High-redshift, massive, galaxy clusters in LCDM.

Ben Hoyle LMU observatory Raul Jimenez, Licia Verde, ICC University of Barcelona Shaun Hotchkiss University of Helsinki.

Hoyle et al (2011, PRD) & (2011, JCAP) & in prep.

LMU Munich 21/2/2012

Overview

- Observational cosmology
- Galaxy Cluster surveys as cosmological probes
- The XMM Cluster Survey
- Individual Galaxy Clusters as extreme objects
- Early analysis >M,>z analysis & results
- Systematics & bias
- A critical look at exclusion curves
- •A critical look at the >M,>z question
- Updated analysis and results
- Conclusions + future work

The theoretical cluster mass function

The mass function describes the number of clusters per unit mass, per unit redshift as a function of cosmological parameters.

 $n_G(M,z) = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M^2} \left| \frac{\mathrm{d}}{\mathrm{d}\ln M} \ln \sigma_M \right| \nu \exp{-\nu^2/2} . \qquad \nu = \delta_{sc} / \sigma(M,z)$ $\sigma = \int P(k) \hat{W}(kR) k^2 dk,$

> Press & Schecter 1974 and then extended (e.g., Sheth & Tormen 2001)

The theoretical cluster mass function

The mass function describes the number of clusters per unit mass, per unit redshift as a function of cosmological parameters.

$$n_{G}(M, z) = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M^{2}} \left| \frac{\mathrm{d}}{\mathrm{d} \ln M} \ln \sigma_{M} \right| \nu \exp{-\nu^{2}/2}.$$

$$Press exten$$

$$Now, fitting to large N-be simulations of the large N-be simulation of the large N-be simulations of the large N-be simplications of the large N-be simulations of the larg$$

$$\nu = \delta_{sc} / \sigma(M, z)$$

$$\sigma = \int P(k) \hat{W}(kR) k^2 dk,$$

Press & Schecter 1974 and then extended (e.g., Sheth & Tormen 2001)

Now, fitting functions are calibrated to large N-body dark matter only simulations (e.g., Jenkins et al 2002, Tinker et al 2008)

$$f(\sigma) = A\left[\left(\frac{\sigma}{b}\right)^{-a} + 1\right] e^{-c/\sigma^2} \qquad \frac{dn}{dM} = f(\sigma)\frac{\bar{\rho}_m}{M}\frac{d\ln\sigma^{-1}}{dM}.$$

The theoretical cluster mass function

The mass function describes the number of clusters per unit mass, per unit redshift as a function of cosmological parameters.

$$n_G(M, z) = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M^2} \left| \frac{\mathrm{d}}{\mathrm{d} \ln M} \ln \sigma_M \right| \nu \exp{-\nu^2/2}.$$

$$\underset{O}{=} \frac{1}{\sqrt{\frac{2}{\pi}}} \frac{1}{\sqrt{\frac{2}{\pi}}} \frac{1}{M^2} \left| \frac{\mathrm{d}}{\mathrm{d} \ln M} \ln \sigma_M \right| \nu \exp{-\nu^2/2}.$$

$$\underset{O}{=} \frac{1}{\sqrt{\frac{2}{\pi}}} \frac{1}{$$

$$v = \delta_{sc} / \sigma(M, z)$$

$$\sigma = \int P(k) \hat{W}(kR) k^2 dk,$$

ess & Schecter 1974 and then tended (e.g., Sheth & Tormen 2001)

ng functions are calibrated I-body dark matter only ns (e.g., Jenkins et al 2002, al 2008)

$$\left(-\frac{1}{2}\right)^{-a} + 1 \left[e^{-c/\sigma^2} - \frac{dn}{dM} = f(\sigma) \frac{\overline{\rho}_m}{M} \frac{d\ln\sigma^{-1}}{dM} \right].$$

Corasaniti & Ixandra Achitouv (PRD submitted) arXiv: 1107.1251 (& 1012.3468)

The CMF with cosmological parameters/models

Shapiro, BH, et al 2010

The CMF with cosmological parameters/models

Cosmological constraints with many clusters

~100 X-ray selected clusters: Vikhlinin et al. 2008

~13,000 maxBCG (SDSS DR5) optically selected clusters: Rozo et al. 2009

Cosmological constraints with many clusters

~100 X-ray selected clusters: Vikhlinin et al. 2008

~13,000 maxBCG (SDSS DR5) optically selected clusters: Rozo et al. 2009

Other cluster catalogues Now available: gmBCG ~55,000 (SDSS DR7) Gangkofner, Giannantonio, Weller... in prep XMM Cluster Survey ~500 (XCS DR1)

```
Future:
DES ~100,000 optical
eROSITA ~10,000 X-ray
```

XCS: Identifying and classifying extended sources

Members: Kathy Romer [P.I], E. J. Lloyd-Davies, Mark Hosmer, Nicola Mehrtens, Michael Davidson, Kivanc Sabirli, Robert G. Mann, Matt Hilton, Andrew R. Liddle Pedro T. P. Viana, Heather C. Campbell, Chris A. Collins, E. Naomi Dubois, Peter Freeman, Ben Hoyle, Scott T. Kay, Emma Kuwertz, Christopher J. Miller, Robert C. Nichol, Martin Sahlen, S. Adam Stanford, John P. Stott

X-ray emission (from the ICM) is the smoking gun, but it's not enough. Need optical identification and redshifts (X-ray redshift difficult) before the fluxes can be converted to temperatures/masses.

