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1 Introduction

Few things have fascinated humanity as much and as consistently as the night sky. As the
window to the outside of our own planet, many civilizations have put a lot of effort into
observing and trying to understand those peculiar bright objects – some of them moving,
some of them seemingly not. And yet, until not even a hundred years ago, the concept of
our Universe was still entirely limited to our own Galaxy, the Milky Way. In 1925, Hubble
(1925) put this idea into question when he showed that the distance to the Andromeda Galaxy
would actually place it beyond the reaches of the Milky Way. Since then, a huge number
of galaxies have been observed as the imaging has been able to go increasingly deep. The
Hubble Ultra-Deep Field (Beckwith et al., 2006) is the deepest optical and near-infrared
image of our Universe to date, based on which Conselice et al. (2016) estimated the total
observable number of galaxies to be over 2 × 1011 at that depth. On the theoretical side,
the field of cosmology has advanced our understanding of the evolution of our Universe and
the structure formation within. In 1916, Einstein (1916) revolutionized the understanding of
gravity, space, and time, and laid the groundwork for the cosmological model described by
the Friedmann-Lemaître-Robertson-Walker metric, which was independently developed by
four scientists (Friedmann, 1922, 1924; Lemaître, 1927; Robertson, 1935, 1936a,b; Walker,
1937). According to this description, the Universe can be open, flat, or closed, and may
expand or contract. Based on this model and the observations made over the years, the
Universe is believed to have begun in a “Big Bang” and has expanded ever since. In this
time of expansion, structures began forming, finally giving rise to the Universe as we see and
know it today.

1.1 Structure Formation

Given such a large number of galaxies far out in our Universe, the intrinsic curiosity of
humanity wants to understand where they come from and how they were formed. Naturally,
we would expect that the properties of today’s galaxies are a result of their formation history.
It turns out that to understand their origin, it is necessary to start at very early times of the
Universe.

1.1.1 Early Universe

In 1964, an accidental discovery by Penzias &Wilson using a Dicke radiometer revealed that
there is an isotropic microwave radiation across the entire sky, which they measured as an
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Figure 1.1: High-resolution image of fig. 9 from Planck Collaboration (2016): Temperature fluctua-
tions of the CMB by ESA and the Planck Collaboration.

excess temperature of 3.5K (Penzias & Wilson, 1965). Later missions, such as COBE (e.g.
Smoot et al., 1992), WMAP (e.g. Komatsu et al., 2011), or Planck (e.g. Planck Collaboration,
2020), showed that this cosmic microwave background (CMB) radiation corresponds to a
black body temperature of 2.725K that has small temperature fluctuations on the order of
10−5 on small scales (Figure 1.1). In the cosmological context, this is understood to be
the radiation emitted at the so-called recombination, where matter decoupled from radiation
at early times (around 370 000 years after the Big Bang, which is estimated to have taken
place around 13.8Gyr ago), resulting in an optically transparent Universe. The anisotropy
of the CMB is an imprint of the baryonic density fluctuations in the early Universe, which
originated from dark matter (DM), a type of matter that does not interact electromagnetically,
forming potential wells: baryonic matter streamed into these by gravitational force and was
compressed, leading to a rise of radiation pressure that induced oscillations of the baryons
within the DMpotentials. The scales of these oscillations have beenmeasured by themissions
that explored the CMB in temperature power spectra (Figure 1.2), where the peaks indicate
the oscillation scales. The power spectrum is used to constrain cosmological parameters that
determine the evolution of our Universe. This understanding of the early Universe is part of
the most widely accepted cosmological model: the ΛCDM model.

1.1.2 Galaxy Formation

In the ΛCDM model, small structures merge and form larger structures in a hierarchical
manner. In this way, DM structure continuously grows more massive and gains angular
momentum through tidal torques. Simultaneously, it accretes gas, which is capable of
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Figure 1.2: Fig. 11 from Planck Collaboration (2016): Temperature power spectrum (top) and
residuals of the best fitting ΛCDMmodel (bottom) of the CMB by ESA and the Planck Collaboration.
The red line indicates the best fittingmodel and the error bars the 1f uncertainties of themeasurements
at a given multipole ℓ.

bringing in angular momentum to the central regions. In contrast to DM, gas interacts
electromagnetically and can radiate away energy, thus cooling and redistributing its angular
momentum. This enables the gas to condense in dense structures at the center of the DM
structures. Here, in the DM structures, called DM halos, the first stars were born. The
formation details of these Population III stars is still unclear and they have not yet been
observed. The feedback from these first stars led to the enrichment of the gas with heavier
metals, from which the second generation of stars were formed, the so-called Population II
stars.

Star formation generally occurs in cold and dense gas. It has been found that the cosmic
star formation rate (SFR) peaked at a redshift of I = 2 (around 10.5Gyr ago), after which it
decreased again (Figure 1.3, Madau &Dickinson, 2014), leading to an increase in the number
of quiescent galaxies, which are gas-poor galaxies with little to no ongoing star formation
(Brammer et al., 2011). Cosmological simulations revealed two phases of galaxy formation,
where in-situ stars are first formed within the galaxies themselves through infalling cold gas
and gas-rich mergers at I & 2 and later ex-situ stars are accreted mostly through gas-poor
mergers at I . 3 (Oser et al., 2010). The switch from the first to the second phase is a
result of two contending mechanisms that take place: streams of cold gas funnelling into the
galaxies feed the star formation (Dekel & Birnboim, 2006; Dekel et al., 2009), while feedback
mechanisms (e.g. stellar winds, supernovae, or AGN) in the growing galaxies increasingly
deplete the gas (e.g. Hopkins et al., 2012). The fraction of in-situ stars in galaxies has been
studied in simulations and observations and has been shown to be highest in small, low-mass
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Figure 1.3: Left panel of fig. 9a from Madau & Dickinson (2014): Evolution of the cosmic star
formation rate density, k, from far-UV (blue, green, magenta, and black points) and infrared (orange
and red points) measurements. The black solid line is a fit to the SFR density data points.

galaxies, and is generally strongly correlated with the merger history of the galaxies (Remus
& Forbes, 2021).

Observations have shown that themorphology of galaxies changes over time. Historically,
it was assumed that elliptically shaped, almost featureless galaxies were first formed, such
that these elliptical galaxies are commonly called early-type galaxies (ETGs). These were
first believed to evolve into spiral galaxies that have a rotating disk and a bulge at the center,
which are referred to as late-type galaxies (LTGs). However, the opposite appears to be true:
in galaxy merger simulations, it was discovered that the elliptical galaxies are more likely
formed through the mergers of disk galaxies (e.g. Gerhard, 1981; Burkert & Naab, 2003).
Disk galaxies, in turn, form through the infalling gas in a halo, which cools and redistributes
its angular momentum because of not being collisionless. As a result, it is able to settle in a
disk perpendicular to its angular momentum and form stars there.

It has been found that not only the morphology, but also the relation between the stellar
masses and sizes of galaxies, the mass-size relation, changes with time: the effective radius,
the radius within which half the light of a galaxy is emitted, is larger at later times at constant
mass or luminosity (e.g. Oesch et al., 2010; van der Wel et al., 2014; Shibuya et al., 2015;
Allen et al., 2017). Interestingly, the size of ETGs, which are generally formed at later times
than LTGs, increase much faster at a given mass than LTGs (Figure 1.4). For LTGs, the trend
of smaller sizes at earlier times even continues to larger redshifts (Figure 1.5, for the evolution
of the LTG size distribution). The overall evolution of the mass-size relation is believed to
be driven by dry minor mergers, i.e., gas-poor and thus collisionless minor mergers (e.g.
Naab et al., 2009; Hilz et al., 2013; Karademir et al., 2019). Finally, a type of rare objects
that occur at high redshifts, but not in the present day, are very bright and compact galaxies
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Figure 1.4: Fig. 5 from van der Wel et al. (2014): Evolution of the mass-size relation of LTGs (blue)
and ETGs (red) in redshift bins within the range of I = 0–3. The solid lines indicate fits to the LTG
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Figure 1.5: Fig. 6 from Shibuya et al. (2015): Distribution of the effective radii in UV for star forming
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redshifts (I ∼ 4, 5, and 6), obtained from Hubble Space Telescope data. The solid curves show the
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(Fernández Lorenzo et al., 2011), which are also believed to have increased in size at almost
constant mass.
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Figure 1.6: Cosmic web map from the galaxies observed by the Sloan Digital Sky Survey (SDSS) up
to redshift I ≈ 0.15. Each dot is a galaxy and is colored by the local density, with red indicating the
denser environments. The wedges with observations in them are perpendicular to the Milky Way’s
disk. Image credit: M. Blanton and SDSS (www.sdss.org).

1.1.3 Cosmic Environment

Observations have shown that galaxies are not entirely uniformly distributed in space on small
scales, but are found in large filamentary structures that connect clusters of galaxies, i.e., the
especially dense node regions (Figure 1.6). In this cosmic web, the largest gravitationally
bound structures are very massive DM halos containing thousands of galaxies, called galaxy
clusters. The larger filamentary structures are typically subdivided in elongated filaments
and even larger flattened walls. Such a wall can be seen in the upper wedge of Figure 1.6
at around I ≈ 0.07, called the Sloan Great Wall (Gott et al., 2005). Finally, the low-density
regions between these structures are referred to as voids. Large DM-only and baryonic
cosmological simulations, such as the Millenium simulation (Springel et al., 2005b), the
EAGLE simulations (Schaye et al., 2015), the Illustris Project (Vogelsberger et al., 2014),
and the Magneticum Pathfinder simulations1, have shown how the cosmic web structures
form and evolve by matter collapsing as filaments and then being accreted onto the cluster
nodes along the filaments.

Galaxies forming in the different environments are naturally subjected to different pro-
cesses, which in fact affect their evolution. Considering that the formation history of a galaxy
is the key to its present-day properties, the cosmic environment of a galaxy can be expected
to be a relevant factor for understanding the properties of galaxies that we see today. In a
galaxy cluster environment, the encounters between galaxies in the cluster potential feature
such high velocities that they are generally unable to merge. Still, in such encounters, called

1www.magneticum.org

www.sdss.org
www.magneticum.org
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galaxy harassment, the galaxies lose orbital energy, which is redistributed to their internal
energy, i.e., the galaxies are kinematically heated and increase in size (e.g. Moore et al.,
1996). This facilitates the stripping of matter in their outer regions. In this way, it seems
likely that disk galaxies could be stripped of their disks in a cluster environment and become
elliptical galaxies. A second process in dense environments is caused by the hot gas in the
halo of the cluster, which exerts pressure on the gas of a galaxy in the cluster potential. This
leads to the hot and then the cold gas being stripped from the cluster member galaxy (which
we will refer to as satellite galaxies henceforth, and also includes Milky Way-like and even
more massive galaxies), which is called ram-pressure stripping (e.g. Gunn & Gott, 1972;
Abadi et al., 1999). Finally, strangulation of satellite galaxies in a cluster is caused by the
inability of a satellite to accrete more gas, such that star formation and stripping remove
all the available gas irretrievably (e.g. Fujita, 2004). This causes blue disk galaxies to turn
red and finally lose their spiral structures to become spheroidal. These processes all lead to
gas-poor galaxies that typically have an elliptical morphology in cluster environments, which
is actually what is also observed (e.g. Goto et al., 2003, for galaxies from SDSS). They also
likely contribute to the Butcher-Oemler effect, which is that the fraction of blue galaxies,
i.e., gas-rich and star-forming, in galaxy clusters has been observed to increase with redshift
(Butcher & Oemler, 1978, 1984).

At the centers of galaxy clusters there are the brightest cluster galaxies (BCGs), which
are the most massive galaxies of the clusters and are generally ellipticals. In contrast to
the satellite galaxies, a BCG continuously accretes matter: in particular the more massive
satellites quickly fall to the center of the cluster’s potential because of dynamical friction,
leading to BCGs typically having had several large mergers. In this way, a BCG “consumes”
its satellite galaxies over time and increases in size and mass, which is called galactic
cannibalism (e.g. Ostriker & Hausman, 1977).

In contrast, in the low-density regions of the cosmic web, the voids, there are no such
massive clusters, but only a comparably small number of galaxies. These mostly are gas-
rich LTGs and can form loosely bound galaxy groups (Szomoru et al., 1996). Such void
galaxies have been observed to be accreting gas, indicating that they are still in the process
of assembling (Kreckel et al., 2012). Void galaxies typically are small and have been found
to have a slightly larger SFR than field galaxies of similar masses (Beygu et al., 2016).

1.2 Properties of Galaxies

Classifying objects or entities is not only fun, but also contributes an important part towards
the discovery and advancement of knowledge (Kwasnik, 1999). Any classification is based on
qualitative or quantitative properties of the objects or entities in question, which here of course
are galaxies. With this inmind, a number of differentmorphological and kinematic parameters
and properties are presented in the following. Additionally, the relevant background for the
analysis of galaxy shapes in this work is presented.
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1.2.1 Morphology

Hubble Sequence

In 1926, a first morphological classification scheme of galaxies was proposed by Edwin
Hubble (Hubble, 1926), which laid the foundation for the Hubble sequence (Hubble, 1936),
whose depiction is commonly called the “Hubble tuning fork” . Most galaxieswere discovered
to belong to one of three general classes: elliptical galaxies (E), which have smooth and
featureless elliptical shapes, spiral galaxies (S), which feature a flat disk of stars, gas, and
dust, with spiral arms extending out from the central bulge, and lenticular galaxies (S0), which
were later introduced by Sandage (1961) and are an intermediate class between elliptical and
spiral galaxies, having a disk, but no spiral structures. The tuning fork of the Hubble-Sandage
classification is shown in Figure 1.7. These classes were also extended by irregular galaxies
(I), which cannot be assigned to any of the other types and include galaxies like theMagellanic
clouds. Elliptical galaxies, or ETGs as previously introduced, are classified by their apparent
ellipticity, given by the semi-major and semi-minor axes, 0 and 1, of the 2D projected galaxy:

n = 1 − 1
0
. (1.1)

The galaxies are then labeled by E# , where # is the integer closest to 10n , which ranges from
E0 to E7 in practice. However, it was later put into question whether especially elongated
ellipticals of types E6 and E7 actually have large-scale disks that are inclined and should
rather be classified as S0 instead (Liller, 1966). Ellipticals usually have very old stellar
populations and are gas-poor, resulting in a red appearance.

Spiral galaxies, or LTGs as previously introduced, are labeled as SB if they have a
bar-like structure in the center, whereas normal spirals without bars are only labeled as S.
Galaxies with tightly wound spiral arms additionally are labeled by the letter a, while more
loosely wound spiral arms are labeled as b and c. Examples of six differently classified
spiral galaxies can be seen in Figure 1.7. Most spiral galaxies feature a large bright stellar
component in the center, called the bulge. The bulge is typically largest for galaxies with
the most tightly wound spiral arms and the smallest for Sc and SBc galaxies. While the
disk component oftentimes features active star formation and young stellar populations in its
spiral arms, therefore appearing blue, the bulge is more similar to elliptical galaxies because
of its featureless appearance and old stars.

Note that even though elliptical galaxies tend to show little star formation and are therefore
usually quiescent, the terms “elliptical” and “quiescent” are not equivalent. The same is true
for “spiral” galaxies and “star forming” galaxies, where spiral galaxies often feature active
star formation in their spiral arms. All types of galaxies can experience so-called starbursts
with very high rates of star formation, which typically occur in the process of a merger with a
gas-rich galaxy (e.g. Hau et al., 1999). There is also an interesting class of red disk galaxies,
which have been found to have stellar population properties similar to elliptical galaxies (e.g.
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Figure 1.7: Hubble sequence of galaxies: Elliptical galaxies (E) are classified by their apparent
ellipticity, while spiral galaxies (S) are classified by the existence of a bar feature at the center and
by how tightly the spiral arms are wound. The sequences are connected by the class of lenticular
galaxies, S0. Image credit: NASA & ESA (www.esahubble.org).

van den Bergh, 1976; Robaina et al., 2012). Clearly, the morphology and the star formation
of galaxies are closely linked, but need to be considered separately when discussing galaxies.

There have been a number of other proposed morphological classification schemes. For
example, the de Vaucouleurs system (de Vaucouleurs, 1959) adds a further feature of spiral
galaxies to the classification system, in which the bars, spiral arms, and the existence of
ring-like structures are considered. Because of the ellipticity of elliptical galaxies mainly just
correlating with the inclination of a galaxy, Kormendy & Bender (1996) introduced a revised
classification of ellipticals by the shape of their isophotes, which can be disky or boxy. The
reason for this choice was that the shape of the isophotes can be used as an indicator to the
kinematics, where disky ellipticals show faster rotation than boxy ellipticals.

The classification of galaxies according to their morphology was crucial to gaining a
better understanding of galaxies and their formation, as stated at the beginning of this chapter.
Despite being imperfect due to the huge variety of galaxies, even only the simple distinction
between elliptical and spiral galaxies advanced the physical concepts of how galaxies form
and evolve. Overall, the morphology is found to be closely linked to the formation history of
a galaxy and is therefore an important fundamental property of galaxies.

b-Value

With the modern-day possibilities of measuring the kinematics of galaxies in the outer
regions using kinematic tracers, such as planetary nebulae (PNe) or globular clusters (GCs),

www.esahubble.org
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Figure 1.8: Fig. 2 from Fall & Romanowsky (2013): Relation between the specific stellar angular
momentum and the total stellar mass for the disks of LTGs (squares) and for ETGs (circles) for a
sample of 95 observed galaxies. The dotted lines represent the relation in Equation 1.3 with U = 0.6.

it is possible to determine the total stellar angular momentum, P∗. It was found that the
specific stellar angular momentum, j∗, where the specific angular momentum is defined by
the total angular momentum divided by the total mass,

j =
P

"
, (1.2)

shows different relations with the total stellar mass, "∗, for ETGs and LTGs (Fall, 1983;
Romanowsky & Fall, 2012; Fall & Romanowsky, 2013). In fact, they found that both
morphological types followed the same exponential law, only with different proportionality
factors (Figure 1.8):

9∗ ∝ "U
∗ , (1.3)

with 9∗ = | j∗ | and U = 0.6 ± 0.1. The difference between ETGs and LTGs is that at a given
mass, LTGs have a higher specific angular momentum, which is what one would expect given
the intrinsic rotational property of disks. The relations are also in agreement with other
observations (e.g. Cortese et al., 2016) and simulations (e.g. Teklu et al., 2015; Lagos et al.,
2017).

The proportionality factor of Equation 1.3 was used by Teklu et al. (2015) to describe
the morphological position of an individual galaxy in the 9∗-"∗-plane, which corresponds to
the H-intercept of the line with slope U on which the galaxy lies in logarithmic space. They
defined the “1-value” using U = 2/3:

1 = log
(

9∗

kpc km s−1

)
− 2
3
log

(
"∗
M�

)
. (1.4)
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The 1-value therefore combines three important aspects of galaxy formation: angular mo-
mentum, mass, and morphology. It has proven to be a good indicator for morphology and
has recently started to be used to classify galaxies morphologically. A big advantage of using
the 1-value for galaxies in simulations is that it can be computed directly from the particle
properties and does not require a manual inspection of every galaxy. In this work, we follow
the classification for galaxies at I = 0 used by Schulze et al. (2020), who used the same
cosmological simulation as in this work, and by Emami et al. (2021):
(i) LTGs: −4.35 < 1
(ii) Intermediates: −4.73 < 1 < −4.35
(iii) ETGs: 1 < −4.73
In this work, the 1-value is calculated from the stellar particles within three stellar half-mass
radii of the galaxy’s center.

1.2.2 Kinematics

With the advances of observational instruments and telescopes, it has become possible to
access the kinematics of galaxies along the line of sight. Major findings have been made
possible through this. For example, the analysis of the radial velocity profiles of disk galaxies
revealed much too high velocities at large distances from the center, which provided evidence
for the existence of DM and advanced the research on DM halo density profiles. At the same
time, the kinematics of individual galaxies contain important information for the respective
galaxy: just like the morphology, the kinematics are a direct result of a galaxy’s formation
history, such that analyzing and modeling kinematics has evolved to be a central topic in
galaxy physics.

IFU Spectroscopy

Integral field unit (IFU) spectroscopy has enabled observers to obtain two-dimensional spec-
troscopic data through IFU instruments, usually consisting of an array of lenses or fibers,
that yields spatially resolved maps of spectra. From these spectra, it is possible to obtain the
line-of-sight velocity distributions (LOSVDs). The first survey to map the galaxy kinematics
in two dimensions was SAURON (Bacon et al., 2001; de Zeeuw et al., 2002), in which around
50 nearby galaxies were observed and mapped. Later, the ATLAS3D Project extended this to
a sample of 260 ETGs within a distance of 42Mpc with the goal of kinematically character-
izing the ETGs in a statistically significant way (Cappellari et al., 2011). A number of other
IFU studies have taken place in recent years, including DiskMass for face-on intermediate-to-
late-type disk galaxies (Bershady et al., 2010), SAMI for a large sample of galaxies (currently
over 3000) across multiple environments (Croom et al., 2012, 2021), CALIFA for almost 700
galaxies as a wide-field IFU survey (Sánchez et al., 2012), MaNGA as the IFU program of
SDSS for around 10 000 nearby galaxies (Bundy et al., 2015), SINS/zC-SINF for 35 galaxies
at redshift I = 2 (Förster Schreiber et al., 2018), and MAGPI for galaxies at redshifts of
0.25 < I < 0.35 in different environments (Foster et al., 2021).
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Kinematic Maps

Different properties of the LOSVDs obtained from IFU spectroscopy for each pixel can
be mapped as two-dimensional images. By simply fitting a normal distribution or directly
computing the statistical mean and standard deviation for a LOSVD, the pixel velocities,
〈+〉8, and velocity dispersions, f8, are determined for each pixel 8. While it would be possible
to simply create a map directly from these values, it is generally preferred to bin the pixels
to improve the signal-to-noise ratio (particularly relevant for the regions with low surface
density). A commonly used method is an adaptive spatial binning technique using centroidal
Voronoi tessellations (Cappellari & Copin, 2003; Cappellari, 2009), which ensures roughly
circular bins of pixels, an approximately constant signal-to-noise ratio across all bins, and
a proper spatial resolution. The kinematic maps are then created according to the average
velocity or velocity dispersion in each bin.

A velocity map can reveal some of the most important kinematic features of a galaxy,
including if and how fast it rotates, along which (two-dimensional) axis it rotates, and if there
are differences between the inner and outer line-of-sight velocity maps. For obvious reasons,
disks have been found to have strongly ordered rotation around the minor axis (note that
face-on disks will generally not reveal their rotational motion in velocity maps, however),
while the bulge component was found to have more disordered motion. Similar to the bulges,
ETGs usually also show less ordered rotation. The velocity dispersion offers a quantification
of the disorder of motion, which should always be considered alongside the magnitude of
the velocities themselves (just like the standard deviation is meaningless without knowing
how large the mean is). The velocity dispersion is generally highest in ETGs, where younger
ETGs have been found to often have lower central velocity dispersions (Forbes & Ponman,
1999), revealing a connection between velocity dispersion and formation history: mergers
will generally bring in material from different directions, such that the overall rotation of the
central galaxy will become more disordered and its shape more spherical. The details of the
merger orbits and masses of the accreted structures will then determine how the kinematics
of the central galaxy change, therefore strongly linking the merger history and the kinematics.
The velocity and velocity dispersion maps of an example disk galaxy observed in the SAMI
survey are shown in the two left panels of Figure 1.9 (not binned with the Voronoi tesselation
method, however). The velocity map shows a clear sign of ordered rotation, while the velocity
dispersion map shows the different kinematic behavior in the bulge and disk: the velocity
dispersion is larger in the central bulge region.

