T he operating system Linux

An introduction

Joachim Puls and Michael Wegner

Contents:
First Afternoon:

1 General remarks on the operating system UNIX/Linux
2 First steps at the computer
3 File systems

4 Editing and printing text files
More important commands

Second Afternoon:
5 UNIX-shells
6 Process administration

Additional material

e vi basics: vi brief.pdf
e reference for vi: vi reference.pdf

e reference for emacs: emacs reference.pdf

Acknowledgements. Many thanks to Tadziu Hoffmann for carefully
reading the manuscript and useful comments.

(© 2010, Joachim Puls & Michael Wegner (1st ed.) © 2022, Ker-
stin Paech (Modif)

1 General remarks on the operat-
ing system UNIX/Linux

Classification of UNIX/Linux

UNIX is a Multi-User/Multi-Tasking operating system and exists in
many different versions (“derivates”): Solaris, AIX, XENIX, HP-UX,
SINIX, LinuxX.

User

Hardware

Operating system

application programs

Operating system (OS): Sum of all programs which are required
to operate a computer and which control and monitor the application
programs.

Essential features

UNIX

e has been originally written in the programming language C, and is
therefore a classical platform for C-programs. UNIX contains well
suited environments for program development (C, C+4++4, Java,
Fortran, ...).

e iS mainly used for scientific-technical applications on mainframes
and workstations, but has become, because of Linux, also popular
for classical PC-applications throughout the last years.

e s perfectly suited for application in networks. Larger systems and
networks require an administrator.

e Offers various alternatives for the solution of most tasks. The
multitude of commands (more than in any other OS) are brief
and flexible.

e (s originally command-line oriented, but can be used via a graphical
user interface (X Window system).

Linux is available (also via internet) in different distributions (S.u.S.E.,
Fedora, Debian etc.). Meanwhile there is a variety of direct-start (live)
systems, which can be started, without installation, directly from CD
or other bootable storage devices (Knoppix, Ubuntu, ...). The source
code of Linux is free.

Literature

e Peek, J., et al.: Unix Power Tools.
O'Reilly Media 2002 (3rd edition).

e Gilly, D., et al.. UNIX in a Nutshell.
O'Reilly, KoIn. 1998 (1st edition).

e Wielsch,M.: Das groBbe Buch zu UNIX.
Data Becker, Diisseldorf. 1994 (1st edition).

e and numerous other text books

e online-tutorial
http://www.ee.surrey.ac.uk/Teaching/Unix

2 First steps at the computer

User, logon, logoff

Since UNIX is a multi-user operating system, it can deal with several
users simultaneously. Each user needs a user account.

Each user has a personal environment (home directory, shell), which
can be accessed only by her-/himself (and by the system adminstrator
and those people who know the password — legitimate or by hacking).

Inside the system the user is identified by his user ID (UID) and his
group identity (group ID, GID).

There are two user types:
e ‘normal’ users with restricted rights and the

e system administrator (root) with all privileges. The latter is re-
sponsible for the installation, configuration and maintenance of
the system as well as the user administration.

Each user has to logon and to logoff from the system (login/logout).
Each user account is protected by a password.

Exercise:

Login to the system with your user account.

Graphical user interface

Originally, UNIX is command-line oriented. The X Window system en-
ables convenient interaction via a window-oriented graphical interface,
similar to other OS.

The window manager is responsible for the management and display
of the individual windows. Each window manager (and there are a
variety of such managers) can be distinguished by its own Look and
Feel (appearance of window decorations and control devices etc.).
Most window managers can be choosen at the login-menu.

Examples for simple window managers:
e twm: very simple and resource-saving
e mwm. Motif window manager, more common and more advanced

e xfce: convenient, simple, and resource-saving (recommended for
use in virtual machines)

Moreover, almost all Linux distributions provide graphical desktop en-
vironments such as KDE or GNOME, which have a functionality far
beyond simple window managers.

command |xterm

Syntax:

xterm [options]

Though there is a graphical interface, UNIX needs the possibility for
direct command input for practical use. Therefore, at least one ter-
minal window needs to be open. This can be accomplished via the
window manager or the desktop environment (‘console’)

More windows can then be opened with the command xterm.