Algorithms paper, Lloyd-Davies et al. 2010

X-ray photon map + automated pipeline to detect point sources (red) and extended sources (green).

XCS:

Cluster zoo

Part	1:View the images of: XMMXCSJ075724	.8+392047.7	
Ph	otometric images and X-ray images a	ind data	
	Image Width (Ar	cmins) tricks contou	ITS IAPA IMM
X-ray Soft counts 200.942	Sbys	for for	[Xapa] [fov]
	120/12	Ioff Ioni	[Xapa] [fov]
	120912	1001 100	[Aapa] [IOV]
		and the second second	
승규는 것을 가지 않는 것을 많은 것을 하는 것을 했다.			1.1
		Contraction of the	I COMPANY
			10 D. O. O.
~ ~ `		- 10 C	1.000
$(\cdot (\cap))$		A COMPANY OF A	1000
n	and the second se	B-100-11-1	1000
		Della Production	1000
		Contraction of the local distance of the loc	100.000
			1.000
		100	1.10
	A DECEMBER OF		
			1.000
		No. of the local sector of	- 100
		10 C - 1	- 22.6
	the second se	Contraction of the local division of the loc	- 800
	COLORED IN COLORED	COLUMN AND A	1000
		And the second se	 ••••••••••••••••••••••••••••••••••••
		State of the local division of the local div	20 M W
		CONTRACTOR OF A	0.00
		COLUMN TWO IS NOT	
		The State of the	1000

XCS:

Cluster zoo

Part 1: View the imag	es of: XMMXCSJ07572	4.8+392047.7		
Photometric image	s and X-ray images	and data		
	Image Width ()	arcmins) trick	scontou	rs Iapa IN
-ray Soft counts 200.942	3by3	[00]	[on]	[Xapa] [fo
	6by6	[00]	[on]	[Xapa] [fo
	12by12	[off]	[on]	[Xapa] [fo
				100
				1.00
그는 것은 것이 잘 아파 같은 것은 것을 가지 않는 것이 없다.		C I D I H I H I H I H I H I H I H I H I H		
$ \land \land$		1. AL 164		0 - CZ
	1000000	- C - C - C - C - C - C - C - C - C - C	10.1	E 82
	and the second se	100.000	1.04	
	- MARKON	10 Dec 10 de ce	1000	0.000
	10 C C C C C C C C C C C C C C C C C C C	10.000	10.11	
	the second second	10 M 10 M 10		100
	A DECISION OF A DECISIONO OF A DECI		10 C	100.0
	100 C	1000		1.100
	and the second second	1000		1.1
	COLUMN TWO IS NOT	1000		- 102
	- CERCOR			- 10
				- 10
	Contraction Contraction			- 196
	 Manufacture 	100 C		- 66
	- 1	Contraction of the local division of the loc		100
	And in case of the local division of the loc	COMPLEX IN	Cost. 1	1000
		N 100	20 M	50 M
~ / /		COLUMN 1	1000	et 18
				100
		10.00 B	1.00	
		10000	10 A 10	
F		A DESCRIPTION OF		

FOV

Redshift distribution of all galaxies within twice the x-ray extent of the XCS cluster candidate CMR diagram of all galaxies chosen to be part of the cluster and field within twice the x-ray compared to the normalised field distribution. Each galaxy is assumed to lie on a red sequence extent of the XCS cluster candidate and their best fit red sequence relation. Each galaxy is assumed to be a red sequence galaxy.

Redshift histograms Color-Magnitude diagrams

XCS:

Cluster zoo

X-ray images and data (mage Width (Arcmins) tricks contours Kaps XMM FeW (by3 foff fon Kaps) fov (by6 foff fon Kaps) fov (2by12 foff fon Kaps) fov (100 for the second secon Cluster Zoo with XCS & PanStarrs data (Johannes Koppenhoefer, Tommasco Gianntonion, Jochen Weller + others?)

High redshift optical + photoz + X-ray masses

HOD, mass-optical scaling relations

Redshift distribution of all galaxies within twice the x-ray extent of the XCS cluster candidate CMR diagram of all galaxies chosen to be part of the cluster and field within twice the x-ray compared to the normalised field distribution. Each galaxy is assumed to lie on a red sequence extent of the XCS cluster candidate and their best fit red sequence relation. Each galaxy is assumed to be a red sequence galaxy.

Redshift histograms Color-Magnitude diagrams

XCS: Recent achievements

Recent Data release, Mehrtens et al. 2011

503 clusters, spanning 0.06<z<1.46 402 have X-ray temperatures

XCS: Recent achievements

Recent Data release, Mehrtens et al. 2011

503 clusters, spanning 0.06<z<1.46 402 have X-ray temperatures

XMMXCS J2215 Was the highest redshift X-ray selected cluster, z=1.46 (Stanford et al. 2006, Hilton et al. 2007, 2008)

XCS: Recent achievements

Recent Data release, Mehrtens et al. 2011

503 clusters, spanning 0.06<z<1.46 402 have X-ray temperatures

XMMXCS J2215 Was the highest redshift X-ray selected cluster, z=1.46 (Stanford et al. 2006, Hilton et al. 2007, 2008)

