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Chapter 1

Introduction

It is the goal of this exercise that you are introduced to N -body simulations, a modern technique
used in computational astrophysics to investigate the formation and evolution of galaxies, the
basic building blocks of our universe. You learn how particle models for disk galaxies are set
up and how their dynamical evolution can be simulated using numerical methods. In the astro-
physical context this is particularly important for understanding galaxy interactions which are
observed in the far and nearby universe.

Toomre & Toomre (1972) invented the idea that dynamically hot elliptical galaxies could
originate from mergers of dynamically cold disk galaxies. This “merger hypothesis” has become
one of the most popular formation scenarios for elliptical galaxies. Therefore the study of nearby
interacting systems – if they evolve into elliptical galaxies at all – will help to illuminate the
important mechanisms responsible for the observed properties of elliptical galaxies in general. In
the local universe there are several candidates for merging gas-rich disk galaxies. The “Antennae”
galaxies (NGC 4038/39) are the classic example of a nearby system composed of two overlapping
late-type spiral galaxies in an early phase of a merger. The long extended tails most likely have
a tidal origin and are characteristic for gravitationally interacting spiral galaxies. The merger of
the Antennae galaxies is accompanied by several bursts of star formation in the two nuclei and
the surrounding spiral arms. The most intense burst, however, takes place in an off-nucleus region
where the two galaxy disks overlap (Figure 1.1; Mirabel et al., 1998). Here the most massive star
clusters form. They are not visible at optical wavelengths since this region is heavily obscured by
dust. Most of the energy from this region is emitted by dust which is heated by an intense star-
burst within giant molecular clouds. This emission can only be measured at infrared wavelengths.
In addition, exploding supernovae in starburst regions heat the surrounding gas very effectively.
These hot gas bubbles are emitting at X-ray wavelengths (see Figure 1.1).

The Antennae galaxies, at a distance of 20 Mpc, have a total infrared luminosity of Lir ≈
1011L⊙, which is about five times its luminosity at optical wavelengths. Therefore the Antennae
galaxies belong to the class of luminous infrared galaxies (LIRGs). At luminosities Lbol ≥
1011L⊙, LIRGs become the dominant population of galaxies in the local universe (see Sanders
& Mirabel, 1996). They emit more energy in the infrared (5 . . . 500 µm) than at all other
wavelengths combined. At luminosities of Lir ≥ 1012L⊙ (ultra luminous infrared galaxies =
ULIRGs) all sources are very gas- and dust-rich interacting systems. A small percentage (≈ 7%)
of ULIRGs can be considered to be fully relaxed systems with no signs of interaction, ≈ 22%
already completed the merger process and show no second nucleus, and ≈ 50% of ULIRGs are still
interacting, since both nuclei can be identified on the images (Rigopoulou et al., 1999). Clearly,
the ULIRGs in the local neighborhood can not explain the formation of elliptical galaxies with
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Figure 1.1: Different views of the Antennae
galaxies. Top left: The Digitized Sky Survey
image (optical; field of view 20′ × 24′) shows
the extended tidal tails, typical for interacting
galaxies. Top right: The central region as seen
by HST (Hubble Space Telescope) exhibits
bright spots of newly born stars and the two
distinct nuclei. The infrared emission mea-
sured by ISO (Infrared Space Observatory) is
indicated by the contour lines. The strongest
emission comes from an obscured interarm re-
gion connecting the two nuclei (Mirabel et al.,
1998). Right: The X-ray view of the Anten-
nae galaxies measured by Chandra (Fabbiano
et al., 2000, Astronomy Picture of the Day
(APOD), August 18). Single point sources
(black hole candidates and neutron stars) are
surrounded by X-ray emitting gas heated by
supernova explosions.

an age of 5 to 10 Gyrs or more. However, Hibbard & Vacca (1997) have shown that ULIRGs are
the best local analogues of disturbed high redshift galaxies observed in the Hubble Deep Field
(see http://antwrp.gsfc.nasa.gov/apod/ for further observations) or other deep fields with
respect to their morphology, star formation rate, and spectral energy distribution. ULIRGs are
therefore good candidates to represent a primary state in the formation of elliptical galaxy cores.

The question whether gas-rich mergers evolve into systems that resemble present day elliptical
galaxies is still not fully explored. The “Toomre Sequence” (Toomre, 1977; see also Toomre
& Toomre, 1972) of the 11 foremost examples of ongoing mergers of late-type spiral galaxies
selected from the New General Catalogue (NGC) provides considerable insight into the merger
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CHAPTER 1. INTRODUCTION

Figure 1.2: The Toomre sequence of merging galaxies seen at different phases, observed with HST. From well-
separated systems on the upper left to merged systems on the lower right you see: NGC 4038/9, NGC 4676,
NGC 7592, NGC 7764A, NGC 6621/2, NGC 3509, NGC 520, NGC 2623, NGC 3256, NGC 3921, and NGC 7252.
(Source: http://www.cv.nrao.edu/~jhibbard/TSeqHST/.)

process (see Figure 1.2). The optically selected sequence represents the proposed stages of
merging disk galaxies. Early-stage mergers have well-separated but distorted disk components
(Antennae, Arp 295, NGC 4676, and others). Intermediate-stage mergers exhibit distinct nuclei
in a common envelope of luminous material with clear signs of interaction as extended tidal tails
(e.g., NGC 520). Late-stage mergers consist of a dynamically relaxed central part with tidal
appendages emanating from a single nucleus (e.g., NGC 3921, NGC 7252, Arp 220; Figure 1.3;
see Hibbard & van Gorkom, 1996).

A recent study of 3 late-stage mergers has shown that the luminosity profile in the case
of NGC 3921 and NGC 7252 (see Figure 1.3) will evolve to an r1/4 law, which is typical for
elliptical galaxies. However, Arp 220 (Figure 1.3), which is the most luminous galaxy in the
local universe and belongs to the class of ULIRGs, shows an excess of light in the central part.
This excess of light is not a common feature among elliptical galaxies. It is found only in some
cores of ellipticals. However, different processes like powerful expanding super-winds or massive
starbursts with an initial mass function that is biased towards massive stars can lead to reduced
central stellar densities when Arp 220 evolves with time. Observed physical processes taking place
in interacting galaxies in the local universe are dominated by gas dynamics and star formation.
The role of stellar dynamics, however, is difficult to estimate.
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CHAPTER 1. INTRODUCTION

Figure 1.3: Late-stage mergers in the local universe.
Top left: Arp 220, the most luminous galaxy in the
local universe (Wilson et al., 2006).
Left: Central region of Arp 220.
Top right: NGC 7252.