Generally, all UNIX commands have a variety of options, which usually
begin with -. For the commands which will be introduced in the
following, we will provide only the most important ones.

Example:

wegner@arber:~ > xterm -geo 80x40 -fn 10x20

The command xterm is called with two options -geo, -fn, which, in
this case, need additional arguments (width and height of window,
font name & size).

EXxercise:
1. Open a terminal window (“terminal program”) via KDE.

2. From there, start another xterm.

command |man

Syntax:

man command
man -k expression

displays the manual pages (“man pages’) for the provided command.
man -k searches for man pages containing the expression in the NAME
section. A man page usually consists of the following sections

e NAME command and purpose

e SYNOPSIS syntax of command

e DESCRIPTION of command effect

e FILES which are modified and/or needed

e OPTIONS if present

e EXAMPLE(S) for application (rarely)
e BUGS errors, if known

e SEE ALSO other commands in the same context

Exercise:

Display information about the command xterm.

command | passwd

Syntax:

passwd
sets a new password.

Passwords should be constructed from a combination of letters, digits
and special characters, and should not appear in any dictionary or
similar list. Otherwise, the password can be hacked by systematic
search algorithms.

The command to set/change the password and the required conven-
tions (length, number of digits/letters/special characters) vary from
system to system. When a new account is created for you, the admin-
strators should tell you how to change your password (passwd, kpasswd,

).

The following example is a common one, e.g., valid for the workstations
at the CIP Pool - but not for the workstations of the USM.

Example:

wegner@arber:~ > passwd
Changing password for wegner
0ld password: myoldpasswd
Enter the new password
(minimum of 5, maximum of 8 characters)
Please use a combination
of upper and lower case letters and numbers.
New password: mynewpasswd
Re-enter new password: mynewpasswd
Password changed.

Example:

———=> Thr neues Passwort ist in 5 Minuten

im gesamten Pool aktiv! <-----
Connection to 141.84.136.1 closed.
wegner@arber:”~ >

command |who, whoami

Syntax:

who
whoami

who displays information about all users which are logged into the sys-
tem

e user name,
e terminal where the corresponding user is working,
e time of login.

whoami is self-explanatory.

Example:

wegner@arber:~ > whoami
arber!wegner pts/5 Oct 20 12:45

10

Working at external terminals

To login to a remote host, one has to provide the corresponding IP
address, either numerical or as the complete host nhame name.domain.
In local networks (CIP-Pool), the brief host name (without domain) is
sufficient. To establish the connection and to encrypt the transmitted
data, one should use exclusively the so-called ‘'secure’” commands.
Avoid ftp and use sftp instead. With ftp, even the password is not
encoded!

command | ssh

Syntax:

ssh (-4) -X -1 username hostname
ssh (-4) -X username@hostname

Enables logging in to an arbitrary host which can be located via an
IP address (if one knows the user account and the password). Logoff
with exit, Ctrl-D Or logout.

11

In case, the option -4 (without brackets) forces an IPv4 connection (if
IPVv6 is not working)

Example:

wegner@arber:~ > ssh -X -1 wegner lxsrvl.lrz-muenchen.de
Password: mypasswd

Last login: Sun Oct 22

sk sk ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok sk ok

Mitteilungen

sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ook sk ok sk ok

wegner@lxsrvl:™ > logout

Connection to lxsrvl.lrz-muenchen.de closed.

OR (if connection within “own"” cluster)
Example:

wegner@arber:”™ > ssh -X wegner@arber
Last login: Sun Oct 22 ...
etc. (keine Passwort-Abfrage)

An additional advantage of the secure shell is that the remote host
hostname can display X applications on the local terminal. For certain
hosts, the command ssh requires the option -X to enable this feature.
The option -X should only be used with high bandwidth connections
(i.e. when connecting to a remote host in the same network). If you
want to work remotely with a lower bandwidth, you should use a VNC
or similar remote desktop solution.

command | scp

To copy files from one host to another, the command scp (“secure
copy”) is used, see also cp. More on this later.

12

Syntax:

scp (-4) filel username@hostname:file2
scp (-4) username@hostname:filel file2

The first command copies the local file filel to the external host under
name file2, the second command vice versa. Note the colon! scp -r
enables to copy complete directories recursively, compare cp -r.