Now z=2.07, M~5-8.10^13 SolMass, Gobat et al. 2011

Some XCS papers

The Stellar Mass Assembly of Fossil Galaxies: Harrison et al. arXiv:1202.4450 The interplay between the BCG and the ICM via AGN feedback: Stott et al. 2012 **Predicted overlap with the Planck Clusters:** Viana et al. 2011 AGN and Starburst Galaxies in XMMXCS J2215.9-1738 at z=1.46: Hilton et al 2010 The build up of stellar mass in BCG at high redshift: Stott et al. 2010 Galaxy Morphologies and the Color-Magnitude Relation in J2215 at z=1.46: Hilton et al. 2009 Forecasting cosmological and cluster scaling-relation parameter constraints: Sahlen et al. 2008

XCS: Comparison with other X-ray surveys

XCS: Comparison with other X-ray surveys

The Future

- •XMM lifetime extended to work past 2013
- Analyzing more XMM photon maps
- •Obtaining more cluster redshifts
- •Future data releases soon
- Cosmology from XCS DRI

Data available: <u>http://www.xcs-home.org</u>/

Cluster catalogues with many hundreds or thousands of clusters can be to constrain cosmology, but so can individual "pink elephant" or extreme clusters.

If observations of such clusters are statistically very unlikely to have occurred, maybe there is some tension with our understanding of the cosmological model.

The observations of XMMJ2235 appeared to cause tension with the LCDM model + WMAP priors on the cosmological parameters. A very massive clusters of galaxies at high redshift, was statistically unlikely to have been observed.

Jee at al 2009

The observations of XMMJ2235 appeared to cause tension with the LCDM model + WMAP priors on the cosmological parameters. A very massive clusters of galaxies at high redshift, was statistically unlikely to have been observed.

 $M_{200} = 7.7 \pm 1.3 \times 10^{14} M_{\odot}$ $M_{200} = 7.7^{+4.4}_{-3.3} \times 10^{14} M_{\odot}$ z = 1.4

How likely was this cluster to exist >M >z?

 How many clusters would do we expect to find at >M,>z

- The expected number in the full sky ~7.
- Footprint was II square degrees XMM X-ray survey, 0.02% of sky.
- Poisson sample from (0.0002*7) > I only 1.4%

The observations of XMMJ2235 appeared to cause tension with the LCDM model + WMAP priors on the cosmological parameters. A very massive clusters of galaxies at high redshift, was statistically unlikely to have been observed.

Jee at al 2009

Jimenez & Verde 2009 showed fnl~150 relieves tension. Cayon et al 2010 fnl=360,fnl>0 at 95%

$$M_{200} = 7.7 \pm 1.3 \times 10^{14} M_{\odot}$$

 $M_{200} = 7.7^{+4.4}_{-3.3} \times 10^{14} M_{\odot}$
 $z = 1.4$

How likely was this cluster to exist >M >z?

• How many clusters would do we expect to find at >M,>z

- The expected number in the full sky ~7.
- Footprint was II square degrees XMM X-ray survey, 0.02% of sky.
- Poisson sample from (0.0002*7) > I only 1.4%

Observations of more "rare" clusters

f: Optical 4' × 4' color image (grz) of SPT-CL J0546-5345, with SZE significance contours overlaid (S/N = 2, 4, and 6). for optical (ri) + BtAC (3.6 μ m) image of SPT-CL J0546-5345, with Chasdra X-ray contours overlaid (0.25, 0.4, 0.85 and r' × 2" pixel per 55.6 ks in the 0.5-2 keV band). North is up, east is to the left. Due to its high angular resolution, Cheedra w substructure to the SW, which may be evidence of a possible merger. These images highlight the importance of IRAC ying the galaxies in high redshift, optically faint clusters. Spectroscopic early-type (late-type) members are indicated with reles. Green squares show the spectroscopic non-members.

SPT CL J0546-5345 $M_{200} \sim 10^{15} M_{\odot}$ z = 1.05

Brodwin et al 2010

•Expect to see one 18% of time in the >M,>z sense

We just got lucky.

Observations of more "rare" clusters

(a) of SPT.CL 10546,5345. with SZE image of SPT-CL 30546-5345, with Chandra X-ray contours overlaid (0.25, 0.4, 0.85 and er 55.6 ks in the 0.5-2 keV band). North is up, east is to the left. Due to its high angular resolution, Chaudru e to the SW, which may be evidence of a possible merger. These images highlight the importance of IRAC high redshift, optically faint clusters. Spectroscopic early-type (late-type) members are indicated is show the spectroscopic non-members

SPT CL J0546-5345 $M_{200} \sim 10^{15} M_{\odot}$ z = 1.05

Brodwin et al 2010

• Expect to see one 18% of time in the >M,>z sense

We just got lucky.

SPT-CL J2106-5844 Ι

$$M_{200} = 1.27 \times 10^{15} \, h^{-1} \, M_{\odot}$$

z = 1.13

Foley et al 2011

• Expect to see one 5.9% of time in the >M,>z sense We got very lucky.

Observations of more "rare" clusters

h: Optical 4' × 4' color image (grz) of SPT-CL J0546-5345, with SZE significance contours overlaid (S/N = 2, 4, and 6), for optical (ri)+ BAC (3.6 µm) image of SPT-CL J0546-5345, with Chaudru X-ray contours overlaid (0.25, 0.4, 0.85 and $7' \times 2''$ pixel per 55.6 ks in the 0.5–2 keV band). North is up, east is to the left. Due to its high angular resolution, Chemdra v substructure to the SW, which may be evidence of a possible merger. These images highlight the importance of BACC ying the galaxies in high redshift, optically faint clusters. Spectroscopic early-type (late-type) members are indicated with reles. Green squares show the spectroscopic non-members.

