Why do we do astronomical observations?

to know physical conditions up there. what do you mean by "physical conditions"?

How much are they N_i

where in position?morphologywhere in velocity?kinematicsrelatively?chemistryrelatively (in level)?temperature

 $N_i(\mathbf{x})$ $N_i(\mathbf{\dot{x}})$ N_i/N_j N_{i+1}/N_i

model

ρ (density)
excitation mechanisms
shock, radiation
chemical compositions
t, history

story

How it comes to present state

How to measure N;?

what molecules do?

- **2** when to observe what?
- **3** convert E to N_i

- collisional excitation
- in emission / absorption
- 4 calculate T_{ex} from N_{i+1}/N_i
- **Boltzmann distribution**

What do molecules do?

when they have >2 point mass

What do molecules do?

D have electrons

UV / optical

1000-10000 Å 1-10 eV **2** vibrate

IR 1-100 μm 1-100 THz

100-10000 cm⁻¹

3 rotate

sub-mm - cm 0.1-10 mm 1-100 GHz

What do molecules do?

1	have	electrons

1000-10000 Å 1-10 eV

3 rotate
 sub-mm - cm
 0.1-10 mm
 1-100 GHz

100-10000 cm⁻¹

$$E_{elec} = \frac{1}{2} mv^2$$

 $mRv = \hbar$

Reduced mass

$$\frac{1}{\mu} = \frac{1}{M_1} + \frac{1}{M_2}$$

 $M_1 << M_2$ $\mu \sim M_1 \sim Mp$

smallest one

rotational

energy

angular momentum

 $E_{\rm rot} = \frac{1}{2} \mu V_r^2 \qquad \mu R V_r = \hbar$

Reduced mass

$$\frac{1}{\mu} = \frac{1}{M_1} + \frac{1}{M_2}$$

M₁ << M₂ μ ~ M₁ ~ Mp

smallest one

when vibration goes extreme

Born-Oppenheimer constant

$$\kappa^{4} = \frac{m}{Mp}$$
 electron mass
proton mass
$$= \frac{m}{\mu} \qquad \kappa = 0.1$$

energy

angular momentum

$$E_{elec} = \frac{1}{2} mv^2 = \frac{1}{2} kR^2$$

$$E_{vib} = \frac{1}{2} \mu V_b^2 = \frac{1}{2} k(\delta R)^2$$

$$=\frac{1}{2}\mu V_{b}^{2}=\frac{1}{2}k(\delta R)^{2}$$

$$mRv = \hbar$$

$$(\delta R)V_b = \hbar$$

$$4$$

 $\kappa^4 = \frac{m}{\mu} \qquad \kappa \sim 0.1$

electronic m	$E_{elec} = \frac{1}{2}mv^2 = \frac{1}{2}kR^2$	
R	$E_{vib} = \frac{1}{2} \mu V_b^2 = \frac{1}{2} k(\delta R)^2$	
SR vibrational	$\frac{1}{E_{elec}} = \frac{mv^2}{\sqrt{2}} = \frac{R^2}{\sqrt{2}}$	
k ^µ	$\kappa^4 \frac{v^2}{V_b^2} = \frac{R^2}{(\delta R)^2}$	

energy

1 $mRv = \hbar$ 3 2 $\mu(\delta R)V_b = \hbar$ 4

 $\kappa^4 =$ *κ~* 0.1

electronic	m
vibrational	δ R
	μ

mRv μ(δR)V _b	= 1	
$\kappa^4 \frac{\mathbf{V}}{\mathbf{V}_b}$	$= \frac{\delta R}{R}$	
V	δR	1
V _b	= R	к4

 $\kappa^4 =$ *κ~* 0.1 angular energy momentum $E_{elec} = \frac{1}{2}mv^2 = \frac{1}{2}kR^2$ electronic 1 $mRv = \hbar$ $E_{vib} = \frac{1}{2} \mu V_b^2 = \frac{1}{2} k(\delta R)^2 \, 2 \qquad \mu(\delta R) V_b = \hbar \, 4$ 1 2 $\delta \mathbf{R}$ $\frac{mRv}{\mu(\delta R)V_b} = 1$ vibrational $\frac{E_{elec}}{E_{vib}} = \frac{mv^2}{\mu V_b^2} = \frac{R^2}{(\delta R)^2}$ $\kappa^4 \frac{\mathbf{v}}{\mathbf{V}_b} = \frac{\delta \mathbf{R}}{\mathbf{R}}$ $\kappa^4 \frac{\mathbf{v}^2}{\mathbf{V}_b^2} = \frac{\mathbf{R}^2}{(\delta \mathbf{R})^2}$

