LMU Master course seminar

Infrared Spectroscopy for Astronomy

1 How spectroscopy changed the world
2 Continuum and Line Formation
3 Spectrograph : system
4 Spectrograph : diffiraction grating
5 Spectrograph: detector and noise

What do you observe?

HR 8799
Marois et al. 2008, Science, 322, 1348
"Direct Imaging of Multiple Planets Orbiting the Star HR 8799"

HR 8799 c

HR 8799 (star)

Ghost contaminations

Spatially Resolved
Spectroscopy of The
Exoplanet HR 8799 c
Janson et al, 2010, ApJL,
710L, 35

What we are told

- Spectroscopy does not look good
- It is unpopular among reporters, because
- lit does not look fancy on

newspapers
 web sites

- Images are much easier to "understand"

I want to change this

ESO press release

Pretty images hard to publish

- model dependent
- your rolle as an observer is less important

Spectroscopy straightforward to publish

- can derive observables
- some gllitches in

instrumentation data reduction

we will learn them next half an year.

Style of lecture

1 understand small number of basic things but clearly do not cover a textbook cover to cover

2 no preparation, no review, you understand real time
3 please stop me (come forward and be seated front)
4 let us not waste time
it is most important that you bring something home.

5 sorry, unit system is mostly cgs. column density, volume density...

Form of lecture

$$
\begin{array}{ll}
12: 00-13: 00 & \text { lecture } \\
13: 00-13: 10 & \text { quick exercise } \\
13: 10=13: 30 & \text { solution }
\end{array}
$$

Seminar

1 you all are given the list of topics to discuss in the tallk. at round December
e.g. - a spectrograph of your choice

- what is "Langevin rate"?
- line by line derivation : spherical harmonics
- ELT vs JWST

2 we will discuss which one you talke in the lecture
320 min tallk. questions. every one can attend.
4 you will get additional 2 ECT for that. need to satisfy minimum standard. no score.

Form of lecture

$$
\begin{array}{ll}
12: 00-13: 00 & \text { lecture a } \\
13: 00-13: 10 & \text { quick exercise } \\
13: 10-13: 30 & \text { solution }
\end{array}
$$

Examination

I. On 12 February, here.

2 Written examination.
3. 60 min.

4 similar to exercises every lecture.
5 no smart phone, no pocket calculator
6 this goes to your score.

Miwa Goto

Universitäts-Sternwarte München
Ludwig-Maximilians-Universität
mgoto@usm.Imu.de
Office 134 (I05)
Office hour : every day until 2 pm

How spectroscopy started

Isaac Newton 1671, Phil. Trans, 6, 3075
 "New Theory about Light and Colors"

sun light

How spectroscopy started

Isaac Newton 1671, Phil. Trans. 6, 3075
"New Theory about Light and Colors"

- color is not something you put on light
- original and connote property of light
- once dispersed color does not change by second prism
- white light contains all colors
- use prism opposite way, returns to white light

How spectroscopy started

Isaac Newton 1671, Phil. Trans. 6, 3075
"New Theory about Light and Colors"

They were terminated at the fides with Itreight lines, but at the ends, the decay of light was fo gradual, that it was difficult to de. termine jultly, what was their figure; yet they feemed jemicircular.

Comparing the length of this coloured Spectrum with its breadih, I found it about five times greater; a difproportion fo extrava= gant, that it excired me to a more then ordinary curiofity of ex. amining, from whence it might proceed. I could fcarce think,

- Newton's first paper
- First use of the word "Spectrum"
- light dispersed by broken gllass was known
- start of publishing in scientific journals

Copernicus De revolutionibus orbium coelestium
Kepler Astronomia nova
Galileo II Saggiatore

Josef Fraunhofer (1817) Denkschr. Konigl. Akad. Wiss., München, V, 193

"Bestimmung des Brechungs- und des Farbenzerstreungs-Vermögens verschiedener Glasarten in Bezug auf die Vervollkommnung achromatischer Fernröhre"
"Determination of the Refractive and Dispersive Power of Different Kinds of Glass, with Reference to the Perfecting of Achromatic Telescope"

Josef Fraunhofer (1817) Denkschr. Konigl. Akad. Wiss., München, V, 193

- In order to make a achromatic telescope, combination of lens material needed
- would like to measure refractive indices / dispersion of glasses
- looking for good light source with emission lines
- tried sun light, and found absorption lines
- recorded them
- (presence of D lines are known by W. Wollaston before)

Josef Fraunhofer (1817) Denkschr. Konigl. Akad. Wiss., München, V, 193

les dem Winkel des gebrochenen Strahles gleich war. Ich wollte suchen, ob im Farbenbilde von Sonnenlichte ein ähnlicher heller Streif zu sehen sey, wie im Farbenbilde vom Lampenlichte, und fand anstatt desselben mit dem Fernrohre fast unzählig viele starke und schwache vertikale Linien, die aber dunkler sind als der übrige Theil des Farbenbildes; einige scheinen fast ganz schwarz zu seyn. Wurde das Prisma so gedreht, dafs der Einfallswinkel gröfser

Fraunhofer hat bemerkt, dafs in dem Spectrum einer Kerzenflamme zwei helle Linien auftreten, die mit den beiden dunklen Linien \boldsymbol{D} des Sonnenspectrums zusammenfallen. Dieselben hellen Linien erbält man leicht stärker von einer Flamme, in die man Kochsalz gebracht hat. Ich entwarf ein Sonnenspectrum und liẹfs dabei die Sonnenstrahlen, bevor sie auf den Spalt fielen, durch eine kräftige Kochsalzflamme treten. War das Sonnenlicht hinreichend gedämpft, so erschienen an Stelle der beiden dunklen Linien D zwei helle Linien; überstieg die Intensität jenes aber eine gewisse Gränze, so zeigten sich die beiden dunklen Linien D in viel gröfserer Deutlichkeit, als ohne Anwesenheit der Kochsalzflaınme.