Of course, the LOSVDs are not perfect normal distributions, but deviate from a Gaussian
curve. Most parametrizations of these deviations involve the Gauss-Hermite moments, ℎ3
and ℎ4. These higher-order moments describe the asymmetric deviations (ℎ3) and symmetric
deviations (ℎ4) from a Gaussian curve. Both quantities have been studied in observations,
where for example one of the first studies by Bender et al. (1994) found that the deviations
are generally small, with the asymmetric deviations being larger than the symmetric ones.
In the SAURON survey, it was found that there is an anticorrelation of ℎ3 with the rotational
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Figure 1.9: Four left panels of the middle row of fig. 24 from van de Sande et al. (2017b): Kinematic
maps of a SAMI disk galaxy of the stellar kinematic parameters velocity, + , velocity dispersion, f,
and the two higher-order moments, ℎ3 and ℎ4, from left to right. Annuli refers to the template method
used to obtain the stellar kinematic parameters.

support, quantified by +/f (e.g. Bender et al., 1994; Krajnović et al., 2006). Because of the
difficulty in interpreting the higher-order moments in observations, simulations have been
employed to investigate the drivers of the behavior of the LOSVDs (e.g. Bendo & Barnes,
2000; Jesseit et al., 2007; Schulze et al., in preparation). The two right panels of Figure 1.9
show the higher-order moment kinematic maps of the example SAMI galaxy. Compared to
the velocity and velocity dispersion maps, it is a lot more difficult to determine what patterns
exist in these maps.

Kinematic Groups

As part of the ATLAS3D project, Krajnović et al. (2011) studied the kinematic maps of 260
ETGs and determined five kinematic groups of their galaxies: regular rotators, non-rotators,
galaxies with complex velocity maps, but no specific features, galaxies with kinematically
distinct cores, and galaxies with double peaks in the velocity dispersion maps. The diversity
of kinematic features is especially remarkable in light of the morphologically featureless
ETGs compared to LTGs. The by far largest group of classified ETGs are the regular rotators,
with about 80% of the galaxies. Interestingly, these galaxies were found to have velocity
maps more similar to those of disk galaxies than to remnants of equal-mass mergers, giving
insights into what the most common formation histories may look like. ETGs appear to often
be disk-like galaxies that have a near-axisymmetric shape, where two important formation
processes are likely minor mergers and gas accretion. The other four groups were determined
to typically be located in dense regions, which is consistent with the idea that accretion
from random directions in dense environments leads to a disordering of galaxies’ rotation.
Krajnović et al. (2011) suggested that major mergers could be an important factor of their
formation histories.

For the cosmological simulation considered in this work, Schulze et al. (2018) classified
the galaxies by using the velocity maps from an edge-on perspective, since this allows a
more consistent classification of galaxies that is not dependent on an observer from a random
direction. Moreover, rotation generally occurs along the minor or major axis of a galaxy, such
that an edge-on perspective ensures that these types of rotation will be found in the velocity
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Figure 1.10: Example velocity maps of the four kinematic groups used in this work: regular rotators,
non-rotators, KDCs, and prolate rotators. The inner two half-mass radii of the galaxies are viewed
from an edge-on perspective. The velocity maps were created using the Voronoi tesselation method for
the bins, where each bin contains around 100 stellar particles from the simulation. The four galaxies
are fromBox4 (uhr) of theMagneticum Pathfinder simulation suite (see Section 2.1 for further details).

maps. Schulze et al. (2018) divided the galaxies into five kinematic groups, which are based
on those of Krajnović et al. (2011):

(i) Regular rotators: The galaxy has an ordered rotation around the minor axis.
(ii) Non-rotators: The velocity map shows low velocities with no distinct features.
(iii) Distinct cores (DCs): There is a central rotating core that is surrounded by a non-

rotating component.
(iv) Kinematically distinct cores (KDCs): There is a central rotating core that is surrounded

by a rotating component around a different axis.
(v) Prolate rotators: The galaxy has an ordered rotation around the major axis.

In this work, the classifications determined by Schulze et al. (2018) are used, but count both
the DCs and KDCs to the group of KDCs because of the very small number of KDCs, thus
considering only four kinematic groups. Four example velocity maps of these kinematic
groups are shown in Figure 1.10, where all galaxies are shown from an edge-on perspective.
Note that in all of the discussed classifications, there is a further “group” of unclassifiable
galaxies due to poor resolution or unclear kinematic features.
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Especially the two rarest groups, the KDCs (including the DCs) and prolate rotators, are
intriguing with respect to their formation history. KDCs have been observed and investigated
inmultiple studies, ranging back from one-dimensional slit spectroscopic data (e.g. Efstathiou
et al., 1982; Bender, 1988) to modern IFU surveys (e.g. ATLAS3D: Cappellari et al., 2011;
MaNGA: Bundy et al., 2015) and simulations (e.g. Tsatsi et al., 2015; Schulze et al., 2017;
Ebrová et al., 2021). The term “KDC” has not been defined consistently in the literature,
where different minimum misalignment thresholds of the core’s rotational axis compared
to the outer rotational axis were required (e.g. 20° for SAURON and 30° for ATLAS3D),
or where certain types of kinematic features are distinguished from KDCs. These include
counter-rotating cores (a feature used in the ATLAS3D survey), galaxies with two velocity
dispersion peaks (which often also have KDCs), distinct cores (as seen above, from Schulze
et al., 2018). Others, such as Ebrová et al. (2021), include galaxies with any of those features
in the group of KDCs. While a number of studies suggest that young KDCs are likely formed
through retrograde mergers (e.g. Balcells & Quinn, 1990; Bois et al., 2011), there have also
been findings of old KDCs originating from originally prograde orbits, where reactive forces
because of mass loss led to a significant change in the orbital spin (Tsatsi et al., 2015). In
a study by Schulze et al. (2017), a binary spiral galaxy major merger simulation formed an
ETG with a kinematically distinct core. In fact, Ebrová et al. (2021) found that most KDCs
in the Illustris cosmological simulation were formed through mergers, most of them major
mergers, and others were formed through fly-bys or through precession of a rapidly rotating
core component. Schulze et al. (2020) found both old and young KDCs in the cosmological
simulation studied in this work, which may have two different typical formation histories:
mergers with plenty, but not too much gas for younger cores (Hoffman et al., 2010), and the
remnant of an old disk at the center.

Prolate rotators, the rarest among the four kinematic groups, were theoretically predicted
through a class of orbits around the major axis called long axis tubes (de Zeeuw, 1985).
This kinematic behavior has been observed in the bulges of early-to-intermediate type disk
galaxies (e.g. Bertola et al., 1999) and in massive ETGs (e.g. Tsatsi et al., 2017; Krajnović
et al., 2018), where it was found that prolate rotation occurs more often in the most massive
galaxies. Prolate rotators and their formation histories have also been studied in simulations
(e.g. Ebrová & Łokas, 2015; Tsatsi et al., 2017; Ebrová & Łokas, 2017). One possible
formation mechanism that has been suggested is a dry major polar merger of disk galaxies,
where the disks are originally oriented perpendicular to each other, which appears to lead
to a correlation between the line-of-sight velocity and the higher-order moment ℎ3 (Tsatsi
et al., 2017). Ebrová & Łokas (2017) found that prolate rotators in the Illustris simulation
are strongly linked to the last major merger of the galaxy, where the actual formation of the
prolate rotation appears to depend on the details of the initial conditions in a non-trivial way.
They determined several different formation channels of prolate rotation, including dry and
wet mergers, but also found systems without significant mergers to show such a kinematic
feature.
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Circularity Parameter

A kinematic parameter that quantifies the rotational properties around the minor axis is the
circularity, ncirc. Introduced by Abadi et al. (2003), it can be computed for each particle in
a simulation (such that the 3D data of the particles and of the potential are available) and
describes how close the angular momentum around the minor axis is to that of a particle on
a Keplerian circular orbit:

ncirc =
9I

9circ
=

9I

A+circ
, (1.5)

where 9I is the angular momentum component of a particle along the minor axis of the galaxy,
A is the distance from the galaxy’s center, and

+circ =

√
�" (A)
A

(1.6)

is the Keplerian circular velocity with the total enclosed mass, " (A), within A. The distri-
bution of the circularity for the stellar particles is expected to peak at around ncirc ∼ 1 for a
disk component, whereas a peak at ncirc ∼ 0 indicates a component dominated by velocity
dispersion. For this reason, the circularity distribution has been used to decompose the stars
into disk and spheroid components (e.g. Scannapieco et al., 2008) and the mean circularity
even as an indicator for the morphology (Teklu et al., 2015). For this reason, there is a strong
correlation between the mean circularity and the 1-value.

Rotational Support – \/2

As already stated, the absolute value of the velocity dispersion is meaningless without putting
it in relation with the velocity itself. For this reason, the quantity +/f has been used in the
past to measure the amount of rotation as the ratio of ordered to random motion (Illingworth,
1977), where + has been defined as the maximum velocity and f as the mean central
dispersion, or + as the mass-weighted root mean square of the velocities and f as the mass-
weighted mean velocity dispersion. It was found that larger values of+/f tend to correspond
to larger ellipticities, n , i.e., flatter galaxies, but also that most flat ETGs are not flattened by
rotation, in part having data consistent with no rotation at all (e.g. Illingworth, 1977; Binney,
1978). This flattening of slow rotators was generally assumed to carry information about the
formation history of ETGs, and has been interpreted as the result of the remnant anisotropy
of the velocity distribution.

Rotational Support – ,X-Parameter

The usage of +/f was revisited with the advent of IFU surveys, since the small number
of slits used in earlier spectrographs, which usually only covered small regions of galaxies,
limited the available kinematic data of a galaxy and because the value of +/f fails to
distinguish small-scale from large-scale rotation. Based on a theoretical study by Binney
(2005), Emsellem et al. (2007) introduced a new parameter within the SAURON project that
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aimed to obtain the same general nature of +/f: to describe the ordered versus the random
motion. This new parameter, _', acts as a proxy of the specific angular momentum in relation
to the random motion and is defined as

_' =
〈' |+ |〉〈

'
√
+2 + f2

〉 , (1.7)

where ' is the distance to the galaxy’s center,+ and f are again the line-of-sight velocity and
velocity dispersion, and the brackets 〈·〉 correspond to the luminosity-weighted average. The
term 〈' |+ |〉 enables the distinction between small-scale and large-scale motion by resembling
a kind of mean projected angular momentum. Large-scale rotation will therefore lead to large
values of 〈' |+ |〉, while small-scale rotation will have small values of the term.

Assuming a constant mass-to-light ratio, Equation 1.7 is implemented for simulations as
(following e.g. Jesseit et al., 2009; Naab et al., 2014; Schulze et al., 2018)

_' =

∑
8 "8'8 |+8 |∑

8 "8'8

√
+2
8
+ f2

8

, (1.8)

where the sums run over the 2D bins (in this work the previously introduced Voronoi tes-
selation binning method is used), and the quantities "8, '8, +8, and f8 are the total mass,
distance from the galaxy’s center, mean velocity, and mean velocity dispersion of the 8th bin,
respectively. The sum is performed over the Voronoi bins instead of over a pixel-based grid
to avoid issues with limited mass and spatial resolution in the simulation, which can cause
statistical errors (following the approach taken by Schulze et al., 2018; a thorough study
on resolution in simulations is performed by Bois et al., 2010). This approach leads to a
lower limit of _' in simulations, since the statistical noises in the bins add up because of
the cumulative definition of _' (Bois et al., 2010; Naab et al., 2014; Schulze et al., 2018),
corresponding to around 0.07 for the simulation considered in this work.

When viewed from an edge-on perspective, galaxies dominated by rotation have values
of _' ∼ 1, whereas dispersion-dominated galaxies have values of _' ∼ 0. This motivated
Emsellem et al. (2007) to use _'4 (where '4 is the effective radius, within which half the
light of the galaxy is found) to classify ETGs as slow rotators (_'4 < 0.1) and fast rotators
(_'4 > 0.1). The larger galaxy sample of the ATLAS3D survey allowed Emsellem et al.
(2011) to redefine the threshold criterion based on both the _'-parameter and the ellipticity,
n , within one effective radius:

(i) slow rotator: _'4 < 0.31 ·
√
n'4

(ii) fast rotator: _'4 > 0.31 ·
√
n'4

This separates galaxies into the two groups depending on their position in the _'-n plane,
which also corresponds to the refined version of the previously considered relation between
+/f and n . Emsellem et al. (2011) found that 66% of the elliptical galaxies are fast rotators,
suggesting that the majority of ETGs are consistent with disk-like systems, while only a
comparably small percentage shows more spherical properties.
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Figure 1.11: Left: Right panel of fig. 9 from van de Sande et al. (2017a): The _'4
-n plane for

galaxies in the SAMI and ATLAS3D galaxy surveys. The filled symbols indicate aperture-corrected
measurements, whereas the small open symbols correspond to data without aperture corrections. The
dashed lines indicate where galaxies of different intrinsic ellipticities would be located, while the
dotted lines correspond to different viewing inclinations, starting from edge-on (solid magenta line),
for galaxies with an anisotropy of X = 0.7 · n . The enclosed region by the solid gray line indicates
the location of slow rotators according to the classification by Cappellari (2016). Right: The _'1/2-n
plane for the edge-on sample of galaxies used in this work, colored by the 1-value. The dashed line
indicates the threshold between fast and slow rotators, lying above and below the line, respectively.

Figure 1.11 shows this plane for galaxies from the SAMI andATLAS3D surveys (left panel)
and for the sample of galaxies considered in this work with the threshold line separating slow
and fast rotators (right panel), where the values of _' and n are computed from the particles
within one and one-and-a-half half-mass radii, respectively, following Schulze et al. (2018).
The parameters are computed from the edge-on perspective of the galaxies to ensure that
rotation is maximally captured. Note the strong correlation of the morphology with the
_'-parameter, where more disk-like objects generally are more rotationally supported. As
discussed for the +/f quantity, rotationally supported galaxies tend to be flatter, but there is
also the interesting class of flat slow rotators, which are flattened by their larger anisotropies
in the velocity distribution (e.g. Illingworth, 1977; Binney, 1978, 2005).

Clearly, the _'-parameter presents an important measure of the rotational support of
galaxies that can easily be compared between simulations and observations. Its correlation
with the 1-value, with the projected shape of galaxies, and with the anisotropy make it a very
effective property of galaxies which has already helped better understand the kinematics and
formation histories of ETGs.



1.2 Properties of Galaxies 19

Figure 1.12: Fig. 2 from Binney (2005): Constant anisotropy parameter curves in the +/f-n plane.
The solid lines correspond to the rotational behavior of a solid body, whereas the dotted lines indicate
the constant anisotropy curves of galaxies with some shear of the stellar flow.

Anisotropy Parameter

In the theoretical study by Binney (2005), the tensor virial theorem was used to derive a
relation between the rotation (+/f), shape (n), and velocity anisotropy of galaxies. Here,
the quantity +/f was used as the ratio of root mean squares of the line-of-sight velocity and
velocity dispersion. It was shown that the anisotropy depends on the location of a galaxy in
the +/f-n plane and introduced the global anisotropy parameter:

X = 1 − ΠII
ΠGG

= 1 −
∑
8 "8f

2
I,8∑

8 "8f
2
G,8

, (1.9)

where ΠGG and ΠII are measures for the random motion in the G and I directions by the
mass-weighted mean square velocity dispersion along the respective axis. The anisotropy
parameter takes on values of X = 0–1. The curves of constant anisotropy in the +/f-n plane
are shown in Figure 1.12.

Based on the tight relationship between +/f and _' (Emsellem et al., 2011), Schulze
et al. (2018) found that the anisotropy parameter is also accurately predicted by the position of
a galaxy in the _'-n plane. It also becomes apparent that the flattened slow rotators (galaxies
with low values of _', but high ellipticity in Figure 1.11) have large values of the global
anisotropy parameter, confirming early attempts of determining the driver of the peculiar
non-rotating flattened systems (Illingworth, 1977).

Radial ,X-Profiles

Schulze et al. (2020) investigated the radial profiles of _' out to five half-mass radii for
a subsample of the galaxies considered in this work. They computed the values of _'
from the edge-on projection of the galaxies in a differential manner to avoid missing any
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Figure 1.13: Fig. 5 from Schulze et al. (2020): Example _'-profiles of selected galaxies for each of
the three profile types: decreasers, increasers, and flats. The plots include the profiles for the velocity,
+ , the velocity dispersion, f, and the quantity +/f. The three galaxies are from Box4 (uhr) of the
Magneticum Pathfinder simulation suite (see Section 2.1 for further details).

kinematic transition features of the profiles. From the shapes of the profiles, they found three
characteristic radial profile types:

(i) Increasing profile (increasers): The _'-profile increases linearly with radius and
potentially plateaus at larger radii.

(ii) Decreasing profile (decreasers): The _'-profile has a central peak between 0.5 '1/2,∗
and 2 '1/2,∗, after which it decreases towards the outer regions.

(iii) Flat profile (flats): The _'-profile stays approximately constant within the full radial
range up to 5 '1/2,∗.

An example profile for each of the three types can be seen in Figure 1.13. Almost half of
the galaxies were classified as increasers, while decreasers and flats each make up almost
20% of the galaxies. As for the kinematic groups, some galaxies remain unclassified, often
due to large fluctuations in the profiles because of ongoing mergers or tidal interaction. Both
increasers and flats are comprised of slow and fast rotators, where they are found to equal
parts among the increasers and where 70% of the flats are slow rotators. The increasers tend
to have the largest 1-values, i.e., they are the most disk-like, and while the flats cover a similar
range of 1-values, they overall have smaller 1-values than the increasers. The decreasers were
found to mostly be fast rotators, which is consistent with observations from the SLUGGS
survey (Arnold et al., 2014) and the SAMI survey (Foster et al., 2018) of such galaxies having
inner stellar rotation within a non-rotating halo.

For the formation histories of the different _'-profile types, Schulze et al. (2020) found
that the largest difference between the classes was the fraction of mass accreted through
major mergers. Only 13% of a decreaser’s mass is accreted through major mergers, while
the fraction is 22% and 32% for flats and increasers, respectively. Overall, the decreasers
tend to accrete the least amount of mass through mergers and only around a third of them
have experienced a major merger, most of which occurred more than 5Gyr ago, such that
the kinematics of decreasers is generally driven by minor and mini mergers. This finding
can explain the low values of _' in the outskirts, where the accreted material leads to a large
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velocity dispersion, whereas the central in-situ stellar component continues with an ordered
disk-like rotation, as the centers are never disturbed by the small mergers (Karademir et al.,
2019, for a study of how matter is deposited through mergers of different orbits and mass
ratios). Thus, for decreasers, the transition radius from the rotationally supported central
component to the outer dispersion dominated component marks the transition from the old
in-situ to the ex-situ stars. Increasers accrete the largest amount of gas, where the difference
to the other profile types is especially driven through major mergers. They propose that there
is an evolution channel from increasers over flats to decreasers, which mainly depends on the
stellar mass accreted and on the major mergers since I = 2.

Schulze et al. (2020) suggested that decreasers could evolve to flats, such that decreasers
and flats may have similar merger histories, where flats are formed through a merger event
that removes the rotational peak of _'. Interestingly, only a small fraction of decreasers are
KDCs, which is likely a result of the kinematic groups having been determined only within
one half-mass radius, suggesting a complex relation between the kinematics in the centers
and halos of galaxies.

1.2.3 Angular Momentum

Unlike observations, simulations are not limited to a 2D projected view of galaxies. This
allows for 3D analyses of the galaxies, such as the kinematics. Two such parameters have
already been introduced in Section 1.2.2, which were necessary for defining the 1-value
(Equation 1.4): the angular momentum, P, and the specific angular momentum, j = P/" ,
where the total angular momentum of a set of particles is known from classical mechanics
and is defined by

P =
∑
8

<8 r8 × v8, (1.10)

where the sum runs over all particles and <8, r8, and v8 are the mass, position, and velocity
of the 8th particle, respectively. In comparison to +/f and _', these 3D vectors are not
dependent on the line-of-sight, but are intrinsic properties of an object.

The statistics of angular momenta in simulations was first primarily studied in DM halos,
since the first cosmological simulations only contained DM. Bullock et al. (2001) discovered
a universal angular momentum profile for DM halos, where the mass having at most a certain
specific angular momentum can be described by a two-parameter function, given by

" (< 9) = "halo
` 9

90 + 9
, (1.11)

where ` and 90 are the two free parameters. With the introduction of increasingly accurate
hydrodynamic simulations, the three-dimensional nature of the angular momentum was
exploited to compare the rotation of the stellar, gas, and DM components (e.g. van den Bosch
et al., 2002; Sharma & Steinmetz, 2005; Sharma et al., 2012; Teklu et al., 2015). It was
found that the angular momenta of baryonic matter and DM have median misalignments of
between 20° and 50°. For the Magneticum simulation used in this work, Teklu et al. (2015)
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determined that the stellar and gas angular momenta are well aligned in disk galaxies, but
approximately randomly oriented in elliptical galaxies, where the misalignment gets worse
over time. At low redshifts, the alignment of the angular momenta between the stellar and
DM components is better than that between the stars and the gas. They also investigated the
alignment of the angular momentum in the central regions of a galaxy with that in the halo
and found a median misalignment of 47°, consistent with the findings of Hahn et al. (2010).
The misalignment is less for disk galaxies, however. In the context of galaxy formation and
evolution, note that angular momentum can only be changed by infalling or escaping matter,
which for example can be caused by mergers, fly-bys, or feedback. Also, gas can redistribute
its angular momentum, as discussed in Section 1.1.2, which is not possible for the solely
gravitationally interacting DM.

Global Spin Parameter ,

Based on his work in 1969 (Peebles, 1969), Peebles (1971) introduced a dimensionless spin
parameter, _, to express the residual angular momentum, P, of a proto-galaxy:

_ =
� |� |1/2

�"5/2
, (1.12)

where � is the total energy of the galaxy and " its total mass. Mo et al. (1998) adopted
this parameter in their study of the formation of galactic disks and Bullock et al. (2001)
defined a modified component-wise spin parameter to measure the spin of the stellar, gas,
and DM separately. This was later expressed in terms of the specific angular momentum by
van den Bosch et al. (2002), which additionally is directly obtainable from the particle data
in simulations:

_: (') =
9:√
2'+circ

, (1.13)

where : denotes the component (i.e., stars, gas, or DM), and +circ is the Keplerian circular
velocity at the radial distance, ', defined by Equation 1.6. In this work, the spin parameter
will be referred to as “spin parameter” or “global spin parameter”, since here it is used
as a measure of the spin within the virial radius. The _'-parameter (which is sometimes
referred to as the spin of a galaxy in other literature), will always be referred to as “_'” or
the “_'-parameter”.

The distribution of the global spin parameter is well fitted by a log-normal distribution
(van den Bosch et al., 2002), where the gas component has the largest values, followed by the
DM and finally, with the smallest values of _, the stars (Danovich et al., 2015; Teklu et al.,
2015). The large gas spin is a result of the gas component continuously transporting angular
momentum from the outer parts to the inner parts through cooling, leading to an increasing
spin of the gas. This effect is not possible for stars and DM, which approximately retain their
angular momenta. The stellar spin is the smallest because of its concentration in the central
regions, whereas the DM spin is concentrated in the outer halo region.
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The global spin parameter at the virial radius of the galaxies enables a robust comparison
between the total large-scale spin properties of different galaxies and their components. For
instance, Teklu et al. (2015) found that the spins of disk galaxies tend to be slightly larger
than the those of elliptical galaxies and suggested that the formation history of the DM halo
is an important factor for the morphology of galaxies by cross-matching halos between a
DM-only and an equivalent full hydrodynamical simulation. The angular momentum and
spin of a galaxy therefore represent important properties of galaxies and give indications of
their formation history.

1.2.4 Shapes

The first morphological classification schemes all were based on the 2D projections of
galaxies. While the apparent ellipticity of ETGs was found to mostly just be correlated with
the inclination and is not an intrinsic property of galaxies (since it depends on the line of
sight), a three-dimensional characterization of galaxy shapes offers a physical description
and is independent of an observer. As one of the most fundamental properties, the spatial
distribution of matter is a key component for modeling galaxies and their dynamics; a good
understanding of the 3D shapes of galaxies is therefore necessary. Models based on the
Schwarzschild orbit-superposition method (Schwarzschild, 1979, 1982) require assumptions
to be made about the shape of a galaxy, where axisymmetric spheroids (e.g. Krajnović et al.,
2005, for a galaxy from the SAURON survey) or the more general triaxial ellipsoids (e.g.
Zhu et al., 2018, for spiral galaxies from the CALIFA survey) have been used, which are then
fitted to the observations of the projected galaxy.