3 File systems

Logics, file types

“In UNIX everything is a file."”

The following file-system objects can be found
e ‘normal’ (text-) files
e executable files (binary files or shell scripts)
e directories
e device files
e pipes

e symbolic or hard links (references to files)

13

All files and file system objects are ordered within a hierarchical file
tree with exactly one root directory ‘/’.

In contrast to the MS-Windows file system, the UNIX file system does
not distinguish between different drives. All physical devices (hard
disks, DvD, CDROM, USB, floppy) are denoted by specific files in-
side a certain directory within the file tree (usually within /dev). Of-
ten these directories are linked to other directories like /home/moon ON
the USM machines. Links are symbolic connections let you access a
file/directory from more than one directory.

File names consist of a sequence of letters, digits and certain special
characters, and must not contain slashes (for convenience, they should
neither contain empty spaces).

Avoid characters which might be interpreted by the shell in a special
way.

A file can be referenced within the file tree by either an absolute or a
relative path name. An absolute path name consists of all directories
leading to the file and the file name, and always begins with a / (the
root directory).

In many shells and application programs, the tilde denotes the home
directory.

command | pwd

Syntax:
pwd
displays the current directory.

Example:

14

wegner@arber:” > pwd
/home/wegner
wegner@arber:”~ >

Exercise:

Display the current directory.

command | cd

Syntax:

cd [directory]

Changes into the given directory, or into the home directory when no
parameter is provided.

As in MS-DOS/Windows, “..” denotes the parent and “.” the cur-
rent directory.

Example:

wegner@arber:”~ > cd /home/puls
wegner@arber: /home/puls > pwd
/home/puls
wegner@arber:/home/puls > cd ..
wegner@arber:/home > pwd

/home

15

wegner@arber:/home > cd
wegner@arber:” > pwd
/home/wegner
wegner@arber:”~ >

Exercise:

Change to the directory /usr/share/templates and back to your home directory. (—
file name completion with TAB)

Check for successful change with pud.

Search pattern for file names

In principle, the shell is a specific program which deals with the in-
terpretation of input commands. If these commands have parameters
which are file names, several files can be addressed simultaneously by
means of a search pattern, which is expanded by the shell. In any
case, the file name expansion is performed prior to the execution of
the command.

expression | meaning

* ‘almost’ arbitrary (incl. empty) string
of characters

? a single ‘almost’ arbitrary character

[...] a range of characters

[r...] a negated range of characters

‘almost’ arbitrary: leading dot (e.g., hidden files, ../ etc.) excluded

command |1ls

Syntax:

16

1ls [-alR] [file/directory]

displays the names (and, optionally, the properties) of files or lists the
content of a directory. File and directory names can be be absolute or
relative.

Important options
-a list also files/directories which begin with a dot (hidden)

-1 long listing format. Displays permissions, user and group, time
stamp, size, etc.

-R for directories, all sub-directories will be displayed recursively.

Example:

wegner@arber:~ > 1ls
hello* hello.cpp hello.f90 hello.py
wegnerQarber:~ > 1ls -a

./ .bash_history .netscape/ hello.cpp
o/ .bashrcx* .ssh/ hello.f90
.Xauthority .history hellox* hello.py

wegner@arber:”~ > 1s /var/X11R6
app-defaults/ bin/ 1ib@ sax/
scores/ xfine/ xkb/

17

wegner@arber:”~ > 1ls .bx*

.bash_history .bashrcx*
wegner@arber:™ > 1ls [a-h]x*

hello* hello.cpp hello.f90 hello.py
wegnerQ@arber:”~ > 1s *.7[9p]7
hello.cpp hello.f90

wegnerQarber:”~ >

Exercise:

List the complete content of your home directory.
What is displayed with 1s .x 7

Copy, move and delete files/directories

In addition to 1s there are other commands for working with files which
can be used together with file name patterns.

command |mkdir, rmdir

Syntax:

mkdir directory
rmdir directory

mkdir creates an empty directory, rmdir deletes an empty directory.
Example:

wegner@arber:~ > 1s

hello* hello.cpp hello.f90 hello.py
wegner@arber:” > mkdir numerik
wegner@arber:~ > 1ls

18

hello* hello.cpp hello.f90 hello.py numerik/
wegner@arber:~ > rmdir numerik

wegner@arber:~ > 1s

hello* hello.cpp hello.f90 hello.py
wegner@arber:”~ >

Exercise:

Create a directory yourname exercise within your home directory, where yourname IS
your actual name.

command |cp

Syntax:

cp filel file2

cp filel [file2 ...] directory
cp -r dirl dir2

cp -r dirl [dir2 ...] directory

copies files or directories. The original file/directory remains unmodi-
fied.

option:
-r directories are copied recursively with all sub-directories.