3

 $\kappa^4 = \frac{m}{\mu} \qquad \kappa \sim 0.1$

rotational

--€-,

μ

 $mRv = \hbar$

 $\mu RV_r = \hbar$

 $\frac{mRv}{\mu RV_r} = 1$

1

2

 $\kappa^4 \frac{\mathbf{v}}{\mathbf{V}_r} = \mathbf{1}$

In the universe where

electronic transition

vibrational transitions

rotational transitions

oro	Mp	~ 1000
	m _e	
	e	energy
10 eV		1/100
1-10 µ	m 📕	1/100
1 mm		1/100

UV - vis infrared spectroscopy sub-mm spectroscopy

why do we see many lines?

nuclear distance

nuclear distance

v = 2 overtone 2.3 μm

 $\Delta v = 2$

 $E_2 = 6B$

 $E_0 = OB$

have to observe one by one

type of vibration fundamental $\mathbf{v} = \mathbf{1} \cdot \mathbf{0}$ **1** vibration v = 2-0 first overtone v = 3-0second overtone v = 2-1 hot band CO $\Delta J = + -1$ **1** rotation $R: \Delta J = +1$ CO v=1-0 R(1) $P: \quad \Delta J = -1 \quad \text{only}$ J=2J=1 V=1CO v=1-0 P(1)

J=0

v=0

"CO 1-0" usually means CO J=1-0 but confusing

degree of freedom : 3N

- translational: -3 does not change molecular shape
 - rotation: -3 does not change molecular shape

number of vibrational modes : 3N - 6

vibration

change of shape of molecule bonds distance bonds angle

degree of freedom : 3N

- translational: -3 does not change molecular shape
 - rotation: -2 does not change molecular shape

number of vibrational modes : 3N - 5

higher symmetry counted first

inactive

*V*1

complicated motion count later

V2a

*v*_{1 :} symmetric stretch

15 µm

V2b 15 μm

V₃ v_{3:} asymmetric stretch
4.3 μm

ν1
 3.0 μm
 complicated motion count later

V2

6.0 µm

*v*_{1 :} symmetric stretch *v*_{2 :} bending mode

V₃ v₃ asymmetric stretch
3.0 μm

check with textbooks when doubt

you have to be careful to whom to ask

When to observe what?

How to derive physical parameter from your observation?

N your telescope Ω S how much is column density N? surface of your object optically thin no background

energy you received

$$\Xi = \mathbf{N} \; \frac{\mathbf{A}_{21}}{\mathbf{4}\pi} \; \cdot \; \mathbf{h} \mathbf{v} \; \mathbf{\Omega} \mathbf{S}$$

How to derive physical parameter from your observation?

your telescope your telescope how much is column density N? our object thin round $F = I \Omega S$ $= I \Omega S$ $= I \Omega S$

absorption

absorption

we do not need to know absolute flux

energy lost in absorption $\Delta E = J_0 N_1 B_{12} \cdot h v$

$$\Delta E = \int J_0 - J(v) \, dv$$
$$J_0 - J(v) = J_0 N_1 B_{12} \cdot hv$$

 $\frac{J_0 - J(v)}{J_0} = N_1 B_{12} \cdot hv$ we do not nee we do not need to know absolute flux

energy lost in absorption $\Delta E = J_0 N_1 B_{12} \cdot hv$

$\Delta E = \int J_0 - J(v) \, dv$

$$J_0 - J(v) = J_0 N_1 B_{12} \cdot hv$$

 $\frac{J_0 - J(v)}{J_0} = N_1 B_{12} \cdot hv$

we do not need to know absolute flux

energy lost in absorption $\Delta E = J_0 N_1 B_{12} \cdot hv$

A₂₁

B₂₁

=

$$\Delta \mathsf{E} = \int J_0 - J(v) \, \mathrm{d} v$$

$$J_0 - J(v) = J_0 N_1 B_{12} \cdot hv$$

$$\frac{J_0 - J(v)}{J_0} = N_1 B_{12} \cdot hv$$

we do not need to know absolute flux

$$W_{\nu} = N_{1}B_{12} \cdot h\nu$$

= $N_{1} \frac{g_{2}}{g_{1}} B_{21} \cdot h\nu$
= $N_{1} \frac{g_{2}}{g_{1}} \frac{c^{2}}{2h\nu^{3}} A_{21} \cdot h\nu$