Ellipsoids

In contrast to observations, simulations of galaxies have the 3D positional data of the particles
readily available. While the well-known density profiles are based on spherically symmetric
descriptions of the particle distributions, such as the Hernquist profile (Hernquist, 1990)
or the NFW-profile (Navarro et al., 1997), the shapes have generally been described by
ellipsoids (e.g. Gerhard, 1983; Katz, 1991; Springel et al., 2004; Allgood et al., 2006; Bett,
2012; Pulsoni et al., 2021). These are typically used to approximate the iso-density surfaces
of the particle distribution. The surface of an ellipsoid that has its three axes aligned with the
coordinate axes is defined by
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2

12
+ I
2

22
= 1, (1.14)

where 0, 1, and 2 are the semi-axis lengths of the ellipsoid. Ellipsoids with two axes of the
same length are called spheroids, where the spheroid is oblate if the two longer axes have the
same length and prolate if the two shorter axes have the same length. An ellipsoid with three
axes of different lengths is called triaxial and an ellipsoid becomes a sphere when 0 = 1 = 2.
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Axis Ratios

When comparing the shapes between different galaxies, for example with respect to being
flat or prolate, the absolute values of the axis lengths are not of interest, but their ratios.
Assuming 0 > 1 > 2 without loss of generality, the axis ratios are defined as

@ = 1/0, (1.15)

B = 2/0, (1.16)

? = 2/1, (1.17)

where in this work, @ is referred to as the major axis ratio and B as the minor axis ratio.
The axis ratio ? is not used as commonly in the literature. Note, however, that some authors
define ? = 1/0 and @ = 2/0 instead (e.g. Pulsoni et al., 2020, 2021). The minor axis ratio is
also known as the sphericity (e.g. Bett, 2012), since a value of B ∼ 1 means that the ellipsoid
is approximately a sphere. It also describes how flat an object is, as lower values of B indicate
flatter objects. From the definitions of oblate and prolate ellipsoids, it follows that @ = 1
indicates an oblate shape and @ = B indicates a prolate shape.

Triaxiality

To quantify whether an ellipsoid is closest to being oblate, prolate, or triaxial, the triaxiality
parameter is used (Franx et al., 1991), which is defined as

) =
02 − 12
02 − 22

=
1 − @2
1 − B2

. (1.18)

Ellipsoids with ) = 0 are perfectly oblate, while ) = 1 indicates a perfectly prolate shape.
While different definitions are used for the exact intervals, a commonly used classification of
shapes using the triaxiality is the following, which is also used in this work:
(i) oblate: 0 ≤ ) < 1/3
(ii) triaxial: 1/3 ≤ ) < 2/3
(iii) prolate: 2/3 ≤ ) ≤ 1
A visualization of the values of the triaxiality depending on the axis ratios is shown in
Figure 1.14, together with the regions of the oblate, triaxial, and prolate shapes in the @-B
plane.

This Thesis

In this thesis, the galaxy shapes, their properties, and their relations with other galaxy
properties are investigated to provide insights for numerous fields. This is the case for
the dynamical modeling of galaxies, which requires assumptions with respect to a galaxy’s
shape. It is also relevant to the information that observers can extract from combining
morphological and other properties, and to the connection between formation histories and
the resulting galaxies’ shapes.
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Figure 1.14: Visualization of the triaxiality, ) , in the plane spanned by the major and minor axis
ratios, @ and B. The solid lines indicate the borders between prolate, triaxial, and oblate shapes, from
left to right, respectively. The two dividing curves are given by ) = 1/3 and ) = 2/3.

In Chapter 2, the cosmological simulation and the galaxy sample used in this work are
presented. Chapter 3 presents the methodology used in this work, with a special focus on
the theoretical background of shapes and the analysis of the different shape determination
methods, which were performed as a part of this work. The shapes of the galaxies in the
sample, their statistics, and the differences between stellar and DM shapes are presented
in Chapter 4. The following chapters show the results of the relations between shapes and
other galaxy properties: global properties (Chapter 5), kinematic classifications and the
overall radial shape and alignment profiles (Chapter 6), large scale properties (Chapter 7),
and symmetry properties (Chapter 8). Finally, the results of this work are summarized and
concluded in Chapter 9.
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2 Simulation

Because of the non-linear growth of structure and the complex behavior of baryonic matter
with gas, stars, and feedback, cosmological hydrodynamical simulations present a wonderful
site for studying galaxy formation self-consistently. However, the need for large volumes,
which are necessary for statistically relevant studies and for obtaining larger galaxy clusters,
and for high resolution makes the simulations computationally expensive. By now there are
five big suites of fully cosmological hydrodynamical simulations: Magneticum Pathfinder1
(Dolag et al., in preparation), from which the cosmological box used in this work is taken,
Illustris (Vogelsberger et al., 2014), IllustrisTNG (e.g. Pillepich et al., 2018), EAGLE (Schaye
et al., 2015), and HorizonAGN (Dubois et al., 2014).

2.1 Magneticum Pathfinder Simulations

The galaxies studied in this work are extracted from the Magneticum Pathfinder project,
a suite of cosmological hydrodynamical simulations of different volumes (see the website
for more information on the available boxes: www.magneticum.org), performed with the
Tree/SPH code GADGET-3, which is an extended version of GADGET-2 (Springel et al., 2001b;
Springel, 2005). The improvements include the treatment of viscosity and the used kernels
(Dolag et al., 2005; Beck et al., 2016). The implemented baryonic physics include gas
cooling (Wiersma et al., 2009), star formation based on the subresolution model by Springel
& Hernquist (2003), black hole growth and feedback from active galactic nuclei (AGNs)
(Springel et al., 2005a; Di Matteo et al., 2005; Fabjan et al., 2010; Hirschmann et al., 2014;
Steinborn et al., 2015), and stellar evolution and metal enrichment (Tornatore et al., 2007).

The simulations adopt a standard ΛCDM cosmology with parameters according to the
seven year results of WMAP (Komatsu et al., 2011), which are shown with their values in
Table 2.1. For this work, the galaxies were selected from the medium-sized cosmological
Box4, which has a side length of 48Mpc ℎ−1, at ultra high resolution (uhr). The DM particle
mass is<DM = 3.6 × 107M� ℎ−1 and the initial gas particle mass is<gas = 7.3 × 106M� ℎ−1,
with softening lengths of nsoft,DM/gas = 1.4 kpc ℎ−1 for DM and gas particles and nsoft,∗ =
0.7 kpc ℎ−1 for stellar particles, which correspond to around nsoft,DM/gas ≈ 2 kpc and nsoft,∗ ≈
1 kpc. Gas particles lose mass by forming up to four stellar particles in their lifetime, where
the stellar particles also vary in mass through stellar winds and have an average mass of
around <∗ = 1.4 × 106M� ℎ−1. Initially, there are 5763 DM particles and 5763 gas particles.

1www.magneticum.org

www.magneticum.org
www.magneticum.org
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Table 2.1: ΛCDM cosmological parameters used in the Magneticum Pathfinder simulations.

Hubble parameter ℎ 0.704
dark energy density parameter ΩΛ 0.728
matter density parameter Ω" 0.272
baryonic density parameter Ω1 0.0451
normalization of the fluctuation amplitude at 8Mpc f8 0.809

This simulation has a size that is large enough to ensure a sufficient galaxy sample while
providing the resolution necessary to adequately analyze the kinematic and morphological
properties of the galaxies.

Galaxies in a given snapshot are identified with the subhalo finder SUBFIND (Springel
et al., 2001a), modified to treat baryonic matter in addition to the DM component (Dolag
et al., 2009). The algorithm uses the friends-of-friends (FOF) method (Davis et al., 1985)
to identify the parent halos (which are not substructures of other galaxies). The parent halos
found through the FOF method have overdensities that are characteristic for virialized objects
predicted by the spherical collapse model (Eke et al., 1996). For this reason, the virial radius
of a parent halo can be determined by the density contrast based on the top-hat model. In
a second step, a global density threshold is lowered step by step to find locally overdense
regions. In each of these overdense regions the gravitationally bound particles are kept,
which finally constitute the substructures, called subhalos. In this work, the majority of
galaxy properties are determined from the particles assigned to a given subhalo, i.e., main
galaxies without their identified substructures, and satellite galaxies. Figure 2.1 shows an
examplemain galaxy including the substructure (left pane) andwithout the substructure (right
pane). SUBFIND often does not identify the full substructure, such that their outer regions
remain in the main halo when removing the identified substructures. This can be seen in the
right pane, where denser regions hint at the existence of substructures. Other features in the
outskirts of galaxies include shells, streams, and other tidal stripping remnants, which would
often still be considered part of the satellite galaxies in observations. For this reason, the
galaxies obtained from SUBFIND should be treated with caution at larger radii.

2.2 Galaxy Sample

The galaxy sample studied in this work consists of galaxies in the latest snapshot of Mag-
neticum Pathfinder Box4 (uhr) at I ≈ 0.066 that fulfill the following criteria:
(i) To ensure a sufficient number of stellar particles for a kinematic and morphological

analysis, only galaxies with stellar masses of "∗ ≥ 1010M� are considered, which
corresponds to approximately 5000 stellar particles.

(ii) Some satellite galaxies are identified by SUBFIND with very few DM particles. To
exclude these galaxies, a mass cut for the DM mass is also applied: "DM ≥ 1010M�.
This corresponds to approximately 200 DM particles, which is still a very low number
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Figure 2.1: Example main galaxy fromMagneticum Pathfinder Box4 (uhr) at I = 0 shown with all the
substructure (left) and without (right). The excluded satellites in the right pane are the ones identified
by SUBFIND.

of particles, but this threshold was found to be sufficient to filter out the problematic
galaxies.

(iii) To prevent the central regions of the galaxies from being insufficiently resolved, the
stellar half-mass radius is required to satisfy '1/2,∗ ≥ 2 kpc, which corresponds to the
DM and gas softening length, or to twice the stellar softening length. This follows
the approach taken by Schulze et al. (2018) and Schulze et al. (2020) for the same
cosmological simulation.

The resulting galaxy sample consists of a total of 1995 galaxies, of which 1260 are main
galaxies and 735 are satellites.

Some of the galaxy properties studied in this work are only available for a subset of the
full galaxy sample:
(i) The mean stellar ages within one stellar half-mass radius (Section 5.4) and the radial

_'-profile groups (Section 6.2) were obtained from Felix Schulze (Schulze et al.,
2020) for the galaxies with stellar masses of "∗ ≥ 3 × 1010M�, which is the case for
743 of the galaxies (469 main galaxies and 274 satellites).

(ii) The in-situ fractions within 1 '1/2,∗ (Section 5.4) were obtained by Felix Schulze
(Schulze et al., in preparation) based on the work of Remus & Forbes (2021) for
510 main galaxies; this only consists of the galaxies for which the stellar particles
could be properly tracked back through time.

(iii) The global spin parameters (Section 7.1) and the local density (Section 7.2) were only
computed for the 1260 main galaxies, consistent with the choice of galaxies by Teklu
et al. (2015) for the same cosmological simulation as used in this work.

(iv) Finally, an additional requirement for a galaxy’s gas mass was applied for the spin
parameters of the gas component to ensure a sufficient number of gas particles:
"gas ≥ 1010M�. This is the case for 968 of the 1260 main galaxies.
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3 Methodology

For the computation and analysis of galaxy shapes and their relations to other properties, it is
important to have a robust understanding of their theoretical background and methodology.
In this chapter, the necessary steps of preprocessing the particles of a given galaxy and the
theoretical foundation for galaxy shapes are first presented, after which a number of shape
determination methods are introduced and thoroughly tested, with the objective of finding
the best method to be used in the following chapters. This analysis of the methodology was
performed as part of this work.

3.1 Center of Particles

When determining any property of a galaxy at some radial distance, it is vital to have a
meaningful point at the origin. As the most basic example, the origin in the case of a sphere
should be its center since radial properties are the most meaningful for spherical symmetry.
Also, the shape determination methods discussed in Section 3.3 require a predefined origin
around which an ellipsoid is determined to describe the particle distribution. For the DM
component, the position outputted for the given subhalo by SUBFIND can be used, which
indicates the position of the most-bound DM particle. This is reasonable because the DM
distribution dominates a galaxy’s potential. However, the stellar and gas components can be
shifted with respect to the subhalo’s position, indicating the need for a method of finding the
actual “center” of a given set of particles.

To determine such a center, a modified version of the iterative shrinking sphere method
described by Power et al. (2003) is used in this work: the radius of a sphere is repeatedly
shrunk by 2.5% until the number of particles within the sphere reaches 1000 particles or 1%
of the particles within the initial sphere, whichever is smaller. At each step, the center of
the new sphere is placed at the barycenter of the particles within the previous sphere. The
barycenter of the particles within the final sphere is the wanted center of particles. Note
that none of the galaxies dealt with in this work have so few stellar particles that the particle
number within the sphere becomes unreasonably low. The method is only applied to the
stellar component for all the shape and global properties (Chapters 4 to 6 and 8), but not
for the large scale properties (Chapter 7), to be consistent with the approach taken by Teklu
et al. (2015). The shrinking sphere method is found to be stable even for different initial
parameters, under the condition that the initial sphere is large enough (Power et al., 2003).
In general, the method finds the densest region within the most massive subcomponent (if
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multiple components exist). For this reason, this method is only applied to the subhalo’s
particles according to SUBFIND to prevent the method from finding the center of a more
massive structure nearby.

For this work, the procedure is modified by adding a further criterion for the shrinking
to stop, which is when the radius of the shrinking sphere reaches half of a preliminarily
computed half-mass radius of the stellar particles. The stellar half-mass radius is estimated
using the subhalo’s center obtained from SUBFIND and is determined from all stellar particles
within 10% of the virial radius or in the entire subhalo for satellite galaxies. Since one
application of the computed center is to determine radial properties out until a few half-mass
radii, the center point should not be too dependent on the very inner particle distribution, but
should approximate the center on the order of the half-mass radius. For this, an inner limit
of half of the half-mass radius is found to be a good and stable approximation of the center
point. To ensure that the center of the stellar component lies within the initial sphere, the
initial radius is set to three preliminary stellar half-mass radii. Only in a second step, after
having found the center of particles, is the final stellar half-mass radius calculated from the
obtained center point.

3.2 Center of Velocity

Just like for the central position of a galaxy, the velocity of the stellar component can differ
from the velocity given by SUBFIND for the subhalo. Because of this, it is necessary to find
a method for obtaining the center of velocity of a galaxy. A reasonable approach would
be to simply use the mass-weighted mean velocity of the stellar particles within a certain
radius of the center of the galaxy. To avoid individual particles or particles in substructures
(those not identified by SUBFIND) with especially high velocities from influencing the mean
velocity too strongly, the particles with the largest absolute velocities are excluded from the
computation of the mass-weighted mean velocity. These absolute velocities are determined
relative to the median velocity of the stellar particles. In this work, the particles within
4 '1/2,∗ are considered for the center of velocity, and the particles with the 10% highest
absolute velocities are excluded for the mass-weighted mean velocity. As for the center
of particles, this is only applied to the stellar component, where the velocities are shifted
according to the center of velocity.

For the global spin parameters (Section 7.1), the approach for finding the center of velocity
used by Teklu et al. (2015) is applied. In this approach, the center of velocity is computed as
the mass-weighted mean velocity of all DM, gas, and stellar particles within 0.1 'vir of the
subhalo’s position given by SUBFIND.
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3.3 Shape Determination

To better understand themathematical and physical meaning of the shape parameters analyzed
in this work, a fundamental understanding of their origin and determination methods is
necessary. The tests of the different methods of determining shapes were performed as a
part of this work. In general, the shape ellipsoid is determined from the eigenvectors and
eigenvalues of a tensor describing the mass distribution, for which a variety of different
methods have been used in the literature.

3.3.1 Theoretical Background

Shape Tensor

For the introduction of the shape tensor, we follow the derivation by Zemp et al. (2011). In
classical mechanics, the moment of inertia tensor, I, describes the linear relation between the
angular momentum, R, and the angular velocity, 8:

R = I8. (3.1)

The elements of the moment of inertia tensor are given by

�8 9 =

∫
+

33r d(r)
(
A2X8 9 − A8A 9

)
, (3.2)

where 8, 9 ∈ {G, H, I}, d is the mass density at a given point, X is the Kronecker delta, and the
integral is over the volume of the body with the position vector, r, based at the body’s center.
Note that in our notation A8 is the 8-component of the vector r and A = |r |. We can identify
the subtrahend term with the second moment of the mass distribution, M:

"8 9 =

∫
+

33r d(r)A8A 9 , (3.3)

with which Equation 3.2 can be expressed by

�8 9 =
∑
8

"88X8 9 − "8 9 = tr(M)X8 9 − "8 9 . (3.4)

The tensor M is therefore the part of the moment of inertia tensor that describes the actual
matter distribution. Finally, Zemp et al. (2011) introduce the shape tensor as

S =
M
"tot

, (3.5)

where "tot is the total mass within the considered volume.
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From the Shape Tensor to the Ellipsoid

The tensors M and S trivially have the same eigenvectors. Plugging Equation 3.4 into the
eigenequation of I with an eigenvector, v, and its eigenvalue, _, gives us:

Iv = _v

⇒ tr(M)v −Mv = _v

⇒ Mv =
(
tr(M) − _

)
v. (3.6)

The eigenvectors of M and S are therefore also the same as those of I, i.e., they point along
the principal axes, and the eigenvalues of M are given by tr(M) − _ for any eigenvalue _ of
I, which are the principal moments of inertia. The eigenvalues of S are proportional to those
of M, being smaller by a factor of "tot.

To understand the mathematical meaning of the eigenvectors and eigenvalues of the
tensors M and S, we consider the covariance matrix of a vector of three random variables,
-8, with 8 ∈ {1, 2, 3}:

cov(-8, - 9 ) =
〈(
-8 − 〈-8〉

) (
- 9 − 〈- 9 〉

)〉
, (3.7)

with 8, 9 ∈ {1, 2, 3} and where 〈·〉 is the expected value of the respective argument. According
to the law of the unconscious statistician (LOTUS), the expected value of a function 6(-) is
given by

〈6(-)〉 =
∫ ∞

−∞
3G 5 (G)6(G), (3.8)

where the random variable, - , has the probability density function 5 (G). Using this and
comparing the covariance defined in Equation 3.7 with M given in Equation 3.3, it is found
that d(r) can be identified with 5 (G) and A8 with (-8 − 〈-8〉) (analogously for the index 9).
This shows that the second moment of the mass distribution, M, is the three-dimensional
covariance matrix of the mass distribution, as long as the center of mass is at the origin of
the coordinate system. The same is true for S by instead identifying d(r)/"tot with 5 (G), for
which we obtain the covariance matrix of a normalized mass distribution.

By identifying S with a covariance matrix, it follows that its eigenvalues are the variances
of the normalized mass distribution along the axes of the corresponding eigenvectors, i.e.,
along the principal axes. This means that the standard deviation along the principal axes is
given by the square root of the respective eigenvalues. The ratios between these standard
deviations are finally used as the axis ratios of the ellipsoid used to describe the shape of a
galaxy’s particle distribution. Given the three eigenvalues _1 > _2 > _3, we obtain the axis
ratios @ =

√
_2/_1, B =

√
_3/_1, and ? =

√
_3/_2, with @ > B.
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3.3.2 Discretization

While the most general approach was taken in the previous section by assuming a continuous
mass distribution, the output of simulations only contains discrete particle information. Even
if it would theoretically be possible to treat these particles as individual spherically symmetric
mass distributions, testing this would be cumbersome and computationally expensive while
hardly differing from treating them as point particles, as long as there is a sufficient number
of particles analyzed.

For # point particles, the density is described by

d(r) =
#∑
:=1

<:X(r − r: ), (3.9)

where <: is the mass and r: the position of particle : , and X is the Dirac delta function.
Plugging this into Equation 3.3 and Equation 3.5, we obtain, again following Zemp et al.
(2011):

(8 9 =

∑
: <: r:,8 r:, 9∑

: <:

, (3.10)

where the sum notation over all particles is abbreviated and r:,8 is the 8-component of the
position of particle : .

3.3.3 Practical Issues

Choice of Origin

Despite having a clear understanding of the meaning of the ellipsoid found through the
eigendecomposition of the shape tensor, there are a number of issues with this method in
practice, depending on the objectives. The first issue is related to Section 3.1, in which the
need of determining a center of particles was discussed: galaxies generally have a core, both
in the DM and stellar components (even if not always located at the same place), that has a
higher density than found in the rest of the galaxy. Especially when determining the radial
profiles of the shapes, it is sensible to place the origin at the center of such a core, whereas the
center of mass is much more impacted by asymmetries in the galaxy and by the exact particles
used to compute it, additionally making it less stable than the shrinking sphere method.

Substructure

Another issue is that many galaxies have satellites that one would intuitively ignore when
approximating the shape manually. Such structures will dominate the summation for the
shape tensor and thus bias the determined ellipsoids. While SUBFIND identifies the larger
substructures as subhalos, it oftentimes only cuts out their central part, assigning the outer
region of the satellites to the parent halo, and entirely misses the smaller substructures. Of
course, the strong non-ellipsoidal nature of extreme cases puts the meaningfulness of an
ellipsoid that was determined for them into question, showing how any shape determination
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method with ellipsoids will necessarily have its limits. However, it is still reasonable to only
compute the shapes from the particles assigned to the particular halo by the halo finder. Some
of the variations of the shape tensor discussed in the following chapter try to address some
of the issues introduced by substructure.

3.3.4 Methods

In the literature a variety of shape determination methods are used with different versions of
the shape tensor. For this, the shape tensor can be generalized following Zemp et al. (2011)
by including a weight function F(r) and replacing the particle mass, <: , with a generalized
mass weight, <̃: :

(8 9 =

∑
: <̃:F(r: )r:,8 r:, 9∑

: <̃:

. (3.11)

Mass Weight

To recover Equation 3.10, one simply uses F(r) = 1 and <̃: = <: . In particular for DM-only
simulations one has used <̃: = 1 because all particles have the same mass (e.g. Allgood et al.,
2006). Since the simulation analyzed in this work includes baryonic matter and forms star
particles with different masses, we decided against using this approach, especially because a
single additional multiplication per particle is negligible with respect to computational time.
A third approach to the mass weight was employed by Warnick et al. (2008) with <̃: = 1/d: ,
where d: is the local density of particle : . This prevents particles in denser regions from
dominating the summation, which is especially a problem in the presence of substructures
as discussed in the previous section. As a non-standard approach to the shape tensor, their
method is not further considered in this work.

Iteration

Since the objective is to determine the shapes of extended objects at different radii, the most
basic approach would be to compute the shape tensor from all the particles within the given
radius to obtain the axis ratios of the ellipsoid. However, this in fact only determines the
standard deviation ratios along the principal axes for the particle distribution within a sphere,
which will always be biased towards spherical shapes, most noticeable for very elongated
galaxies. A way to circumvent this issue is by iteratively selecting only the particles within
the previously determined ellipsoid for the following computation of the shape tensor until
the axis ratios converge. In this way, the sphere is continuously deformed, such that the
spherical bias is reduced in each iteration step until convergence is reached. There are two
commonly used sizes of the bounding ellipsoid: either its major axis length is held constant
or its volume. These are kept at the initial sphere’s radius or volume, respectively. In the
former case, the volume of the final ellipsoid will be smaller than that of the initial sphere,
and in the latter case, the largest axis length will be larger than the initial radius.
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Shells

An alternative to considering all particles within an enclosed ellipsoid is to only compute the
shape tensor from the particles within a homoeoid (an ellipsoidal shell) to obtain the local
shape at a given distance. In the non-iterative case, the shape tensor is only determined from
the particles in a spherical shell, while it is deformed into a non-spherical homoeoid in the
iterative case. While Zemp et al. (2011) recommended using the homoeoid approach for the
most accurate description of the local shape in well resolved halos, they advised only using
this approach if at least a few thousand particles per radial bin can be ensured. The galaxies
analyzed in this work ("∗ ≥ 1010M�) have stellar particle numbers ranging from under 6000
to 1.7 × 106 and can have far fewer DM particles, whereas Zemp et al. (2011) set up their
halos with 107 to 108 particles and analyzed galaxies in a hydrodynamical simulation with
more than 106 particles. To treat the galaxies in a consistent way across different galaxy
sizes, the homoeoid method is not used in this work.

