproduces the unit
parabola for any ordinate value fc.

Bézier curve at this data point, fc is calculated as

fc = fi −
d f

dx

∣

∣

∣

∣

∣

xi

∆xi

2
,

with ∆xi = xi − xi−1. The unknown derivative at xi needs to
be approximated. Using also the information from the next data
point, (xi+1, fi+1), and assigning a weight ω to the forward and
backward derivatives (obtained from finite differences), we find

fc = fi −
∆xi

2

(

ω
fi − fi−1

∆xi

+ (1 − ω)
fi+1 − fi

∆xi+1

)

, (B.4)

with ∆xi+1 = xi+1 − xi. With a proper choice of ω, we can adjust
the Bézier curve to our needs by shifting the control point up
or down. For instance, setting ω = ∆xi+1/(∆xi + ∆xi+1) results
in the unique parabola connecting the three given data points,
while ω = 1 would yield the linear interpolation. To avoid over-
shoots and negative function values, we demand that the Bézier
curve shall be monotonic in the interval [xi−1, xi]. Noting that
monotonicity is obtained when the control point is located in the
interval fc ∈ [ fi−1, fi], corresponding ω-values should lie in be-
tween the following limits:

ω
[i−1,i]

i−1
:= ω( f [i−1,i]

c = fi−1) = 1 +
1

1 − fi+1− fi
fi− fi−1

∆xi

∆xi+1

(B.5)

ω
[i−1,i]
i

:= ω( f [i−1,i]
c = fi) =

1

1 − fi− fi−1

fi+1− fi

∆xi+1

∆xi

, (B.6)

where the superscript [i − 1, i] denotes that ω corresponds to
the interpolation scheme in the left interval, [xi−1, xi]. In the fi-
nal implementation, we avoid the division by zero if fi = fi−1

or fi = fi+1, of course. Our standard interpolation is then per-
formed as follows. At first, we calculate ω such that we obtain
the unique parabola connecting all three data points. Secondly, if
ω lies outside the allowed limits from Eq. (B.5) and (B.6), we ad-
just ω to yield monotonic interpolations. In Fig. B.2, we display
the monotonic Bézier curve resulting from a ω-parameter calcu-
lated by means of Eq. (B.5), together with linear and quadratic
interpolations (the latter connecting the three data points). Since
monotonicity is always obtained for ω ∈ [ωi−1, ωi], we can de-
fine even stricter limits in order to avoid oscillations during the
iteration scheme, by setting ω = 1 to obtain purely linear inter-
polations, for instance (see Sect. 3.6).

To calculate the elements of the (approximate)Λ-matrix, the
interpolation coefficients are required. Combining Eqs. (B.3) and
(B.4) then gives:

f
(

x ∈ [xi−1, xi]
)

= ã[i−1,i] fi−1 + b̃[i−1,i] fi + c̃[i−1,i] fi+1 , (B.7)

with

ã[i−1,i] = 1 + (ω − 2)
x − xi−1

xi − xi−1

+ (1 − ω)

(

x − xi−1

xi − xi−1

)2

(B.8)

b̃[i−1,i] =
(1 − ω)∆xi + (2 − ω)∆xi+1

∆xi+1

x − xi−1

xi − xi−1

+ (ω − 1)
∆xi + ∆xi+1

∆xi+1

(

x − xi−1

xi − xi−1

)2

(B.9)

c̃[i−1,i] =
(ω − 1)∆xi

∆xi+1

x − xi−1

xi − xi−1

−
(ω − 1)∆xi

∆xi+1

(

x − xi−1

xi − xi−1

)2

. (B.10)
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B.2. Interval [xi, xi+1]

The interpolation formula for the right interval [xi, xi+1] uses the
same data points as above. Since the value of the control point
needs to be calculated at a different x-coordinate, xc = (xi+1 +

xi)/2, we cannot simply substitute indices. Using

f (x) = (1 − t)2 fi + 2t(1 − t) fc + t2 fi+1 (B.11)

t := (x − xi)/(xi+1 − xi)

fc = fi +
∆xi+1

2

(

ω
fi+1 − fi

∆xi+1

+ (1 − ω)
fi − fi−1

∆xi

)

