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Safronov 1969:

Planets form in protoplanetary discs around
young stars from dust and ice grains that stick
together to form ever larger bodies

interaction with gas important no interaction with gas
no gravity gravity dominates

two-stage model of planet formation

Terrestrial planets

Accretion of
planetesimals
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Cores of giant
planets




ULTIMATE GOAL: A LABORATORY-CALIBRATED MODEL
OF PLANETESIMAL FORMATION

Input into the model

o Ingredient A: Accretion-disk model

(= e.g., the MMSN model)
o Ingredient B: Motion of gas and dust within the disk
o Ingredient C: Dust(-aggregate) collision model

Expected output of the model

o Growth timescale
o Maximum dust-aggregate size
o Size distribution of dust aggregates



Ingredient A: the minimum mass solar nebula (MMSN)
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Fig. 1. Surface densities, o, obtained by restoring the planets to solar composition and spreading
the resulting masses through contiguous zones surrounding their orbits. The meaning of the ‘error
bars’ is discussed in the text.



Ingredient B: motion of protoplanetary dust

protoplanetary
disk

Brownian

Drift motions

gas

star gas turbulence o o
dust subdisk W
+ global transport processes by, e.g., accretion, dust

turbulence, X-wind, photophoresis, ...



Ingredient B: motion of protoplanetary dust
— The MMSN model
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Ingredient B: motion of protoplanetary dust —
alternative PPD models
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Ingredient C: systematic dust-aggregate collision
experiments

Good characterization of dust material (surface force/energy,
size distribution)
Various dust-aggregate production methods (fractal growth,
random ballistic deposition, sifting, compression)
Measured dust-aggregate properties: porosity, fractality,
compressive and tensile strength
Wide range of collision velocities (mm/s ... 100 m/s) and
aggregate sizes (¥1 um ... 100 mm)
Experiments performed under vacuum conditions
Some experiments require microgravity conditions
Restriction to (mostly) silicate (refractory) materials

= Role of organics?

= Role of (water) ice? 2 see below
Uncharged dust aggregates = dead zones



Ingredient C: systematic dust-aggregate collision
experiments — parameter-space coverage (as of 2010)
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Ingredient C: a dust-aggregate collision model — overview
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=2 See talks and posters by Brisset, Giittler, Kothe, Meisner, Schrépler, Weidling



Ingredient C: the com-
plete collision model

o Valid for dust aggregates

o Binary model with respect to
" mass ratio
= porosity

Guttler et al., 2010
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Ingredient C: a dust-aggregate collision model
— material parameters

Table 2. Particle and aggregate material properties used for generating

Fig. 11.

Symbol  Value Reference

monomer-grain properties:

do 0.75 uym

mg 3.8x 10712 g

00 2gem™

Eo 22%x 1078 erg Blum & Wurm (2000),
Poppe et al. (2000)

Fron 10~ dyn Heim et al. (1999)

aggregate properties:

g2 0.05 Blum & Miunch (1993),
D. HeiBelmann et al. (in prep.)

G 6320 dyn cm™ this work

T 10* dyn cm™2 Blum & Schripler (2004)

& 0.40 this work

Fm 10-1000 this work

y 83x 103 sem? g7 Giittler et al. (2009)

E, 3.5x 10* erg Langkowski et al. (2008)

Enin 3.1 x 1072 erg Langkowski et al. (2008)

o1 0.12 Giittler et al. (2009)

o2 0.58 Giittler et al. (2009)

A 0.58 Giittler et al. (2009)

Pm 1.3 x 10* dyncm™2  Giittler et al. (2009)

Je 0.79 this work Gittler et al., 2010

Vo 850 Weidling et al. (2009)

A —-14 this work




The first laboratory-based growth model for PPD dust

Result: temporal evolution of dust-aggregate masses for the minimum-mass

solar nebula model Zsom et al. 2010
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The first laboratory-based growth model for PPD dust

Result: temporal evolution of dust-aggregate masses for the minimum-mass

solar nebula model Zsom et al. 2010
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The first laboratory-based growth model for PPD dust

Result: temporal evolution of dust-aggregate enlargement factors for the

minimum-mass solar nebula model
Zsom et al. 2010
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The first laboratory-based growth model for PPD dust