Weight Function

The weight function F(r) is found to be either 1, A−2, or A−2ell in the literature, where A = |r |
is the Euclidean distance of the respective particle from the origin, and Aell is the ellipsoidal
distance, defined as

Aell =

√
G2ell +

H2ell
@2
+
I2ell
B2
, (3.12)

where Gell, Hell, and Iell are the particle coordinates in the eigenvector coordinate system of the
shape tensor and @ and B are the ellipsoid axis ratios defined in Section 3.3.1. The coordinates
are along the major, middle, and minor axis of the ellipsoid, respectively. These versions of
the shape tensor are oftentimes called unweighted for F(r) = 1 and reduced for F(r) = A−2(ell)
(e.g. Allgood et al., 2006; Pereira et al., 2008). In this work, we will differentiate between
the reduced (A−2) and reduced ellipsoidal method (A−2ell ). Note that the reduced ellipsoidal
method can only be used iteratively because of the dependence on the axis ratios. For the
initial sphere in the first step, the axis ratios are therefore set to 1 and are subsequently altered
until convergence is reached.

The reduced and reduced ellipsoidal weightings were introduced to prevent substructures
in the outer regions from dominating the shape, which is caused by the unweighted shape
tensor being proportional to A2 (Equation 3.10). This, however, comes at a cost, as is shown
in Section 3.3.5.

Naming Conventions

Note that both the second moment of the mass distribution defined in Equation 3.3 as well
as the shape tensor in Equation 3.5 and Equation 3.10 are often incorrectly referred to as
the “moment of inertia tensor” or just “inertia tensor”, as pointed out by Zemp et al. (2011).
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Table 3.1: Shape tensor methods tested. All methods use the normal mass weight of <̃: = <: and
consider all particles within an enclosed ellipsoid (instead of a homoeoid). The terms in parentheses
indicate the respective quantity held constant in the iterative procedures.

not iterative iterative (major axis) iterative (volume)

unweighted X X X
reduced X X X
reduced ellipsoidal X X

Unfortunately, this has remained largely unchanged even in the more recent literature (e.g.
Emami et al., 2021; Pulsoni et al., 2021).

3.3.5 Testing the Shape Methods

Implementation

In the following, eight different methods for determining shapes of some example galaxies
from the Magneticum Pathfinder Box4 (uhr) simulation are tested (Table 3.1). The tensor
computations are implemented as

"8 9 =
∑
:

<:F(r: )r:,8 r:, 9 , (3.13)

since the second moment of the mass distribution, M, has the same eigenvectors and eigen-
value ratios as those of the shape tensor. When keeping the major axis constant in the iterative
methods, particles within the ellipsoid are selected by the criterion

Aell,: ≤ A, (3.14)

where Aell,: is the ellipsoidal distance of particle : from the origin. When keeping the volume
constant, particles are selected by

Aell,: ≤
A

(@B)1/3
. (3.15)

This is derived from two properties of an ellipsoid: its volume is +ell = 4
3c012, with the

semi-axis lengths 0, 1, and 2. It is held constant at the spherical volume, such that 012 = A3

or @B03 = A3 is required. Secondly, an ellipsoid aligned with the coordinate system is given
by all particles satisfying

G2

02
+ H

2

12
+ I
2

22
≤ 1

⇒ G2 + H
2

@2
+ I
2

B2
≤ 02

⇒ A2ell ≤ 0
2
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⇒ Aell ≤
A

(@B)1/3
, (3.16)

which recovers Equation 3.15. For the iterative methods, the convergence criterion is imple-
mented by requiring @ and B to vary by less than 10−4 in relative terms from one step to the
next. The method is also quit after 50 steps, which prevents the axis ratios from jumping
back and forth by a relative step larger than 10−4 indefinitely.

First Insights: Iterative Methods

Figure 3.1 shows a simple visual test to get first insights into what the determined ellipsoids
look like when their contours are overplotted onto the surface density map of a galaxy. The
selected galaxy is deliberately picked to be rather flat in the edge-on view to address the
concerns with respect to a bias towards more spherical shapes. This bias can indeed be seen
for the non-iterative unweighted and all reduced methods, since their contour ellipses clearly
have eccentricities that are too small compared to what one would expect from the surface
density maps. The reason for this, in the case of the non-iterative methods, has already been
discussed in Section 3.3.4. This supports the decision of Zemp et al. (2011), who only briefly
mention the possibility of non-iterative methods, but do not see any physical meaning in their
outcomes.

Reduced Methods

In addition to the non-iterative methods leading to biased shapes, there also appears to
be an issue with the reduced methods in general, independent of computing the ellipsoid
iteratively or not. Considering only the non-iterative reduced method, the eccentricity is
even smaller than that of the non-iterative unweighted method. The source of this bias is
found in the definition of the reduced method, given by the weight function F(r) = A−2. This
weight function is used by some to prevent substructures in the outer region of the ellipsoid
from dominating the summation for the shape tensor by only taking the unit position vector
into account. The problem with this approach is that all particles are essentially projected
onto a unit sphere, irrespective of the actual shape. In Figure 3.2, this is visualized for a two
dimensional particle distribution (upper subfigure) projected onto a circle (middle subfigure).
Note that the reduced shape tensor of the upper subfigure is equal to the unweighted shape
tensor of the middle subfigure. Since the projected particles all lie on a sphere, the only thing
making the shapemore ellipsoidal is the varying particle density on the sphere’s surface. Still,
by entirely removing the distance component from the origin, it ignores how a shape also
depends on the distances of the particles. Compared to the bottom subfigure, which shows
how the reduced ellipsoidal method projects the particles onto an ellipse in two dimensions,
it becomes more clear why the reduced method has a bias towards more spherical shapes,
whereas the reduced ellipsoidal one does not. For this reason, the reduced methods are not
further considered for the shape determination.
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Figure 3.1: Surface densitymap of an example galaxywith the overplotted ellipsoid contour at 1 '1/2,∗
for the considered shape determination methods. The galaxy is viewed edge-on in the eigenvector
coordinate system of the respective shape tensors. The iterative methods are denoted by “it.”.



3.3 Shape Determination 41

unweighted

reduced

reduced ellipsoidal

Figure 3.2: Visualization in two dimensions of how the unweighted, the reduced, and the reduced
ellipsoidal weight functions project the particle distribution onto itself, onto a sphere (circle in 2D),
and onto an ellipsoid (ellipse in 2D) in the summation for the shape tensor. The colors and sizes of the
particles only are different to emphasize that the reduced and reduced ellipsoidal weightings project
their positions onto the same circle and ellipsoid, respectively.



42 Chapter 3 – Methodology

Unweighted and Reduced Ellipsoidal Methods

This leaves us with the iterative unweighted and reduced ellipsoidal methods. The bottom
panel of Figure 3.2 nicely shows how the projection of the particles onto an ellipse (or
ellipsoid in three dimensions) weights particles at all distances in the same direction equally.
In contrast, the unweighted shape tensor depends more strongly on the particles that are
the furthest out because of the proportionality with A2. For these reasons, the unweighted
method is more useful for a local description of the shape at a certain distance, while the
reduced ellipsoidal method can be applied globally to find an average shape for the entire
galaxy. When only used locally, the reduced ellipsoidal radial shape profile is smoothed out
compared to what one obtains for the unweighted method, as found by Zemp et al. (2011).
In fact, they also concluded that the iterative unweighted method (their S1) is the best at
reproducing the shape of the isodensity surfaces out of the methods that consider all particles
within an ellipsoid (as opposed to in homoeoids).

The different behavior of the unweighted and reduced ellipsoidal methods can be clearly
seen for galaxies with morphological twists. Such a galaxy is shown in Figure 3.3 with the
overplotted ellipses as before, except the shape tensors are calculated at three half-mass radii
to also include particles further out. While the unweighted methods largely ignore the twisted
core by determining an ellipsoid close to the actual isodensity surface at three half-mass radii,
the reduced ellipsoidal method is dominated by the large amount of particles in the core, thus
placing the galaxy in an edge-on view mostly according to the core shape. The meaning of
the reduced ellipsoidal shape found at a certain distance therefore rather describes the average
shape of the particles within. The iterative unweighted methods will therefore be used for
any radial or local description of a galaxy’s shape, while “globally averaged” shapes should
be computed via the iterative reduced ellipsoidal method.

Constant Quantity in the Iteration

Finally, we are left with the question of whether it is better to keep themajor axis or the volume
of the deforming ellipsoid constant during the iterations. Running the two algorithms on a
larger sample of galaxies, corresponding to the main halos and subhalos found by SUBFIND
shows a major disadvantage of keeping the major axis constant: the ellipsoid is flattened
completely for one galaxy at three half-mass radii, such that no stellar particles are found
in the ellipsoid and the shape becomes undefined. Clearly, methods keeping the major axis
constant are not entirely robust for all particle distributions. To understand why this happens,
the edge-on density map of this galaxy is plotted for the iterative unweighted method with
constant volume at three half-mass radii in Figure 3.4. A number of interesting things can
be concluded from this galaxy: first of all, SUBFIND does not always manage to identify
stellar substructures, as can be seen by the dense region about ∼70 kpc to the left of the actual
galaxy’s center. Additionally, this example shows how the meaningfulness of a shape found
for certain galaxies is questionable, since an ellipsoid is clearly not suitable for describing
a particle distribution with two cores. Not even the reduced ellipsoidal method, which is
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Figure 3.3: Surface density map of an example galaxy with the overplotted ellipsoid contour at three
half-mass radii for the iterative unweighted and reduced ellipsoidal shape determination methods. The
galaxy is viewed edge-on in the eigenvector coordinate system of the respective shape tensors. The
differences in orientation are caused by the morphological twist of the galaxy, to which the shape
determination methods react differently.

supposed to generally be less impacted by substructure, can properly determine the shape of
the central part of the galaxy (Appendix A.1). Despite the unclear meaning of the determined
shape, it becomes evident that the approach keeping the major axis constant is intrinsically
more unstable against substructure than the one keeping the volume constant. While it may
be possible to construct very specific particle distributions that lead to the constant volume
approach being more unstable, this is never the case for any of the tested shape calculations.
As a last point, the reason for the instability of the constant major axis approach is found to
be linked to the very dense substructure outside the actual galaxy’s center. Just barely within
the three half-mass radii, it dominates the summation for the shape tensor, which leads to
a very elongated ellipsoid with the substructure on the major axis. By keeping the major
axis constant, this substructure continues to be right on the border of the enclosing ellipsoid.
It therefore persistently dominates the shape, such that it becomes increasingly elongated,
until it becomes completely flat. Because of this instability against substructure, the iterative
unweighted method with constant ellipsoidal volume will be used in this work, unless noted
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Figure 3.4: Surface density map of an example galaxy with the overplotted ellipsoid contour at three
half-mass radii for the iterative unweighted shape determination method with constant volume. The
galaxy is viewed edge-on in the eigenvector coordinate system of the shape tensor. Keeping the major
axis constant instead of the volume of the ellipsoid leads to the ellipsoid being flattened completely.

otherwise. As a side note, when the reduced ellipsoidal method may be necessary, it is
recommended to also apply the constant volume approach for reasons of consistency.

3.4 Shapes & Ellipticity

While the full three-dimensional data of the particles can be extracted from simulations,
it is only possible to observe real galaxies as a two-dimensional projection, from which
a three-dimensional shape can not be directly computed. As introduced in Section 1.2.1,
the ellipticity is oftentimes used to describe the 2D shape of a galaxy’s projection. There
are also a variety of different methods used to determine the best fitting ellipse: for the
SAURON (Bacon et al., 2001) and ATLAS3D (Cappellari et al., 2011) projects, the ellipticity
is computed as:

n = 1 −

√√∑#
==1 �=H

2
=∑#

==1 �=G
2
=

, (3.17)

where the sums run over the bins of pixels, �= is the flux contained within the =th bin,
and G= and H= are its coordinates in the eigenvector coordinate system of the projection
(Cappellari et al., 2007). Assuming a constant mass-to-light ratio, such that we can exchange
the fluxes �= by the masses "=, this is actually the result of using the unweighted shape
tensor in two dimensions. This is because the fraction consists of the diagonal elements of
the 2D unweighted shape tensor, which in the eigenvector coordinate system correspond to
the eigenvectors. The square root of their ratio is therefore simply the axis ratio of the ellipse,
relating it to Equation 1.1. As has been shown for the three-dimensional shape tensor, the
unweighted method has a bias towards large axis ratios. For this reason, that conclusion is
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Figure 3.5: Edge-on ellipticity at 1.5 half-mass radii of the galaxy sample compared to the axis ratio
B from the 3D ellipsoid. The edge-on view for the ellipticity was determined from the determined
ellipsoid at 1.5 half-mass radii.

directly applied to the two-dimensional case in this work and the ellipticity is computed via
the iterative unweighted method, keeping the area of the deforming ellipse constant.

It becomes apparent that the axis ratio of such an ellipse could match those of the 3D
ellipsoid when viewed along one of the ellipsoid’s axes. Comparing this for the galaxies in
MagneticumBox4 (uhr) shows a close relation between the 2D determined edge-on ellipticity
and the 3D axis ratio B at the same radial distance (Figure 3.5), where n ≈ 1 − B. This
demonstrates the direct relevance of the ellipsoid’s 3D axis ratios for comparisons between
simulations and observations. Of course, galaxies are observed in random orientations in
practice, such that the values of the axis ratios @ and B represent the upper and lower bounds
of 1− n . It is interesting to note that there appears to be a trend of the ellipticities from the 3D
shapes, 1− B, being a little larger than the 2D ellipticities. This may be caused by integrating
over the line of sight in the projection for the 2D ellipse. In this work, the focus is on the
intrinsic 3D shape properties rather than the randomly projected 2D properties, leaving a full
analysis of the statistics and correlations of projected ellipticities from random orientations
for future work. Here, the main point to keep in mind is that any references to @ and B can
also be understood as approximately one minus the ellipticity from a face-on and edge-on
perspective, respectively.
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3.5 Summary & Conclusion

As shown in this chapter, to ensure a meaningful description of the shapes, kinematics, and
radial properties of a galaxy’s stellar component, the particles have to be preprocessed by
finding the particles’ center and their center of velocity, and transforming them into that
frame of reference. The galaxy shapes are described by ellipsoids aligned with the principal
axes of the inertia tensor, where the lengths of the ellipsoid axes correspond to the positional
standard deviations in the given directions.

A variety of shape determination methods are used in the literature, for which the tests
performed in this chapter show that a local description of the shape is best done using
the mass-weighted, iterative, unweighted method, while keeping the volume of the ellipsoid
constant throughout the iterations. For a global description of a galaxy’s shape, the best
method is the mass-weighted, iterative, reduced-ellipsoidal method, where all particles of a
galaxy are considered. Applying any of the other methods can lead to biased results through
substructure, to biases towards spherical shapes, and to less robust algorithms that do not
converge to a physical result. In this work, the local shapes at specific radial distances are
analyzed in detail. Therefore, the mass-weighted, iterative, unweighted method, which keeps
the ellipsoid’s deforming volume constant, will be used throughout this thesis.



4 Shapes of the Magneticum Galaxies

Having decided on the most appropriate shape determination method to be used, the shapes
of all galaxies in the sample are investigated in detail in this chapter. The statistics of the axis
ratios and triaxialities for the stellar and DM components and their relation with the 1-value,
themorphological parameter, are important for the analysis of the relations between the shapes
and other galaxy properties starting in Chapter 5, since they provide the foundation for the
interpretations of the findings. From a qualitative perspective, and keeping the morphological
classifications in mind (Section 1.2.1), the stellar shapes of LTGs would be expected to be
flatter, i.e., have lower values of B compared to ETGs. LTGs should also be more oblate on
average due to their disk-like shapes. Because DM cannot redistribute angular momentum,
while gas is capable of settling in a disk, and because of stars preferably forming in the gas
disk of LTGs, the DM shapes can be expected to be more spherical than those of the stars.
Other authors have found most DM halos to be prolate in shape from DM-only simulations
(e.g. Allgood et al., 2006), arguing that the prolate shapes are a consequence of merging
along preferred directions (e.g. Knebe et al., 2004; Faltenbacher et al., 2005). This argument
can also be made for the stellar component of ETGs. Lastly, a comparison between the inner
and outer stellar and DM shapes is made to get an impression of how variable the determined
shapes are radially and how similar the stellar and DM shapes are to each other.

4.1 Axis Ratios

Stellar Component

In a first step, we take a look at the distribution of the galaxy sample in the @-B axis ratio
plane of the stellar component at one and three half-mass radii (left panel of Figure 4.1).
A feature that is immediately apparent is that the galaxies’ inner and outer regions occupy
different places in the @-B-plane: at 1 '1/2,∗, @ spans a large interval with most galaxies having
@ & 0.5 and B being mostly between 0.2 and 0.6, while at 3 '1/2,∗, the generally high values
of @ & 0.75 indicate more circular face-on shapes, with B moving to a higher range between
0.3 and 0.7. Clearly, more galaxies are identified as oblate when also considering their outer
regions, while the inner regions often feature more triaxial and prolate shapes. While some
of these could be interpreted as large bars (and others could simply be elongated ETGs), the
spatial resolution of the inner parts of the less massive galaxies is unfortunately too close to
the softening length. For this reason, the shape distribution may be affected by numerical
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Figure 4.1: Axis ratios @ and B of the stellar component of the galaxy sample at one and three stellar
half-mass radii. On the left, the points are plotted semi-transparently to better show their distribution,
while the same points are colored by 1-value on the right. The solid lines indicate the borders between
prolate, triaxial, and oblate shapes, from left to right, respectively.

resolution artifacts, which should be analyzed more closely in higher resolution simulations
in the future.

Another point of interest is that more galaxies have spherical shapes (i.e., large values of
B) at larger radii than in the core. This may also be due to numerical issues related to the
higher number of particles being used to compute the outer shapes, but could also simply be
the result of spherical stellar halos.

Next, we examine how the axis ratios relate to the morphologies of the galaxies. As
introduced in Section 1.2.1, the best quantifier of a galaxy’s morphology is its 1-value, with
LTGs having higher and ETGs lower values of 1. On the right side of Figure 4.1, the same
data is plotted as on the left, but now with the points colored by the 1-value. A very clear
trend emerges at both radii: LTGs have low values of B and are therefore flatter in the edge-on
view, while ETGs have higher values of B. Interestingly, there is also a small trend with
@, which is partly due to the constraint of @ > B, but is also more pronounced at 3 '1/2,∗.
The correlation with the 1-value appears to be somewhat tighter in the intermediate (yellow
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data points) galaxy regime at 3 '1/2,∗. This could be related to resolution issues in the inner
regions of the less massive galaxies.

The visualization with the 1-value now reveals that while LTGs can be prolate in the
inner regions, most become oblate and some triaxial in the outer regions. This shows how
disky structures usually only become apparent when considering a larger part of the galaxy.
Additionally, LTGs are less flat further out, with the axis ratios B hardly dropping below 0.2.
The cause of this is not directly clear, but the lower bound of Bmin ≈ 0.2 is significantly higher
than the lowest values found in the SDSS Galaxy Zoo project (Rodríguez & Padilla, 2013),
in selected SAMI galaxies (Foster et al., 2017), and in ultra-flat galaxies (Kaisin et al., 2020)
of B < 0.1. This indicates that the galaxies’ disks are too thick in the simulation compared
to observations. Pulsoni et al. (2020) determined the axis ratios at 8 '1/2,∗ of the ETGs
in TNG50 and TNG100, finding a similar lower bound of Bmin ∼ 0.2. However, it is not
clear how this could differ for their LTGs. An attempt to explain the lower bound in a very
rudimentary way is to take the mean half-mass radius of the galaxy sample as a disk radius,
which is around 5 kpc (6 kpc for the LTGs), and relate it to the softening length of 1 kpc as a
lower bound of the disk height: this leads exactly to the minimum axis ratio of Bmin = 0.2.
Future higher resolution simulations will likely lead to thinner disks, which was also what
Pillepich et al. (2019) observed for the higher resolution simulation of TNG50 compared to
the lower resolved ones.

A further point to note is that of the near-spherical galaxies at 3 '1/2,∗, almost all of them
are ETGs, as opposed to at one half-mass radius, where more intermediate galaxies are found
to have close to spherical shapes. ETGs are also the most common to have prolate shapes in
the outer regions, while there are a number of LTGs and intermediate galaxies with prolate
inner regions, again raising the question if these elongated shapes in the LTGs could be bars
or bar-like features. As mentioned earlier, this will have to be approached in the future with
higher resolution simulations. Finally, there are also interesting outliers to these trends: some
LTGs have prolate shapes, with individual LTGs even having higher minor axis ratios up to
B ∼ 0.7, indicating a spherical shape. Such objects may have very large bulge-like behavior
and likely have interesting formation histories which should be studied in the future.

The axis ratio plots at three half-mass radii for the iterative reduced and reduced ellipsoidal
methods are included in Appendix A.2. The distribution of shape parameters for the reduced
method confirms the bias towards spherical shapes as discussed in Section 3.3.5. The
distribution of shape parameters for the reduced ellipsoidal method appears to be a mix of
those found for the unweighted method at 1 '1/2,∗ and 3 '1/2,∗, which is consistent with the
reduced ellipsoidal method describing the average shape within the given radial distance.

Dark Matter Component

Having a better understanding of what the stellar shapes look like for the galaxies, we now
turn to the DM shapes. One of the most obvious questions is how the distribution of the axis
ratios of the DM compares to that of the stellar component. Because of the larger softening
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length for DM particles (2 kpc compared to 1 kpc for stellar particles), only the axis ratios of
the shape at 3 '1/2,∗ are explored (top row of Figure 4.2). It is immediately evident that the
DM shapes are more spherical than the stellar shapes. Most galaxies have BDM & 0.5 and
@DM & 0.7. There are also a lot more galaxies with both axis ratios above 0.8, whereas that
is only the case for the stellar shapes of a small number of galaxies. There is also not a strong
correlation with the 1-value, in contrast to the stellar component. It appears that there are
more LTGs found in the oblate region at low BDM and high @DM, whereas the prolate shapes
are mostly found to be ETGs. It remains to be seen whether there is a correlation between
the DM and stellar shapes at three stellar half-mass radii, which will be further investigated
in the next section.

As the DM particles of a galaxy generally reach further out than the stellar particles, the
dark matter half-mass radius is usually larger than three stellar half-mass radii, except for
the smallest galaxies, where the DM half-mass radius can be as small as 1.5 '1/2,∗. The
axis ratio distribution does actually change at 1 '1/2,DM (middle row of Figure 4.2), where
the shapes are increasingly spherical. There are also more elongated prolate DM shapes
with lower values of @DM. These galaxies have a wide range of stellar and DM half-mass
radii, which means that the elongated DM shapes are not a result of low resolution. Finally,
when considering all DM particles identified for the galaxies by SUBFIND, the DM shapes
become less oblate and move towards triaxial and prolate shapes for the lower values of
BDM (bottom row of Figure 4.2). This leads to an even higher number of prolate DM halos
with comparably low axis ratios of @DM < 0.6. The differences between the DM shapes at
1 '1/2,DM and the full DM shapes could be related to the details of the respective cosmic
environments. However, this is outside the scope of this work and is subject to future analysis.
Unsurprisingly, no correlation with the 1-value can be seen for the axis ratios at 1 '1/2,DM or
of all DM particles, just as at 3 '1/2,∗.

