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The theoretical Cluster Mass Function

The mass function describes the number of clusters per unit mass, per
unit redshift as a function of cosmological parameters.
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The theoretical Cluster Mass Function

The mass function describes the number of clusters per unit mass, per
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Now, fitting functions are calibrated
to large N-body dark matter only
simulations (e.g., Tinker et al 2008,
Bhattacharya & Wagner et al 2010)
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Cosmological constraints with many clusters
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Cosmological constraints with many clusters
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Future cluster catalogues

PanStarrs, DES ~100,000 optical
eROSITA ~10,000 X-ray

....................................

~13,000 maxBCG (SDSS DRS)
optically selected clusters:
Rozo et al. 2009



XCS: Identifying and classifying extended sources

Members: Kathy Romer [P.l], E. ]J. Lloyd-Davies, Mark Hosmer, Nicola Mehrtens,
Michael Davidson, Kivanc Sabirli, Robert G. Mann, Matt Hilton, Andrew R. Liddle,
Pedro T. P. Viana, Heather C. Campbell, Chris A. Collins, E. Naomi Dubois, Peter
Freeman, Ben Hoyle, Scott T. Kay, Emma Kuwertz, Christopher ). Miller, Robert
C. Nichol, Martin Sahlen, S. Adam Stanford, John P. Stott

X-ray photon map +
automated pipeline to
detect point sources (red)
extended sources (green).

The extended X-ray emission is produced by a
cluster’s ICM. However, we need optical
identification and redshifts before the fluxes
can be converted to temperatures/masses, and
used for cosmology.

Algorithms paper, Lioyd-Davies et al. 2010
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XCS: Cluster zoo
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XCS: Future Cluster zoos

Pan-STARRS

of : XMMXCSJ075724.84352047.7
and X-ray images and data

T Cluster Zoo with XCS &
i @ e PanStarrs Full sky data

(Johannes, Tommaso,
Jochen + others?)

High redshift optical +
photoz + X-ray masses

HOD, mass-optical
scaling relations for
medium/high redshift
| g X-ray selected clusters,
- with ~temperature/
mass estimates




XCS: Future Cluster zoos
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XCS: Recent achievements

Recent Data release, Mehrtens et al. 2011 _|_I’ -

503 clusters, spanning 0.06<z<1.46
402 have X-ray temperatures -
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XCS: Recent achievements
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Recent Data release, Mehrtens et al. 2011

503 clusters, spanning 0.06<z<1.46
402 have X-ray temperatures o
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XCS: Recent achievements

Recent Data release, Mehrtens et al. 2011 " _l_r -

503 clusters, spanning 0.06<z<1.46
402 have X-ray temperatures o

AR
XMMXCS J2215 .
Was the highest redshift X-ray =
selected cluster, z=1.46 (Stanford et bo 02— o1 o5 __ous o 12 ir
al. 2006, Hilton et al. 2007, 2008) Some xcs pap:a'rs

The Stellar Mass Assembly of Fossil Galaxies:

Harrison et al. arXiv:1202.4450

The interplay between the BCG and the ICM via AGN feedback:
Stott et al. 2012

Predicted overlap with the Planck Clusters:

Viana et al. 2011

AGN and Starburst Galaxies in XMMXCS J2215.9-1738 at z=1.46:
Hilton et al 2010

The build up of stellar mass in BCG at high redshift:

Stott et al. 2010

Galaxy Morphologies and the Color-Magnitude Relation in J2215 at z=1.4
Hilton et al. 2009

Forecasting cosmological and cluster scaling-relation parameter

— constraints:
Now z=2.07, Gobat et al. 201 | Sahlen ef al. 2008




Individual clusters as extreme objects



Individual clusters as extreme objects

Cluster catalogues with many hundreds or thousands of clusters can be to
constrain cosmology, but so can individual “pink elephant” or extreme clusters.

If observations of such clusters are statistically very unlikely to have occurred,
maybe there is some tension with our understanding of the cosmological model.



Individual clusters as extreme objects

The observations of XMMJ)2235 appeared to cause tension with the LCDM model
+ WMAP priors on the cosmological parameters. A very massive clusters of
galaxies at high redshift, was statistically unlikely to exist.