Dynamical modeling has demonstrated that large scale interactions are efficient means of
driving central inflows of gas and therefore can trigger nuclear starbursts or AGNs as energy
sources for the enormous infrared emission seen in ULIRGs (see e.g., Barnes & Hernquist, 1996).
However, the detailed processes leading to a starburst are not well understood. Up to now,
numerical simulations which include stellar dynamics, gas dynamics, star formation and its feed-
back were not able to reproduce all the observed features (Mihos & Hernquist, 1996; Barnes
& Hernquist, 1996; see Hibbard & Yun, 1999). In particular, there are several questions that
have to be addressed in detail. How much gas in total is needed to get the high densities ob-
served in centers of elliptical galaxies? What is the influence of gas on the global dynamics of
merger remnants? When, where, and how does the gas transform into stars? Where does the hot
X-ray emitting gas, observed in massive giant elliptical galaxies, come from? Does gas accrete
onto a central black hole? How does the existence of a black hole influence the dynamics of
the remnant? What is the influence of magnetic fields? However, all these questions involve
complicated physical processes that are either poorly understood theoretically – such as star for-
mation in molecular clouds – or involve complicated physics and are very difficult to implement
numerically, like magnetic fields or relativistic hydrodynamics.
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There exists a lot of detailed information about central and global photometry, global kine-
matical properties and spatially resolved local kinematics of giant elliptical galaxies. This data
can be compared with dynamical models of interacting galaxies. It is remarkable that even colli-
sionless dynamical models which only involve gravitation have only been investigated to a small
extent. In particular, it is not clear in how far collisionless mergers succeed or fail to explain the
formation of elliptical galaxies by collisionless mergers of disk galaxies.

1.1. Numerical simulations of interacting galaxies

In the 1970s, Toomre & Toomre (1972) and later on Toomre (1977) proposed on the basis of ex-
periments with a restricted 3-body method that early type galaxies could originate from mergers
of disk galaxies. Almost at the same time Ostriker & Tremaine (1975) suggested that dynamical
friction and repeated mergers and accretion of galaxies near the centers of galaxy clusters could
be responsible for the formation of massive cD galaxies. This merger hypothesis has become one
of the most popular models for the formation of elliptical galaxies. The merger hypothesis has
been tested in great detail by many authors. White (1978, 1979) investigated mergers of spherical
galaxies, Gerhard (1981), Farouki & Shapiro (1982) and, later on, Negroponte & White (1983)
were among the first who performed self-consistent merger simulations of disk galaxies. However,
the resolution of these simulations was very low and the number of particles representing each
galaxy did not exceed 500. The situation changed with the advent of Treecodes in the late 1980s
(Appel, 1985; Jernigan, 1985; Barnes, 1986; Hernquist, 1987; Jernigan & Porter, 1989). The
method allowed simulations without restrictions to the geometry of the problem and reduced the
computational effort to simulate a system with N particles from O(N2) to O(N logN). Using this
powerful tool, the merger hypothesis has been investigated by numerous authors in great detail
(see Barnes & Hernquist (1992) for a review). Using the Treecode, the first fully self-consistent
mergers of two equal mass, rotationally supported disk galaxies embedded in dark halos were per-
formed by Barnes (1988) and Hernquist (1992). They found that mergers indeed lead to slowly
rotating, pressure supported anisotropic systems. The remnants were triaxial and showed both
disky and boxy isodensity contours in projection (Hernquist, 1992). In addition it was found, in
contradiction to the common belief, that mergers of equal mass galaxies lead to the formation
of loops and shells around the remnants in good agreement with observations of shells around
elliptical galaxies (Hernquist & Spergel, 1992). The surface density of the remnants simulated
by Barnes (1988) contained a central bulge component and followed an r1/4 profile up to the
central resolution limit, determined by the gravitational softening length. The half-mass radius
of the system was slightly larger than the scale length of the initial disk. The pure disk mergers
performed by Hernquist (1992) were too diffuse at the center, leading to strong deviations from
the observed surface density profile of elliptical galaxies. This result can be explained by limited
phase space densities at the centers of observed disk galaxies that are in disagreement with the
high phase space densities at the centers of elliptical galaxies and bulges (Carlberg, 1986; Wyse,
1998). Subsequent investigations by Hernquist et al. (1993b) showed that mergers of progenitors
with massive bulge components (25%–30% of the disk mass) could resolve this problem leading
to core radii and surface brightness profiles that are in excellent agreement with observations.
This result is expected since the mergers already start with galaxies that contain elliptical like
components and therefore dissipation may not be needed to satisfy phase space constraints.

It has been argued by Kormendy & Bender (1996), Faber et al. (1997) and Rix et al. (1999)
that gaseous mergers lead to distinct inner gaseous disks in the merger remnants which subse-
quently turn into stars, generating disky isophotes and strong rotational support in the outer
regions. In contrast, boxy ellipticals would form from purely dissipationless mergers. This idea
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CHAPTER 1. INTRODUCTION

has theoretically been addressed in detail by Bekki & Shioya (1997) and Bekki (1998) and recently
by Springel (2000). Bekki & Shioya (1997) simulated mergers including gaseous dissipation and
star formation. They found that the rapidity of gas consumption affects the isophotal shapes.
Secular star formation however leads to final density profiles which deviate significantly from the
observed r1/4 profiles in radial regimes where all ellipticals show almost perfect de Vaucouleurs
laws (Burkert, 1993). These calculations and models of Mihos & Hernquist (1996) demonstrate
that the effect of gas and star formation changes the structure of merger remnants as such a
dissipative component would most likely lead to strong deviations from the r1/4 profiles which
seems to be a result of dissipationless, violent relaxation processes. Nevertheless the observa-
tions of metal-enhanced, decoupled and rapidly spinning disk-like cores (Bender & Surma, 1992;
Davies et al., 1993; Bender & Davies, 1996) show that even in boxy ellipticals gas must have been
present. Numerical simulations show that these features would result naturally from gas infall
during the merger process (Barnes & Hernquist, 1996; Mihos & Hernquist, 1996). The influence
of gas on the global structure of elliptical galaxies is not well understood as it is sensitive to
uncertain details about the star formation process (Barnes & Hernquist, 1996).
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Chapter 2

Theoretical background

2.1. Numerical methods

In addition to theoretical and experimental physics, computational physics has become a powerful
tool for answering astrophysical questions. The increase of computer power and the development
of special hardware and software have opened the opportunity to model the evolution of galaxies
directly. The data analysis following such a virtual experiment is then carried out in much the
same way as an observer would do with data from a real observation. The N -body simulation
technique has become one of the most powerful tools for the study of astronomical systems of
gravitationally interacting subunits: the solar system, star clusters, galaxies, clusters of galaxies,
and the large-scale structure of the universe.