Result: relevant dust-aggregate collision processes
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The first laboratory-based growth model for PPD dust

Main results of the OD (local)model of the dust evolution in
protoplanetary disks:

O

O O O O

Growth stops due to bouncing =2 “bouncing barrier”
Maximum aggregate sizes ~“cm
Growth timescale to maximum size ~103 ... 10* years

Mass distribution stays narrow

Compaction in bouncing collisions is of eminent importance;
final porosity “only” ~60-70%

Fragmentation regime is only reached for highest turbulence
but does not invoke a new growth mode

1D model including sedimentation (Zsom et al. 2011):

o For =10 not much change

_ . <> See talk by Andras Zsem
o For a=102 maximum size: sub-mm



How to get from cm-size aggregates to planetesimals?
A collection of ideas and preliminary assessments

OThe dust-aggregate collision model revisited

(Kothe et al, subm.; Brisset et al., in prep.)

o Chondrules (Beitz et al. 2011)
o CAls (Windmark et al. 2012a)
QVeIocity distribution (windmark et al. 2012b)
QWater ice and snow line
= Higher surface energy (Gundlach et al. 2011) and “stickiness”

= Due to local pressure maximum at snow line, higher dust
concentration and no radial drift

= But: growth of water-free planetesimals in the terrestrial-
planet region needs also be explained

o Collective effects and gravitational instability in dusty

component (Johansen, Youdin, and collaborators)



© The dust-aggregate collision model revisited

Kothe g‘t.al., in prep.

<> See poster by Stefan Kothe
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© The dust-aggregate collision model revisited

Collisions between spheroidal dust aggregates
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© The dust-aggregate collision model revisited

Collisions between aggregates of aggregates
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© The impact of chondrules on the dust growth

Beitz et al. 2011
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Highly porous dust rims can be formehd‘ by ”it and s-,t.ic.:llé"’.“grOWth.

Dust-coated chondrules are much more sticky compared to non-coated beads and dust aggregates of the
same size or mass.

Sticking probability depends on rim morphology and chondrule size.
Rapid clustering of several tens of beads could be observed in the experiments.



© The impact of CAls on the dust growth

Formation of much larger (planetesimal-sized) objects can be triggered by a few
indestructible 1-cm-sized particles (e.g., CAls), due to the S4 (mass transfer) and
F3 (fragmentation with mass transfer)
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© Velocity distribution

Replacev=v, by

Windmark et al. 2012b

54 47 307 o
ot ol 32) o im

(Windmark et al. 2012b)

SF = sticking +
fragmentation

SBF = sticking +
bouncing +
fragmentation

SBF+MT = sticking + 10 "' \

bouncing +
fragmentation +
mass transfer

grain mass [J]

= See talk by Fredrik Windmark



© The “stickiness” of water ice
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© Collective dust effects

o Particle concentration in MRI or KHI pressure bumps
= Strong correlation between high gas density and high
particle density (Johansen et al. 2006; Johansen et al. 2007)
= Solid particles are trapped in gas overdensities (Whlpple 1972)
o Streaming instability (voudin & Goodman 2005) ‘

|

Viep (1=11)
F | Foo g ® 24 ||
o = i —

© Anders Johansen

o Ceres-size planetesimals form by gravitational instability
(Johansen et al. 2006-2012)

o Collision physics of dust aggregates not yet taken into
account (= importance of fragmentation and mass transfer?)




Future laboratory work on planetesimal formation

o Getinput from the models in which parameter regime dust-
aggregate collisions are predicted
o Check collision outcomes
o Give feedback to models
o Examples:
o Duisburg — collision behavior of 10-cm particles
=2 See talk by Johannes Deckers
o Braunschweig — collisional evolution of trapped dust
aggregates; collisional evolution of many-particle systems
o Tubingen — SPH simulations of collisions of very large dust

aggregates
<> See talk by Roland Speith



CONCI.’_USION

under solar-nebula condlt " of dust
aggregates.

The formation of planetesima st aggregates is still
speculative. However, many id fyrther dust

growth can proceed:

Chondrules

CAls

Velocity distribution
Water ice &
Collective dust effects

O :iGloe..0 O

Stay tuned ...’
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Thank
you very
much!
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Questions?




