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1 Horizons, horizon entropy & the holographic principle - an incomplete
overview

1.1 Units

In this lecture we will for the most part use natural units, where the reduced Planck constant
ℏ, the speed of light c and Boltzmann’s constant k are all set to 1. We will keep the appropriate
factors of Newton’s constant G in most expressions. The reason for this is that G has mass
dimension

[G] =
1

mass2
, (1.1)

so multiplication by G can change the mass dimension of an expression.

1.2 Null surfaces and black holes

Consider a 4-dimensional manifold M equipped with coordinates x = (x0, x1, x2, x3) and a
pseudo-Riemannian line element

ds2 = gµν dx
µdxν , (1.2)

where gµν are the components of the (pseudo-Riemannian) metric tensor on M. Any real-
values function s : M → R induces a family of hypersurfaces on M via

Σs=r := {x ∈ M s.t. s(x) = r} . (1.3)

Except for potentially existing local extrema of the function s, these surfaces will be 3-
dimensional (since the condition s(x) = r “removes” one of the dimensions).

All “horizons” that we will talk about in this lecture are null surfaces. These are sur-
faces whose normal vectors are null vectors (i.e. light-like). At any location x ∈ Σs=r the
components of the normal vector to Σs=r are given by ∂µS(x), and in order for the normal
vector to be null these components need to satisfy

gµν ∂µS ∂νS = 0 . (1.4)

We could choose a coordinate system where, e.g. , S(x) ≡ x1. In this case, Equation 1.4
becomes a condition for the 11-component of the inverse metric, i.e.

g11 = 0 . (1.5)

This will come in handy in a minute, when we try to identify null surfaces of black holes.
In general, a reason why null surfaces are interesting because they bifurcate a given

spacetime into two regions A and B such that light-like geodesics cannot (“light rays”) cannot
travel from A to B (though they may still be able to travel from B to A). This in itself is
not a unique feature of null surfaces, because any space-like boundary that separates M into
a “past” region and a “future” region would also act as a on-way-surface for light. But for a
null-surface the region B may be one with an infinite past and future, i.e. an observer may
have lived in B since forever and continue to live there forever but still never receive signals
from the region A. In Section 3 we will be more nuanced about our definition of “horizon”
and distinguish between event horizons, particle horizons and Killing horizons. But for now
let us stick with the notion that a horizon is a null surface and identify such a surface in a
black hole spacetime.
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We consider a stationary, non-rotating black hole of mass M . The latter is e.g. described
by the Schwarzschild metric, whose line element is

ds2 = −
(
1− rs

r

)
dt2 +

1

1− rs
r

dr2 + r2dθ2 + r2 sin2 θdϕ2 , (1.6)

where we defined the Schwarzschild radius as

rs := 2GM . (1.7)

Note that in the above coordinates the metric is diagonal, such that grr = 1/grr . Remem-
bering Equation 1.5, this allows us to identify as null the surface where r = rs which is of
course the event horizon of the black hole.

A coordinate system that makes the null-nature of the hypersurface r ≡ rs more trans-
parent are Kruskal-Szekeres coordinates. They are given in terms of the Schwazschild coordi-
nates t and r as

T =
∣∣∣1− r

rs

∣∣∣ 12 exp
(

r
2rs

)
·

sinh
(

t
2rs

)
for r > rs

cosh
(

t
2rs

)
for r ≤ rs

(1.8)

R =
∣∣∣1− r

rs

∣∣∣ 12 exp
(

r
2rs

)
·

cosh
(

t
2rs

)
for r > rs

sinh
(

t
2rs

)
for r ≤ rs

, (1.9)

and with these coordinates the line element becomes

ds2 =
4r3s

r(R, T )
exp

(
−r(R, T )

rs

)(
−dT 2 + dR2

)
+ r(R, T )2

(
dθ2 + sin2 θdϕ2

)
. (1.10)