2.1.1. The Tree Structure – Organizing Particles for Quick Access

The easiest and initially most intuitive way to compute the gravitational accelerations on the
particles is the so called direct summation approach. The force exerted on a particle i is computed
as the sum of the forces from all other particles j 6= i inside the system. This technique gives
the correct acceleration for every particle, but has the major drawback that O(N2) operations
are required for the calculation. For simulations of collisionless systems, a small error in the
accelerations is, however, tolerable without affecting the evolution of the system. It is thus
feasible to implement methods which require less than O(N2) operations while at the same time
producing slightly less accurate accelerations for the particles.

The most commonly used technique for computing the accelerations is based on ordering the
particles into a tree structure. Instead of actually computing every single interaction with a
remote set of particles, a single interaction with a node of the tree structure is computed, where
the node contains a corresponding set of particles. The number of operations required for the
calculation of the accelerations of all particles decreases to O(N logN).

A variety of algorithms for building and using such tree structures in astrophysical particle
simulations have been developed. The two most important are variants of the so called “octree”
and “binary tree” structures. In an octree (Barnes 1986), the tree is built in a top-down fashion:
The system is placed into a cube encompassing all particles. Then the cube is split into its eight
octants, which are then in turn split accordingly. The procedure repeats until on the lowest level
either one or no particles are found inside a cube. These cubes form the leaves of the tree. A
binary tree (Appel 1985) is usually built in a bottom-up fashion (see, however, Jernigan & Porter
1989 for an alternative approach and for a comparison of octrees and binary trees). VINE, the
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CHAPTER 2. THEORETICAL BACKGROUND

simulation code used for this exercise, follows the original idea for a binary tree by combining
nearest neighbor particles into nodes of the tree and repeating the procedure until only one node,
the root node, is left. This type of tree structure does not make use of an artificial tessellation
of space in order to build the tree and has the advantage of naturally following the geometry of
the physical system under consideration.

2.2. Relaxation and stability of N-body simulations

In the exercise presented here the gravitational force is computed as

F i = −
∑

j 6=i

Gmimj(xi − xj)
(

|xi − xj |2 + ε2
)3/2

(2.1)

where xi and xj are the positions of particle i and j and the softening-parameter ε avoids
divergence at xi = xj .

Many astrophysical stellar systems can be considered as collisionless systems during their
evolution (see Section 2.3.1). Two-body encounters are unimportant as well as local deviations
form a smooth global potential. For numerical simulations of galaxies which typically contain
1011 particles the number of particles is limited to 105 . . . 107 test particles which have typical
masses of 104 . . . 106 solar masses, even for the fastest present-day supercomputers. For systems
with small particle numbers two-body interactions its relaxation time is artificially reduced (see
Section 2.3.1). For two-dimensional models of disks (e.g., Earn & Sellwood, 1995) we can estimate
the relaxation time being the time-scale on which stars of similar mass diffuse in velocity space
(White, 1988) as:

tR =
σ

πGΣ
(2.2)

where σ =
√

σrσφ is the velocity dispersion and Σ is the surface density of the disk.
With a radial dispersion of

σr = Q
3.36GΣ

κ
(2.3)

and a tangential dispersion of
σφ = σr

κ

2Ω
(2.4)

we get a relaxation time which is comparable to the epicyclic period 2π/κ and therefore the
system can not be considered collisionless.

To perform useful simulations the effects of relaxation have to be reduced. One possibility is
to introduce a softened force as in Equation 2.1.

The potential at particle i can be written as

Φ(xi) = −
∑

j 6=i

Gmj
(

|xi − xj |2 + ε2
)1/2

. (2.5)

where mj is the mass of particle j and ε is softening parameter. This type of force softening is
also called Plummer-softening as the particle contributed to the potential as if its mass where
distributed like a Plummer density profile

ρ(xi) = −
∑

j

3mj

4π

ε2
(

|xi − xj |2 + ε2
)5/2

. (2.6)
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Formally the softening can be interpreted in the following way: define a smooth density at x
as

ρ(x) =

∫

W (x− x
′, ε)ρp(x

′) dx′ (2.7)

with a density of a particle
ρp(x) =

∑

j

mjδ(x− xj) (2.8)

and a smoothing-kernel for Plummer-softening

W (x− x
′, ε) =

3

4π

ε2
(

|x− x′|2 + ε2
)5/2

. (2.9)

To some degree the functional form of this kernel is arbitrary. Other density distribution are
also possible as long as W (x) follows W (x) → δ(x) for ε → 0 and ρ(x) ≥ 0 for all x.

For two-dimensional systems including softening the relaxation time is increased to to (Ry-
bicki, 1971)

tR ≈ σ3ε

πG2Σm
(2.10)

where m is the particle mass and ε is the smoothing length.
In addition to two-body relaxation there exists another, equally important, source for re-

laxation. Due to the limited number of particles the noise in the particle distribution leads
to small-scale fluctuations in the density and the potential. In real 3-dimensional disks short-
range encounters as well as long-range encounters contribute to the relaxation of the system and
the previous computations are not valid any more. It is therefore important to investigate the
stability of a system using different softening lengths under realistic assumptions.

2.2.1. Time integration

In N-body simulations the particles move according to the Newtonian equations of motion

dx

dt
= v,

m
dv

dt
= F . (2.11)

The functional form of F depends on the forces that are necessary for the simulations. For
N-body simulations this reduces to the gravitational forces. To integrate this set of equations
numerically it is necessary to replace them by linear algebraic relationships. The continuous
functions x and v are replaced by values at discrete time intervals. The most commonly used
discretization for N-body simulations is the leapfrog scheme or Verlet method (see Hockney &
Eastwood, 1981). It is the standard way of integrating the equations of motion of interacting
particles whose interactions do not explicitly depend on velocity, like stellar dynamics. It has
been used by a wide variety of authors investigating different problems (Barnes, 1988; Hernquist
& Quinn, 1988, Barnes, 1988; Barnes & Hernquist, 1992; Hernquist et al., 1993a; Barnes &
Hernquist, 1996; Velazquez & White, 1999 and many others). In this scheme the discretization
of the equations (2.11) is realized by

x
(n+1) = x

(n) + v
(n+ 1

2
)∆t,

v
(n+ 1

2
) = v

(n− 1

2
) +

F (x(n))

m
∆t. (2.12)
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Here ∆t is the time step and the superscript n is the time level t = n∆t. This scheme is
consistent in the sense that for ∆t → 0 the discretization (2.12) tends towards the continuous
equations (2.11). Another desired consistency property is that the discrete approximations and
the continuous equations have the same time symmetry. The Newtonian equations of motion
are time-reversible, i.e., if a particle is integrated forwards in time on a trajectory and the time
arrow is reversed, the particle will follow the same trajectory backwards returning to its starting
point. Time reversible discretization are obtained by time-centered difference approximations.
In the equations (2.12) the difference (x(n+1) −x

(n)) is centered about t(n+
1

2
) and the difference

(v(n+ 1

2
)−v

(n− 1

2
)) is centered on t(n). The accuracy of the discretization scheme is given by round-

off errors in the computer and truncation errors caused by representing the continuous variables
by a discrete set of values. For stable integration schemes, round-off errors are smaller than
truncation errors and can be neglected. Truncation errors can be seen as the difference between
the differential equations and their algebraic approximations. The measure of the smallness of
truncation errors is then given by the order p of the difference scheme, where the error is ∝ (∆t)p

for small ∆t. If the overall time step ∆t is held constant the leapfrog approximation is time-
reversible and is a second-order accurate approximation to the equations of motion (see Hockney
& Eastwood, 1981).

