## Trough Lensing

# probing differences between the under- and overdense universe

**Oliver Friedrich – LMU Munich** 

together with Daniel Gruen, Elisabeth Krause, Kyle Story, Joe DeRose, Risa Wechsler, Stella Seitz

## Evolution of the cosmic density field



- Initially Gaussian fluctuations
- evolve into few highly overdense regions
- most of the volume becomes underdense

Bernardeau et al. (2002)

### Probing the non-linear density field

- 2-pt. statistics (amplitude of density field)
- Cluster counts (highly NL-regime)
- Void statistics (hard to identify in photometric surveys)

• Trough Lensing (mildly NL and high SN)



## Splitting the sky

courtesy of Daniel Gruen



- Quantiles of galaxy density in DES year-1 data after smoothin of 1deg.
- Foreground galaxy catalog: redMaGiC (see Rozo, Rykoff et al. 2016 for early DES data)

## What can you do with that??

- Compare cluster mass function in different regimes
- Measure correlation between density quantiles and SZ or ISW

... (ask Daniel, Kyle or me for more)

• <u>Trough Lensing</u> (this talk)

#### Gravitational Lensing – the very basics



γ: shearκ: lensing convergence



#### Einstein ring around a giant elliptical galaxy,

image credits: apod:nasa:gov=apod=ap111221:html (I), Jodrell Bank Observatory (r).





## Lensing around Troughs



#### Lensing around Troughs



 Lensing signal around arbitrary line of sight:

 $\langle \gamma \rangle = 0$ 

#### Lensing around Troughs



 Lensing signal around arbitrary line of sight:

 $\langle \gamma \rangle = 0$ 

 Lensing signal around underdense lines of sight:

 $\langle \gamma \rangle < 0$ 

#### Measurement in DES-SV (Gruen, Friedrich et al. 2016)



- trough lensing signal for underdense and overdense lines of sight
- model:
   κ and δ Gaussian random fields
   +
   Poissonian shot noise of galaxies



#### Need to model:

- relation of galaxies and matter
- relation of  $\delta$  and  $\kappa$







#### Possible ansatzes:

Gaussian PDF ✓

log-normal PDF ✓

model PDF by assuming (

 cylindrical collapse along
 line of sight

for details see Valageas et al. (2002), Bernardeau et al. (2014) or Friedrich et al. (in prep.)

## shear profile around 10' troughs: model vs. buzzard

Simulations run by the group of Risa Wechsler, see Wechsler et al. (in prep.) and DeRose et al. (in prep.)



#### convergence profile around 10' troughs: model vs. buzzard simulations

Simulations run by the group of Risa Wechsler, see Wechsler et al. (in prep.) and DeRose et al. (in prep.)



#### task: recovering buzzard cosmology

z=0.2..0.45, 10', Buzzard convergence

 likelihood run with help of cosmolike (Krause & Eifler 2016)

 in first test, true buzzard cosmology lies within 1-sigma (need more!!)

 $\Omega_m$ 

600

9

 $\sigma_8$ 

b

#### **Conclusions / Summary**

Trough Lensing sensitive to differences between over- and underdensities

yields high signal-to-noise measurement of lensing around underdensities

At first glance: modeling precise enough for use in DES year-1 need to perform further testing

What kind of physics is this sensitive to?

#### Measurement in DES-SV (Gruen, Friedrich et al. 2016)



#### main idea:

- we know the PDF of the initial density field! (Gaussian)
- Radial symmetry  $\Rightarrow \delta_{NL} = \delta_{NL} [\delta_L]$
- The present day PDF can then be computed as

$$P(\delta_{\rm NL}) \, \mathrm{d}\delta_{\rm NL} = P(\delta_{\rm L}) \, \mathrm{d}\delta_{\rm L}$$
  
 $\Rightarrow P(\delta_{\rm NL}) = P(\delta_{\rm L}[\delta_{\rm NL}]) \, \frac{\mathrm{d}\delta_{\rm L}}{\mathrm{d}\delta_{\rm NL}}$ 

(very schematic and works only in Lagrangian coordinates...)