SPT CL J0546-5345 $M_{200} \sim 10^{15} M_{\odot}$ z = 1.05

Brodwin et al 2010

•Expect to see one 18% of time in the >M,>z sense

We just got lucky.

SPT-CL J2106-5844

$$M_{200} = 1.27 \times 10^{15} \, h^{-1} \, M_{\odot}!$$

z = 1.13

Foley et al 2011

Expect to see one
5.9% of time in the
>M,>z sense
We got very lucky.

XMMUJ0044.0-2033

 $3.5 < M < 5 \times 10^{14} M_{\odot}$ z = 1.57

Santos et al 2011

•Expect to see one <10% of time in the >M,>z sense

Hey, we also got lucky!

The >M,>z analysis (uncalibrated)

Quantifying luck.

BH, Jimenez, Verde 2011

Cluster Name 1	Redshift	$M_{200} \ 10^{14} M_{\odot}$	Method
°SJ1415.1+3612' +	1.02	$3.33^{+2.83}_{-1.80}$	Velocity dispersion
Г-CLJ2341-5119'*	1.03	$7.60^{+3.94}_{-3.94}$	Richness
022403.9-041328' +	1.05	$1.66^{+1.15}_{-0.38}$	X-ray
Г-CLJ0546-5345'*	1.06	$10.0^{+6.00}_{-4.00}$	Velocity dispersion
Г-CLJ2342-5411'*	1.08	$4.08^{+2.53}_{-2.53}$	Richness
OCSJ0910+5422' +	1.10	$6.28^{+3.70}_{-3.70}$	X-ray
3.7+5735(West)' +	1.14	$2.00^{+1.00}_{-0.70}$	X-ray
022303.0043622' +	1.22	$1.10^{+0.60}_{-0.40}$	X-ray
CSJ1252.9-2927' +	1.23	$2.00^{+0.50}_{-0.50}$	X-ray
RXJ0849+4452' +	1.26	$3.70^{+1.90}_{-1.90}$	X-ray
RXJ0848+4453' +	1.27	$1.80^{+1.20}_{-1.20}$	X-ray
UJ2235.3+2557' +	1.39	$7.70^{+4.40}_{-3.10}$	X-ray
CSJ2215.9-1738' +	1.46	$4.10^{+3.40}_{-1.70}$	X-ray
XCLJ0218-0510' +	1.62	$0.57_{-0.14}^{+0.14}$	X-ray

+ conservative assumptions

The >M,>z analysis (uncalibrated)

Quantifying luck.

Cluster Name Redshift M₂₀₀ 10¹⁴M_☉ Method $3.33^{+2.83}_{-1.80}$ 'WARPSJ1415.1+3612' + Velocity dispersion 1.02 $7.60^{+3.94}_{-3.94}$ 'SPT-CLJ2341-5119' * Richness 1.03 $1.66^{+1.15}_{-0.38}$ 'XLSSJ022403.9-041328' + 1.05X-ray $10.0^{+6.00}_{-4.00}$ →'SPT-CLJ0546-5345' * 1.06Velocity dispersion $4.08^{+2.53}_{-2.53}$ 'SPT-CLJ2342-5411' * Richness 1.08 6.28 + 3.70'RDCSJ0910+5422' + 1.10 X-ray -3.70 $2.00^{+1.00}$ 'RXJ1053.7+5735(West)' + 1.14 X-ray -0.70 $1.10^{+0.60}$ 'XLSSJ022303.0043622' + 1.22 X-rav -0.40 $2.00^{+0.50}$ 'RDCSJ1252.9-2927' + 1.23X-ray $3.70^{+1.90}$ 'RXJ0849+4452' + 1.26X-ray -1.90 $1.80^{+1.20}$ 'RXJ0848+4453' + 1.27X-ray -1.20 $7.70^{+4.40}$ →'XMMUJ2235.3+2557' + 1.39X-ray -3.10 $4.10^{+3.40}$ 'XMMXCSJ2215.9-1738' + 1.46 X-ray -1.70 $0.57^{+0.14}_{-0.14}$ 'SXDF-XCLJ0218-0510' + 1.62X-ray

+ conservative assumptions We assumed that the probability, that an ensemble of N clusters exists is

$R_N = \Pi_N R_i$

BH, Jimenez, Verde 2011

The >M,>z analysis (uncalibrated)

Quantifying luck.

Cluster Name	Redshift	$M_{200} \ 10^{14} M_{\odot}$	Method
'WARPSJ1415.1+3612' +	1.02	$3.33^{+2.83}_{-1.80}$	Velocity dispersion
'SPT-CLJ2341-5119' *	1.03	$7.60^{+3.94}_{-3.94}$	Richness
'XLSSJ022403.9-041328' +	1.05	$1.66^{+1.15}_{-0.38}$	X-ray
$\rightarrow `\!\mathrm{SPT}\text{-}\mathrm{CLJ0546}\text{-}5345'$ *	1.06	$10.0^{+6.00}_{-4.00}$	Velocity dispersion
'SPT-CLJ2342-5411' *	1.08	$4.08^{+2.53}_{-2.53}$	Richness
'RDCSJ0910+5422' +	1.10	$6.28^{+3.70}_{-3.70}$	X-ray
'RXJ1053.7+5735(West)' +	1.14	$2.00^{+1.00}_{-0.70}$	X-ray
'XLSSJ022303.0043622' +	1.22	$1.10^{+0.60}_{-0.40}$	X-ray
'RDCSJ1252.9-2927' +	1.23	$2.00^{+0.50}_{-0.50}$	X-ray
'RXJ0849+4452' +	1.26	$3.70^{+1.90}_{-1.90}$	X-ray
'RXJ0848+4453' +	1.27	$1.80^{+1.20}_{-1.20}$	X-ray
\rightarrow 'XMMUJ2235.3+2557' $^+$	1.39	$7.70^{+4.40}_{-3.10}$	X-ray
'XMMXCSJ2215.9-1738' +	1.46	$4.10^{+3.40}_{-1.70}$	X-ray
'SXDF-XCLJ0218-0510' +	1.62	$0.57^{+0.14}_{-0.14}$	X-ray