Replacing v in equations (2.12) gives

x
(n+1) − 2x(n) + x

(n−1)

(∆t)2
=

F (x(n))

m
. (2.13)

If X is a solution to the differential equations (2.11),

d2X

dt2
=

F

m
, (2.14)

then we define the error at every time step n as δn using equation (2.13)

X
(n+1) − 2X(n) +X

(n−1)

(∆t)2
=

F (X(n))

m
− δn. (2.15)

After expanding X
(n+1) and X

(n−1) in a Taylor series around X
(n) = X(t(n)) this can be

written as
d2X

dt2
+

(∆t)2

12

d4X

dt4
+ higher order terms =

F (X(n))

m
− δn. (2.16)

Combining with equation (2.14) we get

δn = − (∆t)2

12

d4X

dt4
+ higher order terms. (2.17)

In addition, the leapfrog scheme is stable for a small enough time step ∆t. How the time step has
to be adjusted depends on the system that has to be integrated. For hydrodynamical simulations
a criterion could be phrased as no information is allowed to travel farther than one resolution
unit within one time step. For dynamical simulations the time step must be small enough to
resolve the dynamics of the system. A typical value for a time step of a collisionless system is
10−2 . . . 10−3 dynamical time scales. Small errors at any stage of the integration then do not lead
to larger cumulative errors. In addition, the leapfrog scheme is easy to implement and requires
little memory. If the time step is properly adjusted to the parameters of the simulations the
scheme provides a good compromise between accuracy, stability and efficiency (Athanassoula,
1993; Barnes, 1998).
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2.3. The initial conditions

Determining initial conditions for numerical simulations of disk galaxies is problematic in general.
Galaxies are compound objects consisting of a luminous disk with interstellar gas, a stellar bulge
or a bar, and an extended dark halo. The overall goal is to describe a dynamical equilibrium
model with physical properties according to observations of the Milky Way and other galaxies.
Unfortunately, the distribution function that describes the dynamical evolution of a collisionless
system like a galaxy (see Section 2.3.1) is very complex and not well known for systems of such a
complexity. One way out is to realize only part of the galaxy with particles and describe the other
components by fixed analytic potentials. The disadvantage of those methods is that they do not
allow self-consistent interaction between the subsystems. In the standard cosmological model
where dark matter halos consist of self-gravitating and collisionless particles those interactions
are of fundamental importance for the evolution of the system as a whole.

2.3.1. Dynamics of collisionless stellar systems

The dynamics of collisionless stellar systems is discussed extensively in the literature (e.g., Binney
& Tremaine, 1987). Therefore we will focus only on the basic concepts that are needed to
understand the description of the model for initial conditions in Section 2.3.2.

Gravitationally interacting stars in a galaxy can be assumed to form a collisionless dynamic
system. Collisionless means that the motion of a star in a galaxy is determined by the overall
potential of the system rather than by interactions with stars close by. Whether a stellar system
can be assumed to be collisionless is determined by its relaxation time trelax. The relaxation time
gives the time-scale after which a star that moves in a system of N stars is deflected significantly
by close encounters with nearby particles from its mean trajectory. The relaxation time can be
defined as (see Binney & Tremaine (1987) for details)

trelax =
rg
vt

N

8 lnN
. (2.18)

Here rg/vt = tcross is the crossing time for a system of N particles with masses m, and the
characteristic radius rg is defined as

rg ≡ GM2

|W | . (2.19)

G is the gravitational constant, W is the total potential energy of the system, and M = Nm is
its total mass. vt is the typical velocity

v2t ≈ GNm

R
(2.20)

of a particle in such a system with radius R. Galaxies consisting of N = 1011 particles have
relaxation times comparable to the age of the universe and can therefore be assumed to be
collisionless systems. It has to be noted that every stellar system can be treated as a collisionless
system if it is investigated on timescales significantly smaller than its relaxation time.

In classical mechanics the state of a system of particles is determined by the position x and
velocity v of every particle. Using a discrete set of Newtonian equations of motion it is then
possible to determine the velocities and positions of every particle at every time. For the large
number of particles involved in stellar dynamical processes it is not possible to follow exactly the
trajectory of every particle. Since the particles in a collisionless system move under the influence
of a smooth global potential Φ(x, t), a continuous description of the system is more useful. The
state of the system can be given by the number of stars f(x,v, t) d3x d3v in a volume d3x
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centered on x and velocities in the range d3v centered on v. The function f(x,v, t) ≥ 0, defined
in the 6-dimensional phase-space (x,v), is called the phase-space density or the distribution
function of the system. To find a dynamical equation for f(x,v, t), it can be assumed that the
flow of matter through phase space can be described by a 6-dimensional vector (x,v) with

(ẋ, v̇) = (v,−∇Φ(x, t)), (2.21)

where Φ(x, t) is the gravitational potential. The flux (ẋ, v̇) is conservative, therefore the change
of mass in a phase-space volume dx dv is determined by inflow minus outflow, so

∂f

∂t
+

∂

∂x
· (fx) + ∂

∂v
· (fv) = 0. (2.22)

If we substitute equation (2.21) we obtain the collisionless Boltzmann equation (CBE)

∂f

∂t
+ v · ∇f −∇Φ · ∂f

∂v
= 0. (2.23)

This equation is the fundamental equation of stellar dynamics. It has the property

df

dt
= 0. (2.24)

This means that the local phase-space density f around a phase point of a given star always

remains the same (Binney & Tremaine, 1987). The potential of a given density distribution ρ(x)
is given by the Poisson equation

∆Φ(x, t) = 4πGρ(x, t) = 4πG

∫

f(x,v, t) d3v. (2.25)

If a distribution function satisfies the Poisson equation (2.25) and the CBE (2.23) it provides a
self-consistent solution to a collisionless problem. In the following equations we use the standard
summation convention.