M»>oo = 7.7 £ B3 % 1014 M@

[ 4 M>po = 77i§§ X 1014 M@
7z =1.

Jee at al 2009



Individual clusters as extreme objects

The observations of XMMJ)2235 appeared to cause tension with the LCDM model
+ WMAP priors on the cosmological parameters. A very massive clusters of
galaxies at high redshift, was statistically unlikely to exist.

M»>oo = 7.7 £ B3 % 1014 M@

[ 4 M>po = 77i§§ X 1014 MQ
7z =1.

How likely was this cluster to exist >M >2?

Jee at al 2009 *How many clusters would do we expect to
find at >M,>z
* The expected number in the full sky ~7.
* Footprint was |1 square degrees XMM X-ray
survey, 0.02% of sky.
* Poisson sample from (0.0002%7) >1 only 1.4%



Individual clusters as extreme objects

The observations of XMMJ)2235 appeared to cause tension with the LCDM model
+ WMAP priors on the cosmological parameters. A very massive clusters of
galaxies at high redshift, was statistically unlikely to exist.

M»>oo = 7.7 £ B3 % 1014 M@

[ 4 M>po = 77i§§ X 1014 MQ
7z =1.

How likely was this cluster to exist >M >2?

Jee at al 2009 e How many clusters would do we expect to
find at >M,>z

Jimenez & Verde 2009 showed * The expected number in the full sky ~7.
fnl~150 relieves tension. * Footprint was |1 square degrees XMM X-ray

Cayon et al 2010 fnl=360,fni>0 SUrvey, 0.02% of sky.
at 95%. * Poisson sample from (0.0002%7) >1 only 1.4%



Observations of more “rare” clusters

SPT CL J0546-5345

M200 < 1015 M@ eExpect to see one
18% of time in the
7= 1.05 >M,>Z sense

Brodwin et al 2010

We just got lucky.



Observations of more “rare” clusters

SPT CL J0546-5345

M200 < 1015 M@ eExpect to see one
18% of time in the
7= 1.05 >M,>Z sense

Brodwin et al 2010
We just got lucky.

SPT-CL J2106-5844
M>oo = 1.27 X 105 4~ M|

7z=1.13 eExpect to see one
5.9% of time in the
Foley et al 201 | >M,>z sense

We got very lucky.



Observations of more “rare” clusters

SPT CL J0546-5345

M»>o0 ~ 101 Ms eExpect to see one
18% of time in the
7= 1.05 >M,>z sense

Brodwin et al 2010

We just got lucky.

SPT-CL J2106-5844

M>oo = 1.27 X 100 41 M!

z=1.13 eExpect to see one
. 5.9% of time in the
Foley et al 201 | >M,>z sense

We got very lucky.

XMMUJ0044.0-2033

14 eExpect to see one
3.5 <M <5 X 107" Mo <yo% of time in the

z = 1:/ >M,>z sense

Santos et al 201 |

Hey, we also got lucky!



The >M,>z analysis (uncalibrated)

Quantifying luck. BH, Jimenez, Verde 201 |

Cluster Name Redshift Mago 10**Mc¢ Method

'WARPSJ1415.143612" 7 1.02 3.3377% Velocity dispersion
'SPT-CLJ2341-5119" * 1.03 () iy Richness
'XLSSJ022403.9-041328" 1.05 1.66F3-32 X-ray
CSPT-CLJ0546-5345" * 1.06 10.07% 50 Velocity dispersion
'SPT-CLJ2342-5411’ * 1.08 4081222 Richness
'RDCSJ0910+-5422" 1.10 6.2813-7° X-ray
'RXJ1053.7+5735(West )" ™ 1.14 20052 X-ray
'XLSSJ022303.0043622° + 1.22 & L) e X-ray
'RDCSJ1252.9-2927 1.23 200572 X-ray
'RXJ0849+4452" * 1.26 < B {1 e X-ray
'RXJ0848+4453" * 1.27 L) B X-ray
—XMMUJ2235.3+2557" + 1.39 Vg X-ray
XMMXCSJ2215.9-1738" + 1.46 35 1) g X-ray
'SXDF-XCLJ0218-0510" * 1.62 0BT X-ray

+ conservative assumptions



The >M,>z analysis (uncalibrated)

Quantifying luck.