(We do not replace r by its explicit expression in terms of R and T because it is tedious
and because it doesn’t offer any additional insight at the moment.) A convenient feature of
Kruskal-Szekeres coordinates is the fact that T is a timelike coordinate and R is a spacelike
coordinate throughout spacetime. In contrast the Schwarzschild coordinates r and t switch
their roles and temporal and spatial coordinates when crossing the horizon. Additionally, any
light-like geodesic that is radial, i.e. for which dθ = 0 = dϕ , will have dT = ±dR. Hence, such
geodesics will appear as lines of 45◦ in a diagram of R and T . Together with the following
exercise this enables us to see that r ≡ rs is indeed a null surface.

Exercise 1
Show that the black hole horizon r ≡ rs is located at the diagonal T = R of a diagram of the
Kruskal-Szekeres coordinates T and R. Hint: you cannot directly take the limit r → r2 in
Equations 1.8 and 1.9. Find a useful way to combine the two equations first.

In Figure 1 we compare the locations of the horizon r = rs and the location of an observer
outside the horizon in Schwarzschild and Kruskal-Szekeres coordinates. In the latter, the
horizon does not in fact appear as a very special surface. The fact that grr diverges in the
Schwarzschild picture is thus only a so called coordinate singularity, and one can for example
show that spacetime curvature is completely well behaved at the horizon surface. The only
true singularity (i.e. point where spacetime curvature itself diverges) appears at r = 0. In
Kruskal-Szekeres coordinates this is a future boundary for observers entering the black hole.

– 3 –



r

t

sin
gu

la
rit

y

pa
rti

cle
 h

or
izo

n

st
at

io
na

ry
 o

bs
er

ve
r

Schwarzschild coordinates

R
T

pa
rtic

le 
ho

riz
on

singularity

sta
tio

na
ry

ob
se

rve
r

Kruskal-Szekeres coordinates

Figure 1: Sketching the location of singularity, particle horizon and a stationary observer
outside the horizon in Schwarzschild coordinates and Kruskal-Szekeres coordinates of a non-
rotating black hole. The Kruskal-Szekeres coordinate T is time-like everywhere in spacetime,
and R is space-like everywhere in spacetime. Another benefit of Kruskal-Szekeres coordinates
is the fact that light-like (and radial) geodesics would appear as lines of a 45◦ angle wrt. the
coordinate axes.

Exercise 2
Derive an equation T = R(T ) for the location of the black hole singularity (i.e. for the “wavy”
line in Figure 1) in Kruskal-Szekeres coordinates.

1.3 Key events in the development of horizon thermodynamics

It is almost common knowledge that a black hole with horizon area Abh supposedly carries
an entropy

Sbh =
Abh

4 ℓ2Planck
, (1.11)

where ℓPlanck is the Planck-length. And sentences like the following are popular when trying
to motivate this entropy assignment: “If some amount of matter, together with the entropy
that it carries, crosses the horizon of a black hole, then this decreases the entropy of the
observable Universe and thus breaks the 2nd law of thermodynamics. The horizon entropy
then restores the 2nd law.”

We sketch this situation in Figure 2, and in Kruskal-Szekeres coordinates such a pro-
claimed breakdown of the 2nd law becomes questionable. At any T = const. surface of
spacetime, the entropy of the matter falling into the black hole is still perfectly present in the
Universe (except potentially for the moment, when the matter falls onto the singularity, but
let us not bother with this moment of which there is no common sense understanding yet).
Claiming that matter crossing the horizon breaks the 2nd law is a somewhat observer-centric
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Figure 2: Information can travel at most at the speed of light, which corresponds to lines
of 45◦ in Kruskal-Szekeres coordinates. When a container of matter - and the corresponding
entropy - moves across a black hole horizon, then an outside observer loses the ability to
receive any information about that container. Does that constitute a violation of the 2nd
law of thermodynamics? This question is somewhat missing the point of the holographic
principle.

point-of-view (which, to be honest, your lecturer holds). But it is also somewhat missing the
point of the assignment of entropy to a black hole horizon! The fact that horizons seem to
carry entropy is interesting not primarily because it restores the 2nd law, but e.g. for the
following reasons:

A) The fact Equation 1.11 restores the 2nd law for outside observers means that for some
reason the horizon area Abh is an upper bound for how much entropy has been thrown
into the horizon! This is actually how Bekenstein first motivated his entropy formula:
he tried to through entropy into a black hole in a way that minimizes the growth of Abh

(cf. Section 2).