One can derive a continuity equation by integrating equation (2.23) over all possible velocities:
∫

∂f

∂t
d3v +

∫

vi
∂f

∂xi
d3v − ∂Φ

∂xi

∫

∂f

∂xi
d3v = 0. (2.26)

For a spatial density of stars ν(x) and a mean stellar velocity v(x) defined by

ν ≡
∫

f d3v, vi ≡
∫

fvi d
3
v, (2.27)

this simplifies to the continuity equation

∂ν

∂t
+

∂(ν vi)

∂xi
= 0. (2.28)

If we multiply the CBE by vj and integrate over all velocities we obtain

∂

∂t

∫

fvi d
3
v +

∫

vivj
∂f

∂xi
d3v − ∂Φ

∂xi

∫

vj
∂f

∂vi
d3v = 0. (2.29)

Using the fact that f → 0 for large v and applying the divergence theorem, equation (2.29) can
be written as

∂νvj
∂t

+
∂(ν vivj)

∂xi
+ ν

∂Φ

∂xj
= 0, (2.30)
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with
vivj ≡

1

ν

∫

vivjf d3v. (2.31)

Subtracting vj times the equation of continuity (2.28) and substituting

σ2
ij ≡ (vi − vi)(vj − vj) = vivj − vivj (2.32)

gives the Jeans equations

ν
∂vj
∂t

+ νvi
∂vj
∂xi

= −ν
∂Φ

∂xj
−

∂(νσ2
ij)

∂xi
. (2.33)

The Jeans equations (2.33) are the stellar-dynamical analogue to the ordinary Euler equation of
hydrodynamics. Here νσ2

ij is a stress tensor that describes an anisotropic pressure. Applying
an analogous sequence of steps one can obtain the Jeans equations in cylindrical coordinates by
taking moments of the CBE in cylindrical coordinates (see Binney & Tremaine, 1987);

∂(νvR)

∂t
+

∂(νv2R)

∂R
+

∂(νvRvz)

∂z
+ ν

(

v2R − v2φ
R

+
∂φ

∂R

)

= 0, (2.34)

∂(νvφ)

∂t
+

∂(νvRvφ)

∂R
+

∂(νvφvz)

∂z
+

2ν

R
vφvR = 0, (2.35)

and
∂(νvz)

∂t
+

∂(νvRvz)

∂R
+

∂(νv2z)

∂z
+

vRvz
R

+ ν
∂Φ

∂z
= 0. (2.36)

In addition, we give the Jeans equations for a spherically symmetric system in steady state and
for vr = vθ = 0, calculated by integrating vr times the CBE in spherical coordinates, as

d(νv2r)

dr
+

ν

r

(

2v2r −
(

v2θ + v2φ

)

)

= −ν
dΦ

dr
. (2.37)

2.3.2. A model for individual galaxies

The models for spiral galaxies consist of a disk component, a bulge, and an extended dark
matter halo. They are constructed in dynamical equilibrium, adopting a method described by
Hernquist (1993a). This method uses the fact that the lowest (second) order moments of the
CBE are determined by the density distributions of the components. Since those are known from
observations one can compute velocity moments and approximate the real distribution function
in velocity space by known distribution functions (e.g., Gaussian) having these moments. This
method is only an approximation but it can be assumed that the system initialized this way
reaches an equilibrium state after a short evolution. Hereafter we describe the basic properties
of the initial model.

We assume a stellar disk with a density which decreases exponentially with increasing cylindrical
radius R =

√

x2 + y2 (Freeman, 1970) and is described by isothermal sheets perpendicular to
the disk plane (Bahcall & Soneira, 1980; Spitzer, 1942)

ρd(R, z) =
Md

4πh2z0
exp

(

−R

h

)

sech2
(

z

z0

)

, (2.38)

where Md is the disk mass, h is the radial scale length, and z0 is a characteristic measure of the
scale height perpendicular to the galactic plane. The scale height is assumed to be independent
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of the galactocentric distance (van der Kruit & Searle, 1981, 1982). To construct a velocity
ellipsoid of the disk with the density given in equation (2.38) one can use moments of the CBE.
Observations of velocity dispersions in disk galaxies show that the radial velocity dispersion is
proportional to the surface density (Freeman, 1970; Lewis & Freeman, 1989; Bottema, 1993;
Binney & Merrifield, 1998) implying that

v2R ∝ exp

(

−R

h

)

. (2.39)

For an isothermal sheet (here v2z is independent of z) the vertical velocity dispersion is related
to the disk surface density, Σ(R), by

v2z ∝ πGΣ(R)z0. (2.40)

Observations of edge-on disk galaxies suggest that z0 does not vary with radius and therefore
v2z ∝ Σ(R) (van der Kruit & Searle, 1981, 1982; van der Kruit & Freeman, 1984; see Bottema
(1993) for an overview).

A small note: For a stellar system in equilibrium with density ρ, ∇P = −ρ∇Φ with the “pressure”
P = ρσz (this is related to the functional form of the Jeans equation as an analogue to the Euler
equation, see Binney & Tremaine, 1987). We then get

1

ρ

∂(ρv2z)

∂z
= −∂Φ

∂z
. (2.41)

Near the plane of a highly flattened system, Poisson’s equation can be approximated by

∂2Φ

∂2z
= 4πGρ. (2.42)

Combining equations (2.41) and (2.42) gives

∂

∂z

(

1

ρ

∂ρ

∂z

)

= −4πρG

σ2
z

, (2.43)

assuming σ2
z is independent of z. The solution to equation (2.43) for constant σ2

z is

ρ = ρ0 sech
2

(

z

z0

)

(2.44)

with

z0 =

(

σ2
z

2πGρ0

)1/2

. (2.45)

The asymptotic behaviour of ρ is described by

sech2
(

z

z0

)

≈















1− z2

4z20
for z ≪ z0,

4e−2z/z0 for z ≫ z0.
(2.46)

The velocity structure in the radial and vertical directions in the disk plane is determined by
equations (2.39) and (2.40). To quantify the normalization constant in equation (2.39) it is
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required that the radial dispersion at a critical radius R = Rcrit is determined by the Toomre
Q parameter (Toomre, 1964). A critical velocity dispersion for the local stability of a thin
gravitating disk at a given radius Rcrit is defined by

σR

∣

∣

∣

Rcrit

>
3.36GΣ

κ
, (2.47)

or defining the Toomre stability parameter Q:

Q ≡ σRκ

3.36GΣ
> 1 (2.48)

for the local stability of an axisymmetric disk. The epicyclic frequency κ is defined by

κ2 =
3

R

(

∂Φ

∂R

)

+

(

∂2Φ

∂R2

)

. (2.49)

Here Φ is the total potential arising from all components of the galaxy model. For the models
used in this lab we assume a critical radius of Rcrit = 2.4h. This corresponds to the solar radius
R⊙ if the model is scaled to the Milky Way.