Several possibilities:

cp filel file2

19

filel is copied to file2. Attention: if file2 already exists, it is over-
written (mostly without warning), and the original file2 is lost!!!

cp filel [file2 file3] dir

If dir exists, filel [, file2, file3] are copied into dir. If dir does
not exist, you get an error warning (for more than two arguments),
or, for two arguments, dir is interpreted as a file name and filel is
copied to a file named dir.

cp -r dirl dir2

If dir2 already exists, dirl is recursively copied into dir2. If dir2 does
not exist, a recursive copy of dir1l is created and named dir2.

cp -r dirl dir2 dir3 dir4

If dird already exists, dirl, dir2, dir3 are copied into dir4. If dir4
does not exist, you get an error warning, as well as for other combi-
nations of files and directories within the command.

Example:

wegner@arber:~ > 1s

hello* hello.cpp hello.f90 hello.py numerik/
wegner@arber:™ > cp hello.py hello2.py
wegner@arber:~ > 1s

hellox* hello.f90 hello.cpp

hello.py hello2.py numerik/

wegner@arber:~ > cp hello.py numerik
wegner@arber:~ > 1ls numerik

20

hello.py
wegner@arber:”~ >

Exercise:

a) Check whether the directory ubung0 is present in your home directory. If not, copy,
via scp, the directory ubung0 from account/host numprakt@ltsp08.usm.uni-muenchen.de
to your home directory.

b) Copy the files from ubung0 into your directory yourname exercise.

command |mv

Syntax:

mv filel file2

mv filel [file2 ...] directory
mv dirl dir2

mv dirl [dir2 ...] directory

Rename or move files or directories. Similar to cp, but original is ‘de-
stroyed’. First command from above renames files, other commands
move files/directories. (Actually, only the pointer in the ‘inode table’
is changed, but there is no physical move — except if you move the file
to another file system).

Note: no option [-r] required

Several possibilities, analogue to cp.

21

Example:

wegner@arber:~ > 1s

hellox* hello.f90 hello.cpp
hello.py hello2.py numerik/
wegner@arber:~ > mv hello2.py hello3.py
wegner@arber:~ > 1s

hellox* hello.f90 hello.cpp
hello.py hello3.py numerik/
wegner@arber:” > 1ls numerik

hello.py

wegner@arber:”™ > mv hello3.py numerik
wegner@arber:”™ > 1s

hello* hello.cpp hello.f90 hello.py numerik/
wegner@arber:~ > 1ls numerik

hello.py hello3.py

wegner@arber:”~ >

Exercise:

1. Rename your directory yourname exercise tO yourname_ exerciseO. This will be
your working directory for the following exercises.

2. Move the file .plan from yourname exerciseO to your home directory. Try to
move an arbitrary file from your home directory to the root directory. What
happens?

command | rm

Syntax:

rm [-irf] file(s)/directory(ies)

Delete files and/or directories. After deleting, the deleted files cannot
be recovered! Use rm only with greatest caution. E.g., the com-
mand rm -r * deletes recursively (in most cases without further in-
quiry) the complete file tree below the current directory (leaving the
hidden files/directories beginning with . though).

Options:
-i delete only after confirmation
-r directories will be recursively deleted (with all sub-directories)

-f force: suppress all safety inquiries.

23

Note: Varying from system to system, rm without the option -f might
need a confirmation or not (the latter is the standard).