B) The entropy assignment in Equation 1.11 together with the horizon temperature that
was later derived by Hawking actually makes it so that the combined system of black
holes and ordinary matter don’t just satisfy a 2nd law but also a 1st law ! And it
was later shown by Jacobson, that demanding the validity of this 1st law for all local
horizons is in fact equivalent to the full Einstein equations! We will investigate this in
more detail in Section 4, but let us already get a glimpse of such a 1st law by looking
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at the Schwarzschild black hole. The inner energy of the latter will be given by its mass
M , while its entropy is given by

S =
Abh

4G
=

4πr2s
4G

= 4πGM2 . (1.12)

We will further more see in Section 3, that the temperature of the Hawking radiation
emitted by the black hole horizon is given by

T = 1/8πGM . (1.13)

If we now drop an infinitesimal mass dM into the black hole, then temperature, entropy
and inner energy satisfy the equation

TdS = dM . (1.14)

This equation describes the reaction of spacetime geometry to a flow of matter across
the horizon, but it also seems to represent a 1st law of horizon thermodynamics.

C) The fact that horizon area (and not e.g. the volume enclosed by the horizon) bounds
the entropy inside the horizon seems to be in conflict with standard particle physics!
The entropy that can be carried by a quantum field inside a given volume V is typically
proportional to V and not to the boundary area of that volume.

D) Hawking radiation is an effect of quantum field theory on a fixed curved spacetime back-
ground. In particular, its derivation does not require that this background spacetime
satisfies the Einstein equations. How then does quantum field theory know to produce
horizon radiation with a temperature that exactly makes the Einstein equations look
like a 1st law of thermodynamics? This apparent coincidence has sparked the hope that
horizon thermodynamics is a pathway towards understanding quantum gravity itself.
This hope is e.g. summarized by the following quote from professor Padmanabhan [15]:

“... if spacetime can be hot, it must have microstructure.”

In Table 1 you can find a (very incomplete!) timeline of important scientific work that lead
to the above realisations A) - D).

Exercise 3
In Appendix A it is shown that a scalar quantum field in side a box of side length ℓbox can

be interpreted as a collection of quantum harmonic oscillators.

a) Show that the number of these oscillators scales as the volume of the box, i.e.

Nosc ∼ ℓ3box .

The dimension of the Hilbert space of a quantum harmonic oscillator is infinite, so the Hilbert
space of a quantum field in a box must also be infinite. Assume that quantum gravitational
effects regularize this Hilbert space dimension such that each oscillator only lives in a Hilbert
space of dimension d (independent of Fourier mode k).

b) What is the dimension of the full Hilbert space of the quantum field as a function of d?
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A generalized notion of a quantum state is given by a density matrix. This is a Hermitian
operator ρ̂ that is positive (semi-)definite and has Tr ρ̂ = 1. If ρ̂ is defined on a Hilbert space
H of dimension d and of {λ1 , . . . , λd} are the eigenvalues of ρ̂, then the von-Neumann
entropy of ρ̂ is defined as

S(ρ̂) := −
∑
j

λj ln(λj) . (1.15)

c) Show that the maximum entropy that any ρ̂ on H can have is ln(d) . (Hint: the condition
Tr(ρ̂) = 1 means that

∑
j λj = 1, which you can add to your optimization problem via

the method of Lagrange multipliers.)

d) What is the maximum entropy of a scalar quantum field in a box (assuming that the
dimension of the individual oscillators is again regularized to be d)? Discuss your result
in the light of Bekenstein’s proposal that the maximum entropy that can be stored in a
given volume is proportional to the boundary area of that volume.