To compute the azimuthal moments of the velocity field of the disk one needs the Jeans
equation in cylindrical coordinates (2.34). For a star that lies close to the galactic equator, one
can evaluate equation (2.34) at z = 0, and assume that (∂ν/∂z) = 0, to find

R

Σ

∂(Σv2R)

∂R
+R

∂(vRvz)

∂z
+ v2R − v2φ +R

∂Φ

∂R
= 0 (2.50)

if we substitute ν with Σ in the limit of a thin disk with z = 0. Substituting the azimuthal
velocity dispersion

σ2
φ = (vφ − vφ)2 = v2φ − v2φ (2.51)

and R(∂Φ/∂R) = v2c , where vc is the circular speed, in equation (2.50) gives the relevant second
moment of the CBE to compute moments of the azimuthal velocity dispersions according to

σ2
φ − v2R − R

Σ

∂(Σv2R)

∂R
−R

∂(vRvz)

∂z
= v2c − v2φ. (2.52)

The azimuthal dispersion was chosen to be related to the radial dispersion via the epicyclic
approximation

σ2
φ = v2R

κ2

4Ω2
(2.53)

where Ω is the angular frequency and vc is the circular velocity derived from the potential of all
components by

Ω2 =
1

R

dΦall

dR
, (2.54)

v2c = R
dΦall

dR
. (2.55)

The equations (2.39), (2.40), and (2.53) fully specify the velocity ellipsoid in the disk plane.
Assuming an exponential surface density profile for the disk and an exponential distribution for
the radial velocity dispersion, equation (2.52) with equation (2.53) simplifies to

v2φ − v2c = v2R

(

1− κ2

4Ω2
− R

h
+

∂(ln v2R)

∂ lnR
+

R

v2R

∂(vRvz)

∂z

)

. (2.56)
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In addition, some softening has to be applied to v2R at small radii (see Hernquist (1993a) for
a detailed description). Velocities are then initialized by drawing vz from a Gaussian with

dispersion (v2z)
1/2, drawing vR from a Gaussian distribution with dispersion (v2R)

1/2, computing
vφ from equation (2.56), and determining the random component by drawing from a Gaussian
with dispersion (σ2

φ)
1/2.

The dark matter halo is assumed to follow a density profile that is characterized by isothermal
spheres over some radial interval leading to a phenomenological potential–density pair of

ρh(r) =
Mh

2π3/2

α

rc

exp(−r2/r2c )

r2 + γ2
, (2.57)

Φh(r) = −GMh(r)

r
+

GMhα√
πrc

Ei

(

−
(

r

rc

)2

− q2

)

, (2.58)

where Mh is the total mass of the halo, rc is a cutoff radius, and γ is a core radius. The
normalization constant α is defined by

α =
(

1−
√
πq exp(q2)

(

1− erf(q)
)

)−1

, (2.59)

where q = γ/rc. The halos are truncated exponentially at rc. In general rc is artificially small
to reduce the computational task of integrating particles that are only loosely bound and do not
affect the luminous component of the galaxy. For a non-rotating spherical system with a mass
distribution like equation (2.57) we have

v2θ = v2φ. (2.60)

The velocity dispersion is defined by the Jeans equation in spherical coordinates (see equa-
tion 2.37)

1

ρh

d

dr
(ρhv2r) + 2β(r)

v2r
r

= −dΦ

dr
, (2.61)

where β(r) is defined as

β(r) ≡ 1− v2θ
v2r

(2.62)

and measures the degree of anisotropy. If the system is isotropic (β(r) = 0, v2r = v2θ) one can
integrate equation (2.61) to give

v2r =
1

ρh(r)

∞
∫

r

ρh(r)
dΦ

dr
dr (2.63)

and

v2r =
1

ρh(r)

∞
∫

r

ρh(r)GM(r) dr, (2.64)

where Φ includes the self-gravity of the halo and of all other components which contribute to
the gravitational field and M(r) is the cumulative mass distribution. The absolute speeds of the
particles are selected from

F (v, r) = 4π

(

1

2πσ2

)3/2

v2 exp

(

− v2

2v2r

)

(2.65)
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with ∞
∫

0

F (v, r) dv = 1. (2.66)

The Cartesian velocities are then initialized from v assuming isotropy (see Hernquist, 1993a).

Observations of the stellar bulge of the Milky Way and external galaxies imply that they are
spheroidal systems following an r1/4 surface density law. A simple density profile that reproduces
the r1/4 law was proposed by Hernquist (1990) and is used for this galaxy model. The potential–
density pair is

ρh(r) =
Mb

2π

a

r

1

(r + a)3
(2.67)

and
Φ(r) = −GMb

r + a
(2.68)

with a cumulative mass distribution of

M(r) = Mb
r2

(r + a)2
. (2.69)

Mb is the total mass of the bulge and a is the scale length. The velocities are initialized in the
same manner as for the halo.

For the simulations performed here we use the following system of units employed by Hernquist
(1992, 1993b): gravitational constant G = 1, exponential scale length of the disk h = 1 and mass
of the larger disk Md = 1. In these units the galaxy model has z0 = 0.2, Mh = 5.8, γ = 1,
rc = 10, Mb = 1/3, and a = 0.1. Scaled to the physical properties of the Milky Way or M31 this
translates to h = 3.5 kpc and Md = 5.6× 1010M⊙.

This model has been proven as a valuable collisionless equilibrium model for disk galaxies and
has been tested with several applications (Hernquist, 1992, 1993b; Quinn et al., 1993; Heyl et al.,
1994; Mihos et al., 1995; Heyl et al., 1996; Walker et al., 1996; Weil & Hernquist, 1996; Velazquez
& White, 1999; Naab et al., 1999). Figure 2.1 shows some spherically averaged properties of the
initial disk galaxy like the ratio of dark to luminous mass, the density, and the circular velocities
of the individual components.
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Figure 2.1: Spherically averaged properties of the initial disk galaxy vs. radius in units of disk scale lengths.
Upper left panel: Cumulative mass of bulge (dotted), disk (solid), total luminous component (dash-dotted), and
halo (dashed) vs. spherical radius. Upper right panel: Ratio of cumulative bulge, disk and halo mass and total
cumulative mass vs. radius. Lower left panel: Density distribution for the different components. Lower right

panel: Circular velocity of the model and separate contributions from disk, bulge, and halo vs. spherical radius.
It has to be noted that the circular speed of the disk is underestimated by ≈ 15% since the mass is spherically
binned and therefore assumed to be spherically distributed (see Binney & Tremaine, 1987).
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Chapter 3

Exercise

The main goal of this exercise is to learn how to use a modern software for simulating and
analysing N-body models of real galaxies. In a first step you will analyse an N-body model for a
disk galaxy like our own Milky Way and use a simulation code to evolve the system in time. In
a second step you will perform a merger between two disk galaxies and quantify the properties
of the merger remnant.