Cluster Name Redshift Moo 10

'WARPSJ1415.143612" 7 1
'SPT-CLJ2341-5119" * l
'XLSSJ022403.9-041328" 1
CSPT-CLJOS46-5345" ° ]
'SPT-CLJ2342-5411’ * 1
'RDCSJ09104+5422" 7 1
'RXJ1053.7+5735(West )" 1.
'X1.SSJ022303.0043622° 7 1
'RDCSJ1252.9-2927" 7 l
"RXJO8494-4452° 7 l
‘RXJO848+4453" 7 1
—'XMMUJ2235.3+2557" 7 1
'XMMXCSJ2215.9-1738" 7 |
SXDF-XCLJO218-0510" ]

Y Method

:::::".."':f' \.t'lm':.I.\ l“\]lr'l.\it-ll
7.607 5 e Richness
[.667 752 X-ray
“l_(i";""’ Velocity l“*]l"l'.\iwll
§.081 2 3 Richness
(.28 :~' X-ray
2.007, — X-ray
L) e X-ray
200 = X-ray
< e ) B R X-ray
1 .8(0) 1 .::':’ X-ray
R R X-ray
55 [0 i X-ray
0.57 ':] X-ray

+ conservative assumptions

We assumed that the probability, that an

ensemble of N clusters exists is

Ry = 1lINR;

BH, Jimenez, Verde 201 |
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The >M,>z analysis (uncalibrated)

Quantifying luck.

Cluster Name Redshift Mago 10**Mec
"WARPSJ1415.14+3612" 7
'SPT-CLJ2341-5119" *
'XLSSJ022403.9-041328"
CSPT-CLJO546-5345" *
'SPT-CLJ2342-5411’ *
'"RDCSJ0910+5422"
"RXJ1053.74+5735(West )"

'X1.SSJ022303.0043622°

"RDCSJ1252.9-2927°

"RXJOR494-4452" 7
1453 7
' XMMUJ2235.3+2557 7
'XMMXCSJ2215.9-1738" 7
'SXDF-XCLJ0218-0510" *

"RXJOR48+4

_\I('Ihn(i

1.2 3.331% :‘)' Velocity l“\]ll"l.\it-ll
1.03 7.607 :‘:‘ Richness
1.05 [.667 752 X-ray
1.06 ]||.|.|"; oo Velocity dispersion
1.08 LHN'j'w Richness
1.10 6.287 ??f X-ray
1.14 2.00% 7 X-ray
1.22 10 pres X-ray
1.23 200 = X-ray
1.26 :LTH’?C:' X-ray
1.27 1.80F 30 X-ray
1.39 ) g X-ray
1.46 110775 X-ray
1.62 06T s X-ray

+ conservative assumptions

We assumed that the probability, that an

ensemble of N clusters exists is
Ry = 1INy R;

Using the >M,>z analysis, it appeared as

though these clusters were very unlikely.

1.0
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0.5
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0.7

BH, Jimenez, Verde 201 |
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The >M,>z analysis (uncalibrated)

Quantifying luck. BH, Jimenez, Verde 201 |

Cluster Name Redshift Moo 10 M Method I | | I I
'WARPSJ1415.14-3612" 7 1.02 150 Velocity dispersion ’LOL * Wy A odxox A * A
'SPT-CLJ2341-5119 ° 1.03 00230 Richness - * — fu = 10O
'XLSSJ022403.9-041328" 1.05 1.66+1:15 X-ray ! X =990 ||
CSPT-CLJ0546-5345" * 1.06 10.075 5, Velocity dispersion 0.8 . X X—ray detected 7
'SPT-CLJ2342-5411’ * 1.08 L.08E 223 Richness A& SZ detected |
'RDCSJ0910+5422" 1.10 6.28% 3¢ X-ray

'"RXJ1053.7+5735(West)" - 1.14 2.00 ;' X-ray =06 * .