, (B.12)

we obtain for this interval:

f (x ∈ [xi, xi+1]) = ã[i,i+1] fi−1 + b̃[i,i+1] fi + c̃[i,i+1] fi+1 , (B.13)

with

ã[i,i+1] =
(ω − 1)∆xi+1

∆xi

x − xi

xi+1 − xi

− (ω − 1)∆xi+1

∆xi

(

x − xi

xi+1 − xi

)2

(B.14)

b̃[i,i+1] = 1 − ω∆xi + (ω − 1)∆xi+1

∆xi

x − xi

xi+1 − xi

+ (ω − 1)
∆xi + ∆xi+1

∆xi

(

x − xi

xi+1 − xi

)2

(B.15)

c̃[i,i+1] = ω
x − xi

xi+1 − xi

+ (1 − ω)

(

x − xi

xi+1 − xi

,

)2

(B.16)

and

ω
[i,i+1]

i
:= ω( f [i,i+1]

c = fi) =
1

1 − fi+1− fi
fi− fi−1

∆xi

∆xi+1

(B.17)

ω
[i,i+1]

i+1
:= ω( f [i,i+1]

c = fi+1) = 1 +
1

1 − fi− fi−1

fi+1− fi

∆xi+1

∆xi

. (B.18)

The corresponding Bézier curves for different ω-parameters
(ω = 1 for linear and ω = ∆xi/(∆xi + ∆xi+1) for continuous
quadratic interpolations) are also shown in Fig. B.2. We note
that the Bézier interpolation gives a continuous function in the
complete interval [xi−1, xi+1] only for those ω-values that define
the parabola connecting all three data points.

Appendix C: 2D Bézier interpolation

To interpolate upwind and downwind quantities, a 2D interpola-
tion scheme is required. Fig. C.1 displays the geometry for a 2D
rectangular area, with grid points indicated by the black dots.
With this setup, we perform a 2D Bézier interpolation by ap-
plying three 1D Bézier interpolations along the x-axis on each
y-level at ( j − 1), ( j), ( j + 1), followed by another 1D Bézier in-
terpolation along y at the desired x-coordinate. Within the cyan
shaded interval, we obtain with the 1D Bézier interpolation given
by Eqs. (B.13)-(B.16):

f (x, y) = ãyã
( j−1)
x fi−1, j−1 + ãyb̃

( j−1)
x fi, j−1 + ãyc̃

( j−1)
x fi+1, j−1

+ b̃yã
( j)
x fi−1, j + b̃yb̃

( j)
x fi, j + b̃yc̃

( j)
x fi+1, j

+ c̃yã
( j+1)
x fi−1, j+1 + c̃yb̃

( j+1)
x fi, j+1 + c̃yc̃

( j+1)
x fi+1, j+1 , (C.1)

where the subscripts of the interpolation coefficients indicate the
coordinate used for each 1D interpolation. We note that all up-
wind and downwind interpolations are performed in the upper
right interval of a given surface, in order to obtain a simple rep-
resentation of the Λ-matrix elements.

PSfrag replacements

i − 1, j − 1 i, j − 1

i + 1, j − 1

i − 1, j

i, j

i + 1, j

i − 1, j + 1 i, j + 1 i + 1, j + 1x, j + 1

x, j

x, j − 1

(x, y)

Fig. C.1. 2D interpolation for upwind or downwind quantities
required in the cyan shaded area. The 2D Bézier interpolation
consists of three 1D interpolations to obtain the values at the
desired x-coordinate (indicated by red dots), followed by a 1D
interpolation along the y-coordinate using the obtained values at
the red dots.

Appendix D: ALO coefficients

In this section, we derive the Λ-matrix coefficients used to con-
struct the approximateΛ-operator. We note that the obtained ma-
trix elements can also be used for any other (2nd or lower order)
interpolation scheme using the same geometry, with different in-
terpolation coefficients though.