Example:

wegner@arber:~/numerik > 1s

hello.py hello3.py
wegner@arber:~/numerik > rm -i hello3.py
rm: remove ‘hello3.py’? y
wegner@arber:~/numerik > 1s

hello.py

wegnerQarber:~/numerik >

File permissions/Access rights

The UNIX file system distinguishes between three different access
rights or file mode bits. (Note: actually, there are more access rights,
but these are of interest only for administrators.)

r read: permits the reading of file contents, or, for directories, the
listing of their content.

w write: permits the modification of files (incl. delete). To create
or delete files, the parent directory(ies) need write access as well!

x execute: permits the execution of binary files (commands, pro-
grams) and of shell scripts from the command line. For direc-
tories, the x bit is required to change into this directory and to
access the files/directories inside.

Access rights are individually defined for

u the owner of the object

24

g the group to which the object belongs
o all other users
a all users (i.e., u + g 4+ 0)

The access rights of a file can be changed by means of the command
chmod.

command | chmod

Syntax:

chmod [ugoal] [+-=] [rwx] file(s)/directory(ies)

Change the access rights of files or directories. These rights are dis-
played by 1s -1 according to the pattern

uuugggooo
IWXTWXTWX

Example:

wegner@arber:~/numerik > 1ls -1

total 4

-rw-r--r-— 1 wegner stud 100 Oct 20 15:02 hello.cpp
wegner@arber:~/numerik > chmod go+w hello.cpp
wegner@arber:~/numerik > 1ls -1

total 4

25

-rw-rw-rw- 1 wegner stud 100 Oct 20 15:02 hello.cpp
wegner@arber:~/numerik >

Exercise:

1. Remove the execution right for the directory yourname exerciseO. Try to change
to the directory.

2. Remove all rights for the file 1inux.txt! How can this be undone?

4 Editing and printing text files

To modify (= edit) the content of a text file, an editor is needed.
Within UNIX there is a variety of editors, which can be distinguished
mostly with respect to ease of use and memory requirements.

The editor vi and vim

vi is the only editor which is present on all UNIX systems. The editor
vi

e can be completely keyboard controlled
e is extremely flexible
e rather difficult to learn

vim iS a derivate from vi, and can be controlled also by the mouse.
Those of you who enjoy a challenge should learn using this editor.

26

A somewhat simpler and more convenient alternative, which is also
implemented in (almost) all UNIX systems, is

The editor emacs

The editor emacs works in an own window, and can be controlled (in
addition to keys) by menus and mouse. emacs can do much more than
only editing - from Org Mode to controlling a coffee maker.

Exercise:

1. Edit the program hello.py.

Start emacs Wwith emacs hello.py & from the command line. The ampersand,
&, ensures that emacs runs in the background, so that you can continue your
work from the command line, independent from the emacs window (see Section

‘Process administration’).
Try to change the comments in those lines starting with !

2. Split the screen with Ctrl X 2. Return to one screen with Ctrl X 1
3. Save the file with Ctrl X Ctrl S!

4. Quit emacs with Ctrl X Ctrl C!

Note: Whenever you save a file in emacs, a backup of the previous
version is automatically created under name file™.

Examples for additional possibilities

e Advanced use of man pages (e.g., searching for certain strings):
In emacs , type Esc X man CR xterm tO open the xterm man pages.

27

To search for ‘terminal’, type Ctrl S terminal, and then Ctrl S
for the next instance.

e Spell checking within emacs via the the command Esc x ispell.
Try it!

Try to learn the most important key controlled commands. After a
while, you can edit your files much faster than by using mouse and
menus. A quick reference is provided in the appendix.

command | cat

Syntax:

cat file

displays the content of a file on the standard output channel (usually
the screen).

As many other UNIX commands, cat is a filter, which can read not
only from files, but also from the standard input channel (usually the
keyboard via the command line). Thus, cat can be used to directly
create smaller text files. In this case, the output has to be re-directed
into a file via >. cat then expects some input from the command line,
which must be finished with Ctrl D.

Example:

wegner@arber:™ > cat > test
This is a test.

28

"D

wegner@arber:™ > cat test
This is a test.
wegner@arber:”™ > more test
This is a test.
wegner@arber:~ >

Exercise:
1. View the file .plan.

2. View the file linux.txt! Is cat a suitable tool?

command |more

Syntax:

more file

more permits to view also larger files page by page. Important com-
mands within more are b to scroll back and q to quit.