'XLSSJ022303.0043622° T 1.22 | A0S X-ray o
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'XMMXCSJ2215.9-1738" 1.46 55 ) i X-ray 0.2 .
'SXDF-XCLJ0218-0510" 1.62 0BT 05 X-ray : 5 s |
+ conservative assumptions 00l ]
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We assumed that the probability, that an Cluster Mass [10™ M,]
ensemble of N clusters exists is

Ry = 1IN R;

Using the >M,>z analysis, it appeared as
though these clusters were very unlikely. What’s going on?
1) Non-standard cosmology
2) some misunderstanding of
these probabilities.




The >M,>z analysis (uncalibrated)

Quantifying luck.

'WARPSJ1415.143612° ™ 1.02 3.3373 %5 Velocity dispersion
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Jee et al (201 1) updated
cluster sample.

BH, Jimenez, Verde 201 |
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What’s going on?

1) Non-standard cosmology
2) some misunderstanding of
these probabilities.



The >M,>z analysis

The >M,>z analysis begins by assuming that we would have also observed
any cluster with greater mass, or greater redshift than an observed cluster.
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The >M,>z analysis

The >M,>z analysis begins by assuming that we would have also observed
any cluster with greater mass, or greater redshift than an observed cluster.

An abundance number is calculated

7=2.2
f f m 2 INLs )dm dz
Ms <

Lcluster
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The >M,>z analysis

The >M,>z analysis begins by assuming that we would have also observed
any cluster with greater mass, or greater redshift than an observed cluster.

An abundance number is calculated

7=2.2
f f m Z: INL; )a’m dz
Mg C=Zcluster

We Poisson sample from As many (le4) times.

If the Poisson sample is >1, the cluster
exists in this realisation.

If the Poisson sample is <l the cluster
does not exist in this realisation.
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The >M,>z analysis

The >M,>z analysis begins by assuming that we would have also observed
any cluster with greater mass, or greater redshift than an observed cluster.

An abundance number is calculated

7=2.2
f f m Z: INL; )a’m dz
Mg C=Zcluster

We Poisson sample from As many (le4) times.

If the Poisson sample is >1, the cluster
exists in this realisation.

If the Poisson sample is <l the cluster
does not exist in this realisation.

The “existence probability” R, is given by

R = Number(P?A,) > 1)/10%

Mass [Mg]

>M, >z
10"}
0.80: 115 150 “1.85 2.20
redshift



Unbiasing/Calibrating the >M,>z statistic |

The bias in a nutshell: In previous literature, the quantity R, the probability of finding a
cluster in this >M,>z box, has been used as a proxy for what we actually want to know,
“What is the probability of this cluster existing in our cosmological model?”

When stated like this, one can see that one does not imply the other.
(see Hotchkiss 201 1)
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The bias in a nutshell: In previous literature, the quantity R, the probability of finding a
cluster in this >M,>z box, has been used as a proxy for what we actually want to know,
“What is the probability of this cluster existing in our cosmological model?”

When stated like this, one can see that one does not imply the other.
(see Hotchkiss 201 1)
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Unbiasing/Calibrating the >M,>z statistic |

The bias in a nutshell: In previous literature, the quantity R, the probability of finding a
cluster in this >M,>z box, has been used as a proxy for what we actually want to know,
“What is the probability of this cluster existing in our cosmological model?”

When stated like this, one can see that one does not imply the other.

Why this is wrong

Why should we restrict ourselves to the
easily calculated, but arbitrary, >M,>z
contours, e.g, what dictates that the box
should be placed at right angles to the
(M,z) axis, or have straight instead of
curved boundaries? One could simply
modify the >M,>z box and obtain a new
“existence probability” R* which would be
equally as ‘justified’ as the original
existence probability R.

The Universe doesn’t care what we call
“existence probability”.
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Unbiasing/Calibrating the >M,>z statistic |

The bias in a nutshell: In previous literature, the quantity R, the probability of finding a
cluster in this >M,>z box, has been used as a proxy for what we actually want to know,
“What is the probability of this cluster existing in our cosmological model?”