4.2 Inner & Outer Shapes

Having compared the axis ratio distributions in the @-B-plane at different radii for the stellar
and DM components, the focus is now placed on how the shape parameters differ for the
galaxies at different radii and between the two components (Figure 4.3). For this, we not
only compare the axis ratios, @ and B, but also include the triaxiality, ) (Equation 1.18), as
a commonly used quantification of shapes in the literature. In the top row, we observe a
clear trend between the stellar minor axis ratios, B, at 1 '1/2,∗ and 3 '1/2,∗ (middle column):
flat galaxies in the inner regions tend to also be flat in the outer regions. The observed
correlation with the 1-value from Figure 4.1 is again clearly visible. While not as strong,
there is also a trend between the corresponding major axis ratios, @ (left column): galaxies
with low values of @ in the inner regions tend to have small values of @ in the outer regions
as well. However, galaxies with @ & 0.6 at 1 '1/2,∗ tend to have larger values at 3 '1/2,∗,
which means that they are more circular from a face-on perspective in the outer regions. The
very slight correlation with the 1-value can also be seen here, as expected from Figure 4.1.
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Figure 4.2: Axis ratios @ and B of the DM component of the galaxy sample at different radii: three
stellar half-mass radii, one DM half-mass radius, and computed for all DM particles identified for the
given galaxy by SUBFIND. On the left, the points are plotted semi-transparently to better show their
distribution, while the same points are colored by 1-value on the right. The solid lines indicate the
borders between prolate, triaxial, and oblate shapes, from left to right, respectively.
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Figure 4.3: Top row: Stellar shape parameters at 1 '1/2,∗ and 3 '1/2,∗. Second row: Stellar and DM
shape parameters at 3 '1/2,∗. Third row: DM shape parameters at 3 '1/2,∗ and 1 '1/2,DM. Bottom row:
DM shape parameters at 1 '1/2,DM and for all DM particles.
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These radial behaviors of the axis ratios lead to an interesting trend seen for the triaxiality
(right column): high triaxialities in the inner regions stay high in the outer regions, but lower
ones tend to be even lower further out. This means that prolate galaxies in the inner regions
become more triaxial in the outer regions, and triaxial galaxies become more oblate, which
again is consistent with what is found in Figure 4.1. This first quantitative visualization of the
triaxiality distributions also shows how ETGs tend towards being prolate and LTGs towards
being oblate. The correlation is rather weak, however, which is a result of the very weak
correlation of @ with the 1-value, since the triaxiality is a function of @ and B. It is also found
that the overall trend of the triaxiality between 1 '1/2,∗ and 3 '1/2,∗ is weaker than for the axis
ratios, which can be attributed to the combined variances of @ and B in Equation 1.18 for the
triaxiality.

At three stellar half-mass radii, the DM major axis ratios generally follow those of the
stellar component for @ . 0.7 (second row of Figure 4.3), which mostly affects ETGs. For
values of @ close to 1, however, any stellar value of @ above 0.7 can correspond to any
value of @DM above 0.7. For the minor axis ratios, the correlation between the stellar and
DM components is weak: there seems to be a lower bound of BDM for a given stellar minor
axis ratio that increases with B; however, the upper bound is almost constant and is around
BDM,upper ∼ 0.90–0.95, such that the variance in BDM is rather large. Interestingly, the lower
bound of BDM combined with the correlation between the stellar minor axis ratio and the
1-value leads to a slight trend of BDM with the 1-value. This contributes to the behavior
we have already seen in Figure 4.2, that galaxies with oblate DM shapes with low values
of BDM tend to be LTGs. Here it becomes apparent that there is a slight trend even for the
intermediate galaxies and ETGs of larger stellar minor axis ratio corresponding to larger BDM.
The trends observed in @ and B lead to a weak correlation in triaxiality: as seen before, ETGs
dominate the prolate shapes of the stellar and DM components, and there is a large variance
in the oblate to triaxial regime, which LTGs preferably occupy. There is an approximate
lower bound for the DM triaxiality, meaning that prolate stellar shapes will almost always be
accompanied by prolate DM shapes. This is likely a result of the lower bound seen for B.
Also, oblate and triaxial stellar shapes tend to have oblate or triaxial DM shapes, although
the scatter is larger than for prolate shapes. In general, this shows that DM and stars feature
similar shapes at 3 '1/2,∗, confirming other studies suggesting that DM and its shapes are
influenced by the baryonic potential (e.g. Chua et al., 2019; Cataldi et al., 2021; Emami et al.,
2021).

When comparing the DM shapes at three stellar half-mass radii with the DM shapes at
one DM half-mass radius (third row of Figure 4.3), a large scatter in both @ and B is found,
although the comparison of the triaxiality reveals a slight correlation between its values at
the two radial distances, which appears to be more pronounced for ETGs than for LTGs. As
discussed earlier, the DM half-mass radius is usually larger than 3 '1/2,∗, but can also be
smaller for some galaxies and the ratio between '1/2,DM and '1/2,∗ can strongly differ. This
could contribute to the lack of a strong correlation found for the shapes between the two
radial distances.
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Finally, the correlation between DM shapes at 1 '1/2,DM and the DM shapes accounting
for all DM particles attributed to the galaxies by SUBFIND again is weak for @ and B with
large overall scatters, but is weaker when considering the triaxiality. There is the trend of
galaxies having low values of @DM at 1 '1/2,DM to also have low @DM for all DM particles.
The same is also true for BDM. For the triaxiality, the clearest trend is that prolate DM shapes
at 1 '1/2,DM tend to also be prolate for all DM particles. An important conclusion that can
be drawn from these relations is that the full DM halo shapes are at most weakly affected
by the details of the stellar shape in the inner halo region. Further analysis on how DM
halo shapes are affected by the inclusion of baryonic matter in cosmological simulations,
compared to DM-only simulations, is beyond the scope of this work and has been studied for
some properties by Chua et al. (2019) in Illustris and by Cataldi et al. (2021) in Fenix and
EAGLE.

4.3 Summary & Conclusion

The galaxies’ shapes in Magneticum Pathfinder Box4 (uhr) are found to be overall consistent
with the qualitative expectations: LTGs have flatter and more oblate stellar shapes, whereas
ETGs tend to be more spherical and triaxial, which are likely linked to the merger histories
of the galaxies. The shapes at 3 '1/2,∗ appear to fit these general trends more strongly than at
1 '1/2,∗, which suggests that there may be a connection with large bulges of disk-like galaxies
that make LTGs and intermediate galaxies have more triaxial to prolate shapes in the inner
regions, and more oblate in the outer regions. A question that remains open is why the shapes
in the inner regions tend to be flatter than further out for LTGs. The generally more spherical
stellar outer halos could be part of the answer, as well as elongated bars or bar-like features
in the central region. Flatter disk galaxies may also be expected in future simulations with
higher resolutions. An additional interesting trend with the 1-value was found, which is that
for a given minor axis ratio, B, the stellar major axis ratio, @, is larger for higher 1-values, i.e.,
@ is larger for LTGs.

The stellar shapes at 1 '1/2,∗ and 3 '1/2,∗ are correlated with each other, which is seen the
strongest for the minor axis ratio. This indicates that most trends found for B at one radial
distance will also apply at the other. The correlation is not as strong for @ and) , which means
that trends with these quantities may not be as clear as for the minor axis ratio.

The trends for the DM shapes were found to be consistent with the literature: the shapes
of the full DM halos tend to be prolate in shape. DM shapes at all considered radii (3 '1/2,∗,
1 '1/2,DM, and for all DM particles) show a preference towards being more spherical and
show little to no correlation with the 1-value. There is a correlation between the stellar and
DM shapes at the same radial distance of 3 '1/2,∗, which leads to a minor trend between the
1-value and the DM shape with LTGs having preferably flat DM shapes and ETGs prolate
and spherical shapes. Since there is no correlation between the inner and outer DM shapes,
the DM shape trend with the 1-value is lost at larger radii. This suggests that the inner regions
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of a galaxy tend to be decoupled from the outer parts, which is likely a result of the accretion
of substructure that only changes the morphology and kinematics in the outer regions.
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5 Shapes & Global Galaxy Properties

Having a better understanding of the statistics of the galaxies’ shapes and of the relation
between the shapes and morphology, we now turn to investigating the relation of the shapes
with a variety of global galaxy properties. As one of the most important observational
kinematic properties, the _'-parameter of an edge-on galaxy, which quantifies the rotational
support, has previously been shown to be correlated with the projected ellipticity and the
anisotropy (e.g. Illingworth, 1977; Binney, 1978, 2005; Schulze et al., 2018). Since the edge-
on ellipticity of a galaxy is closely related to the minor axis ratio via n ≈ 1− B, the same trends
as seen in Figure 1.11 and Figure 1.12 for the _'-parameter and the anisotropy, respectively,
are expected for the relations with B: galaxies are flattened through larger rotational support
or through higher anisotropies in the velocity distribution.

Two further important properties of galaxies are the stellar mass and the half-mass radius,
which together also describe the mass distribution of a galaxy when combined. Since more
massive galaxies are generally ETGs, a reasonable assumption would be that the stellar
shapes are more spherical for massive galaxies. Shapes are simply another way of describing
the distribution of matter, such that a trend between the shapes and the mass together with
the half-mass radius seems reasonable. For the total mass of galaxies, it has been found
in previous cosmological simulations that more massive halos tend to be less spherical and
more prolate (e.g. Allgood et al., 2006; Bett et al., 2007). A major difference between those
simulations and the one studied in this work is that here a hydrodynamical instead of a
DM-only simulation is used.

As all the present-day properties of galaxies are necessarily the result of their formation
histories, it can be expected that there are relations between someproperties describing aspects
of the formation histories and the shapes. LTGs tend to have ongoing star formation, whereas
ETGs mostly have little to no ongoing star formation. Because LTGs are generally flatter and
ETGsmore spherical, the minor axis ratio is likely smaller for galaxies with small specific star
formation rates (star formation rate per mass). Similarly, galaxies with on average younger
stars can be expected to be flatter than those with older stellar populations, assuming that
ongoing star formation is correlated with younger stellar populations on average. Considering
that there is observational evidence for quiescent red spiral galaxies (e.g. van den Bergh, 1976;
Goto et al., 2003; Schawinski et al., 2014; Guo et al., 2020), a population of LTGs is expected
that has old stellar populations, no ongoing star formation, but flat shapes. The in-situ
fraction, which tends to be smaller for more massive galaxies (Remus & Forbes, 2021), may
be related to the galaxy shapes through the accretion of smaller galaxies, leading to lower
in-situ fractions and more spherical and triaxial shapes.
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Finally, the kinematics of the stellar and DM components and their alignments are an
interesting aspect that can currently only be studied within simulations. The angular momenta
of the stellar and DM components have been found to overall be aligned (e.g. van den Bosch
et al., 2002; Sharma et al., 2012; Teklu et al., 2015), where the alignment is stronger for LTGs
than for ETGs. Because of this relation, flatter galaxies can be expected to have stronger
alignments between the stellar and DM angular momenta. These assumptions will all be
tested in the following.

5.1 Relations with the ,X-Parameter

The first property we compare the shapes to is the _'-parameter at one stellar half-mass
radius, which is denoted as _'1/2 , consistent with Schulze et al. (2018). For the shapes at
1 '1/2,∗ (top row of Figure 5.1), we find a strong correlation between the axis ratio B and
_'1/2 , where rotationally supported galaxies with high values of _'1/2 have low values of B,
and dispersion dominated galaxies with low values of _'1/2 have higher values of B. In the
latter case, the scatter in B is higher, however. Recalling that the axis ratio B can be identified
with one minus the edge-on ellipticity (Section 3.4), it becomes apparent that the B-_'1/2 plot
recovers the relation between n and _'1/2 presented in Figure 1.11. The same is true for the
relation seen for B in the bottom row of Figure 5.1 for a radial distance of 3 '1/2,∗. In this
case, the larger scatter of B shows that the minor axis ratio B at 3 '1/2,∗ does not correlate as
well with the value of _' at 1 '1/2,∗ as B at 1 '1/2,∗, which is likely related to the different
radial distances chosen. Comparing the values of _' at different radial distances with the
corresponding shapes will be the aim of a future study. In particular, it will be interesting to
investigate the radial behavior of the _'-n plane in the light of the findings by Foster et al.
(2018), Pulsoni et al. (2020), and Schulze et al. (2020), who showed that for some galaxies
_' can drastically change with radius.

Curiously, the relation between _'1/2 and @ is tighter at 3 '1/2,∗ than at 1 '1/2,∗, which
may result from the overall higher values of @ for intermediate galaxies and LTGs further out,
whereas they span a larger range of values at 1 '1/2,∗ almost uniformly, dropping down to
@min ≈ 0.4, as previously found in Figure 4.1. Because of the correlation between _'1/2 and
the 1-value, this means that galaxies with _'1/2 & 0.3 tend to have high values of @ & 0.7 at
3 '1/2,∗, while their values of @ at 1 '1/2,∗ have a larger scatter with @ = 0.4–1.0. For ETGs,
of which many have low values of _'1/2 . 0.3 (mostly the slow rotators) and some even have
larger values (most of the fast rotators), the range of the major axis ratio at both considered
radial distances is @ = 0.4–1.0, as well.

The correlations with _'1/2 found for @ and B lead to different relations with the triaxiality
(right column of Figure 5.1): while the large scatter with @ at 1 '1/2,∗ leads to an almost
constant relation of the triaxiality for _'1/2 & 0.2, the triaxiality declines further with _'1/2
at 3 '1/2,∗, reaching a constant relation for _'1/2 & 0.6, which mostly corresponds to LTGs.
This behavior is clearly connected to the different relations between _'1/2 and @, since LTGs
only have especially high values of @ at 3 '1/2,∗ that lead to oblate shapes. At both radial
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Figure 5.1: Relation between shape parameters at one (top row) and three (bottom row) stellar
half-mass radii and _'1/2 , colored by the 1-value. The dashed blackberry lines in the middle column
indicate the threshold between slow and fast rotators, lying to the left and right of the line, respectively.
The black lines indicate the median values in the respective _'1/2 bins and the shaded regions the 1f
ranges (containing 68% of the galaxies above and below the median). The dashed part of the lines
indicates where there may be effects caused by low number statistics.

distances, the ETGs with low values of _'1/2 show a strong preference for prolate shapes.
It is interesting how these effects lead to especially prolate shapes of dispersion dominated
galaxies with low values of _'1/2 at both radial distances, whereas the expected tendency
towards oblate shapes for rotationally dominated galaxies is only found at larger radii. Future
higher-resolution studies will be necessary to determine how strongly this behavior is affected
by the limited resolution and whether stellar bulges and bars play a role or not.

5.2 Relations with the Anisotropy

As a parameter that can be determined from a galaxy’s position in the _'1/2-n plane (Binney,
2005; Schulze et al., 2018), we next compare the shapes to the anisotropy at one stellar
half-mass radius, X'1/2 . Again identifying the minor axis ratio, B, with one minus the edge-on
ellipticity and considering the correlation between _'1/2 and the 1-value, it is not surprising
that we find a clear trend between X'1/2 , B, and the 1-value (middle column of Figure 5.2):
the minor axis ratio decreases at constant 1-value with higher anisotropy and as noted before,
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Figure 5.2: Relation between shape parameters at one (top row) and three (bottom row) stellar half-
mass radii and the anisotropy at one half-mass radius, X'1/2 , colored by the 1-value. The black lines
indicate the median values in the respective anisotropy bins and the shaded regions the 1f ranges
(containing 68% of the galaxies above and below the median). The dashed part of the lines indicates
where there may be effects caused by low number statistics.

B increases with the 1-value. This trend is the clearest at 1 '1/2,∗, which is likely related
to the anisotropy being computed at that radial distance. Analyzing the radial behavior of
the anisotropy and how it compares to the galaxies’ shapes for a larger galaxy sample (in
particular with more LTGs) will be the subject of future work.

Interestingly, there is a similar relation between @ and X'1/2 that @ decreaseswith increasing
X'1/2 , except that the relation with the 1-value is largely lost. As for the minor axis ratio,
the relation is tighter at 1 '1/2,∗, again likely related to the determination of X'1/2 within one
half-mass radius. The fact that galaxies with a higher anisotropy are generally flatter in the
face-on and edge-on views leads to more prolate shapes at the high anisotropy end, and high
values of @ for low anisotropies lead to more oblate shapes at the low anisotropy end. This
trend is seen for the triaxiality at both radial distances (right column of Figure 5.2), although
the variance is larger than for the axis ratios. As for the axis ratios, the trend is slightly tighter
at 1 '1/2,∗. From this, we conclude that all three shape parameters considered correlate with
the anisotropy, though only the minor axis ratio, i.e., the edge-on ellipticity, provides a tight
relation together with the 1-value for the determination of the anisotropy from a galaxy’s



5.3 Relations with the Mass 61

projection. Clearly, both the degree of order in the orbits and the morphology strongly drive
the shapes of galaxies.

The relations of the shape parameters with both the anisotropy and the _'-parameter
show that even though the triaxiality encodes the 3D shape information of a galaxy as a
function of both axis ratios, an axis ratio can provide more meaningful information on certain
galaxy properties. This means that even for randomly oriented galaxies that are observed, it
should be possible to further constrain certain galaxy properties given the inclination and the
projected view.

5.3 Relations with the Mass

Total Mass

We now turn to the relation between the global DM halo shapes of all DM particles attributed
to a given galaxy and the total galaxy masses. Given that these properties are heavily
influenced by the exact cut of SUBFIND for subhalos (see Section 2.1 for more details),
only main galaxies are considered for these relations. For the minor axis ratio, B, we find
smaller values of B with increasing mass (top left plot of Figure 5.3) and higher values for the
triaxiality (bottom left plot). Note that the first and last mass bins have large uncertainties
due to low number statistics, and the first mass bins are likely further biased by the lower
half-mass radius threshold of the galaxy sample. The highest mass bins are also limited in
number and mass due to the medium-sized volume of the cosmological box. In a future study,
the shape statistics will be extended by including halos in the larger cosmological volumes.

The smaller minor axis ratio for more massive halos is consistent with early studies of
DM halo shapes in DM-only simulations (e.g. Kasun & Evrard, 2005; Allgood et al., 2006;
Bett et al., 2007). The tendency towards prolate shapes for the more massive galaxies was
also pointed out by Bett et al. (2007) to be related to massive galaxies accreting matter from
filaments for the Millenium simulation, leading to the more elongated shapes. In fact, we find
consistent results in both median values and scatter for B and) with their results (right column
of Figure 5.3). The minor axis ratios of the Magneticum halos reach higher values for lower
masses, which may be a result of the higher resolution compared to the Millenium simulation
(<DM = 3.6 × 107M� ℎ−1 compared to <DM = 8.6 × 108M� ℎ−1 for the DM particle mass).
A further resolution analysis of how the shape statistics change with resolution is beyond the
scope of this work. Similarly, the triaxiality of the lower-mass Magneticum halos is slightly
smaller than in the Millenium simulation, again possibly linked to the resolution.

Stellar Mass

Having inspected the correlation of the total mass with the DM halo’s shape, we now explore
the relations between the stellar mass and the shape parameters at three half-mass radii
(Figure 5.4). It is remarkable how the medians of both axis ratios stay nearly constant with
stellar mass, showing only a very slight downward trend for @ and upward for B. Still, these
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Figure 5.3: Left: Relation between the total mass and the full DM halo shape parameters, BDM
and )DM, for all main galaxies in the Magneticum sample, colored by the 1-value. The solid black
lines indicate the median values in the respective mass bins and the shaded regions the 1f ranges
(containing 68% of the galaxies above and below the median). Right: Figure 12 from Bett et al.
(2007) with the DM halo masses and shapes from the Millenium simulation (Springel et al., 2005b).
The short, horizontal black bars indicate the median values, the boxes the 1f ranges, and the extended
vertical lines the 2f ranges. The solid blue line is a broken-line fit to the median values and the
dotted red line is a fit from Allgood et al. (2006) (which corresponds to a different definition of a halo,
however, as noted by Bett et al., 2007). The vertical dashed line marks the halo mass corresponding
to 300 DM particles. The G- and H-axes have been set to be equal for proper comparison between the
simulations.

slight trends result in a stronger upward relation for the triaxiality with stellar mass. As the
LTGs generally have lower masses than the ETGs, this leads to an interesting relation seen
for the minor axis ratio, where more massive galaxies have smaller values of B at constant
1-value, leading to more triaxial to prolate shapes, which is consistent with the idea that
such galaxies accrete matter from random directions. How these relations scale for lower
and higher stellar masses by additionally considering galaxies in cosmological volumes at
different resolutions will be the subject of future work. Further analysis will also include
a more detailed inspection of the triaxiality trends with stellar mass at constant 1-value.
Overall, the impact of the stellar mass on the shapes appears to be minimal.

Mass-Size Relation

One of the most important relations to test in determining whether the matter distribution in
simulated galaxies is realistic or not is the mass-size relation, which is shown for our galaxy
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Figure 5.4: Relation between the stellar mass and the stellar shape parameters at three half-mass
radii, @, B, and ) , colored by the 1-value. The black lines indicate the median values in the respective
mass bins and the shaded regions the 1f ranges (containing 68% of the galaxies above and below the
median). The dashed part of the lines indicates where there may be effects caused by low number
statistics.

sample in Figure 5.5. While the general trend of the stellar half-mass radius increasing with
stellar mass is already visible when taking all galaxies in the sample into account (left plot of
Figure 5.5), splitting up the sample into ETGs and LTGs (here the intermediate galaxies are
left out) shows much tighter relations (center and right plots). This is especially the case for
the ETGs, which is likely related to the larger mass range in which they are found, whereas
the LTGs mostly have masses of "∗,LTGs . 1011M�. In particular, the ETG relation matches
that of the GAMA ETGs (Lange et al., 2015) well, with the exception of a steeper slope of
the GAMA ETGs. For the LTGs, the mass-size relation of the Magneticum sample has a
comparably large scatter over a small mass range, such that it is more difficult to assess how
well it matches the GAMA LTG relation, though they are overall in agreement. Note that our
galaxy sample has a lower half-mass radius threshold value of 2 kpc, which prevents a direct
comparison with the GAMA relation at low masses. Still, even for the LTGs, which have
overall larger half-mass radii, the GAMA relation predicts slightly lower radii than we find
for our sample. This may be related to the GAMA half-mass radii being computed from the
2D projection, whereas the half-mass radii of the simulated galaxies are computed taking all
three dimensions into account (e.g. Genel et al., 2018).

When considering all galaxies, there is no apparent trend with triaxiality in the mass-size
relation. We find that stellar shapes tend to bemore prolate at highmasses and large half-mass
radii. By splitting the galaxy sample by morphology, the trend of LTGs having more oblate
stellar shapes at 3 '1/2,∗ is recovered, whereas a large fraction of ETGs have prolate shapes.
This is consistent with the more massive galaxies generally being ETGs and the trend of
massive galaxies being more prolate. Interestingly, the strongest trend with triaxiality in the
mass-size relation is seen for the ETGs, where galaxies with larger half-mass radii have the
tendency to be more prolate. The origin of this is not entirely clear, but may be related to the
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half-mass radius being computed by defining it as the radius of a sphere containing half of
the mass. This leads to an elongated galaxy having a larger half-mass radius than if it were
spherical in shape. For the LTGs, there is no clear trend with triaxiality. Note that the two
LTGs with the largest half-mass radii are both undergoing mergers, such that their radii and
shapes have little meaning. Clearly, splitting the mass-size relation between ETGs and LTGs
is not only essential for the mass-size relation itself, but also for revealing the triaxiality trend
in the mass-size relation for ETGs. On the whole, it is found that not the stellar mass itself,
but the mass distribution through the mass-size relation is related to the stellar shape.