Example:

wegner@arber:”™ > more hello.f90

Exercise:

View the file 1linux.txt with more. Which effect do the keys CR and SPACE have?

29

command |1pr, 1lpg, lprm

Syntax:

lpr -Pprintername file
lpq -Pprintername
lprm job_id

lpr prints a file on the printer named printername. ToO find out the
printername, ask a colleague or your administrator.

1pq lists all print jobs on the printer printername and provides the cor-
responding job_ids.

lprm deletes the print job with id job_id from the printing queue.

Example:

wegner@arber:”™ > a2ps hello.py -o hello.ps
[hello.py (Python): 1 page on 1 sheetl]

30

[Total: 1 page on 1 sheet] saved into the file ‘hello.ps’
wegner@arber:~ > 1s

hellox* hello.f90 hello.py test

hello.cpp hello.ps numerik/

wegner@arber:” > lpr -Plp0O hello.ps

wegnerQarber:”~ >

Exercise:

Print the file 1inux.txt.

More important commands

a2ps

diff

touch

finger

converts ASCII text to PostScript. Often required to print text
under LinuxX.

a2ps [options] textfile

-1, -2, ..., -9 predefined font size and page layout.
E.g., with -2 two pages of text
are displayed side-by-side on one
output page.

-0 output file (*.ps)

-P NAME send output to printer NAME

filel file2 compares two files. If they are identical, no output.

file sets the current time stamp for a file. Can be used to create
an empty file.

account displays additional information for the user of a certain
account (name of user, project, etc.)

31

gv datei.ps displays PostScript files and files of related formats (e.g.,
*.,eps, *.pdf).

okular Or evince file.pdf display (among other formats) pdf files and
allow for simple manipulations.

gimp file starts the image manipulation program gimp (similar to
photoshop). Allows to view, manipulate and print image files (e.g.,
*.jpg, *.tif, *.png).

ps2pdf

gzip

gunzip

tar

file.ps converts ps-files to pdf-files. The file file.pdf will be
automatically created.

file. Compresses file via Lempel-Ziv algorithm. The file file.gz
is created and the file file deleted. Typical compression factor ~3.

file.gz. Corresponding decompression.

“tape archive”. Nowadays mainly used to create one single file
from a file tree, which then, e.g., can be sent by email. Reverse
process also with tar.

tar -cvf direc.tar direc
creates (c) file (f) direc.tar from
directory direc. Verbose progress
is displayed (v).

tar -xvf direc.tar
re-creates original file tree under
original name (./direc).

tar -zcvf direc.tgz direc

tar -zxvf direc.tgz

32

additional compression/dekompression
via gzip.

Note: This command is extremely ‘powerful’. Either read the man
pages, or use the command as given.

locate

find

grep

search expression. Lists all files and directories in the local
database, which correspond to the search expression. Extremely
well suited to search for files (if the database is frequently updated
— system administrator)

searches recursively for files corresponding to search expression
within the given path.

Example: find . -name ‘*.txt’ searches recursively for all *.txt
files, starting within the current directory.

searches for text within given files.

Example: grep ‘test’ ../*x.f90 searches for the text test in all
*.f90 files in the parent directory. The most important option is
[-i], which forces grep to ignore any distinction between upper
and lower case.

33

5 UNIX shells

The shell is a service program through which the user communicates
with the OS and which is responsible for the interpretation of the input
commands.

Different UNIX shells

Since the shell does not directly belong to the OS, a number of dif-
ferent shells have been developed in the course of time:

e Bourne shell (sh). A well-known and widespread shell, named
after its inventor Steven Bourne. An advanced derivate, the bash,
Bourne again shell (note the pun) is most popular under Linux.

e C-Shell (csh). Developed in Berkeley, and uses a more C-like
syntax. An improved version of the C-shell is the tcsh.

e Bash shell (bash). Advanced Bourne shell and standard on many
systems.

34

e There is also Zsh Shell and Korn Shell (ksh)

Each shell contains a set of system variables, which can be augmented
by user-defined variables. This set comprises the process environment
for the programs running inside the shell.

Moreover, the shell can be used to run (system-) programs via shell
scripts.