Aœu²

depends only on quantum mechanics calculated theoretically can measure in lab

Clear selection Clear filter

Spectral lines selection parameters

з

3

Cut-chi on Intensity (Seal), cm/mol *: 10E-58

Environment parameters

Temperature (T), K *: Concentration (C) * 0.006544 100 Prossure (F), atm *:

2

3

Tota:

70

48

1244

1943.350369

Page 1 of 2 ------

3.740024

2,705026

2201.827683

176.832973

14477.377142

1.073e-31

3.374c-44

1.1430-45

1.3514-27

4,2004-36

4.5560-10

3.07Ce-26

5.78Ec-35 10270-17

View 1 - 10 of 20

Fields with * are remared.

1 26

6 30

3 28

4 27

5 38

6 37

1

2 1.21

3

4

5

6

7

8

10 0

1

1

Start simulation Reset parameters

# The list of # HITRAN. Mole # Wavenumber r	spectral li cule CO. Is ange: 1872.	nes. HITRA otopologue 000000-2304	N-2004 form 26. Band(s 4.000000 cm	mat s): "1 -> 0". m-1, T: 100 K, P: 1 atm,	Scut: 1e-28 c	m/molecule, C:	0.986544			g 2	g 1
#MI WN,cm-1	S,cm/mol	A,s-1	Lenv Lself	El, cm-1 Nt Pshift GQN	Nup G	QNlow	LQNup	LQNlow	Ierr Iref	* SWup	SWlow
51 2018.14883	0 2.876e-28	1.516e+01	.09230.093	1667.97090.67003500	1	0)	P 29	486623 5 8 2 2 1 1	57.0	59.0
51 2022.91445	5 1.372e-27	1.527e+01	.09330.095	1557.06070.67003500	1	0)	P 28	486623 5 8 2 2 1 1	55.0	57.0
51 2027.64917	6 6.196e-27	1.539e+01	.09460.097	1449.93590.67003500	1	0)	P 27	486623 5 8 2 2 1 1	53.0	55.0
51 2032.35284	8 2.644e-26	1.550e+01	.09600.099	1346.60080.67003500	1	0)	P 26	487623 5 8 2 2 1 1	51.0	53.0
51 2037.02532	4 1.067e-25	1.562e+01	.09700.103	1247.05920.67003500	1	0)	P 25	487623 5 8 2 2 1 1	49.0	51.0
51 2041.66646	0 4.070e-25	1.573e+01	.09830.106	1151.31500.67003500	1	0)	P 24	487623 5 8 2 2 1 1	47.0	49.0
51 2046.27610	9 1.467e-24	1.585e+01	.09990.108	1059.37180.67002980	1	0)	P 23	487623 5 8 2 2 1 1	45.0	47.0
51 2050.85412	6 4.999e-24	1.597e+01	.10160.110	971.23320.67003350	1	0)	P 22	487623 5 8 2 2 1 1	43.0	45.0
51 2055.40036	4 1.609e-23	1.610e+01	.10350.112	886.90240.67003630	1	0)	P 21	487623 5 8 2 2 1 1	41.0	43.0
51 2059.91467	7 4.891e-23	1.622e+01	.10550.114	806.38280.67003050	1	0)	P 20	487663 5 8 2 2 1 1	39.0	41.0
51 2064.39692	0 1.404e-22	1.635e+01	.10740.116	729.67740.67003410	1	0)	P 19	487663 5 8 2 2 1 1	37.0	39.0
51 2068.84694	5 3.804e-22	1.648e+01	.11020.119	656.78920.68003500	1	0)	P 18	487663 5 8 2 2 1 1	35.0	37.0
51 2073.26460	7 9.724e-22	1.661e+01	.11310.123	587.72090.69003350	1	0)	P 17	487663 5 8 2 2 1 1	33.0	35.0
51 2077.64975	8 2.344e-21	1.674e+01	.11590.126	522.47510.70003290	1	0)	P 16	487663 5 8 2 2 1 1	31.0	33.0
51 2082.00225	3 5.330e-21	1.689e+01	.11860.130	461.05440.71003260	1	0)	P 15	487663 5 8 2 2 1 1	29.0	31.0
51 2086.32194	5 1.142e-20	1.703e+01	.12120.133	403.46120.72003350	1	0)	P 14	487663 5 8 2 2 1 1	27.0	29.0
51 2090.60868	7 2.302e-20	1.719e+01	.12390.135	349.69750.73003510	1	0)	P 13	487663 5 8 2 2 1 1	25.0	27.0
51 2094.86233	3 4.368e-20	1.735e+01	.12660.138	299.76560.74003410	1	0)	P 12	487663 5 8 2 2 1 1	23.0	25.0
51 2099.08273	5 7.791e-20	1.752e+01	.12930.142	253.66720.75003620	1	0)	P 11	487663 5 8 2 2 1 1	21.0	23.0
51 2103.26974	7 1.304e-19	1.771e+01	.13090.144	211.40410.75003570	1	0)	P 10	487663 5 8 2 2 1 1	19.0	21.0
51 2107.42322	2 2.043e-19	1.793e+01	.13290.149	172.97800.75003590	1	0)	P 9	487663 5 8 2 2 1 1	17.0	19.0
51 2111.54301	4 2.993e-19	1.817e+01	.13520.151	138.39040.75003580	1	0)	P 8	487663 5 8 2 2 1 1	15.0	17.0