5.4 Relations with the Formation History

Specific Star Formation Rate

Moving towards parameters related to the formation histories of galaxies, we compare the
specific star formation rate (sSFR) with the shape parameters (Figure 5.6). Note that the
galaxies found here are mainly LTGs. We find a clear correlation of galaxies with higher
sSFR having smaller minor axis ratios, B, with the relation being the tightest for LTGs. In
contrast to the relation with the mean stellar ages, the trend with B is not so clear at constant
1-value for intermediate galaxies or ETGs, however. The scatter towards larger values
of B is especially higher for intermediate galaxies and ETGs. We find an approximately
constant median of @ and the triaxiality with the sSFR. There may be a slight downward
trend of the major axis ratio with increasing sSFR, which is accompanied by an increasing
downward scatter, such that the lowest values of @ are only reached by galaxies with high
sSFR. However, this could be due to low number statistics at the low sSFR end. In the future,
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Figure 5.6: Relation between the specific star formation rate and the stellar shape parameters at
1 '1/2,∗, @, B, and ) , colored by the 1-value. The black lines indicate the median values in the
respective sSFR bins and the shaded regions the 1f ranges (containing 68% of the galaxies above and
below the median). The dashed part of the lines indicates where there may be effects caused by low
number statistics.

larger cosmological simulations with a larger sample of star forming intermediate galaxies
and ETGs could better show if there is a relation found for the shapes of these types of galaxies
with the sSFR. Finally, we find the trend of LTGs having a high sSFR and ETGs having a
low sSFR, with many ETGs having no ongoing star formation at all, which is unsurprising.
The few ETGs in which stars are being formed at I = 0 are likely experiencing starbursts,
which could be triggered through a recent gas-rich merger.

Stellar Ages

A quantity that is related to the ongoing star formation is the mean stellar age. The stellar
shape parameters are compared with the mean central stellar ages within one half-mass
radius in Figure 5.7. Most galaxies have old central stellar ages of 〈Cage,∗〉 & 8Gyr, which
is especially the case for the ETGs (note that the sample of galaxies for which mean stellar
ages are available has masses "∗ > 3 × 1010M�, which mainly consists of ETGs). Most
of the galaxies with younger stellar ages are intermediate, though there are a few LTGs and
ETGs that also have young stellar populations (top row). The majority of these galaxies
have high specific star formation rates (bottom row), independent of their 1-value (bottom
row), whereas galaxies with older stellar populations generally have little or no ongoing star
formation. First of all, we conclude from this that the mean stellar age within only one half-
mass radius is an indicator for the total specific star formation rate of a galaxy. Combined
with the finding that most ETGs do not have ongoing star formation, it also becomes apparent
that wet mergers can occur in all types of galaxies and trigger starbursts.

The median values and scatters of @ and the triaxiality are approximately constant for
different central stellar ages, though the triaxiality may be minimally larger for older stellar
populations. In contrast, we again find a clear trend for the minor axis ratio, with B tending
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Figure 5.7: Relation between the mean stellar ages within 1 '1/2,∗ and the stellar shape parameters at
1 '1/2,∗, @, B, and ) , colored by the 1-value (top) and by the specific star formation rate (bottom). The
black lines indicate the median values in the respective age bins and the shaded regions the 1f ranges
(containing 68% of the galaxies above and below the median). The dashed part of the lines indicates
where there may be effects caused by low number statistics. In the bottom row, only the galaxies with
a specific star formation rate larger than zero are displayed.

to be larger for older stellar populations, which means that younger stellar populations are
usually flatter from an edge-on perspective. This trend is even true at constant 1-value, which
means that galaxies with an overall older stellar population tend to be less flat than galaxies at
the same 1-value with younger stellar populations. This may be due to an inflation of galaxies
over time through dynamical scattering. In the future, further analysis of how the shapes of
galaxies change over time depending on their mean stellar agesmay reveal further insights into
the relations between shapes, morphologies and star formation histories. Interestingly, the
galaxies with younger stellar populations feature a larger variance of B compared to galaxies
with older centers. This may be related to mergers occurring independently of morphology,
such that starbursts leading to especially young stellar populations cover a wide range of
flatness.



5.4 Relations with the Formation History 67

0.2 0.4 0.6 0.8
q(1 R1/2,∗)

0.2

0.4

0.6

0.8

f in
−s

itu
(1

R
1/

2,
∗)

0.2 0.4 0.6 0.8
s(1 R1/2,∗)

0.2 0.4 0.6 0.8
T (1 R1/2,∗)

10.4 10.6 10.8 11.0 11.2 11.4
log M∗/M�

Figure 5.8: Relation between the in-situ star formation fraction within 1 '1/2,∗ and the stellar shape
parameters at 1 '1/2,∗, @, B, and ) , colored by the stellar mass. The solid lines indicate the median
values in the respective in-situ fraction bins (log"∗/M� < 10.5, 10.5 ≤ log"∗/M� < 11.2, and
log"∗/M� ≥ 11.2).

In-Situ Fraction

The fraction of stars a galaxy made itself compared to the amount of stars that have been
accreted is a crucial indicator of the violence in the formation pathway of a galaxy. Therefore,
a correlation between the in-situ fraction and the shape of a galaxy should be expected if the
formation history is the main driver of different shapes. Thus, we look at the in-situ fraction
within one half-mass radius. While there are no trends to be seen at first glance, we find trends
for all three shape parameters, @, B, and ) , with the in-situ fraction at constant stellar mass
(Figure 5.8): at constant "∗, the in-situ fraction increases with larger major axis ratio and
decreases with larger minor axis ratio and triaxiality. This means that more circular galaxies
from a face-on perspective and flatter galaxies from an edge-on perspective (and thus more
oblate) tend to have larger in-situ fractions. While the in-situ fraction is strongly related to
the stellar mass by being small for massive galaxies and large for less massive galaxies, all
three shape parameters disentangle this relation even further. As a result, the knowledge of
@, B, or ) can be used together with the stellar mass to constrain the in-situ fraction even
more than it would be possible using only the stellar mass. This is of particular relevance for
observations, where the projected view of a galaxy and its inclination could be used to deduce
one of the axis ratios from any orientation. In future work, the relation between the in-situ
fraction and the ellipticity for random orientations of the galaxies will be further analyzed,
which may further aid in constraining the in-situ fractions of observed galaxies, providing a
much needed possibility for observers to obtain in-situ fractions, even if only indirectly.

Overall, it can be concluded that the formation history has an impact on the shape of
a galaxy. To further understand how different merger and accretion histories influence the
shapes, future work will involve tracking galaxies back through time using merger trees.
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5.5 Relations with the Angular Momentum

Finally, we turn to a three-dimensional kinematic parameter: the angular momenta of the
stellar and DM components, j∗ and jDM. Their absolute values clearly correlate with each
other, where galaxies with a large stellar angular momentum also tend to have a large DM
angular momentum (left plot of Figure 5.9). Around 75% of galaxies have a larger angular
momentum in the stellar component than in DM. Interestingly, there are clear lower and upper
bounds of 9DM for a given 9∗ & 102 kpc km s−1, which form an increasingly tight relation at
higher angular momenta. The angular momentum vectors of the stellar and DM components
are generally strongly aligned for high angular momenta, which is particularly the case for
9∗, 9DM & 102 kpc km s−1 and is the case for themajority of the galaxies. For galaxieswith low
angular momenta, however, the correlation breaks down and the angular momenta become
largely independent of each other. These galaxies also feature the largest misalignment
angles between j∗ and jDM. This suggests that the alignment is almost random for smaller
angular momenta, although it should be further analyzed statistically in the future. It is also
interesting that the median DM angular momentum is almost constant, only increasing with a
small slope for low values of 9∗. This means that galaxies with low stellar angular momenta
mostly have decoupled DM components. Such systems are likely a result of their merger
histories, in which the components are decoupled from each other. Additionally, the galaxies
with high angular momenta, but large misalignments between them, could be inspected in
more detail, which will likely reveal connections with the individual merger histories.

The alignment angle between j∗ and jDM also has a trend with the 1-value (right plot of
Figure 5.9): LTGs tend to have aligned angular momenta, whereas intermediate galaxies and
ETGs have increasingly larger values and scatters of \ ( j∗, jDM). However, even for the lowest
1-values, the alignment between the stellar and DM angular momenta is not random, which
would require a median of 90°. Counter-rotating DM compared to the stellar component
appears to be rare for LTGs, but is found for both intermediate galaxies and ETGs. These
findings are consistent with the left side of Figure 5.9, since we expect LTGs to generally
have higher angular stellar momenta. There does not appear to be a direct relation between
the stellar mass and the alignment, besides the LTGs usually having lower masses than ETGs.

We now consider the relation of the angular momenta alignment angle with the shape
parameters at three stellar half-mass radii (Figure 5.10). Considering the trend of \ ( j∗, jDM)
with the 1-value seen in the right plot of Figure 5.9 and the previously discussed relation
of the minor axis ratio, B, with the 1-value, it is not surprising to find the alignment angle
being correlated with B, too: galaxies with good alignment between the stellar and DM
angular momenta tend to have flat edge-on shapes. This is also consistent with the result that
well-aligned angular momenta tend to correspond to higher stellar angular momenta (as seen
in the left plot of Figure 5.9) and with galaxies having flatter shapes for high values of _'
(Figure 5.1), where it would be expected that there is a correlation between _' and 9∗ because
of the relation between _' and the 1-value (Schulze et al., 2018) and through the dependence
of the 1-value on 9∗. For alignments of \ ( j∗, jDM) & 45°, the median minor axis ratio and
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its scatter stay approximately constant. For both the major axis ratio and the triaxiality, there
are no clear trends with the alignment angle. A curious feature, however, is the large upward
scatter of the triaxiality at \ ( j∗, jDM) ≈ 90°, which decreases towards smaller and larger
angles. In the future, larger samples of galaxies may help resolve if this has a physical origin
or if it is due to low number statistics. It should be highlighted that large misalignments of
the angular momenta do not preferably correspond to triaxial or prolate shapes, but cover a
similar range of triaxialities as galaxies with strong alignment with mostly oblate to triaxial
shapes. In future work, the behavior of stellar and dark matter shapes with respect to the
absolute angular momenta will be inspected and an analysis of their radial correlation will
be performed.

5.6 Summary & Conclusion

The relations between the shapes and other galaxy properties are found to feature a multitude
of trends: as expected, the relations of the minor axis ratio with the _'-parameter and the
anisotropy are consistent with those found in the literature (e.g. Binney, 2005; Schulze et al.,
2018), where galaxies with higher rotational support or with higher anisotropy tend to be
flatter. This supports the idea that on the one hand, rotational support generally flattens
galaxies, and on the other hand, even slow rotators can be flattened – not through rotation,
but through the anisotropy of the velocity distribution that is understood to be a remnant
of the formation history of ETGs (Illingworth, 1977). The relation between the minor axis
ratio and the anisotropy within 3 '1/2,∗ even reveals a tight correlation given a fixed 1-value,
where again B is smaller for higher values of the anisotropy. This is true for the minor axis
ratios at both 1 '1/2,∗ and 3 '1/2,∗. In addition to the trends with the minor axis ratio, the
_'-parameter is also correlated with the triaxiality at 3 '1/2,∗: rotationally more supported
galaxies tend to have triaxial to oblate shapes, whereas dispersion dominated galaxies tend
to be triaxial to prolate. This is consistent with LTGs tending to be flat and being more
rotationally supported. The much weaker trend at 1 '1/2,∗ is caused by the major axis ratio,
@(1 '1/2,∗), having a much larger variety of values than at 3 '1/2,∗. This is consistent with
the previous finding that the galaxies’ shapes are more oblate in the outer regions than in
the inner ones (Section 4.1). Lastly, there are also weak correlations of the major axis ratio
and triaxiality with the anisotropy, which do not have a tight relation at constant 1-value,
however: galaxies with higher anisotropies tend to have smaller values of @ and be more
prolate. These properties are likely related to the merger histories of such galaxies, where
many accreted structures from different directions lead to more triaxial to prolate shapes
with higher anisotropies. The fact that the tightest trends are found for the minor axis ratio,
however, means that the edge-on ellipticity and the projected kinematic properties are a
powerful combination in the investigation of galaxies.

For the DM halo shapes, similar trends to those found by Bett et al. (2007) for the DM-
only Millenium simulation are recovered: DM halos tend to be flatter and more prolate at
higher total masses. The median values and scatters of B and ) are comparable to the findings
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of Bett et al. (2007). This suggests that the additional baryonic component included in the
simulations considered in this work does not strongly alter the shapes of the full DM halos.
This is also consistent with the idea that these shapes are a result of halos forming through
the collapse of matter along filament, leading to prolate shapes.

The mass-size relation of the stellar component of galaxies shows a clear trend with the
triaxiality for ETGs, where larger galaxies at a given stellar mass have more prolate shapes
and galaxies with smaller half-mass radii are more oblate. For the LTGs, which generally
are larger at the same stellar mass, this relation cannot be found. This shows how both
the shapes and the mass-size relation encode the mass distribution of galaxies, resulting in
a slight correlation. The expected trend of more massive galaxies having more spherical
shapes cannot be found, showing that not the stellar mass itself, but only the mass distribution
is correlated with the shape of a galaxy.

The findings for the relation between the shape parameters and various properties of the
formation history are overall consistent with the expectations: galaxies with ongoing star
formation and younger stellar populations tend to be LTGs and are generally flatter. Interest-
ingly, the galaxy sample also features a small number of star-forming ETGs and intermediate
galaxies, which commonly also have younger stellar populations. These galaxies likely were
hosts of starbursts through gas-rich mergers. Of course, such mergers are independent of the
galaxies’ morphologies in which they occur, and they appear to only occur in very few ETGs.
A second interesting class of objects are quiescent and old LTGs, which seem to have more
puffed-up shapes than the actively star-forming LTGs. These galaxies likely are located in
a cluster environment, where their gas has been stripped away. This puffing-up would then
occur over time through relaxation or other processes typical for cluster environments as in-
troduced in Section 1.1.3. Neither the specific star formation rate, nor the mean central stellar
age of galaxies correlates with the major axis ratio or the triaxiality. Finally, a fascinating
trend with the in-situ fraction and the stellar mass can be found for all three shape parameters:
at a given mass, galaxies with larger in-situ fractions tend to be more circular from a face-on
perspective, flatter from an edge-on perspective, and therefore more oblate. As a parameter
that is directly linked to the formation history, such a relation of the in-situ fraction with the
shape shows how also the shape is connected to the past evolution of a galaxy. These tight
relations further give observers a powerful way of constraining the in-situ fraction with easily
obtainable properties.

As expected, the alignment between the stellar and DM angular momenta is also related
to the morphologies and shapes: galaxies with well-aligned angular momenta tend to be
LTGs and have flatter shapes. Above an alignment angle of approximately 45°, the median
value of B and its scatter stay constant, showing that for strongly decoupled stellar and DM
components, the shape is independent of the misalignment. The alignment angle does not
correlate with the major axis ratio or the triaxiality, however.
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6 Radial Profiles

Until now, only the behavior of the shape parameters at fixed inner to outer radii and their
relations with other quantities at these radii have been investigated. In this chapter, the radial
shape profiles and alignments are analyzed, where a particular focus is put on how these
differ with respect to two kinematic classifications: first, the kinematic groups (introduced
in Section 1.2.2) are based on the edge-on projected velocity maps, which carry information
about the formation history by revealing a variety of different kinematic features on a larger
(e.g. regular rotators or prolate rotators) or more local scale (e.g. KDCs). While regular
rotators can be expected to feature overall flatter and more oblate shapes because of their
rotational support, non-rotators will likely be more spherical and triaxial to prolate. The
minor axis of the stellar shapes and the angular momenta of regular rotators should be well
aligned, whereas the alignment for prolate rotators is expected to be close to 90° by definition.
Non-rotators likely have random alignments.

The second kinematic classification are the radial _'-profile groups. As shown by Schulze
et al. (2020), these classes also encode the formation history, having different amounts of
matter that have been accreted throughmergers, in particular throughmajormergers. As such,
their relation with the shapes and the alignments has the potential of leading to new insights
for the connection between the formation history and shapes. The radial profiles will also
show if and how an increased amount of major mergers can affect the shapes and alignments
of galaxies. Lastly, the decreasers have been found to have an inner in-situ dominated region,
where the peak of the _'-profile indicates the transition to the outer ex-situ dominated region,
such that differences in the inner and outer shapes of decreasers may be found.

The radial behavior of the shape parameters and alignment angles have the potential to
reveal differences between the kinematic groups and radial _'-profile groups with respect to
their inner and outer regions. These can provide further insights into their formation histories
and enable improved interpretations of the radial ellipticity profiles in observations.

Finally, the possibility of directly comparing the stellar and DM shapes and their align-
ments in a radial manner for the different classes will show if and how closely the DM follows
the stellar component. This aspect is vital for the understanding of the distribution of DM in
galaxies, which is currently not directly detectable in observations. It further has the potential
to allow a better understanding of the different evolution of the stellar and DM components.
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Figure 6.1: Location of the kinematic groups in the relation between _'1/2 and the stellar triaxiality
at 3 '1/2,∗.

6.1 Relations with the Kinematic Groups

,X-Parameter & Axis Ratios

Before turning to the radial profiles of the kinematic groups, we first look at the location of
the different groups in two of the plots we have previously seen. As discussed by Schulze
et al. (2018), the non-rotators usually have low values of _'1/2 . 0.2 (which is a result of the
definition of non-rotators), as well as most of the prolate rotators (Figure 6.1). The regular
rotators are mostly found with _'1/2 & 0.2, and finally, the kinematically distinct cores span
the lower range of _'1/2 that the regular rotators occupy and can also reach slightly lower
values. The shapes of the kinematic groups also show clear trends at 3 '1/2,∗: non-rotators
tend to be more prolate, while regular rotators tend to be more oblate, in particular the ones
with higher values of _'1/2 (as shown in Section 5.1 for the full galaxy sample). KDCs do
not appear to have a preferred triaxiality at 3 '1/2,∗, having any values between ) = 0 and 1.
Since our category of KDCs encompass galaxies with kinematically distinct cores without
closer specifying in what way the cores are distinct or what the outer regions of the galaxies
are like in a kinematic sense, their shapes can be anything as a result. Finally, we find the
interesting behavior that prolate rotators have a very strong preference for prolate shapes,
even at 3 '1/2,∗.

These trends with the triaxiality can also be found reflected in the individual axis ratios at
3 '1/2,∗, which were discussed for the full galaxy sample in Section 4.1: regular rotators tend
to have large major axis ratios, @, i.e., they are the most circular from a face-on perspective
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Figure 6.2: Axis ratios at 3 '1/2,∗ of the kinematic groups. The solid lines indicate the borders
between prolate, triaxial, and oblate shapes, from left to right, respectively.

(Figure 6.2). They are the only kinematic group to feature flat oblate shapes with minor
axis ratios of B . 0.5. In contrast, prolate and non-rotators tend to have lower values of @,
leading to more elongated shapes. KDCs overall have similar combinations of @ and B as
the non-rotators, except that there are relatively more KDCs with oblate shapes. It is not
immediately clear where this similarity of shapes comes from, since the kinematic behavior
is overall expected to be very different. All kinematic groups can have somewhat spherical
shapes, although very spherical shapes are rare at three half-mass radii in general.

Radial Shape Parameters

For the radial profiles, the stellar and DM shape parameters are computed at 100 equally-
spaced radial distances from 0.05 '1/2,∗ to 5 '1/2,∗, but only at radial distances larger than the
respective stellar or DM softening length, ' > nsoft. For the full galaxy sample, and for the
individual kinematic groups, the median and scatter of the shape parameters are determined
at all radial distances at which at least 25% of the galaxies or a number of 15 galaxies
(whichever is larger) satisfy the condition ' > nsoft to avoid statistical artifacts.

For the full galaxy sample, we observe an average increase of the major axis ratio, @,
in the considered range until 5 '1/2,∗, which remarkably is almost identical for the stellar
and DM components (top row of Figure 6.3). The slope of the profile is steepest in the
inner regions and quickly drops towards the outside, reaching @ ≈ 0.9. Only the downward
scatter is larger for the stellar component, which means that stellar shapes are more often less
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circular from a face-on perspective than the DM. The minor axis ratio, B, however, shows
a larger discrepancy between the stellar and DM components: while the stellar values of
B increase linearly from B ≈ 0.4 to B ≈ 0.55, the values of BDM behave more similarly to
the @∗ and @DM-profiles by increasing strongly at low radii and flattening out in the outer
regions, reaching BDM ≈ 0.7. The DM component has noticeably larger median values of B
for ' & '1/2,∗ by up to ΔB ≈ 0.2. This means that DM shapes are generally more spherical
than stellar shapes (which is true for all kinematic groups as well, as seen in the bottom rows
of Figure 6.3). Both components tend to have slightly more spherical shapes in the outer
galaxy regions. It is unclear to what degree we observe a stellar halo here, since many of the
considered galaxies are not well resolved in the outskirts. Future inspections of the radial
shapes of galaxies in high-resolution cosmological simulations will help to gain a better
understanding of this question. The deviations between the stellar and DM minor axis ratios
lead to an increasing difference between their triaxialities. For both components, ) decreases
with increasing radius, which is mainly a result of @ approaching 1, which would lead to
) = 0, i.e., a perfectly oblate shape. The drop of ) is strongest in the inner regions and the
profile flattens out towards the outskirts, as for @ and B. The median triaxialities indicate
overall triaxial shapes, with the stellar shapes tending towards being more oblate than the
DM, which is a result of the lower values of B for the stellar component. While the absolute
difference between the stellar and DM triaxialities is smaller than for B, the scatter is larger
since ) is a function of @ and B, for which galaxies can have different combinations, leading
to the larger scatter.

All four kinematic groups feature overall distinct shape profiles, where especially the
stellar and DM major axis ratios and triaxialities differ among the groups. Interestingly,
the DM minor axis ratio, BDM, is similar among all kinematic groups, which shows that the
edge-on perspective of DM is only weakly dependent on the stellar kinematics.

The radial shapes of the regular rotators (second row of Figure 6.3) actually have very
similar median profiles to that of the full sample, which is a result of this being the most
common group (around 75% of the classified galaxies are regular rotators). The downward
scatter of @ is smaller than for the full sample, which means that regular rotators tend to have
more circular stellar shapes from a face-on perspective. Also, the scatter of @DM is smaller.
The DM profile now matches the stellar @-profile even better than before and the median
values are minimally higher than for the full sample. However, these differences are likely
small enough to be statistically insignificant. There are also only small differences between
the B-profiles of the regular rotators and of the full sample, with the most notable change
being the smaller scatter for the regular rotators. These differences result in more oblate
shapes of the regular rotators with a slightly smaller scatter of the triaxialities. The clearly
distinct behavior of the inner region ' . 1.5 '1/2,∗ is mainly a result of increasing values of @
and of the large slope of the BDM-profile. Whether this is related to a bulge or bar, or if it is a
resolution issue at the center due to softening, is not possible to conclude from these profiles
alone. It will be necessary to follow up on this matter in the future by investigating the radial
shape profiles of a subsample of larger galaxies that have well-resolved central regions and of
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Figure 6.3: Radial shape profiles of the stellar (blue) and DM (black) components of the full galaxy
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galaxies in higher-resolution cosmological simulations. Additionally, splitting the galaxies
according to fast- and slow-rotators and according to their morphology via the 1-value could
give us further insights into the characteristics and drivers of the radial shapes.

The shape profiles of the non-rotators feature lower values of @ compared to the regular
rotators, especially for the stellar component, which lies below the values of @DM byΔ@ ≈ 0.1.
Both major axis ratios increase approximately linearly, as opposed to the regular rotators,
but also have a larger scatter. In contrast to the more oblate shapes of the regular rotators,
the large triaxialities of the non-rotators mean that they generally have triaxial to prolate
stellar and DM shapes. Interestingly, the DM minor axis ratio is smaller than those of the
regular rotators, which means that the DM shapes of non-rotators are flatter from an edge-on
perspective. The opposite is true for the stellar component, such that the profiles of B∗ and
BDM are more similar to each other than for regular rotators. Additionally, BDM-profile flattens
at smaller radii, leading to a smaller “core” region. Despite the larger difference between @∗
and @DM, the triaxialities are very similar, with the stellar triaxialities falling slightly from
) ≈ 0.8 to) ≈ 0.65 and)DM again tending towardsmore triaxial shapes byΔ) ≈ 0.05, except
that compared to the regular rotators, )DM is lower than )∗ for the non-rotators. As before,
the scatter of the triaxialities is larger than those of the axis ratios. It is unclear why the DM
components of non-rotators tend to be less spherical than for the regular rotators. Possibly,
this arises from differences in the contributions of kinematics and the stellar gravitational
potential for the DM, depending on the kinematic behavior of the stellar component.