When stated like this, one can see that one does not imply the other.

Why this is wrong

Why should we restrict ourselves to the
easily calculated, but arbitrary, >M,>z
contours, e.g, what dictates that the box
should be placed at right angles to the
(M,z) axis, or have straight instead of
curved boundaries? One could simply
modify the >M,>z box and obtain a new
“existence probability” R* which would be
equally as ‘justified’ as the original
existence probability R.

The Universe doesn’t care what we call
“existence probability”.

Once the above is understood, we can
calculate the distributions of R found
in simulations, compare it with R
from observations, and then use the
calibrated R to test for tension with
LCDM.

Mass [Me]

ok

0.80

(see Hotchkiss 201 1)

11D

1.50
redshift

;89 298



Notes on the >M,>z statistic

Playing the >M,>z game is only necessary if we don’t know the selection function (sf)
of a survey. For example Jee et al (201 1) published a list of X-ray (actually SNe)
selected clusters with weak lensing masses. They have a very complicated sf. Only
the existence, not the absence, of clusters can constrain cosmology (contrast with

e.g., SPT, maxBCG, R400d).
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Not all X-ray extended sources identified, (noise)
Extended sources not followed up => no redshifts or

mass estimates.
Publication bias; the most interesting are reported.

In the Jee assumed 100 sq. deg. 1<z<2.2,
observed ~20’s M<lel4 clusters but we

expect ~600 (WMAP 7)



Notes on the >M,>z statistic

Playing the >M,>z game is only necessary if we don’t know the selection function (sf)
of a survey. For example Jee et al (201 1) published a list of X-ray (actually SNe)
selected clusters with weak lensing masses. They have a very complicated sf. Only
the existence, not the absence, of clusters can constrain cosmology (contrast with

e.g., SPT, maxBCG, R400d).

Not all X-ray extended sources identified, (nhoise) % Edd bias R<0.1 3.61%
Extended sources not followed up => no redshifts or || x Edd bies R<0.01 0,66%

mass estimates.
Publication bias; the most interesting are reported.
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In the Jee assumed 100 sq. deg. 1<z<2.2,
observed ~20’s M<lel4 clusters but we

expect ~600 (WMAP 7)
But we still want to infer something!
Identify sets of “rare” simulated clusters
assuming LCDM (e.g. low R values) and
compare their R values with the observed
clusters.
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Playing the >M,>z game is only necessary if we don’t know the selection function (sf)
of a survey. For example Jee et al (201 1) published a list of X-ray (actually SNe)
selected clusters with weak lensing masses. They have a very complicated sf. Only
the existence, not the absence, of clusters can constrain cosmology (contrast with

e.g., SPT, maxBCG, R400d).

Not all X-ray extended sources identified, (nhoise) % Edd bios R<0.1 3.61%
Extended sources not followed up => no redshifts or || x Edd bies R<0.01 0,66%

mass estimates.
Publication bias; the most interesting are reported.
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compare their R values with the observed

clusters.
o Lowest R clusters -> LP

Moss [h™" Mg)

1,0 2 1,4 1,6 1,8 2,0 ¥ Ji
Redshift



Notes on the >M,>z statistic

Playing the >M,>z game is only necessary if we don’t know the selection function (sf)
of a survey. For example Jee et al (201 1) published a list of X-ray (actually SNe)
selected clusters with weak lensing masses. They have a very complicated sf. Only
the existence, not the absence, of clusters can constrain cosmology (contrast with

e.g., SPT, maxBCG, R400d).

Not all X-ray extended sources identified, (noise)
Extended sources not followed up => no redshifts or

mass estimates.
Publication bias; the most interesting are reported.

L l Ll L) L l L) A L] l A L L] l L} L] L) ] L]

» Edd bios R<0.1 3.61%
% Edd bias R<0.01 0,66%

In the Jee assumed 100 sq. deg. 1<z<2.2,
observed ~20’s M<lel4 clusters but we

expect ~600 (WMAP 7)
But we still want to infer something!
Identify sets of “rare” simulated clusters

assuming LCDM (e.g. low R values) and
compare their R values with the observed

clusters.
o Lowest R clusters -> LP

Moss [h™' Mg)

1,0 2 1,4 1,6 1,8 2.0 » i
Redshift

Note: To calibrate >M,>z analysis using simulated clusters, we must
assume which part of the (M,z) plane has been “observed” (i.e., a sf).