51 2115.62897	5 4.085e-19	1.845e+01	.13810.156	107.64240.75003490	1	0)	P 7	487663 5 8 2 2 1 1	13.0	15.0
51 2119.68095	9 5.168e-19	1.880e+01	.14040.156	80.73540.74003440	1	0)	P 6	487663 5 8 2 2 1 1	11.0	13.0
51 2123.69881	8 6.013e-19	1.926e+01	.14510.163	57.67040.74003310	1	0)	P 5	487663 5 8 2 2 1 1	9.0	11.0
51 2127.68240	6 6.355e-19	1.992e+01	.15090.167	38.44810.74003090	1	0)	P 4	487663 5 8 2 2 1 1	7.0	9.0
51 2131.63157	6 5.959e-19	2.104e+01	.15830.176	23.06950.74002030	1	0)	P 3	487663 5 8 2 2 1 1	5.0	7.0
51 2135.54618	0 4.699e-19	2.351e+01	.16880.185	11.53500.75002660	1	0)	P 2	487663 5 8 2 2 1 1	3.0	5.0
51 2139.42607	3 2.630e-19	3.546e+01	.18180.196	3.84500.76003010	1	0)	P 1	487663 5 8 2 2 1 1	1.0	3.0
51 2147.08113	4 2.790e-19	1.195e+01	.18180.196	0.00000.76002100	1	0)	R 0	487663 5 8 2 2 1 1	3.0	1.0
51 2150.85600	8 5.292e-19	1.442e+01	.16880.185	3.84500.75002400	1	0)	R 1	487663 5 8 2 2 1 1	5.0	3.0
51 2154.59558	3 7.120e-19	1.554e+01	.15830.176	11.53500.74002620	1	0)	R 2	487663 5 8 2 2 1 1	7.0	5.0
51 2158.29971	2 8.057e-19	1.620e+01	.15090.167	23.06950.74002530	1	0)	R 3	487663 5 8 2 2 1 1	9.0	7.0
51 2161.96824	7 8.087e-19	1.665e+01	.14510.163	38.44810.74002660	1	0)	R 4	487663 5 8 2 2 1 1	11.0	9.0
51 2165.60104	2 7.374e-19	1.700e+01	.14040.156	57.67040.74002590	1	0)	R 5	487663 5 8 2 2 1 1	13.0	11.0
51 2169.19795	0 6.186e-19	1.728e+01	.13810.156	80.73540.75002540	1	0)	R 6	487663 5 8 2 2 1 1	15.0	13.0
51 2172.75882	5 4.809e-19	1.752e+01	.13520.151	107.64240.75002600	1	0)	r 7	487663 5 8 2 2 1 1	17.0	15.0
51 2176.28351	9 3.483e-19	1.772e+01	.13290.149	138.39040.75002420	1	0)	R 8	487663 5 8 2 2 1 1	19.0	17.0
51 2179.77188	7 2.357e-19	1.791e+01	.13090.144	172.97800.75002550	1	0)	R 9	487663 5 8 2 2 1 1	21.0	19.0
51 2183.22378	1 1.494e-19	1.808e+01	.12930.142	211.40410.75002540	1	0)	R 10	487663 5 8 2 2 1 1	23.0	21.0
51 2186.63905	5 8.894e-20	1.824e+01	.12660.138	253.66720.74002500	1	0)	R 11	487663 5 8 2 2 1 1	25.0	23.0
51 2190.01756	3 4.972e-20	1.838e+01	.12390.135	299.76560.73002580	1	0)	R 12	487663 5 8 2 2 1 1	27.0	25.0
51 2193.35915	7 2.616e-20	1.852e+01	.12120.133	349.69750.72002590	1	0)	R 13	487663 5 8 2 2 1 1	29.0	27.0
51 2196.66369	3 1.296e-20	1.866e+01	.11860.130	403.46120.71002640	1	0)	R 14	487663 5 8 2 2 1 1	31.0	29.0
51 2199.93102	3 6.043e-21	1.879e+01	.11590.126	461.05440.70002690	1	0)	R 15	487663 5 8 2 2 1 1	33.0	31.0
51 2203.16100	1 2.658e-21	1.891e+01	.11310.123	522.47510.69002740	1	0)	R 16	487663 5 8 2 2 1 1	35.0	33.0
51 2206.35348	2 1.103e-21	1.903e+01	.11020.119	587.72090.68002870	1	0)	R 17	487663 5 8 2 2 1 1	37.0	35.0
51 2209.50831	9 4.318e-22	1.915e+01	.10740.116	656.78920.67002650	1	0)	R 18	487663 5 8 2 2 1 1	39.0	37.0
51 2212.62536	5 1.596e-22	1.926e+01	.10550.114	729.67740.67002790	1	0)	R 19	487663 5 8 2 2 1 1	41.0	39.0
51 2215.70447	6 5.567e-23	1.937e+01	.10350.112	806.38280.67003130	1	0)	R 20	487623 5 8 2 2 1 1	43.0	41.0
51 2218.74550	5 1.834e-23	1.948e+01	.10160.110	886.90240.67003140	1	0)	R 21	487623 5 8 2 2 1 1	45.0	43.0
51 2221.74830	6 5.710e-24	1.959e+01	.09990.108	971.23320.67002780	1	0)	R 22	487623 5 8 2 2 1 1	47.0	45.0
51 2224.71273	4 1.679e-24	1.970e+01	.09830.106	1059.37180.67002880	1	0)	R 23	487623 5 8 2 2 1 1	49.0	47.0
51 2227.63864	3 4.668e-25	1.980e+01	.09700.103	1151.31500.67002680	1	0)	R 24	487623 5 8 2 2 1 1	51.0	49.0