KDCs have the highest major axis ratios in the inner regions of all kinematic groups, in
particular for the stellar component at ' ≈ 0.75 '1/2,∗ with @ ≈ 0.9, indicating a distinct
behavior in the core region. This shows that the core stellar region is almost circular from a
face-on perspective. The stellar minor axis profile also behaves very differently compared to
the regular and non-rotators: while it starts at B ≈ 0.4, like for the regular rotators, it increases
rapidly to its peak value and then stays nearly constant (except for the minor decrease after
the peak) at almost B ≈ 0.6, which is slightly higher than what we find for the non-rotators.
Combining these axis ratio profiles results in two remarkable triaxiality profiles: while the
outer median triaxialities are nearly identical between the stellar and DM components, which
slightly decrease between ) ≈ 0.55 and ) ≈ 0.45, the stellar triaxiality shows an entirely
different behavior in the central region of ' . 2 '1/2,∗. Here, the stellar triaxiality drops
down to ) ≈ 0.3, while the DM component’s triaxiality follows the same almost linear trend
as in the outer regions. This large deviation is driven by the very high stellar value of @ in
the center, leading to a more oblate shape, whereas @DM only reaches especially high values
in the outer regions, where BDM is also higher, such that )DM never drops to such low values.
As a result, the triaxiality magnifies the effect of the decoupled core that can be seen for @
(and perhaps also for B through the mentioned slight peak feature). Note that the scatter of
the triaxialities is much larger than for any other kinematic group in the outer regions, which
is likely a result of the KDCs being classified by their core only, without consideration of the
kinematics in the outskirts. The stellar value of @ decreases towards the outer regions along
with the downward scatter, which is very small in the inner regions. In contrast, @DM rises
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slowly towards the outer regions and has a smaller scatter than the stellar component beyond
' ≈ 1.5 '1/2,∗. The DM component also does not feature a peak value of @ in the inner part,
as the stellar component does, which is likely the result of a decoupled stellar core, but could
also be influenced by resolution issues due to the larger softening length of the DM. The
behavior of the minor axis ratio profiles is also interesting, but subtle: Both the stellar and
DM components reach a peak value (at ' ≈ 1 '1/2,∗ and ' ≈ 1.5 '1/2,∗, respectively) and
then decline almost negligibly towards the outer regions. As already mentioned, the profile
of BDM is comparable to those of the other kinematic groups.

Finally, prolate rotators have the lowest values of @ for both the stellar and the DM
components. Both increase approximately linearly, where @∗ goes from @∗ ≈ 0.5 to @∗ ≈ 0.65
and @DM has a flatter slope, mostly staying in the range of @DM ≈ 0.7–0.75. The deviation of
@ between the components is therefore the largest among the kinematic groups. Still, because
both @∗ and @DM are the lowest of all groups, we find that the DM follows the stellar potential
by being more elongated at all considered radii compared to the other kinematic groups. The
minor axis ratio profiles are actually similar to those of the regular rotators. This is especially
true for the stellar component, while BDM increases faster at small radii, but then flattens
earlier and remains slightly smaller than for the regular rotators, right below BDM ≈ 0.7. It is
not clear why the B-profiles are so similar for the prolate and regular rotators. An important
future analysis will be to investigate the formation histories of the prolate rotators, which
will shed light on a current topic and likely give further insights into what leads to these
similarities in edge-on axis ratio profiles. As first found in Figure 6.1, prolate rotators also
have prolate shapes. This is not only the case for the stellar component at 3 '1/2,∗, but even
at all inspected radii for both the stellar and DM components. The stellar triaxiality has a
very small scatter, which is likely related to all prolate rotators having similar values of @
and B, while @ is comparably low (the triaxiality becomes very sensitive to @ as its value
approaches 1). While the median triaxiality of the DM component is also remarkably high
and in the prolate region, its downward scatter is much larger, showing that there are a number
of cases in which the DM component does not trace the stellar shape that well. These galaxies
could have a different formation pathway than the others, which will also be investigated in
the future. It is also interesting how the median stellar triaxiality drops slowly towards the
outer regions, whereas )DM first increases to a peak at ' ≈ 2.5 '1/2,∗ before dropping again.
Because of the small number of galaxies classified as prolate rotators (21 in total), all of
these results could be affected by low number statistics and should also be examined in larger
cosmological simulations in the future. In particular, the strong dip of the DM triaxiality’s
scatter at 2.5 '1/2,∗ is an effect of the small number of prolate galaxies.

In conclusion, a strong correlation is found between most of the shape parameters and
the kinematic groups. In particular, the radial profiles reveal a remarkable resemblance of
the stellar and DM shapes, except in the core region of KDCs, where the stellar component
appear to be decoupled from the DM.
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Radial Alignment

Knowing that the DM shapes following those of the stellar component so closely for all
kinematic groups, the question remains if the DM shapes are also oriented in the same
direction as the stellar component. Additionally, the alignment between the minor axes of
the shapes and the angular momentum within 3 '1/2,∗ can give more insights into the relation
between kinematics and shapes. These alignment profiles can also reveal the average shape
twists of the stellar and DM components. The alignment angles are computed at the same
radii as the shape parameters, i.e., out to 5 '1/2,∗.

We consider the radial alignment angles between the stellar and DM shapes, and also
compare the radial alignment of the shapes with the angular momentum vectors, j∗ and jDM,
at a fixed radius of 3 '1/2,∗. As seen in Figure 6.4, the alignments of the full galaxy sample
are dominated by the behavior of the regular rotators, where only the scatters are smaller
when considering the regular rotators alone, just as seen for the shape parameters. For this
reason, the alignment profiles of the regular rotators are directly discussed first. The stellar
and DM shapes clearly becomemore aligned towards the outskirts (i.e., the angle between the
minor axes of the shape ellipsoids becomes smaller). The median alignment angle falls from
around \ (∗,DM) ≈ 45° in the center to around \ (∗,DM) ≈ 10° at ∼2 '1/2,∗, from where on
it stays approximately constant. The scatter is largest in the inner region and decreases as the
median angle approaches 10°, where the upward scatter is around three times larger than the
downward scatter. Overall, there is therefore good alignment of the stellar and DM shapes.
The alignment of the stellar shapes with their angular momentum at 3 '1/2,∗ (middle column)
reveals that the median stellar shape is almost fully aligned with j∗(3 '1/2,∗) and has no
twists beyond 0.5 '1/2,∗. Only the very inner part shows a slight upward trend, which is still
minimal and likely related to the resolution, however. This shows that the stellar component
is generally not responsible for the misalignment with the DM shapes in the inner region. In
contrast, the median DM alignment with j∗ shows a similar profile to the one between the
stellar and DM shapes: the large angle in the center region decreases and reaches a value
of slightly under \ (DM, j∗) ≈ 15° at ∼2 '1/2,∗, from where on it stays constant. Clearly,
the DM component’s alignment in the center region generally has a twist, which also drives
the misalignment with the stellar component. Further analysis will be needed in the future,
however, to determine how large the contributions of resolution and more spherical shapes
are. The latter point is related to the fact that small deviations in an almost spherical shape
can lead to large twists of the ellipsoidal axes. It is remarkable how small the scatter of
the stellar component’s alignment with j∗ is. Both the median and the scatter only increase
slightly beyond 3 '1/2,∗, which is the radial distance at which j∗ is computed. The scatter of
the DM’s alignment with j∗ is larger and again is similar to the scatter of the alignment angle
between the stellar and DM shapes. Finally, the alignment of the stellar and DM components
with the DM angular momentum at 3 '1/2,∗ shows that both have a very similar alignment
of \ (shape, jDM) ≈ 15° in the outer regions, with the stellar component remarkably being
slightly better aligned and having the smaller upward scatter. In the inner region, the stellar
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component does not deviate from this angle due to the overall lack of twists. The DM
component, however shows a similar profile as for the other alignment angles: it decreases
from around \ (DM, jDM) ≈ 45° in the inner regions to the limit angle, which is consistent
with the conclusions from the other DM alignment profiles. Note that the median alignment
angles of 45° in the center regions do not correspond to randomly oriented axes in space,
but indicate preferentially aligned axes. For two randomly oriented axes, the median angle
would be expected to be 60°, with the shaded region covering the range between 33° and 81°
(see Appendix C for a derivation).

The non-rotators feature a very similar alignment profile between the stellar and DM
shapes to that of the regular rotators, except for there being a larger misalignment in the
very inner region and the alignment angle being slightly smaller at 5 '1/2,∗. Note that
the non-rotators tend to be better resolved, leading to the plotted line starting at a slightly
smaller radius than for the regular rotators. Still, the alignment angle in the center region
approximately corresponds to a random orientation of the two shapes. As already mentioned,
further analysis will be required to determine whether the increased misalignment towards
the center is physical or not. It is interesting that the upward scatter at larger radii is smaller
than for the regular rotators, which means that the components of non-rotators are better
aligned than those of regular rotators. The origin of this behavior is still unclear, however.
The alignment of the stellar and DM components with j∗ is much higher than for the regular
rotators and has a much larger scatter. The median stellar alignment again features no median
twists and stays constant at around \ (∗, j∗) ≈ 30°, while the median DM alignment with j∗

again decreases towards the outer regions and reaches a constant median value that is slightly
above that of the stellar component. The upward and downward scatters of both angle profiles
are approximately constant. The alignment profiles of the shapes with jDM are interestingly
very similar to those with j∗, except that the median angles are now approximately higher by
Δ\ ≈ 5°–10°. The DM alignment again drops to the constant stellar alignment angle with
jDM in the inner region. This shows how the DM shape is oriented according to the stellar
component and not to the DM angular momentum in the inner regions of a galaxy. In the
future, the evolution of the orientations and their relation with the merger histories could
further improve our understanding of this shape alignment.

The alignment angle profile between the stellar and DM shapes of the KDCs is similar to
the ones found for the regular and non-rotators. Two differences are that there is more noise in
the profile due to low number statistics, particularly in the central region, and that the threshold
median alignment of ∼8° is reached further out, at around 3 '1/2,∗. The scatter is only a bit
larger than that found for the non-rotators, but still smaller than for the regular rotators. It is
unclear if the peak in the alignment angle profile in the inner part is a result of low number
statistics or if this is a feature that can commonly be found in KDCs. While the former is
likely the case, the profiles of individual well-resolved KDCs and also of a larger sample of
KDCs should be analyzed in the future to especially further investigate the profiles of the
shape alignment in the kinematically distinct region of the galaxies. The alignment between
the stellar component and j∗ is interesting: while the sudden drop at small radii is likely
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Figure 6.4: Radial alignment profiles of the stellar and DM components’ shapes and angular momenta
of the full galaxy sample (top row) and of the individual kinematic groups (bottom rows) from one to
five stellar half-mass radii. The left column shows the angles between the minor axes of the stellar
and DM shapes, the middle column the angles between the stellar angular momentum at 3 '1/2,∗ and
the minor axis of the stellar and DM shapes, and the right column the angles between the DM angular
momentum at 3 '1/2,∗ and the minor axis of the shapes. The solid lines and shaded regions have the
same meaning and conditions for being plotted as in Figure 6.3.
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related to resolution issues, the overall profile shows a slow, approximately linear increase
of the alignment angle towards the outer regions with about constant upward and downward
scatters. The better inner alignment could be related to the stellar angular momentum in
the central region dominating the total stellar angular momentum within 3 '1/2,∗ for most
KDCs. A quantitative determination of the stellar angular momentum contributions per
radial distance will give more insight into this matter in the future. The DM shape is aligned
worse with j∗ and its profile shows the peak at 1 '1/2,∗ that leads to the higher misalignment
between the stellar and DM shapes. The overall profile of the angle between the DM shape
and j∗ is similar to that of the non-rotators, however, unlike the stellar alignment. Finally, the
alignment between the stellar and DM shapes and jDM are also similar to the profiles seen for
the non-rotators, except for an increase of the stellar misalignment towards the center region,
but less strong than what we observe for the DM.

The prolate rotators feature a similar alignment angle profile between the stellar and
DM shapes as in the other kinematic classes. The angle is larger, however, and reaches a
constant value of around 15° beyond 3 '1/2,∗. The scatter is comparable to that found for the
KDCs. The angle between the stellar shape and jDM is almost constant, but decreases slightly.
Interestingly, the median value starts at 60° in the center and has a scatter that is comparable to
the values derived for two randomly oriented axes of 33° and 81° (Appendix C). Additionally,
at least in the inner regions of prolate rotators, the stellar shape is approximately randomly
oriented with respect to the DM angular momentum at 3 '1/2,∗. Unsurprisingly, we find
an almost maximal misalignment between the stellar shape and j∗ with an approximately
constant median value above 75°, which is expected based on the kinematic classification of
a prolate rotation about the major axis from an edge-on perspective. The scatter is larger than
that found for regular rotators, but smaller than for non-rotators and KDCs. Interestingly, we
also find a similar DM alignment profile with j∗. Two differences are that the angle becomes
smaller towards the outskirts and that the downward scatter is larger. It is also interesting
that the alignment angle between the DM shape and jDM is similar to that found for the
non-rotators and the KDCs. There increased noise of the profile is likely related to the small
number of prolate galaxies, leading to low number statistic effects.

Overall, we have found that DM shapes are generally aligned according to the stellar
component and not to the DM angular momentum at 3 '1/2,∗. While the orientation of
the stellar component is constant across all radii, the DM shapes tend to have a different
orientation in the central regions. This misalignment will be further analyzed in the future
by only considering larger galaxies in a first step and then moving on to higher resolution
simulations in a second step. The overall alignment profiles are similar between non-rotators
and KDCs, which raises the question about the origin of the similarities. This may be further
understood by analyzing and comparing the average kinematics of the outer regions of the
KDCs to those of the non-rotators. The prolate rotators are finally found to have stellar
alignments with the DM angular momentum that is consistent with a random alignment of
two axes in 3D.
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6.2 Relations with the Radial ,X-Profiles

Having analyzed the shape and alignment relations of the individual kinematic groups, we
now turn to the shape properties of the three different _'-profile types from Schulze et al.
(2020), which encode the formation history in a different way than the kinematic groups.
Because of this, the relations with the shapes and alignments have the potential to give
further insights on the relation between the shapes and the formation history of galaxies.
Note that the _'-profile types are only available for the 743 galaxies with stellar masses of
"∗ ≥ 3 × 1010M� (described in Section 2.2).

,X-Parameter & Axis Ratios

We start by inspecting the location of the different types in the _'1/2-) (3 '1/2,∗) plane
(Figure 6.5). The galaxies with increasing and flat _'-profiles (which are referred to as
increasers and flats in the following for brevity) show a similar range of _'1/2 and triaxiality
values: the types include galaxies with the lowest values of _'1/2 and very prolate shapes,
but also contain galaxies with _'1/2 ≈ 0.6 and triaxial to prolate shapes. The increasers
reach the higher values of _'1/2 for ) < 0.2 compared to the flats, though this may also be a
result of them being the most common type of the classified galaxies (53%). The galaxies
with decreasing _'-profiles (decreasers) finally show the tendency towards higher values of
_'1/2 (& 0.3) and mostly have oblate or triaxial stellar shapes. The number of flats and
decreasers is similar, at 22% and 24% of the classified galaxies, respectively. Note that all
prolate rotators for which the _'-profile type was determined are increasers. Despite there
being little difference between the distribution of increasers and flats in Figure 6.5, Schulze
et al. (2020) found that the increasers include both fast and slow rotators with almost equal
frequency, whereas the flats have a tendency of being slow rotators. They also found that the
increasers have higher maximum values of _' within 5 '1/2,∗ compared to the other types.
Finally, almost all decreasers are fast rotators, which is supported by their generally high
values of _'1/2 .

The increasers and flats also occupy similar regions in the @-B plane at 3 '1/2,∗ (Figure 6.6).
Both types include galaxies with a wide range of axis ratios with @, B & 0.4. Some increasers
have lower values of B that can reach values down to Bmin ≈ 0.3, as well as the decreasers.
In contrast, the flats are the only type that reach the highest values of B, meaning that the
flats can have the most spherical shapes. However, due to the small number of near-spherical
shapes, this may not be statistically significant. The decreasers span large major axis ratios
of @ & 0.6, which is the main reason for their preferred triaxial and oblate shapes. The
decreasers also have smaller minor axis ratios compared to the other two types, with most
decreasers having B . 0.7, leading to less spherical shapes.
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Figure 6.5: Location of the _'-profile types in the relation between _'1/2 and the stellar triaxiality at
3 '1/2,∗.
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Figure 6.6: Axis ratios at 3 '1/2,∗ of the _'-profile types. The solid lines indicate the borders between
prolate, triaxial, and oblate shapes, from left to right, respectively.
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Radial Shape Parameters

The radial shape profiles of the _'-profile types can provide further insights into the relation
between their different formation histories and the resulting shapes. For the increasers, the
profile of the DM major axis ratio is similar to that found for the regular rotators, except
for a larger downward scatter in the outer regions. This is due to 52% of the increasers
being regular rotators and the DM @-profiles of the other kinematic groups not deviating
strongly enough to sufficiently impact the profile. The median stellar profile of @, however, is
lower than @DM and rises approximately linearly. This shows how the increasers are not only
regular rotators, but also includes galaxies of the other kinematic groups, where especially
the non-rotators and prolate rotators lead to the lower median and a stronger downward scatter
of @. The stellar and DMminor axis ratio profiles are both very similar to those of the regular
rotators, except for being slightly flatter. In particular, the profile of BDM increases with a
larger slope in the inner region and is then nearly constant for ' & 1.5 '1/2,∗. Both of the
profiles’ scatters are consistent with those for the kinematic groups. Finally, the triaxiality
of the increasers features a large scatter around nearly linearly decreasing stellar and DM
median values, which fall from ) ≈ 0.7 in the center to ) ≈ 0.4 at 5 '1/2,∗. Interestingly,
the scatter of the stellar triaxiality is larger than that of the DM, which is only the case for
KDCs in the outer regions. It is not clear where this large scatter originates from, but it is
likely related to the diversity of kinematics found in the increasers. It is also remarkable how
similar the triaxiality profiles of the stellar and DM components are to each other, which is
not the case for any of the kinematic groups. Considering that the values of @ and B differ
from each other, this means that the relations between @ and B, and between @DM and BDM
happen to lead to the same triaxialities in terms of the median.

For the decreasers, we find a much smaller scatter of the major axis ratio profiles, which
overall resemble those of the regular rotators. This is unsurprising since around 90% of
the decreasers are regular rotators. One difference is that the profile of @DM approaches
its limit value of @DM ≈ 0.9 at smaller radii and stays nearly constant at that value in the
outer regions. This could be related to the higher mass of the galaxies that were classified
with respect to their _'-profiles. The profiles of the minor axis ratios are intriguing: we
find the largest deviation between B∗ and BDM compared to any of the kinematic groups for
' & 1.5 '1/2,∗ while retaining the small scatters around the medians. It appears that the
decreasers possibly comprise a specific group of galaxies that have relatively more spherical
DM shapes compared to the stellar component, leading to such a deviation. This may be
related to the typical mass accretion history of decreasers, which is dominated by mini and
minor mergers, where accretion from random directions generally leads to more spherical
shapes. Further analysis with a larger sample of galaxies will be able to investigate whether
this is actually the case. Finally, the triaxiality profiles are also similar to those of the regular
rotators, with a tendency towards being more triaxial in the outer regions. This could again
be related to the overall more massive galaxies for which this profile is determined, but could
also be influenced by the 10% of galaxies that belong to the other kinematic groups.
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Figure 6.7: Radial shape profiles of the stellar (blue) and DM (black) components of the individual
_'-profile types from one to five stellar half-mass radii. The solid lines indicate the median at each
radial distance of the galaxies for which that radial distance is larger than the softening length (1 kpc
for the stellar component, 2 kpc for the DM component). Points at a given radial distance are plotted
if ' > nsoft for at least 25% or a number of 15 of the galaxies in the respective kinematic group to
prevent statistical artifacts, whichever is larger. The shaded regions are the 1f ranges containing 68%
of the galaxies above and below the median.
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Finally, the shape parameter profiles of the flats have similar properties to the ones of the
increasers. This is not unsurprising, since the increasers and flats occupied similar regions
in the @-B plane in Figure 6.6. There are some differences found in the profiles, however: the
medians of the @-profiles are smaller, becoming constant around @∗ ≈ 0.8 and @DM ≈ 0.87,
and have larger upward and downward scatters. This shows that the flats cover a larger range
of face-on axis ratios. In particular, the scatter of the stellar major axis ratios is interesting,
since none of the kinematic groups features such a large scatter and only the prolate rotators
have significantly smaller values of @∗, which are all increasers. Future work will include
analyzing what type of galaxies or formation histories lead to the large scatter of @∗. While
the profile of BDM is very similar to that of the increasers, the profile of the stellar minor axis
ratio shows overall larger values with a slightly increased scatter. This shows that the flats
have overall less flat stellar shapes from an edge-on perspective compared to the increasers
for similar DM shapes. The values of the triaxiality of the flats are the same as those of
the increasers in the central region. However, the triaxialities only decrease to ∼2 '1/2,∗ and
then stay constant at ) ≈ 0.6, larger than the triaxiality in the outer regions of the increasers
by Δ) = 0.2. The flats therefore have a tendency towards being triaxial to prolate in the
outer regions, whereas the increasers tend towards being triaxial to oblate. The scatters
are approximately the same, and again the stellar triaxiality has the slightly larger scatter.
It is remarkable how we again find very similar stellar and DM triaxiality profiles, again
highlighting how the stellar shapes influence the DM.

Radial Alignment

The profile of the alignment angle between the stellar and DM shapes for the increasers is
very similar to those of the regular rotators, non-rotators, and KDCs, but has an even better
median alignment in the outer regions. The scatter is small, like that of the non-rotators. The
alignment angle profile between the stellar shapes and j∗ shows similarities to that of the
regular rotators, except that the angle is larger at around \ (∗, j∗) ≈ 10° and the scatter is much
larger, reaching up to almost 45°. This shows the influence of the other kinematic groups,
which have worse alignments between the stellar shape and its angular momentum than the
regular rotators. The same is true for the angle between the DM shape and j∗, although the
median and the scatter are only slightly larger for the increasers than for the regular rotators.
The alignment angles between the shapes and jDM are overall the same as for the regular
rotators, with the exception of slightly larger scatters. In general, all the previously discussed
features, such as the median stellar shapes having no twists or the DM component being more
misaligned in the inner regions and following the stellar component in the outer regions, are
recovered in the increasers’ alignment profiles.

For the decreasers, the alignment profile between the stellar and DM shapes features a
larger median and scatter than the increasers. This may be related to the comparably large
deviations of the minor axis ratios. It is possible that both the slightly larger misalignment
between the components and the differences in the edge-on axis ratios are driven by the same
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Figure 6.8: Radial alignment profiles of the stellar and DM components’ shapes and angular momenta
of the individual _'-profile types from one to five stellar half-mass radii. The left column shows the
angles between the minor axes of the stellar and DM shapes, the middle column the angles between
the stellar angular momentum at 3 '1/2,∗ and the minor axis of the stellar and DM shapes, and the
right column the angles between the DM angular momentum at 3 '1/2,∗ and the minor axis of the
shapes. The solid lines and shaded regions have the same meaning and conditions for being plotted
as in Figure 6.7.
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process. An analysis of what this process could be is beyond the scope of this work and
will be the subject of future research. The alignment profiles of the stellar and DM shapes
with j∗ resembles those of the regular rotators, but with larger medians and scatters in the
outer regions. The larger scatter could be a result of galaxies from other kinematic groups
being classified as decreasers as well, or actually be a signal of the formation process typical
for decreasers. The alignment profiles of the stellar and DM shapes with jDM is shifted
towards slightly larger angles compared to the profiles of the regular rotators and also have
larger scatters. In summary, we find the general trends of the regular rotators in all alignment
profiles with larger scatters, which is consistent with 90% of the decreasers being regular
rotators.