Ongoing work to recover cosmological constraints using weaker
assumptions about the selection function (Hoyle et al, in prep)



Updated analysis/comparison: data

Cluster Name Redshift Mago 10'*M:, Method R Mass reference

Observations progressed RCS0221-0321 1.02 1\()‘-‘" WL 0.992 [15]
Jee etal 2009,2011, Santos MR n om0
UL ZLZU-UDD. a 4.0 Vi1, Ul 2

et al 2011, Stott et al 2010 RCS2345-3632 1.04 2. 10” WL 0.989 [15]
XLSSJ022403.9-041328* 1.05 1.667 532  X-ray 0.997 [31]

RCS2156-0448  1.07 1.801759 WL 0.916 [15]

X-ray survey footprint of RCS0337-2844 1.10 4.9()?;’-_%{;1 WL 0.567 [15]
100 sq. deg. (jee et al RDCSJ0910+5422 1.11 5.()0};;,{;1 WL 0.595 [15]
[SCSJ1432+43332 1.11 1.90%; o0 WL 0.603 [15]

201 I) XMMUJ2205-0159 1.12 3007 oo WL 0.888 [15]
RXJ1053.745735( West) 1.14 2.00% ;08 X-ray 0.989 31]

Redshift range of Jee XLSSJ0223-0436 122 7.40t%%° WL 0.119 [15]
1.0<z<2.2 RDCSJ1252-2927 1.24 6.80" 5 50 WL 0.094 [15]
ISCSJ1434+-3427 1.24 2.501775 WL 0.806 [15]

. ISCSJ14294-3437 1.26 5407 o0 WL 0.327 [15]
Still use the (>M,>z) R RDCSJ0849+4452  1.26  4.40711° WL 0517 [15]
statistic but calibrate to RDCSJ0848+4453  1.27  3.1071%° WL 0.839 [15]
simulations. [SCSJ1432+4-3436 1.35 530777, WL 0.265 [15]
1SCSJ1434+3519 1.37 2:80% 0 5 WL 0.636 [15]

XMMUJ2235-2557 1.39 | RS WL 0.035 [15]

ISCSJ1438+-3414 1.41 L 5 L] Ky WL 0.584 [15]

XMMXCSJ2215-1738 1.46 4.30732°0 WL 0.335 [15]

XMMUJ0044.0-2033** 1.57 4.25%0-7%  X-ray 0.152 [30]

Marginalize over the mass error by sampling from each clusters’ mass and error
many times and calculate R for each sampled mass. This produces a distribution
in R for each cluster.

BH, Jimenez, Verde, Hotchkiss (2011 JCAP)



Correct analysis/comparison: simulations

1) 450 sets of simulations made EL " E1F RXT RER L T X @ |

from Poisson sampling the » No Edd b[as R<0.1 1,417
mass function, varying | | % No Edd bigs R<0.01 0,17%
cosmological parameters, » "

assuming WMAP7 priors.
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Correct analysis/comparison: simulations

1) 450 sets of simulations made
from Poisson sampling the
mass function, varying
cosmological parameters, | % Edd bigs R<0.1 3.81%
assuming WMAP7 priors. | % Edd bios R<0.01 0,66%

2) Assign each simulated
cluster a 40% mass error and
re-sampled the cluster mass.
This accounts for the
Eddington bias (see
Mortonson et al 201 1).

Mace Th=1 121

3) Calculate R for each
cluster, identify the LP
clusters in each simulation.

8 1,2 1,4 1,6 1,8 2,0 2,

Radebiift




ison with sim.

Calibrated analysis/compar

We assumed that the
combined R values, for an
ensemble of N clusters is

Ry = 1IN R;

Asuanba. g

~
23

lag,q R



Calibrated analysis/comparison with sim.