For a source function set to unity at grid point (i jk) and
zero everywhere else, we consider all 27 points ranging from
(i − α, j − β, k − γ) to (i + α, j + β, k + γ). The corresponding
matrix coefficients are derived from Eq. (29), using the dis-
cretized equation of radiative transfer, Eqs. (12)/(20), with up-
wind and downwind interpolations defined by Eqs. (22) and (23).
We further consider only the ΛΩν-operator, since the integration
over frequency and/or solid angle is straightforward. Each Λ-
matrix element then corresponds to the intensity (resulting from
S i jk = 1) at a considered grid point p (not necessarily identical to
(i jk)), and consists of an emission term (defined by the interpo-
lated source functions and optical-depth steps at the correspond-
ing upwind, current, and downwind points), and the irradiation
from the upwind point (defined by the upwind intensity and up-
wind optical-depth step). The upper and lower panel of Fig. D.1
show an example in 2D considering the points (i − α, j − β) and
(i, j − β) for a source function S i j = 1.

In the following, we sketch the derivation of the (3D) matrix
element for the first neighbour, and only present the solution for
the remaining ones. To save space, we skip the indices Ω, ν. The
m, n-th Λ-element is written as Λn

m, with matrix indices n,m cal-
culated from Eq. (30). While n corresponds to the 3D indices of
the local grid point (S i jk = S n = 1), m represents the neighbour-
ing point, (i − α, j − β, k − γ). Applying Eq. (29) to the specific
intensity at point m, we obtain:

Λn
m = Im (S = en,ΦB = 0)

= Λ
i jk

i−α, j−β,k−γ = Ii−α, j−β,k−γ
(

S i jk = δĩ,iδ j̃, jδk̃,k

)

= ai−α, j−β,k−γS
(i−α, j−β,k−γ)
u

(

S i jk = δĩ,iδ j̃, jδk̃,k

)

+ bi−α, j−β,k−γS
(i−α, j−β,k−γ)
p

(

S i jk = δĩ,iδ j̃, jδk̃,k

)

+ ci−α, j−β,k−γS
(i−α, j−β,k−γ)
d

(

S i jk = δĩ,iδ j̃, jδk̃,k

)

+ di−α, j−β,k−γI
(i−α, j−β,k−γ)
u

(

S i jk = δĩ,iδ j̃, jδk̃,k

)

,

21



L. Hennicker et al.: 3D short-characteristics method in the winds from OB stars
PSfrag replacements

Ii−2α, j−β = 0

Ii−2α, j−2β = 0

I
i−α, j−β
u = 0

S
i−α, j−β
u = 0

Λ
i j

i−α, j−β = Ii−α, j−β

S
i−α, j−β
p = S i−α, j−β = 0

S
i−α, j−β
d

, 0

S i, j = 1

I
i, j−β
u , 0

S
i, j−β
u = 0

Λ
i j

i, j−β = Ii, j−β

S
i, j−β
p = S i, j−β = 0

S
i−α, j−β
d

, 0

S i, j = 1

Ii−α, j−β = Λ
i j

i−α, j−β
Ii−α, j−2β = 0

n

(see upper

panel)
PSfrag replacements

Ii−2α, j−β = 0
Ii−2α, j−2β = 0

I
i−α, j−β
u = 0

S
i−α, j−β
u = 0

Λ
i j

i−α, j−β = Ii−α, j−β

S
i−α, j−β
p = S i−α, j−β = 0

S
i−α, j−β
d

, 0
S i, j = 1

I
i, j−β
u , 0S

i, j−β
u = 0

Λ
i j

i, j−β = Ii, j−β

S
i, j−β
p = S i, j−β = 0

S
i−α, j−β
d

, 0

S i, j = 1

Ii−α, j−β = Λ
i j

i−α, j−β

Ii−α, j−2β = 0

n

(see upper

panel)

Fig. D.1. 2D example for calculating the ΛΩ,ν-matrix elements
at a grid point (i − α, j − β) (upper panel) and (i, j − β) (lower
panel). The matrix elements correspond to the intensity at the
considered grid points calculated for a source function S i j = 1
and zero everywhere else. For such a configuration, the down-
wind source function is interpolated from grid points indicated
with the green dots, while the upwind source function and up-
wind intensity are obtained from the red dots (for simplicity we
here assume linear interpolations for determining upwind and
downwind quantities). We emphasize that the upwind intensity
vanishes only when considering the grid point (i − α, j − β).