+ conservative assumptions We assumed that the probability, that an ensemble of N clusters exists is

 $R_N = \Pi_N R_i$

Using the >M,>z analysis, it appeared as though these clusters were very unlikely. Possible explanations:

 $f_{\rm NL} > 123; \quad \sigma_8 \ge 0.9;$

BH, Jimenez, Verde 2011

The >M,>z analysis begins by assuming that we would have also observed any cluster with greater mass, or greater redshift than an observed cluster.

The >M,>z analysis begins by assuming that we would have also observed any cluster with greater mass, or greater redshift than an observed cluster.

An abundance number is calculated

$$A_s = \int_{M_s}^{\infty} \int_{z=z_{cluster}}^{z=2.2} n(m, z, f_{\rm NL}, C) dm dz$$

The >M,>z analysis begins by assuming that we would have also observed any cluster with greater mass, or greater redshift than an observed cluster.

An abundance number is calculated

$$A_s = \int_{M_s}^{\infty} \int_{z=z_{cluster}}^{z=2.2} n(m, z, f_{\rm NL}, C) dm dz$$

We Poisson sample from As many (le4) times.

If the Poisson sample is >1, the cluster exists in this realisation. If the Poisson sample is <1 the cluster does not exist in this realisation.

The >M,>z analysis begins by assuming that we would have also observed any cluster with greater mass, or greater redshift than an observed cluster.

An abundance number is calculated

$$A_s = \int_{M_s}^{\infty} \int_{z=z_{cluster}}^{z=2.2} n(m, z, f_{\rm NL}, C) dm dz$$

We Poisson sample from As many (le4) times.

If the Poisson sample is >1, the cluster exists in this realisation. If the Poisson sample is <1 the cluster does not exist in this realisation.

The "existence probability" R, is given by

$$R = \text{Number}(P^O(A_s) \ge 1)/10^4)$$

The bias in a nutshell: In previous literature, the question, a) What is the probability of finding a cluster(s) in this >M,>z box? referred to as "existence probability" R has been used as a proxy for what we actually want to know, b) "What is the probability of this cluster(s) existing in our cosmological model?"

When stated like this, one can see that a) does not imply b). (see Hotchkiss 2011)

The bias in a nutshell: In previous literature, the question, a) What is the probability of finding a cluster(s) in this >M,>z box? referred to as "existence probability" R has been used as a proxy for what we actually want to know, b) "What is the probability of this cluster(s) existing in our cosmological model?"

When stated like this, one can see that a) does not imply b). (see Hotchkiss 2011)

The bias in a nutshell: In previous literature, the question, a) What is the probability of finding a cluster(s) in this >M,>z box? referred to as "existence probability" R has been used as a proxy for what we actually want to know, b) "What is the probability of this cluster(s) existing in our cosmological model?"

When stated like this, one can see that a) does not imply b). (see Hotchkiss 2011)

Why this is wrong

Why should we restrict ourselves to the easily calculated, but arbitrary, >M,>z contours, e.g, what dictates that the box should be placed at right angles to the (M,z) axis, or have straight instead of curved boundaries? One could simply modify the >M,>z box and obtain a new "existence probability" R* which would be equally as 'justified' as the original existence probability R.

The Universe doesn't care what we call "existence probability".

The bias in a nutshell: In previous literature, the question, a) What is the probability of finding a cluster(s) in this >M,>z box? referred to as "existence probability" R has been used as a proxy for what we actually want to know, b) "What is the probability of this cluster(s) existing in our cosmological model?"

When stated like this, one can see that a) does not imply b). (see Hotchkiss 2011)

Why this is wrong

Why should we restrict ourselves to the easily calculated, but arbitrary, >M,>z contours, e.g, what dictates that the box should be placed at right angles to the (M,z) axis, or have straight instead of curved boundaries? One could simply modify the >M,>z box and obtain a new "existence probability" R* which would be equally as 'justified' as the original existence probability R.

The Universe doesn't care what we call "existence probability".

Once the above is understood, we can calibrate R using simulations, compare it with R from observations, and then use the calibrated R to test for tension with LCDM.

Remember, (once calibrated) exclusion curves can be used to test for tension using only one cluster.

Remember, (once calibrated) exclusion curves can be used to test for tension using only one cluster.

Steps to calibrate exclusion curves

• Assume a sf /geometry

Remember, (once calibrated) exclusion curves can be used to test for tension using only one cluster.

Steps to calibrate exclusion curves

- Assume a sf /geometry
- Perform Poisson samples (simulations) of the cluster mass function

Remember, (once calibrated) exclusion curves can be used to test for tension using only one cluster.

