Near field

Far field

Lens

Far field

focal plane

focal length

VLT 120 m

focal plane

focal length

VLT 120 m

(1) How much is the plate scale at the focal plane?
focal plane

1 arcsec

focal length

VLT 120 m

(1) How much is the plate scale at the focall plane?
$360^{\circ}=3600 * 360$ arcsec
$360^{\circ}=2 \pi$ radian
1 arcsec $=2 \pi /(3600 * 360)$
$=4.84 \mathrm{e}-6$ radian
focal plane

1 arcsec

focal length

VLT 120 m

1 How much is the plate scale at the focal plane?

$$
\begin{aligned}
& 120 \text { * 4.84e-6 } \\
& =0.5 \mathrm{~mm}
\end{aligned}
$$

$360^{\circ}=3600 * 360$ arcsec
1 mm
$360^{\circ}=2 \pi$ radian
1 arcsec $=2 \pi /(3600 * 360)$
= 4.84e-6 radian
focal plane

focal length

VLT 120 m

2 Check
50 mas pixel /scale
$27 \mu \mathrm{~m} \quad$ physical size of one pixel
1 arcsec 27 * 1e3/50 =540 μm

$$
\begin{aligned}
& 120 * 4.84 \mathrm{e}-6 \\
& =0.5 \mathrm{~mm}
\end{aligned}
$$

1 mm

How a spectrograph works

a system of spectrograph

How a spectrograph works

a system of spectrograph
1 cryosystem
chamber
cooler

4 electronics detector clock driver readout

Spectrograph

Diffraction grating

transmissive grating with slits regular openings
blazed grating

multiple advantages

1 diffraction by a single slit
2 diffraction by a multiple slit

blazed grating

a system of spectrograph

Spectrograph

image of slit
project a slit image
change the deflection angle of a slit image according to color on the different location of a detector

spectral resolution

proportional to slit width

NIRSPEC at Keck II
High resolution: R=25,000, 3-pixel slit (0.43")

R ?
0.288"x24 (2-pix)
0.432"x24 (3-pix)

25,000
0.720"x24 (5-pix)

Anamorphic magnification

$\mathbf{d}(\boldsymbol{\operatorname { s i n }} \mathbf{i}+\boldsymbol{\operatorname { s i n }} \mathbf{r})=\boldsymbol{n} \boldsymbol{\lambda}$

free spectral range

$$
n \lambda_{1}=(n+1) \lambda_{2}
$$

λ_{1} and $\boldsymbol{\lambda}_{2}$ reflected same direction
what to do with overlap? intensified in the same way

$n \lambda_{1}=(n+1) \lambda_{2}$

fit in square format detector

Wh

 26 Now

which side is longer wavelength?

free spectral range

n	$n+1$
$\vdots \lambda+\Delta \lambda$	$n(\lambda+\Delta \lambda)=(n+1) \lambda$
dispersion	$\Delta \lambda=\frac{\lambda}{n} \quad$ prism dispersion

(1) calculate the wavelength