with boundary contributionΦB, n-th unit vector en, and δĩ,i, δ j̃, j,
δk̃,k the Kronecker-δ for all possible xĩ, y j̃, and zk̃ coordinates,
respectively. S u and S d are the upwind and downwind source
functions corresponding to a considered short characteristic at
grid point p ↔ (i − α, j − β, k − γ), S p is the source function

at the grid point10, Iu is the upwind intensity, and a, b, c, d are
the integration coefficients for this particular short characteris-
tic. All upwind and downwind quantities are to be interpolated
from neighbouring grid points. We use the notation w, ŵ, w̃, to
identify different interpolation coefficients corresponding to the
upwind source function, upwind intensity, and downwind source

10 S p , 0 only when considering the grid point p ↔ (i jk). Then,

S
(i jk)

d
= 0, and S

(i jk)
u , 0 only when the upwind point is located on the

stellar surface (Eq. (D.14)).

function, respectively. Using Eqs. (22) and (23) to interpolate
upwind and downwind quantities, we find:

Λ
i jk

i−α, j−β,k−γ = ai−α, j−β,k−γ ·
[

wAS i−3α, j−2β,k−3γ

+ wBS i−2α, j−2β,k−3γ + wCS i−α, j−2β,k−3γ

+ wDS i−3α, j−2β,k−2γ + wES i−2α, j−2β,k−2γ

+ wFS i−α, j−2β,k−2γ + wGS i−3α, j−2β,k−γ

+ wHS i−2α, j−2β,k−γ + wIS i−α, j−2β,k−γ

+ wJS i−3α, j−3β,k−2γ + wKS i−2α, j−3β,k−2γ

+ wLS i−α, j−3β,k−2γ + wMS i−3α, j−β,k−2γ

+ wNS i−2α, j−β,k−2γ + wOS i−α, j−β,k−2γ

+ wPS i−2α, j−3β,k−3γ + wQS i−2α, j−β,k−3γ

+ wRS i−2α, j−3β,k−γ + wSS i−2α, j−β,k−γ

+ wi−α, j−β,k−γS i−α, j−β,k−γ
]

+ bi−α, j−β,k−γS i−α, j−β,k−γ

+ ci−α, j−β,k−γ ·
[

w̃AS i−2α, j,k−2γ

+ w̃BS i−α, j,k−2γ + w̃CS i, j,k−2γ

+ w̃DS i−2α, j,k−γ + w̃ES i−α, j,k−γ

+ w̃FS i, j,k−γ + w̃GS i−2α, j,k

+ w̃HS i−α, j,k + w̃IS i, j,k

+ w̃JS i−2α, j−2β,k + w̃KS i−α, j−2β,k

+ w̃LS i, j−2β,k + w̃MS i−2α, j−β,k

+ w̃NS i−α, j−β,k + w̃OS i, j−β,k

+ w̃PS i, j−2β,k−2γ + w̃QS i, j−β,k−2γ

+ w̃RS i, j−2β,k−γ + w̃SS i, j−β,k−γ
]

+ di−α, j−β,k−γ
[

ŵAIi−3α, j−2β,k−3γ(S i jk = 1) + · · ·
+ ŵSIi−2α, j−β,k−γ(S i jk = 1)

]

,

with the upwind intensity interpolated from the same points as
the upwind source function, and a compact notation for the in-
terpolation coefficients (with skipped superscripts). Since only
S i jk = 1 (and zero everywhere else), and because the upwind
intensity vanishes (for this particular grid point, see Fig. D.1 for
an example in 2D), we finally obtain:

Λ
i jk

i−α, j−β,k−γ = ci−α, j−β,k−γw̃
(i−α, j−β,k−γ)
I

. (D.1)

The matrix element for a point (i − α, j − β, k − γ) with a non-
vanishing source function at point (i jk) is thus solely given by
the integration coefficient ci−α, j−β,k−γ from the discretized equa-
tion of radiative transfer multiplied with the interpolation co-
efficient for the downwind source function of point I (corre-
sponding to grid point (i jk), see Fig. 1). The other neighbours
are obtained analogously, without vanishing incident intensities,
however. Accounting also for the interpolation of upwind source
functions and intensities when necessary, we find:

Λ
i jk

i, j−β,k−γ = ci, j−β,k−γw̃
i, j−β,k−γ
H

+ di, j−β,k−γŵ
i, j−β,k−γ
S

Λ
i jk

i−α, j−β,k−γ (D.2)

Λ
i jk

i+α, j−β,k−γ = ci+α, j−β,k−γw̃
i+α, j−β,k−γ
G

+ di+α, j−β,k−γŵ
i+α, j−β,k−γ
S

Λ
i jk

i, j−β,k−γ (D.3)

Λ
i jk

i−α, j,k−γ = ci−α, j,k−γw̃
i−α, j,k−γ
O

+ di−α, j,k−γŵ
i−α, j,k−γ
I

Λ
i jk

i−α, j−β,k−γ (D.4)
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Λ
i jk

i, j,k−γ = ci, j,k−γw̃
i, j,k−γ
N

+ di, j,k−γ ·
[

ŵ
i, j,k−γ
H
Λ

i jk

i−α, j−β,k−γ

+ ŵ
i, j,k−γ
I
Λ

i jk

i, j−β,k−γ + ŵ
i, j,k−γ
S
Λ

i jk

i−α, j,k−γ

]

(D.5)

Λ
i jk

i+α, j,k−γ = ci+α, j,k−γw̃
i+α, j,k−γ
M

+ di+α, j,k−γ

·
[

ŵ
i+α, j,k−γ
D

Λ
i jk

i−α, j−β,k−γ + ŵ
i+α, j,k−γ
H

Λ
i jk

i, j−β,k−γ

+ ŵ
i+α, j,k−γ
I

Λ
i jk

i+α, j−β,k−γ + ŵ
i+α, j,k−γ
S

Λ
i jk

i, j,k−γ

]

(D.6)

Λ
i jk

i−α, j+β,k−γ = ci−α, j+β,k−γw̃
i−α, j+β,k−γ
L

+ di−α, j+β,k−γŵ
i−α, j+β,k−γ
I

Λ
i jk

i−α, j,k−γ (D.7)
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i jk
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K
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·
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R

Λ
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Λ
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]

(D.8)
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i+α, j+β,k−γ
G

Λ
i jk

i−α, j,k−γ

+ ŵ
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(D.9)

Λ
i jk

i−α, j−β,k = ci−α, j−β,kw̃
i−α, j−β,k
F

+ di−α, j−β,kŵ
i−α, j−β,k
O

Λ
i jk
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N
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O
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i−α, j,k
I

Λ
i jk

i−α, j−β,k

]

(D.13)
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i jk

N
Λ

i jk

i−α, j,k−γ + ŵ
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i, j+β,k

I
Λ

i jk

i jk

+ ŵ
i, j+β,k

K
Λ

i jk

i−α, j−β,k−γ + ŵ
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i, j,k+γ

F
Λ

i jk

i, j−β,k

+ ŵ
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i, j,k+γ

I
Λ

i jk

i, j−β,k+γ

+ ŵ
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ŵ
i+α, j,k+γ

A
Λ

i jk

i−α, j−β,k−γ + ŵ
i+α, j,k+γ

B
Λ

i jk

i, j−β,k−γ

+ ŵ
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i+α, j,k+γ

F
Λ

i jk

i+alpha, j,k

+ ŵ
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i+α, j+β,k+γ

L
Λ

i jk

i+α, j−β,k

+ ŵ
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Since the integration and interpolation coefficients need to be
calculated only once at each considered grid point (here denoted
by (u, v, w), to avoid confusion), we obtain the Λ-matrix coeffi-
cients by substituting indices. For Eq. (D.1), we find:

Λ
i jk

i−α, j−β,k−γ = Λ
u+α,v+β,w+γ
uvw = cuvww̃

uvw
I , (D.28)

and proceed analogously for all other elements in Eqs. (D.2)-
(D.27). Thus, the ALO can be calculated in parallel to the formal
solution scheme.
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