Steps to calibrate exclusion curves

- Assume a sf /geometry
- Perform Poisson samples (simulations) of the cluster mass function
- Draw a line which correctly excludes (e.g.) 95% of the simulated clusters

Remember, (once calibrated) exclusion curves can be used to test for tension using only one cluster.

Steps to calibrate exclusion curves

- Assume a sf /geometry
- Perform Poisson samples (simulations) of the cluster mass function
- Draw a line which correctly excludes (e.g.) 95% of the simulated clusters

But, this line is arbitrary!

Any inferred exclusion significance must be quoted together with the metric.

(see also Hotchkiss 2011, and Harrison & Hotchkiss 1210.4369)

Playing the >M,>z game is only necessary if we don't know the selection function (sf) of a survey. X-ray/ Weak lensing (actually SNe) sample of clusters from Jee et al (2011), have a very complicated sf. Only the existence, not the absence, of clusters can constrain cosmology (as opposed to e.g., SPT, maxBCG, R400d).

Playing the >M,>z game is only necessary if we don't know the selection function (sf) of a survey. X-ray/ Weak lensing (actually SNe) sample of clusters from Jee et al (2011), have a very complicated sf. Only the existence, not the absence, of clusters can constrain cosmology (as opposed to e.g., SPT, maxBCG, R400d).

Not all X-ray extended sources identified, (noise) Extended sources not followed up => no redshifts or mass estimates. Publication bias; the most interesting are reported. In 100 sq. deg. 1<z<2.2, observed ~20's

M<1e14 clusters but we expect ~600 (WMAP 7)

Playing the >M,>z game is only necessary if we don't know the selection function (sf) of a survey. X-ray/ Weak lensing (actually SNe) sample of clusters from Jee et al (2011), have a very complicated sf. Only the existence, not the absence, of clusters can constrain cosmology (as opposed to e.g., SPT, maxBCG, R400d).

Playing the >M,>z game is only necessary if we don't know the selection function (sf) of a survey. X-ray/ Weak lensing (actually SNe) sample of clusters from Jee et al (2011), have a very complicated sf. Only the existence, not the absence, of clusters can constrain cosmology (as opposed to e.g., SPT, maxBCG, R400d).

Playing the >M,>z game is only necessary if we don't know the selection function (sf) of a survey. X-ray/ Weak lensing (actually SNe) sample of clusters from Jee et al (2011), have a very complicated sf. Only the existence, not the absence, of clusters can constrain cosmology (as opposed to e.g., SPT, maxBCG, R400d).

Note: To calibrate >M,>z analysis using simulated clusters, we must assume which part of the (M,z) plane has been "observed" (i.e., a sf).

Ongoing work to recover cosmological constraints using weaker assumptions about the selection function (Hoyle et al, in prep)

Correct analysis/comparison: data

	Cluster Name	Redshift	$M_{200} \ 10^{14} M_{\odot}$	Method	ñ	Mass reference
Observations progressed	RCS0221-0321	1.02	$1.80^{+1.30}_{-0.70}$	WL	0.992	[15]
lee et al 2009 2011 Santos	WARPSJ1415+3612	1.03	$4.70^{+2.00}_{-1.40}$	WL	0.706	[15]
	RCS0220-0333	1.03	$4.80^{+1.80}_{-1.30}$	WL	0.709	[15]
et al 2011, Stott et al 2010	RCS2345-3632	1.04	$2.40^{+1.10}_{-0.70}$	WL	0.989	[15]
Realistic X-ray survey	XLSSJ022403.9-041328*	1.05	$1.66^{+1.15}_{-0.38}$	X-ray	0.997	[31]
footprint 100 sq dog (loo	RCS2156-0448	1.07	$1.80^{+2.50}_{-1.00}$	WL	0.916	[15]
iootprint ioo sq. deg. (jee	RCS0337-2844	1.10	$4.90^{+2.80}_{-1.70}$	WL	0.567	[15]
et al 2011)	RDCSJ0910+5422	1.11	$5.00^{+1.20}_{-1.00}$	WL	0.595	[15]
	ISCSJ1432+3332	1.11	$4.90^{+1.60}_{-1.20}$	WL	0.603	[15]
Redshift range of Jee	XMMUJ2205-0159	1.12	$3.00^{+1.60}_{-1.00}$	WL	0.888	[15]
10<7<77	RXJ1053.7+5735(West)	1.14	$2.00^{+1.00}_{-0.69}$	X-ray	0.989	[31]
	XLSSJ0223-0436	1.22	$7.40^{+2.50}_{-1.80}$	WL	0.119	[15]
	RDCSJ1252-2927	1.24	$6.80^{+1.20}_{-1.00}$	WL	0.094	[15]
Most precise mass	ISCSJ1434+3427	1.24	$2.50^{+2.20}_{-1.10}$	WL	0.806	[15]
measurement.	ISCSJ1429+3437	1.26	$5.40^{+2.40}_{-1.60}$	WL	0.327	[15]
	RDCSJ0849+4452	1.26	$4.40^{+1.10}_{-0.90}$	WL	0.517	[15]
Still use the (NM NT) D	RDCSJ0848+4453	1.27	$3.10^{+1.00}_{-0.80}$	WL	0.839	[15]
Sum use the (-M,-Z) R	ISCSJ1432+3436	1.35	$5.30^{+2.60}_{-1.70}$	WL	0.265	[15]
statistic but calibrate to	ISCSJ1434+3519	1.37	$2.80^{+2.90}_{-1.40}$	WL	0.636	[15]
simulations.	XMMUJ2235-2557	1.39	$7.30^{+1.70}_{-1.40}$	WL	0.035	[15]
	ISCSJ1438+3414	1.41	$3.10^{+2.60}_{-1.40}$	WL	0.584	[15]
	XMMXCSJ2215-1738	1.46	$4.30^{+3.00}_{-1.70}$	WL	0.335	[15]
	XMMUJ0044.0-2033**	1.57	$4.25_{-0.75}^{+0.75}$	X-ray	0.152	[30]