We assumed that the

combined R values, foran = |[[ceceaa 23 LP

ensemble of N clusters is et ol

Ry = 1IN R;

Using the >M,>z analysis, the
observed clusters are in good
agreement with LCDM.
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Calibrated analysis/compar

We assumed that the
combined R values, for an
ensemble of N clusters is

Asuanba. g

Ry = 1IN R;

observed clusters are in good

Using the >M,>z analysis, the
agreement with LCDM.
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Calibrated analysis/comparison with sim.

We assumed that the
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Main results

The calibrated R (>M,>z) statistic for the
observed ensemble of clusters are consistent
with R values for simulated clusters drawn from
LCDM mass function, once the Eddington bias is
considered.

However, we are be too conservative in the
modeling of the survey geometry. More work
needed to understand what this means for
LCDM.



Related work, exclusion curves

Curves in the mass-redshift plane can be used to sighal tension with
individual ‘rare’ clusters, but can rule out a cosmological model. The
(biased) idea was introduced in Mortonson et al (2010).

Harrison & Hotchkiss 2012
released (de-biased) code to
create these curves in future
claims of tension with
individual clusters.

They also need to make
assumptions about survey
geometry.

The observed clusters provide
no tension, e.g. with exclusion
curves, with LCDM
*assuming®* the survey
geometries examined here.

16.5¢

Sl‘ —
W =)

Mass [log,o(Mg/h)]

i

14.5 ‘ ‘
0 0.5 1 1.5 2

Figure 4. Rareness of currently observed clusters (using the
> mdV measure described in the text) corresponding to an ideal-
ised all-sky survey which is complete at masses above mmin =
1014 Mg /h out to z = 2.

Harrison & Hotchkiss
arXiv: 1210.4369



Summary

* Individual “extreme” clusters can be used to rule out cosmological
models

*Showed why the common measure of rareness (>M,>z) is meaningless
unless calibrated to simulations.
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*Showed why the common measure of rareness (>M,>z) is meaningless
unless calibrated to simulations.

* Compiled a list of high-redshift (z>1) massive (M>10414 solar mass) clusters.
*Used the Jee et al survey geometry (showed tension).

* Compared observed clusters with distributions of simulated clusters
including the Eddington bias.

*Showed agreement with LCDM, using the >M,>z statistic.



Summary

* Individual “extreme” clusters can be used to rule out cosmological

models
*Showed why the common measure of rareness (>M,>z) is meaningless

unless calibrated to simulations.

* Compiled a list of high-redshift (z>1) massive (M>10414 solar mass) clusters.

*Used the Jee et al survey geometry (showed tension).
* Compared observed clusters with distributions of simulated clusters

including the Eddington bias.
*Showed agreement with LCDM, using the >M,>z statistic.

* More high-redshift, massive clusters are being found ~weekly. Planck/
XCS/Panstarrs/DES, and will likely be found with future surveys

(eROSITA).

*In these cases when high z selection functions can be difficult to
quantify. we have begun to build a statistical framework to understand
what individual or ensembles of clusters tell us about cosmological

models.

Follow up work: Panstarrs/XCS/other matching, and to use samples of
clusters with an unknown selection function to bound cosmological

parameters (in prep.)



z<[|.6 survey geometry

All clusters have z<I1.6. Perhaps we were too conservative, comparing the
observed clusters (z<1.6) with simulated clusters between [1<z<2.2. We now

modify the assumed survey geometry, by imposing a hard cut to the
simulations.
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z<[|.6 survey geometry

All clusters have z<I1.6. Perhaps we were too conservative, comparing the
observed clusters (z<1.6) with simulated clusters between [1<z<2.2. We now
modify the assumed survey geometry, by imposing a hard cut to the
simulations.
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The comparison between observations and
z<1.6 simulations still show consistency



z<[|.6 survey geometry

All clusters have z<I1.6. Perhaps we were too conservative, comparing the
observed clusters (z<1.6) with simulated clusters between [1<z<2.2. We now
modify the assumed survey geometry, by imposing a hard cut to the

simulations.
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Remember, (once calibrated) exclusion curves can be used to test for
tension using only one cluster.
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>M,>z exclusion curves (calibrated)

Remember, (once calibrated) exclusion curves can be used to test for

tension using only one cluster.