Script incomplete - will be updated regularly (last time: 28 April 25)
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Table 1 (incomplete!) timeline of key developments in horizon thermodynamics

1971 • Demonstration that no classical process can reduce the sum of black hole
horizon areas:

• Hawking 1971, “Gravitational Radiation from Colliding Black Holes”

1972-1974 • Bekenstein proposes that black holes have an entropy, and that this entropy is
proportional to horizon area:

• Bekenstein 1972, “Black holes and the second law”

• Bekenstein 1973, “Black holes and entropy”

• Bekenstein 1974, “Generalized second law of thermodynamics in black-hole
physics”

1974 • Derivation that black hole horizons have a temperature and emit thermal
radiation:

• Hawking 1974, “Black hole explosions?”

1977 • Discovery that entropy and temperature can also be assigned to the
cosmological horizon:

• Gibbons & Hawking 1977, “Cosmological event horizons, thermodynamics,
and particle creation”

1981 • It is proposed that the maximum entropy that can be accumulated in a
spherical volume is bounded by the surface area of that volume:

• Bekenstein 1981: “Universal upper bound on the entropy-to-energy ratio
for bounded systems”

1995 • Discovery that the entire Einstein equations follow from demanding the validity
of a 1st law for the combined system of horizons & outside matter:

• Jacobson 1995: “Thermodynamics of Spacetime: The Einstein Equation of
State”

• many works of Padmanabhan; see e.g.
https://arxiv.org/pdf/0706.1654 for an overview

1999 • Formulation of a generally covariant version of Bekenstein’s original entropy
bound (the holographic principle):

• Bousso 1999: “A Covariant Entropy Conjecture”
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1.4 Exercises & feedback form for lecture 1

Lecture 1 is accompanied by exercises 1 - 3. Also, you can find the feedback form for this
lecture here:
https://cloud.physik.lmu.de/index.php/apps/forms/s/eLefQDX4LrZjweCsKtmRdD8S
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A The scalar field as a collection of oscillators

We closely follow the notation of [4], see also [13, 14]. The action of a massive scalar field in
Minkowski space is given by

S =
1

2

∫
dtd3x

[
ϕ̇2 − (∇ϕ)2 −m2ϕ2

]
=

1

2

∫
dtd3k

(2π)3

[
|ϕ̇k|2 − (|k|2 +m2)|ϕk|2

]
, (A.1)

where in the second line we moved to Fourier space, with k labeling the Fourier modes.
Expressing the Fourier transform of the field in terms of real and imaginary parts, ϕk =
Ak + iBk, we must have Ak = A−k and Bk = −B−k because ϕ is real. This allows us to
define a new field

qk =
√
2


Ak for k1 ≤ 0

Bk for k1 > 0
(A.2)

such that the action can be re-written as [14]

S =

∫
dtd3k

(2π)3

[
1

2
q̇2k − |k|2 +m2

2
q2k

]
. (A.3)

To make it explicit that this can be interpreted as a collection of harmonic oscillators, let us
restrict the field ϕ to a finite box of side length ℓbox, imposing periodic boundary conditions.
This modifies the action to

Sbox =

∫
dt

1

ℓ3box

∑
k

[
1

2
q̇2k − |k|2 +m2

2
q2k

]
≡

∫
dt Lbox ({qk} , {q̇k} , t) , (A.4)

where we have replaced d3k → ∆k3 = (2π/ℓbox)
3 and the sum is over all k = (k1, k2, k3) with

ki ∈ {2πn/ℓbox | n ∈ Z}. The second equality serves as a definition of the Lagrangian Lbox of
the discretized field. It is literally the Lagrangian of a set of harmonic oscillators with masses
1/ℓ3box and frequencies