Margenalise over the mass error by sampling from each clusters' mass and error many times and calculate R for each sampled mass. This produces a distribution in R for each cluster.

BH, Jimenez, Verde, Hotchkiss (2011 JCAP)

Correct analysis/comparison: simulations

I) 450 sets of simulations made from Poisson sampling the mass function, varying cosmological parameters, assuming WMAP7 priors.

Correct analysis/comparison: simulations

I) 450 sets of simulations made from Poisson sampling the mass function, varying cosmological parameters, assuming WMAP7 priors.

2) Assign each simulated cluster a 40% mass error and re-sampled the cluster mass. This accounts for the Eddington bias (see Mortonson et al 2011).

3) Calculate R for each cluster, identify the LP clusters in each simulation.

We assumed that the combined R values, for an ensemble of N clusters is

$$R_N = \Pi_N R_i$$

We assumed that the combined R values, for an ensemble of N clusters is

 $R_N = \Pi_N R_i$

Using the >M,>z analysis, the observed clusters are in good agreement with LCDM.

We assumed that the combined R values, for an ensemble of N clusters is

 $R_N = \Pi_N R_i$

Using the >M,>z analysis, the observed clusters are in good agreement with LCDM.

We assumed that the combined R values, for an ensemble of N clusters is

 $R_N = \Pi_N R_i$

Using the >M,>z analysis, the observed clusters are in good agreement with LCDM.

This analysis assumes the survey geometry of Jee et al. I<z<2.2; footprint=100 sq. deg.

z<1.6 survey geometry

All clusters have z < 1.6. Perhaps we were being unfair to compare the observed clusters (z < 1.6) with simulated clusters between 1 < z < 2.2. We now modify the assumed survey geometry, by imposing a hard cut to the simulations.

z<1.6 survey geometry

All clusters have z < 1.6. Perhaps we were being unfair to compare the observed clusters (z < 1.6) with simulated clusters between 1 < z < 2.2. We now modify the assumed survey geometry, by imposing a hard cut to the simulations.

The comparison between observations and z<1.6 simulations still show consistency

z<1.6 survey geometry

All clusters have z < 1.6. Perhaps we were being unfair to compare the observed clusters (z < 1.6) with simulated clusters between 1 < z < 2.2. We now modify the assumed survey geometry, by imposing a hard cut to the simulations.

Subsequent work

Figure 4. Rareness of currently observed clusters (using the > mdV measure described in the text) corresponding to an idealised all-sky survey which is complete at masses above $m_{min} = 10^{14} M_{\odot}/h$ out to z = 2.

Harrison & Hotchkiss arXiv: 1210.4369

Subsequent work

Harrison & Hotchkiss 2012 released code to compare the 'rareness' of clusters with different masses found at different redshfits, by transforming them to an "equivilant mass" at z=0 frame.

However, they also need to make assumptions about survey geometry.

Figure 4. Rareness of currently observed clusters (using the > mdV measure described in the text) corresponding to an idealised all-sky survey which is complete at masses above $m_{min} = 10^{14} M_{\odot}/h$ out to z = 2.

Harrison & Hotchkiss arXiv: 1210.4369

Main results

The calibrated R (>M,>z) statistic for the observed ensemble of clusters are consistent with R values for simulated clusters drawn from LCDM mass function, once the Eddington bias is considered.

The observed clusters provide no tension with LCDM with the survey geometries examined here.

However, we still may be being unfair to the clusters by assuming this survey geometry? More work needed.

Summary

•Surveys of clusters of galaxies are currently, and will be, powerful cosmological probes

 Individual "extreme" clusters can be used to rule out cosmological models

 Showed why the common measure of rareness (>M,>z) is meaningless unless calibrated to simulations.

•Addressed the calibration, and suggested fixes for the common exclusion curves.

Summary

•Surveys of clusters of galaxies are currently, and will be, powerful cosmological probes

•Individual "extreme" clusters can be used to rule out cosmological models

 Showed why the common measure of rareness (>M,>z) is meaningless unless calibrated to simulations.

 Addressed the calibration, and suggested fixes for the common exclusion curves.

•Built a list of high-redshift (z>1) massive (M>10^14 solar mass) clusters.

•Used a 'realistic' footprint/survey geometry.

•Compared observed clusters with distributions of simulated clusters including the Eddington bias.

•Quantified the tension (or lack of) with LCDM, using the >M,>z statistic.

Summary

•Surveys of clusters of galaxies are currently, and will be, powerful cosmological probes

 Individual "extreme" clusters can be used to rule out cosmological models

 Showed why the common measure of rareness (>M,>z) is meaningless unless calibrated to simulations.

•Addressed the calibration, and suggested fixes for the common exclusion curves.