Discussing chemical composition of a star
is no longer philosophical / religious questions
but simply a decent physics question
understand color / spectrum

Fraunhofer

spectral lines

Kirchhoff / Bunsen

Na, K line identifications
stars are made of matters known in Earth

Blackbody
Discovery of He in corona

ortho/para-He

Max Planck Photons

HIl lines identified Heisenberg
Balmer series Balmer

old quantum theory
 Bohr

Glossary : intensity vs flux

IV

$$
\begin{gathered}
d E_{v}=I_{v} d A d t d \Omega d v \\
{\left[\mathrm{~cm}^{-2}\right] \quad\left[\mathrm{s}^{-1}\right] \quad\left[\mathrm{str}{ }^{-1}\right]\left[\left[\mathrm{Hz}^{-1}\right]\right.}
\end{gathered}
$$

F_{v}

$$
d E_{v}=F_{v} d A d t d v
$$

$d \Omega$ integrated

(1) intensity does not change with distance
(2) flux dose
L_{v} is the total energy that passes boundary $=$ constant $4 \pi r^{2}$ is the size of the boundary
$L_{v}=4 \pi r^{2} \cdot F_{v}$
$F_{\nu}=\frac{\mathbf{L}_{\nu}}{4 \pi r^{2}}$

if I_{ν} constant $F_{\nu} \propto \frac{1}{d^{2}} ?$

$$
F_{v}=I_{v} d \Omega
$$

$$
I_{v}=\frac{F_{v}}{d \boldsymbol{\Omega}} \propto \frac{1}{d^{2} d \boldsymbol{d} \boldsymbol{\Omega}}
$$

$=$ not dependent on d
draw all possible rays
that start from S and hit σ

$$
F_{2}=F_{1}
$$

$F_{2}=I_{2}$ صб
incoming

$$
\begin{array}{ll}
\Omega=\frac{\sigma}{d^{2}} & \Omega S=\frac{\sigma S}{d^{2}}=\omega \sigma \\
\omega=\frac{S}{d^{2}} & I_{2}=I_{1}
\end{array}
$$

Surface

$$
\begin{aligned}
F_{\nu} & =I_{\nu} \int d \Omega \\
& =I_{\nu} \cos \theta \int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi} d \theta \sin \theta d \phi \\
& =I_{\nu} \cdot 2 \pi \int_{0}^{\frac{\pi}{2}} \cos \theta \sin \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =I_{\nu} \cdot 2 \pi\left[\frac{-\cos ^{2} \theta}{2}\right]_{0}^{\frac{\pi}{2}} \\
& =I_{\nu} \cdot 2 \pi\left[0-\left(-\frac{1}{2}\right)\right] \\
& =\pi I_{\nu}
\end{aligned}
$$

Radiation pressure

pressure is momentum (temporal change of it)

$$
\begin{aligned}
F & =m a \\
& =m \frac{d v}{d t}
\end{aligned}
$$

Radiation pressure

$$
p=\frac{E}{C} \quad \text { momentum of photon }
$$

$$
\begin{aligned}
& \text { force } \\
& \begin{aligned}
& F=1 \cdot 2 \pi \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta \sin \theta d \theta \\
&=1 \cdot 2 \pi\left[\frac{-\cos ^{3} \theta}{3}\right]_{0}^{\frac{\pi}{2}} \\
&=1 \cdot 2 \pi\left[0-\left(-\frac{1}{3}\right)\right] \\
&=\frac{2 \pi}{3 c} I \quad \\
&(\cos \theta)^{\prime}=-\sin \theta d \theta \\
&\left.\begin{array}{l}
\text { it is actually } \\
\text { why? }
\end{array}\right)^{\prime}=-\cos ^{2} \theta \sin \theta d \theta \\
& 3 c
\end{aligned}
\end{aligned}
$$

I_{ν} vs u_{v}
intensity energy density

$d E_{v}=I_{v} d A d t d \Omega d v$

$\left[\mathrm{cm}^{-2}\right]\left[\mathrm{s}^{-1}\right]\left[\mathrm{str}{ }^{-1}\right]\left[\mathrm{Hz}^{-1}\right]$

$d E_{v}=u_{\nu} d v d v$

[$\left.\mathrm{cm}^{-3}\right]\left[\mathrm{Hz}^{-1}\right]$

$$
u_{\nu}=\frac{4 \pi}{c} I_{\nu}
$$

$$
p=\frac{4 \pi}{3 c} l
$$

2 check if the unit is consistent

What is spectrum?

Spectral Continuum + Features
 absorption / emission
 atom
 molecules
 high res.
 ice
 dust
 low res.

Exercise today

$\begin{aligned} & 1 \text { it is actually } \\ & \text { why? }\end{aligned}=\frac{4 \pi}{3 c} /$
force $\quad F=1 \cdot 2 \pi \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta \sin \theta d \theta$

2 check if the unit is consistent

$$
p=\frac{u}{3}
$$

