Coagulation of Dust - Collisions in the Decimetre Range

Johannes Deckers, Jens Teiser, Caroline De Beule, Gerhard Wurm

Fakultät für Physik Universität Duisburg-Essen

3. September 2012

Introduction

- Planets form by accretion of km size protoplanetary bodies
- these planetesimals grow from dust particles
- different models of growth
 - coagulation of dust agglomerates
 - gravitational clumping of solids
 - combination of both
- decimetre size bodies important in both models
 - direct precursors of metre size bodies
 - can easily be trapped in vortices where gravitational collapse can occur

Introduction

- collision properties of decimetre size agglomerates important
- threshold conditions for fragmentation crucial for coagulation models

Figure : Critical fragmentation strength Q* [Beitz et al. (2011)]

Experiment

Pressing of the Dust Agglomerates

- used analogue material:
 Quartz (SiO₂), irregular grains
- \blacksquare grain size: 0.1 to 10 $\mu m,$ 80% of mass are in 1-5 μm (producer: Sigma-Aldrich)
- volume filling factor and grain size relevant for mechanical properties (Meisner et al. (2012), Schräpler et al. (2012), Blum et al. (2006))
- agglomerates with the same size (\varnothing =12cm) and volume filling factors ($\varphi \approx 0.44$)
- mass of each agglomerate is ≈1.5 kg

Experiment

Collision Setup

- lacktriangle experiment in a vacuum chamber in the drop capsule (p $\lesssim 10^{-2} \mathrm{mbar}$)
- carried out at drop tower in Bremen (4.7 s of microgravity)
- acceleration by a linear motor
- observation with two high speed cameras (500 fps)

Collision Videos

Example for Bouncing

 \blacksquare collision velocities between 0.8 and 7 $^{\rm cm}_{\rm \ s}$

Collision Videos

Example for Fragmentation

 \blacksquare collision velocity at \approx 25.7 $\frac{\mathrm{cm}}{\mathrm{s}}$

First Results

Critical Collision Velocities

- Bouncing = 0, Fragmentation = 1
- \blacksquare critical fragmentation velocity at about 16 $\frac{\mathrm{cm}}{\mathrm{s}}$

First Results

Critical Fragmentation Strength

- μ =1: boundary between bouncing and fragmentation
- \blacksquare critical fragmentation strength $Q^* \approx (5 \pm 0.6) \cdot 10^{-3} \frac{J}{\mathrm{kg}}$

First Results

Coefficient of Restitution

- ratio of kinetic energy after and before the collision
- decreases with increasing collision energy
- dependend on primary collision energy

Conclusions

- \blacksquare critical fragmentation velocity at \approx 16 $\frac{cm}{s}\left(Q^*\approx(5\pm0.6)\cdot10^{-3}\frac{J}{kg}\right)$
- elastic behaviour at low collision velocities
- coefficient of restitution decreases with increasing collision energy