√
|k|2 +m2. The corresponding Hamiltonian is given by

Hbox ({qk} , {pk} , t) =
∑
k

[
ℓ3box
2

p2k +
1

ℓ3box

(|k|2 +m2)

2
q2k

]
, (A.5)

where we introduced the conjugate momenta pk = ∂Lbox/∂q̇k . To obtain the quantum theory
of this field one would usually promote qk and pk to conjugate Hermitian operators satisfying
the Heisenberg commutation relations

[q̂k, p̂k′ ] = iδk,k′ (A.6)

such that the Hamiltonian operator of the field becomes

Ĥ(t) =
∑
k

[
ℓ3box
2

p̂2k +
1

ℓ3box

(|k|2 +m2)

2
q̂2k

]
. (A.7)

which has the minimum eigenvalue

λmin

[
Ĥ(t)

]
=

∑
|k|<kmax

√
|k|2 +m2

2
. (A.8)
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Here we have introduced an ultra-violet cut-off kmax in order to regularise this otherwise
divergent expression. To obtain the vacuum energy density of the field we need to divide this
eigenvalue by the volume of the box, i.e.

ϵvac =
1

ℓ3box

∑
|k|<kmax

√
|k|2 +m2

2

≈
∫
|k|<kmax

d3k

(2π)3

√
|k|2 +m2

2

≈
∫
|k|<kmax

2π
dk

(2π)3
k3 for kmax ≫ m

=
1

4

k4max

(2π)2
. (A.9)

The sharp cut-off we used in the above expressions has been criticized because it breaks
Lorentz symmetry [1, 11]. There are however reasons to believe that the breaking of Lorentz
symmetry is physical [2, 5, 12]. What’s more relevant to us: the sharp cutoff does not
sufficiently regularize quantum fields to make them consistent with holography.

B The Weyl field as a collection of qubits

This section is taken from [3] and serves as a reminder of the Weyl field, which is the sim-
ples Fermionic quantum field. We also make explicit in which sense the Weyl field can be
decomposed into a collection of qubits.

B.1 Weyl field basics

The (left-handed) Weyl spinor is a two-component field ψ with the Lagrangian

L = iψ†σµ∂µψ , (B.1)

where σ0 ≡ 1 and σi are e.g. the Pauli matrices (we are following here the notation of [10, 16]).
The above Lagrangian leads to the equations of motion

σµ∂µψ = 0 . (B.2)

A general solution to these equations can be expressed as

ψ(x, t) =
∫ d3p

(2π)3Ep

{
ap(t)u(p) e

ipx + b∗p(t)u(p) e
−ipx

}
, (B.3)

where the time evolution of the coefficients ap and b∗p is given by

ap(t) = ap,0 e
−iEpt , bp(t)

∗ = b∗p,0 e
iEpt (B.4)

with Ep ≡ |p|, and where u(p) are eigenvectors of the matrix σjpj with eigenvalues +Ep
3 ,

σjpj · u(p) = +Ep u(p) . (B.5)
3Note that u(−p) is then an eigenvector with eigenvalue −Ep. This is why only a single family of functions

u(p) appears in the expansion of Equation B.3.
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Note that in the following we will keep the time dependence of ap and b∗p implicit in our
notation. The reason is that this dependence will deviate from Equation B.4 once we consider
overlapping degrees of freedom.