As a first step, log in to the computer allocated for the N -body lab, either using the graphical in-
terface or from a terminal by typing ssh -4 -Y numprakt@mpusm06.usm.uni-muenchen.de and,
when asked, the password. Make a new folder for your group using the command mkdir and
change into this folder using the command cd. Within this folder you can later create individual
directories for every simulation you do and one directory in which you copy the macros to make
the plots and where you can do the analysis of your simulations.

3.1. Fortran vs. Python lab

Depending on your choice, you can use the macros in PRAKTIKUM/PROGRAMS/IDL, which are
written in IDL (Interactive Data Language) and follow closely the Fortran syntax of pro-
gramming, or the macros in Python in PRAKTIKUM/PROGRAMS/PYTHON. The files have the same
names but differ in the ending (.pro and .py, respectively).

Once you have copied the files into your own folder, you can edit the macros to make any
changes to parameters (like location of files or other setting) or other parts as needed for for the
different exercises you will be doing. Then, you can run the macros in the following way:

• IDL: start IDL by typing idl (you should get an IDL> prompt) and then .run macroname

(where you can omit the .pro). This either runs some program directly or it displays a list
of available functions which you can then call by typing their names at the IDL prompt.
To leave IDL and return to the shell, just type exit.

• Python: just type python3.6 macroname.py at the command line.
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3.2. Getting used to the data

3.2.1. Setup

The N-body model for the disk galaxy has already been set up using the technique described
in Section 2.3.2. You will find an ASCII version of the data set called spiral.ascii in the
directory PRAKTIKUM/DATA. The 3-dimensional (ndim=3) system at time t=0 contains in total
npart=20000 particles, with 6000 disk particles, 2000 bulge particles, and 12000 dark halo
particles. The masses (m), positions (x, y, z) and velocities (vx, vy, vz) of all particles are stored
in the following way:

npart,ndim,t

mass(1)
...

mass(npart)

x(1),y(1),z(1)
...

x(npart),y(npart),z(npart)

vx(1),vy(1),vz(1)
...

vx(npart),vy(npart),vz(npart)

3.2.2. Visualizing the initial conditions

As seen in the description above, the disk particles are always first, followed by the bulge and
the halo particles. You can visualize this model using show ics. This macro shows you the disk
particles plotted in red and the bulge particles in blue.

Q1. What is the morphological difference?

Q2. Plot the halo particles in addition.

To do this, open the file show ics with a text editor (e.g., emacs, vi, . . . ) and add an additional
plot command for halo particles. The structure of the program is very simple. Where is the best
place to add the additional command inside the macro? Make sure you plot the halo particles in
a different colour! The IDL version plots the result on the screen (when executing the function
show ics) or creates a Postscript (.ps) file (when executing the function print ics), while the
Python version only produces a PDF (.pdf) file. You can view these files using the program gv.

3.3. Preparing vine 3D

You will perform the simulations with the modern N-body tree-code VINE. The source code is
in the directory PRAKTIKUM/PROGRAMS/VINE 3D. You can compile the code with the help of the
makefile (have a look at the settings). To compile the code, you first have to supply a compiler,
which you can do by typing module load compiler. Then, first remove all old compiled versions
by typing make clean and then compile the code using simply make. When the code has been
compiled you can copy the executable program vine 3D into your simulation directory.
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3.4. Dynamical evolution of a single disk in isolation

First, create an own directory for every simulation you perform and copy into this directory the
simulation code (PRAKTIKUM/PROGRAMS/VINE 3D/vine 3D) as well as the file with the initial con-
ditions (e.g., PRAKTIKUM/DATA/SPIRAL 000), the parameter file (PRAKTIKUM/DATA/insph), and
the job script (PRAKTIKUM/DATA/runme.sh). The binary versions of the initial conditions files are
smaller than the corresponding ASCII files and better suited to store simulation data but are (his-
torically) computer hardware specific. Therefore, do not forget to do export F UFMTENDIAN=big

on the command line before starting the simulations.
Before running the program, have a look at the input file insph and check the settings of all

important parameters. This file is structured as follows:

’---------------------------------------------------------------’

’Input/Output and Initialization ’

’---------------------------------------------------------------’

’Name of initialization and dump file..’ ’base’ ’SPIRAL_000’

’Use XDR library for I/O...............’ ’iusexdr’ 0

’Dump number for restart...............’ ’idump’ 0

’Make temporary dumps if itmpdmp=1.....’ ’itmpdmp’ 1

’Time steps between SED etc outputs....’ ’idmpfreq’ 100

’Initial time step for all particles...’ ’dtinit’ 1d-2

’Maximum time in code units to end ....’ ’tstop’ 100d0

’Code time between dumps ..............’ ’dtdump’ 1d0

’Debugging turn on if idbg>0...........’ ’idbg’ 1

’Print timing information if itme=1....’ ’itme’ 1

’---------------------------------------------------------------’

...

’---------------------------------------------------------------’

’Gravity settings ’

’---------------------------------------------------------------’

’Self gravity if igrav=1...............’ ’igrav’ 1

’Use GRAPE: igrape=1, else 0...........’ ’igrape’ 0

’Direct summation if 1, else tree......’ ’idirect’ 0

’Timesteps between tree builds (globts)’ ’maxbuild’ 15

’Tree rebuild: if h_clmp>clfac*h_clmp0.’ ’clhfrac’ 5d0

’MAC:.angle(1).abserrWS(2).gadget(3)...’ ’imac’ 1

’MAC: opening criterion (angle or err).’ ’treeacc’ 0.7d0

’Softening:0=varkern,1=fixkern,2=Plumr.’ ’isoft’ 2

’Plummer soft for isoft=1 .............’ ’eps’ 1d-1

’Max sep between clumps ...............’ ’sepmax’ 10d0

’Minimum particles to send to GRAPE....’ ’igrapelim’ 50

’Max node mass for interaction list....’ ’gmasslim’ 1d100

’---------------------------------------------------------------’

...