•Built a list of high-redshift (z>1) massive (M>10^14 solar mass) clusters.

•Used a 'realistic' footprint/survey geometry.

•Compared observed clusters with distributions of simulated clusters including the Eddington bias.

•Quantified the tension (or lack of) with LCDM, using the >M,>z statistic.

•More high-redshift, massive clusters are being found ~weekly. Apex/ Planck/XCS, and will likely be found with future surveys (eROSITA).

• High z selection functions can be difficult to quantify. In these cases we have begun to build a statistical framework to understand what individual or ensembles of clusters tell us about cosmological models.

Follow up work: To use samples of clusters with an unknown selection function to bound cosmological parameters (in prep.)

Exclusion curves (uncalibrated)

Furthermore, we can define lines of constant R (>M,>z) in the massredshift plane, and use them to create exclusion curves. The exclusion curves can only be used for individual 'rare' clusters, but can rule out a cosmological model (Mortonson et al 2010).

Exclusion curves (uncalibrated)

Furthermore, we can define lines of constant R (>M,>z) in the massredshift plane, and use them to create exclusion curves. The exclusion curves can only be used for individual 'rare' clusters, but can rule out a cosmological model (Mortonson et al 2010).

Given the (w)LCDM model with WMAP7 cosmological priors, we do not expect any cluster to sit above the curve at 95% or some other specified confidence.

These lines were created by tracing lines of constant R (existence probability >M,>z).

More >M,>z analysis (uncalibrated)

TABLE 3 DISCOVERY PROBABILITY OF GALAXY CLUSTERS

Cluster name	Within Parent Survey		
XMMXCS J2215-1738	0.96		
XMMU J2205-0159	1		
XMMU J1229+0151	0.61		
WARPS J1415+3612	0.65		
ISCS J1432+3332	0.14		
ISCS J1429+3437	0.15		
ISCS J1434+3427	1		
ISCS J1432+3436	0.11		
ISCS J1434+3519	1		
ISCS J1438+3414	0.92		
RCS 0220-0333	0.74		
RCS 0221-0321	1		
RCS 0337-2844	0.84		
RCS 0439-2904	0.95		
RCS 2156-0448	1		
RCS 1511+0903	1		
RCS 2345-3632	1		
RCS 2319+0038	0.83		
XLSS J0223-0436	0.01		
RDCS J0849+4452	0.03		
RDCS J0910+5422	0.06		
RDCS J1252-2927	0.002		
XMMU J2235-2557	0.013		
CL J1226+3332	0.006		
MS 1054-0321	0.35		
CL J0152-1357	1		
RDCS J0848+4453	0.08		

Jee et al 2011

Improved (HST WL) cluster mass estimates & less conservative (more realistic) survey footprints.

More >M,>z analysis (uncalibrated)

TABLE 3 DISCOVERY PROBABILITY OF GALAXY CLUSTERS

Cluster name	Within Parent Survey		
XMMXCS J2215-1738	0.96		
XMMU J2205-0159	1		
XMMU J1229+0151	0.61		
WARPS J1415+3612	0.65		
ISCS J1432+3332	0.14		
ISCS J1429+3437	0.15		
ISCS J1434+3427	1		
ISCS J1432+3436	0.11		
ISCS J1434+3519	1		
ISCS J1438+3414	0.92		
RCS 0220-0333	0.74		
RCS 0221-0321	1		
RCS 0337-2844	0.84		
RCS 0439-2904	0.95		
RCS 2156-0448	1		
RCS 1511+0903	1		
RCS 2345-3632	1		
RCS 2319+0038	0.83		
XLSS J0223-0436	0.01		
RDCS J0849+4452	0.03		
RDCS J0910+5422	0.06		
RDCS J1252-2927	0.002		
XMMU J2235-2557	0.013		
CL J1226+3332	0.006		
MS 1054-0321	0.35		
CL J0152-1357	1		
RDCS J0848+4453	0.08		

The ensemble of clusters was 'unlikely' to have been observed.

Jee et al 2011

Improved (HST WL) cluster mass estimates & less conservative (more realistic) survey footprints.

More >M,>z analysis (uncalibrated)

TABLE 3 DISCOVERY PROBABILITY OF GALAXY CLUSTERS

Cluster name	Within Parent Survey
XMMXCS J2215-1738	0.96
XMMU J2205-0159	1
XMMU J1229+0151	0.61
WARPS J1415+3612	0.65
ISCS J1432+3332	0.14
ISCS J1429+3437	0.15
ISCS J1434+3427	1
ISCS J1432+3436	0.11
ISCS J1434+3519	1
ISCS J1438+3414	0.92
RCS 0220-0333	0.74
RCS 0221-0321	1
RCS 0337-2844	0.84
RCS 0439-2904	0.95
RCS 2156-0448	1
RCS 1511+0903	1
RCS 2345-3632	1
RCS 2319+0038	0.83
XLSS J0223-0436	0.01
RDCS J0849+4452	0.03
RDCS J0910+5422	0.06
RDCS J1252-2927	0.002
XMMU J2235-2557	0.013
CL J1226+3332	0.006
MS 1054-0321	0.35
CL J0152-1357	1
RDCS 10848+4453	0.08

The ensemble of clusters was 'unlikely' to have been observed.

Are these clusters really in tension with LCDM, or have we been goofing up? What's going on?

Jee et al 2011

Improved (HST WL) cluster mass estimates & less conservative (more realistic) survey footprints.