Normalising the u(p) such that

u(p)† · u(p) = Ep (B.6)

ensures that they are orthogonal wrt. the Lorentz invariant momentum space measure

dp̃ :=
d3p

(2π)3 Ep
. (B.7)

Up to an irrelevant phase factor we can e.g. choose u(p) as [16]

u(p) =
√
Ep

(
e−iϕ sin θ

2

cos θ
2

)
, (B.8)

where p = (p sin θ cosϕ, p sin θ sinϕ, p cos θ)T .
In the quantum version of the above field theory we consider the operator valued field

ψ̂(x, t) =
∫
dp̃

{
âp(t)u(p) e

ipx + b̂p(t)
†u(p) e−ipx

}
, (B.9)

where the operator b̂†p can be thought of as creating an anti-spinor of momentum p while
âp is destroying a spinor with momentum p. At equal times these operators satisfy the
anti-commutation relations

0 = {âp, âq} = {b̂p, b̂q} = {âp, b̂q} = {âp, b̂†q} (B.10)

{âp, â†q} = {b̂p, b̂†q} = (2π)3Ep δD(p− q) . (B.11)

This ensures that the field operators satisfy the equal-time anti-commutation relation

{ψ̂(x), iψ̂(y)†} (B.12)

= i
∫
dp̃dq̃

[
{âp, a†q} u(p)u(q)† + {b̂†−p, b−q} u(−p)u(−q)†

]
eipx−iqy

= i
∫ d3p

(2π)3Ep

[
u(p)u(p)† + u(−p)u(−p)†

]
eip(x−y)

= i 12D δD(x− y) , (B.13)

as is needed because iψ̂† is the conjugate momentum of the field ψ̂ .

B.2 Decomposition into qubits

To make it explicit that the above field can be considered as a collection of qubits, let us
constrict ψ(x) to a box of finite size L . This means that we have to perform the substitutions

d3p→ (2π)3

L3
, δD(p− q) → L3

(2π)3
δp,q , (B.14)

and replace integrals with sums over the discrete grid p ∈ { 2π
L (n1, n2, n3) | ni ∈ Z } . For

convenience, we will also consider redefined mode operators

ĉp =
âp

(EpV )
1
2

, d̂p =
b̂p

(EpV )
1
2

, (B.15)
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such that the new operators satisfy the anti-commutation relations

0 = {ĉp, ĉq} = {d̂p, d̂q} = {ĉp, d̂q} = {ĉp, d̂†q} (B.16)

{ĉp, ĉ†q} = {d̂p, d̂†q} = δp,q . (B.17)

Our field can now be decomposed in terms of these operators as

ψ̂(x, t) =
∑
p

1

(EpV )
1
2

{
ĉp(t) u(p) e

ipx + d̂p(t)
† u(p) e−ipx

}
. (B.18)

Usually, each of the grid points p in the above sum represents a 4-dimensional Hilbert space
factor

Hp = Hc
p ⊗JW Hd

p (B.19)

and the total Hilbert space is the tensor product over all these factors,

H =

JW⊗
p

Hp , (B.20)

where the superscript “JW” again indicates that operators in the individual Hilbert spaces
need to be embedded into the product space via Jordan-Wigner-factors in order for them
to anti-commute (as opposed to commute). The ĉp, d̂p and their Hermitian conjugates act
non-trivially only on the factors Hc

p and Hd
p respectively. On the factor Hc

p (and similarly for
Hd

p) we can define

σ̂cx,p = ĉp + ĉ†p (B.21)

σ̂cy,p = i
(
ĉp − ĉ†p

)
(B.22)

σ̂cz,p = −iσ̂cx,pσ̂cy,p = 2ĉ†pĉp − 1 . (B.23)

These operators constitute a Pauli algebra on the qubit Hilbert space Hc
p . Note however,

that the labels x, y, z are simply notation, and not meant to indicate directions in physical
space. The Hamiltonian of the field can be expressed in terms of these operators as

Ĥ =
∑

pEp

{(
ĉ†pĉp − 1

2

)
+
(
d̂†pd̂p − 1

2

)}
=

∑
p

Ep

2

{
σ̂cz,p + σ̂dz,p

}
. (B.24)

So our field behaves like a set of non-interacting spins in a p-dependent magnetic field. Of
course, the occupation of different Fourier modes p of the Weyl field does not measure the state
of any actual spins, but rather the existence or non-existence of particles with momentum p .
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