The important parameters for this exercise are base, being the name of the initial conditions
file, eps, the gravitational softening length, and dtinit, the fixed time-step.
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Simulation 1: Copy the initial conditions file PRAKTIKUM/DATA/SPIRAL 000 into the directory
you created and check that you have set the important parameters correctly in the insph file.
Check that the force softening is set to eps=1d-1, the initial conditions file is the correct one
(base=SPIRAL 000) and the time-step is set to dtinit=1d-2. Edit the job script runme.sh

and assign a meaningful name to your simulation and ensure that the number of concurrently
executing threads (cpus-per-task) is set to 4. Then start the program by typing sbatch

runme.sh. Note the job ID (integer number) which is displayed. You can see if your job is
running by typing squeue on the command line (you can find your job by the line containing
the name you gave and the job ID you noted). The output is written into the file slurm-ID.out
(where ID is the job ID), and you can follow the progress by typing tail slurm-ID.out.

The run will stop at time t=100. All units used are in computational units assuming that
the gravitational constant G=1. Scaling the model disk to our Milky Way we can assume that
the length unit L=1 corresponds to 3.5 kpc and the mass unit M=1 corresponds to 5.6× 1010M⊙.

Q3. Derive the physical time unit (in years) and the velocity unit (in km/s). For
this computation you will need the following constants: G = 6.672× 10−11 m3 kg−1 s−2, 1 kpc =
3.0856× 1019 m, 1M⊙ = 1.989× 1030 kg.

When the run is finished it has created 100 dump files. To watch / analyse them, change into
your directory with the plotting scripts and edit plot galaxy where you have to set basename to
SPIRAL , path to the directory where you run the simulation, and ndumps to 100 (or the number
of snapshots which are already there if the run is not yet finished). After running the script you
will find a sequence of images in your directory showing the time evolution of the disk seen in
face-on and edge-on projection. A simple way to watch the sequence of produced images is with
the command xv -wait 0 galaxy *.png.

For a more quantitative analysis use plotvcirc and edit it. You have to set basename to
SPIRAL , path to the directory where you run the simulation and input snap to the snapshot
that you want to analyse, so for the beginning set this to 0. This program computes the circular
velocity of the different components of the galaxy, their cumulative mass distribution and the
projected surface density profiles of the disk and the bulge.

Q4. Plot the same figure using physical units: km/s, solar masses, and solar masses
per square parsec. To do this, you can use the units you have computed before and edit the
parameters vscale, mscale, and sscale in plotvcirc. In some of the analysis steps you might
want to change the way quantities are plotted or to adapt the ranges for better view.

Q5. How did the system properties change? Now repeat the analysis for different time-
steps up to t=100 and discuss the results.
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Q6a. Parallelization efficiency:

Simulations 1a, 1b, 1c, 1d, and 1e: Set up 5 variants of simulation 1 where you change the
number of threads (cpus-per-task) to be 1, 2, 8, 16, and 32 in the job script runme.sh. Once
the jobs are finished, the last line of the log file will tell you the wall-clock time it took.

Create a plot! Show the time needed as a function of the number of threads used. Can you
interpret the plot? Is it what you would have expected?

Q6b. Direct sum:

Simulation 1f : Set up one more variant of simulation 1 by setting the opening angle treeacc

in the parameter file to a very small value, making the criterion for using the tree very stringent
and thereby effectively forcing the use of direct summation. This simulation will take quite long,
so while it runs go ahead with the next steps. Later you can come back to this and add the
wall-clock time for this simulation to the timing diagram of Q6a. Can you give an interpretation
of the result?

Q6c. Influence of the simulation parameters:

Simulations 2, 3, 4, and 5: Set up 4 more variants of simulation 1. The gravitational
softening length and the time-step are important parameters which guarantee the validity of
the collisionless Boltzmann equation and therefore the stability of the system. To investigate
the influence of them, perform 4 more simulations. In the first two, keep the original time
step dtinit=1d-2 and change the force softening eps in the file insph to eps=1d-4 and eps=1,
respectively. In the second 2 simulations keep the original force softening eps=1d-1 but change
the time-step to dtinit=1d-1 and dtinit=1d-3. You can get an idea of the wall-clock time the
individual simulations need by watching the time stamp associated with each of the dump files
(type ls -l to see the file dates and times). When running the new simulations do not forget to
make different directories for the different runs. Perform the same analysis and do not forget to
save copies of the plots from the previous runs before overwriting them.

What has changed? Describe and interpret the differences in the simulations you can see.
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3.5. A galaxy merger simulation

Simulation 6: Now run the simulation of the merger of two disk galaxies using a softening length
of eps=0.1 and the original time-step dtinit=1d-2. The initial conditions file MERGER 000 can
be found in PRAKTIKUM/DATA and has to be copied to your simulation directory and also needs
to be set in the insph as base=MERGER 000.

As before, create the animation using plot merger and create the profiles using plotvcirc.
Remember all the changes you had to do to the programs before. As you will see, the disks
rotate in the same direction. One disk is inclined by 30 degrees. During the merger the galaxies
are perturbed and form extended tidal tails. The galaxies merge into one galaxy which appears
to be spheroidal and not disk-like any more.

Q7a. Discuss the changes. Describe and interpret the changes in the cumulative mass and
surface density profiles and changes in the velocity profile.

Q7b. Timing. Add the wall-clock time for the merger simulation, as well as for simulations 2,
3, 4, and 5 to the timing diagram of Q6a. Can you give an interpretation of the results?
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3.6. Further interpretation and exploration

Q8. The surface density of the initial disk is given by

Σ = Σ0 × exp(−r/rd) (3.1)

where rd is the exponential scale length. What is the total mass of the disk? For disk systems the
dynamical time can defined as the rotation period at the half-mass radius of the disk. Compute
the half-mass radius and the dynamical time for the initial disk component. What fraction of
the dynamical time is the integration time step for the leapfrog integrator we have used?

Q9. For a homogeneous sphere with constant density ρ the mass inside of radius r is M(r) =
4
3πr

3ρ. What is the orbital period of a mass on a circular orbit? What is the equation of motion
for a test particles released from rest at radius r in the gravitational field of a homogeneous
body? How long does a particle need to reach r = 0? This time scale is defined as the dynamical
time for a (mostly spherical) system with a mean density ρ. Estimate the dynamical time (in
physical units) of the total merger remnant at radii of 0.5, 1, 3, and 5 kpc. How does it compare
to the (fixed) integration time-step?

Q10. Compute the half-mass radius of the bulge component of the disk model. What is the
dynamical time of the bulge at this radius? Can we resolve bulge dynamics with the simulations
performed here?

Q11. It is our goal to continually improve this exercise. Please let me know (either personally
or by mail, dolag@usm.lmu.de) if you have found errors, typos, or whether you have difficulties
in understanding. I am also happy for any suggestions on how to improve it.
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