Shell scripts

Shell scripts are small programs consisting of UNIX commands and
shell-specific program constructs (branches, loops etc), which behave
like UNIX commands but are present in text form (instead of binary).
These scripts are interpreted by the shell.

The syntax of shell scripts differs (considerably) from shell to shell.

Some shell scripts are automatically called under certain conditions:

e .profile and/or .login are executed, if present, at login (i.e., for
the login shell), and only once.

e .bashrc and .cshrc /.tcshrc are called whenever a new bash or
csh/tcsh IS opened, respectively.

EXxercise:
1. Copy the file .tcshrc to your home directory and inspect the file.

2. Open a (new) tcsh by typing tcsh on the command line. What happens? EXxit
the tcsh with exit.

35

Re-directing input and output

All UNIX commands use input and output channels to read data and to
output data. Usually, these are the keyboard and the screen assigned
to the specific user, respectively.

These standard channels can be redirected within the shell such that
a command can either read directly from a file (instead from the key-
board) and/or write into a file (instead of the screen). For re-direction,
use the characters >’ (for output) and ‘<’ (for input)

With ‘>>', the output will be appended to an existing file. If the file
does not exist, this command behaves as ‘>’.

Example:

wegner@arber:~ > 1s

hello.cpp linux.txt numerik/

hello.f90 hello.py

wegner@arber:~ > cat linux.txt > linux2.txt
wegner@arber:~ > 1s

hello.cpp linux.txt nsmail/

hello.py linux2.txt numerik/

36

Pipes

Furthermore, many UNIX commands act as so-called filters: They
read from the standard input and write to the standard output. Thus,
they can be combined via so-called pipes such that the output of one
command acts as the input of another:

pipe pipe

command . command
1 filter 5

Pipes are constructed on the command line by using the ‘|’ character
between commands.

A re-direction to a file with ‘>" or ‘>>' can be present only at the end
of such a chain.

Example:
37

wegner@arber:~ > man g++ | a2ps -P printer
[Total: 151 pages on 76 sheets]
wegner@arber:”~ >

With this pipe, the man pages for g++ are formatted and printed via
one command.

6 Process administration

A process is a running program or script and consists of
e the program/script itself and

e the corresponding environment, which consists of all required ad-
ditional information necessary to ensure a correct program flow.

Characteristics of a process are (among others)
e a unique process ID (PID),
e PID of the parent process (PPID),
e User and group number of the owner and

e priority of the process.

Normally, when a process has been started from a shell, the shell cannot
be used for other input until the end of the process. But processes and

38

programs can also be run in the background. To enable this feature,
the command line which calls the process/program must end with an
ampersand, '&' .

Example:

wegner@arber:~ > firefox &
[1] 21749
wegnerQarber:”~ >

Exercise:

Start the program xeyes in the background.

command | ps

Syntax:

ps [-al] [-u user]

Display running processes with their characteristics. Without options,
only the user’'s own processes running in the current shell are displayed.

Important options:
-a display all processes assigned to any terminal (tty)

-1 long format display. Additional information about owner, parent
process etc.

-u display all processes which are owned by a specific user.

Example:

39

~

wegner@arber:”~ > ps

PID TTY TIME CMD
21733 pts/4 00:00:00 bash
22197 pts/4 00:00:00 xterm
22198 pts/5 00:00:00 bash
22212 pts/4 00:00:00 ps
wegnerQarber:”~ >

Exercise:

View all current processes within your shell.

command |kill

Syntax:

kill [-9] PID

Terminates the process with number PID. Can be executed only by the
owner of the process or by root.

Important option:

-9 for ‘obstinate’ processes which cannot be terminated by a normal
kill.

Example:

wegner@arber:~ > ps

PID TTY TIME CMD
21733 pts/4 00:00:00 bash
22197 pts/4 00:00:00 xterm

40

22198 pts/5
22212 pts/4
wegner@arber:”
wegner@arber:”
PID TTY
21733 pts/4
22214 pts/4
[1]+ Exit 15
wegner@arber:”

Exercise:

00:00:00 bash
00:00:00 ps
> kill 22197
> ps

TIME CMD
00:00:00 bash
00:00:00 ps
Xterm
>

Terminate xeyes via kill.