Steps to calibrate exclusion curves
e Assume a sf /geometry

e Perform Poisson samples
(simulations) of the cluster mass
function
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>M,>z exclusion curves (calibrated)

Remember, (once calibrated) exclusion curves can be used to test for

tension using only one cluster.

Steps to calibrate exclusion curves
e Assume a sf /geometry

e Perform Poisson samples
(simulations) of the cluster mass
function

e Draw a line which correctly
excludes (e.g.) 95% of the
simulated clusters

Mass [h™7 Mg]
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>M,>z exclusion curves (calibrated)

Remember, (once calibrated) exclusion curves can be used to test for
tension using only one cluster.

Steps to calibrate exclusion curves —— T T

¢ Assume a sf /geometry Mortonson
Y57 Exclusion | m==meescee=as
¢ Perform Poisson samples * |95% Exclusion |l

(simulations) of the cluster mass
function

e Draw a line which correctly
excludes (e.g.) 95% of the
simulated clusters

Mass [h™7 Mg]

But, this line is arbitrary!

Any inferred exclusion significance
must be quoted together with the
metric. Redshift

(see also Hotchkiss 201 1, and Harrison
& Hotchkiss 1210.4369)



The CMF with cosmological parameters/models
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Shapiro, BH, et al 2010


http://arxiv.org/find/astro-ph/1/au:+Shapiro_C/0/1/0/all/0/1
http://arxiv.org/find/astro-ph/1/au:+Shapiro_C/0/1/0/all/0/1

The CMF with cosmological parameters/models
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Exclusion curves (uncalibrated)

Furthermore, we can define lines of constant R (>M,>z) in the mass-
redshift plane, and use them to create exclusion curves. The exclusion
curves can only be used for individual ‘rare’ clusters, but can rule out a

cosmological model (Mortonson et al 2010).



Exclusion curves (uncalibrated)

Furthermore, we can define lines of constant R (>M,>z) in the mass-
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Cluster name

I'ABLE 3

DiSCOVERY PROBABILITY OF GALAXY CLUSTERS

Within Parent Survey
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More >M,>z analysis (uncalibrated)

Jee et al 2011

Improved (HST WL)
cluster mass estimates &
less conservative (more
realistic) survey
footprints.



More >M,>z analysis (uncalibrated)

I'ABLE 3
DiSCOVERY PROBABILITY OF GALAXY CLUSTERS

Cluster name

Within Parent Survey
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More >M,>z analysis (uncalibrated)

I'ABLE 3
DiSCOVERY PROBABILITY OF GALAXY CLUSTERS
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XCS: Comparison with other X-ray surveys
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XCS: Comparison with other X-ray surveys
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The Future
e XXMM lifetime extended to work past 2013

¢ Analyzing more XMM photon maps
e Obtaining more cluster redshifts

e Future data releases soon
eCosmology from XCS DRI

Data available: http://www.xcs-home.org/
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Galaxy cluster

From Wikipedia, the free encyclopedia Name of the Mass
components fraction
It has been suggested that this article or section be merged into Galaxy gr -
Y S . Y9 Galaxies 1%
(Discuss) Proposed since January 2012.
A galaxy cluster is a structure that consists of hundreds of galaxies bound by gravity.!!) Galaxy Intergalactic gas in ICM 9%
clusters are much larger than galaxy groups. One of the key features of clusters is the Intracluster
medium or ICM. The ICM consists of gas between the galaxies and has a temperature on the order of Dark matter 90%
7-9 keV. Clusters of galaxies should not be confused with star clusters such as open clusters, which
are structures of stars within galaxies, as well as globular clusters, which typically orbit galaxies.
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Galaxy Cluster Abell 2218 HST « WFPC2

CHANDRA X-mAY NASA, A, Frechler and the EHO Team (ST501, STECF) « STSckPROUO0S
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www-xray.ast.cam.ac.uk Foley et al 2012

Why use clusters, when we have WMAP?
Clusters probe the growth of structure, and so are
complementary to geometry probes such as CMB.