probability that a system in the energy level ε_s is proportional to

probability that a system in the energy level ε_s is proportional to

$$\mathbf{p} \propto \exp(-\frac{\mathbf{\varepsilon}_s}{\tau})$$

When a level is degenerated, all states are treated equally

p
$$\propto$$
 g₁ exp(- $\frac{\varepsilon_s}{\tau}$)

1890- LMU Physik

statistical weight (degeneracy)

12**C**16**O**

What can we tell?

- gas is thermalized or not
- 2 how many components?
- **3** excitation temperature T_{ex}
- 4 N₀
- 5 N_{total}
- 6 n(H₂) volume density (as opposed to column)

total column density

$$\frac{N_{J}}{g_{J}} = N_{0} \exp(-\frac{E_{J}}{kT})$$

 $N_{total} = \sum_{i} N_{j}$

= $\sum_{J} N_0 g_J \exp(-\frac{E_J}{kT})$

$$= N_0 \sum_{J} g_J \exp(-\frac{E_J}{kT})$$

 $N_{total} = N_0 Q(T)$

$$\frac{N_{J}}{g_{J}} = \frac{N_{total}}{Q(T)} \exp(-\frac{E_{J}}{kT})$$

$$\frac{n_J}{g_J} \propto \exp(-\frac{E_J}{kT})$$

will discuss choice of seminar topics in next class

k=1.38 x 10⁻¹⁶ [erg /K] h=6.63 x 10⁻²⁷ [erg s]