Finally, the flats also show an alignment profile between the stellar and DM shapes that is
similar to those of the increasers and decreasers: while the median is small in the outskirts, as
for the increasers, the scatter is approximately constant beyond 2 '1/2,∗, as for the decreasers
(neglecting the noise due to low number statistics). Interestingly, the alignment angle profiles
of the stellar and DM shapes with j∗ are most similar to those of the KDCs with increased
scatters and lower median angles for the DM component. This indicates the large variety of
kinematics found for flats. It also reveals a main difference to the increasers: increasers tend
to have better alignments of the stellar and DM shapes with j∗, whereas flats have a larger
median misalignment that additionally increases towards the outer regions for the stellar
component to around 25°. Considering that all of the prolate rotators (which have very large
angles between the shapes and j∗) are increasers, it is surprising that the upward scatter is
smaller for the flats than for the increasers. This suggests that the non-rotators and KDCs
greatly impact the alignment profiles of the flats. It is unclear if the increase of the median
stellar alignment angle with j∗ is mainly driven by the KDCs (which show a similar increase)
or if there are also other galaxies that have an increased misalignment in the outer regions.
It will be helpful to analyze this in the future. We also find the largest misalignment of the
shapes with jDM compared to the increasers and decreasers: the median angle between the
stellar shape and jDM is approximately constant at \ (∗, jDM) ≈ 35°. As for the increasers
and decreasers, the angle between the DM shapes and jDM is larger in the inner regions and
drops to the same constant median angle as found for the stellar component at ∼2 '1/2,∗. The
scatter is again very large, again likely due to the broad variety of kinematics found in the
flats.

Overall, we have found less tight shape parameter and alignment profiles for the individual
_'-profile types than for the kinematic groups. However, despite many profiles resembling
those of some of the kinematic groups, we also find new features in the profiles, such as the
larger difference of the stellar and DM B-profiles for the decreasers or the large increase of the
stellar shape alignment angle with its angular momentum for the flats. While the increasers
and flats have overall similar axis ratio profiles, the main differences lie in their alignments
with the angular momenta. This is consistent with the differences found by Schulze et al.
(2020) with respect to their maximum values of _' and to the fractions of slow and fast
rotators found among them, since the flats are more likely to be slow rotators and have lower



6.3 Summary & Conclusion 91

values of _',max, for which more misalignment compared to fast rotators and higher values
of _',max would be expected. Lastly, the decreasers mostly reproduce the profiles found for
the regular rotators with larger scatters due to the influence of galaxies of the other kinematic
groups.

6.3 Summary & Conclusion

The relations between the kinematic groups and the shape parameters for the galaxy sample are
mostly consistent with the expectations: regular rotators are the most rotationally supported
and tend to have oblate shapes, whereas non-rotators are dispersion dominated and have more
prolate shapes. The triaxiality overall becomes more oblate in the outer regions, which is
consistent with the findings in Section 4.1. Interestingly, the prolate rotators have the most
prolate shapes at all radii, which introduces the idea of prolate rotators being “rolling tubes”.
The KDCs feature a very oblate core region with a strong increase to more triaxial shapes
in the outer regions beyond 2 '1/2,∗. The oblate shape at the center is the result of almost
circular face-on shapes of the KDCs. Interestingly, the stellar minor axis ratio is very similar
between the different kinematic groups, which shows a different behavior than the expectation
that regular rotators would be flatter and non-rotators more spherical.

Remarkably, the DM radial shapes appear to behave similarly to the stellar shapes,
suggesting that the DM generally follows the stellar component. Particularly the radial
triaxiality profiles show how each kinematic group has a distinct profile which both the stellar
and DM components follow. Only in the inner region of the KDCs the DM component does
not show the same strongly oblate shape that the stellar component does, which indicates
that the inner stellar component is not only decoupled from the outer regions, but also from
the DM component in the inner regions. This is linked to the formation history and shows
how the stellar and DM components can follow different evolution paths after merger events.
Overall, the DM shapes are more spherical than those of the stellar component. A feature
that is still unclear is why the DM shapes of regular rotators tend to be slightly more spherical
than those of non-rotators.

The stellar and DM components show good alignment in their major axes throughout
all kinematic groups, with stronger alignment outside of 2 '1/2,∗. In the inner regions, the
orientation of the DM component becomes more misaligned, although it is unclear if this
is due to physical reasons or to the limited resolution of the simulation. As expected, the
minor axis of the stellar component is very well aligned with the stellar angular momentum
at 3 '1/2,∗ for the regular rotators and is almost maximally misaligned for the prolate rotators
(at an angle of almost 90°). Since the DM is aligned with the stellar component, this is
also true for the minor axis of the DM. Both the non-rotators and the KDCs show medium
alignments between theminor axis and the stellar angularmomentum, with theKDCs showing
slightly better alignment in the core region (around 20°) and having overall better alignment
than the non-rotators (around 30° for the non-rotators). The alignment of the stellar and
DM components with the DM angular momentum at 3 '1/2,∗ is worse by around 5°–15°



92 Chapter 6 – Radial Profiles

compared to the stellar angular momentum for all kinematic groups except for the prolate
rotators. Interestingly, the alignment between the stellar minor axis and the DM angular
momentum is consistent with two randomly oriented axes, which suggests that the stellar
component in prolate rotators is mostly independent of the DM kinematics. The minor axis
of the DM component has a slightly better alignment with jDM in the outer regions of prolate
rotators. These results show in total that the stellar component features a tighter relation
between its orientation and angular momentum than the DM component.

For the _'-profile groups, the increasers and flats largely have similar properties with
respect to the _'-parameter at 1 '1/2,∗ and the shape parameters. The decreasers, in contrast,
are more rotationally supported and have more oblate shapes, which is consistent with the
idea of them having old disks because of mostly having experienced only mini and minor
mergers. Mostly consisting of regular rotators, the general radial shape and alignment profiles
of the decreasers are similar to those found for the regular rotators. An interesting deviation
are the more spherical shapes of the decreasers compared to the regular rotators, especially
for the DM component. This is likely related to their formation history typically dominated
by mini and minor mergers, where many such mergers from random directions lead to more
spherical shapes in the outskirts. The most evident difference between the flats and increasers
is the more oblate shape of the increasers in the outer regions, although it is not entirely clear
what the origin is for this. Just as for the kinematic groups, the DM shapes have similar
profiles as the stellar component, which is particularly the case for the major axis ratio and
triaxiality profiles. The DM components again have more spherical shapes compared to the
stellar component.

The alignment of the stellar and DM minor axes is good for all _'-profile groups and
again has larger misalignments in the inner regions due to the DM component being oriented
differently. Interestingly, the alignment profiles of the stellar and DM components with their
angular momenta are more similar between the increasers and decreasers, where both of
those groups feature relatively good alignments. Only the flats show worse alignments by
around 15°–25°, which is likely largely influenced by the non-rotators and KDCs found in
this group, leading to an especially large scatter of the alignment angles.

In conclusion, the profiles show that the kinematic groups are the bigger influence on
the shapes, though through the analysis of the _'-profiles it is potentially possible to further
constrain the shape profiles. This result shows how the kinematic groups are more tightly
connected to the details of the formation histories than the _'-profile groups, with the
exception of the decreasers. The fact that the decreasers’ profiles are distinct from the others
shows that there is a signal for the formation history that can only be found in their shapes
and not in those of the other classes. Further work will be necessary to investigate in what
way the shape parameter profiles can be constrained when given a kinematic class combined
with a _'-profile.



7 Shapes & Large Scale Properties

Having discussed the relations between the shapes and a number of global galaxy properties
in Chapters 5 and 6, in this chapter the connection between the shapes and the large scale
properties of galaxies is studied to investigate if the cosmic environment influences the shapes
of galaxies at the centers of the large DM potentials or the shapes of the DM halos themselves.
It has already been established that the inner kinematics of a galaxy are correlated with the
shape (Section 5.1). Now, the kinematics of the full galaxy and of the individual components
(DM, stars, and gas) will be considered through the global spin parameter within the virial
radius to find how the large scale spin of a galaxy influences the inner kinematics and shapes
of the galaxies. Based on the findings of Teklu et al. (2015) for the same cosmological
simulation used in this work, that LTGs tend to have larger global spin parameters and that
the formation history of the DM halo likely plays a significant role for the morphology of
the galaxies, a trend between the shapes and the global spin parameters can be expected:
galaxies with larger global spin parameters are likely flatter than galaxies with smaller global
spin parameters.

The formation history of galaxies is strongly dependent on their cosmic environment,
where certain processes can only occur in particular environments, such as galaxy clusters
(some of which were presented in Section 1.1.3). Because of this, the shapes of galaxies and
their DM halos are potentially also affected by the environment: denser environments could
lead to more mergers from random directions, leading to more spherical and triaxial shapes,
whereas LTGs, which are more common in less dense environments, could remain rather flat
and oblate.

7.1 Relations with the Global Spin Parameter

Global Spin Parameter & ,X-Parameter

The first large scale property that we consider is the global spin parameter, _, within 'vir
(introduced in Section 1.2.3). Before comparing the global spin parameters with the shapes,
they are first related to a previously analyzed kinematic parameter, _'1/2 , and to the 1-value
as a morphological indicator (Figure 7.1). Out of the variations of _, the one showing the
strongest correlation with _'1/2 is _∗ (top left plot). This is not unexpected, since _'1/2 is
computed based on the stellar component only and does not take gas or DM into account.
Still, the fact that a correlation exists shows that the kinematics of the inner stellar half-mass
radius are related to the global stellar spin of a galaxy. This is likely a result of most stars
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Figure 7.1: Relation between the global spin parameters of the galaxies within 'vir and the _'-
parameter at one stellar half-mass radius, colored by the 1-value. Top: Global spin parameters of only
the stars, the DM, and of all particles (including the gas) within 'vir. Bottom: Global spin parameters
of the gas, only the hot gas, and only the cold gas. Only galaxies with "gas ≥ 1010M� are plotted in
the bottom row. Note the different range of the H-axis, but with the same scale as in the top row. The
solid black lines indicate the median values in the respective _'1/2 bins and the shaded regions the 1f
ranges (containing 68% of the galaxies above and below the median). The dashed part of the lines
indicates where there may be effects caused by low number statistics.

being located in the inner regions of a galaxy, with half of the stellar mass being in '1/2,∗
by definition, such that the inner kinematics are able to strongly impact the global stellar
spin in a galaxy. The most prominent feature is the lower bound of _∗ for a given value of
_'1/2 , which increases with _'1/2 . In contrast, the upper bound seems to be approximately
constant, although there are some outliers, including two ETGs at low _'1/2 with the largest
_∗. Analyzing what causes these large stellar global spin parameters is beyond the scope
of this work and will be further inspected in the future. The scatter of stellar global spin
parameters is the largest at low values of _'1/2 , which mainly corresponds to ETGs, and
decreases towards larger values of _'1/2 . These trends are consistent with the results found
by Teklu et al. (2015) for the stellar global spin parameter within 0.1 'vir. Interestingly, the
relation for the global stellar spin parameter of the LTGs is generally tight, but has a number
of outliers towards higher values of _∗ by up to a full order of magnitude. It may be helpful
to investigate the relation of the global spin parameters with the formation history and orbital
configurations of the merging satellites in the future, which may reveal a connection to the
galaxies with outlying values of _∗.
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The relations between _'1/2 and the DM and total global spin parameters within 'vir
are very similar, which is mainly a result of DM dominating the total mass of a galaxy,
with there therefore being an almost linear relation between _tot and _DM (Appendix D). In
contrast to _∗, these global spin parameters show an approximately constant scatter with no
clear trend for the upper and lower bounds of _. The median increases very little from low
to high _'1/2 , which is still consistent with the findings of Teklu et al. (2015): while the
trends are investigated in logarithmic space in this work, they discussed an increase of the
_tot-distribution for larger 1-values based on plots in linear space. The minor trend for the
distribution of _DM with respect to ETGs and LTGs is also consistent with their findings in
appendix C of Teklu et al. (2015). Overall, given the trends of the shape parameters with the
1-value, it can be expected that there is at most a minor trend between _DM/tot and the inner
shapes.

Finally, an interesting trend between the global spin parameter of the gas within 'vir and
_'1/2 is found (bottom left plot of Figure 7.1): while there is a minor increase of the median
_gas-value until _'1/2 ≈ 0.4–0.5, it remarkably decreases for the LTGs for _'1/2 & 0.6.
Interestingly, even the outliers of the LTGs with large _gas are not as extreme as for the
intermediate galaxies or the ETGs. Overall, the scatter indicated by the shaded region stays
approximately constant for all values of _'1/2 . To further investigate the trend of more
rotationally supported galaxies having lower gas spins, the global spin parameters of the hot
and cold gas are considered separately: the same distinction as Teklu et al. (2015) is used,
where gas particles with a temperature of ) < 105K or with a non-zero star formation rate
are considered to be cold. The rest of the gas particles are defined as the hot gas. The
finding is very clear: while there appears to be a very slight downward trend of _gas,hot for
the LTGs, the global spin parameter of the cold gas features an even stronger decrease at high
_'1/2-values than found for all the gas. Therefore, the cold gas kinematics are responsible for
the counter-intuitive trend. It is unclear what drives the relation of LTGs having smaller gas
spins than intermediate galaxies and ETGs. This should be further analyzed in future studies
by inspecting the kinematics of gas and the formation histories of the galaxies in more detail.

Global Spin Parameter & Shape Parameters

Having compared the central and global kinematic parameters, _'1/2 and the global spin
parameter, we now turn to the relations of the global spin parameter with the shapes. We first
consider the stellar shape parameters at three stellar half-mass radii (Figure 7.2): while there
is no clear correlation between _∗ and the major axis ratio, @, we find a downward trend of
B with _∗. This is consistent with the trend of _∗ being larger for the LTGs, which generally
have smaller values of B. We find an approximate lower bound for the minor axis ratio for
a given stellar global spin parameter that decreases with larger _∗. Interestingly, the median
increases again for _∗ & −1.5, where the galaxies with especially high values of _∗ have an
almost uniform distribution of minor axis ratios between B ≈ 0.2 and B ≈ 0.8. There is no
clear correlation between _∗ and the triaxiality, where low number statistics at the low and
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Figure 7.2: Relation between the stellar and total global spin parameters within 'vir and the stellar
shape parameters at 3 '1/2,∗, @, B, and ) . Note the different ranges of the G-axis in the top and bottom
row. The solid blackberry lines indicate the median values in the respective global spin parameter bins
and the shaded regions the 1f ranges (containing 68% of the galaxies above and below the median).
The dashed part of the lines indicates where there may be effects caused by low number statistics.

high ends of _∗ make it difficult to assess whether there is a slight correlation or not. There
may be a downward trend towards oblate shapes where the median of B is the lowest, since
the galaxies with the smallest minor axis ratios tend to be LTGs with more oblate shapes.

For the total global spin parameter, we find no clear correlations with any of the stellar
shape parameters. This is not surprising, since the relations found between _tot and _'1/2 , and
also with the 1-value, are only weak. Combining this with the general trends of _'1/2 and the
1-value with the shape parameters, which are not very tight, results in very weak relations, if
any at all. As a result, the correlation is lost between the total global spin parameter and the
stellar shapes.

Given that _tot is measured from all particles within the virial radius, whose mass is
dominated by the DM component, the relation between the total global spin parameter and
the DM shapes is investigated (Figure 7.3). For the DM shapes at one DM half-mass radius,
there is a very slight downward trend of @ with increasing _tot. There clearly is a larger
downward scatter of @ at large values of _tot, however. The same appears to apply to B,
resulting in slightly more prolate shapes at high values of _tot. While it is possible that these
trends are a result of low number statistics, it will still be insightful to analyze the kinematics
of the galaxies with the lowest values of @ and B in the future to understand what causes
these extremely low values and if that is correlated to the formation history of the galaxies.
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Figure 7.3: Relation between the total global spin parameter within 'vir and the DM shape parameters
at 1 '1/2,DM and of all DM particles, @, B, and) . The solid blackberry lines indicate the median values
in the respective global spin parameter bins and the shaded regions the 1f ranges (containing 68% of
the galaxies above and below the median). The dashed part of the lines indicates where there may be
effects caused by low number statistics.

Interestingly, similar trends can also be found for the shapes of the full DM halo (i.e., the
shapes of all DM particles assigned to the galaxy by SUBFIND), except for overall lower
values of @ and higher values of ) . There is only a very weak correlation between the DM
shape parameters at 1 '1/2,DM and of the full halo (Figure 4.3), which is the most noticeable
for galaxies with the lowest values of @ and B. This could be the reason for the same slight
trends of the full halo shape parameters, i.e., @DM(all), BDM(all), and )DM(all), with _tot as
for those at 1 '1/2,DM. However, in both cases, the overall relations between the DM shapes
and the total global spin parameter reveal no clear correlation and show that the DM shapes
of galaxies on any scale are for the large part independent of the large scale spin properties.
Even for the stellar component, only a trend between the minor axis ratios at 3 '1/2,∗ and
the stellar global spin parameter can be found. Besides that, no correlation is found between
the stellar shapes and _∗, either. Therefore, it can be concluded that the global spin is not a
primary driver of the stellar or DM shapes.
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7.2 Relations with the Cosmic Environment

Cosmic Environment & Global Spin Parameter

Another possible influence on the shapes of galaxies is the local cosmic environment. As an
indicator for the environment, the average density within a sphere of radius A = 5Mpc around
each main galaxy’s center, denv(5Mpc), is used. This is similar to the quantification used
by Teklu et al. (2017), who used the average number density of galaxies with "∗ > 108M�
within a sphere of radius A = 5Mpc to trace the environmental density, where they chose the
size of the sphere by following Treu et al. (2003). We first take a look at the relation between
the local density and the total global spin parameter (Figure 7.4): there is a slight trend
of _tot being larger in denser environments, which is an indicator that more accretion also
leads to larger spins, assuming that galaxies accrete more on average in denser environments.
This trend is consistent with the one found by Hellwing et al. (2021), who used the NEXUS+
algorithm (Cautun et al., 2013) for identifying the cosmic web environments, i.e., clusters,
filaments, walls, and voids. This method computes density fields at multiple scale levels and
can therefore associate cluster, filament, and wall environments to the densities in a scale-free
way, depending on the local “environment response” at the different scales. The remaining
space is classified as void environment. For virial masses of "vir & 1010M�, they found the
lowest spins in voids, whereas galaxies in the other environments have larger median spins,
and for virial masses of "vir & 1011.5M�, the median spin in the walls drops, too (although
they noted that the statistics are too poor to confirm that trend robustly). Interestingly, the
largest increase of the median global spin parameter in our galaxy sample is between the
lowest and middle local densities, which should correspond to the void to wall galaxies.
Similar to Hellwing et al. (2021), we find an approximately constant median spin for the
denser regions. Overall, it can be concluded that the kinematics of galaxies are linked to the
cosmic environment, but only up to a certain local density.

For a more in-depth analysis, different indicators of the cosmic environment should be
tested in the future, since a simple average density measure may not be the best quantification
of the environment, or the sphere’s size could be suboptimal. Other possibilities include
using different radii of the sphere, such as A = 3Mpc or A = 7Mpc, using the average
density within a radius given by the =th-closest galaxy neighbor, applying the galaxy number
density measure by Teklu et al. (2017), instead, or actually using a cosmic web algorithm for
determining the environment of each galaxy.

Cosmic Environment & Shape Parameters

The relation between the cosmic environment and the shape parameters is analyzed next. For
this, we first consider the stellar shapes at 3 '1/2,∗ (top row of Figure 7.5): there are no trends
with any of the shape parameters. On could argue that there is an increase of the median
triaxiality, however the large scatter and the small slope of the trend show that the statistics
are too poor to make any firm statements on this matter. The relation between the cosmic
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Figure 7.4: Relation between the average local density within a 5Mpc radius and the total global spin
parameter within 'vir. The solid blackberry line indicates the median value in the respective density
bins and the shaded region the 1f range (containing 68% of the galaxies above and below the median).
The dashed part of the line indicates where there may be effects caused by low number statistics.

environment and the shape parameters of the full DM halos is also investigated: again, we
find no clear correlations with any of the parameters, although there could be a slight increase
of the minor axis ratio and with the local density. This would mean that DM halos in clusters
tend to be slightly more spherical than in voids, which could be a result of more accretion
that takes place in a cluster environment. Still, the trend is too weak to make any definite
statements. Interestingly, Hellwing et al. (2021) find that cluster halos at lower masses have
larger triaxialities (these consist of a small number of galaxies, however), and wall and void
halos with "vir & 1011M� also have larger triaxialities. It should be noted that they only
compute the shape for the particles within 'vir and use the non-iterative unweighted shape
determination method, which has a bias towards more spherical shapes. It is unclear how the
triaxiality is affected by it, however. In conclusion, no evidence is found that the environment
quantified by the local density in a sphere of radius A = 5Mpc has any impact on the stellar
or DM shapes of a galaxy (see Appendix E for two of the few quantities investigated for this
work that are correlated with the local environment).

7.3 Summary & Conclusion

There is a clear trend for galaxies with larger stellar global spin parameters to be more
rotationally supported in the inner regions, which is likely a result of the stellar component
generally being concentrated in the center of the DM halo, such that the stellar global spin
parameter is dominated by the inner kinematics. The correlation of the DM and total global
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Figure 7.5: Top: Relation between the average local density within a 5Mpc radius and the stellar
shape parameters at 3 '1/2,∗, @, B, and ) . Bottom: Relation between the average local density within
a 5Mpc radius and the DM shape parameters of the full DM halo, @, B, and ) . The solid blackberry
lines indicate the median values in the respective density bins and the shaded regions the 1f ranges
(containing 68% of the galaxies above and below the median). The dashed part of the lines indicates
where there may be effects caused by low number statistics.

spin parameters, which are very similar to each other (Figure D.1), with the _'-parameter
within 1 '1/2,∗ show a slight trend consistent with the findings of Teklu et al. (2015): LTGs,
which have the highest rotational support, tend to have larger DM and total global spin
parameters. This shows how the inner kinematics of a galaxy do not develop entirely
independently of the global kinematics. A very surprising trend is found with the global spin
parameter of the cold gas: galaxies with large values of _', i.e., large rotational support in the
inner regions, have lower values of the cold gas global spin parameter, for which the origin is
still unclear and will have to be investigated in the future.

The minor axis ratio of the stellar component is found to have a lower bound for a given
stellar global spin parameter, where the flatter galaxies all have larger values of _∗('vir).
Through this lower bound, there is also a slight correlation between _∗('vir) and B(3 '1/2,∗).
This small trend is lost in the relation with the total global spin parameter, however. Also,
the major axis ratio and the triaxiality show no correlation with the stellar shapes at 3 '1/2,∗.
Similarly, the DM shapes at 1 '1/2,DM show no trends with the total global spin parameter,
and only the minor axis ratio of the full DM halo, BDM(all), shows a very small trend of DM
halos being flatter with larger values of _tot('vir). In total, the global spin parameter is found
to not be a primary driver of the stellar or DM shapes.
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The environment, which is quantified as the average density within a radius of 5Mpc
of a galaxy in this work, shows a trend with the total global spin parameter: galaxies in
denser environments tend to have larger spins, whereas galaxies in less dense environments
have smaller spins. In the denser regions, the total global spin parameter is approximately
constant, which is consistent with the findings of Hellwing et al. (2021). Just like _tot('vir),
this quantification of the environment shows no evidence of a correlation with the stellar or
DM shape parameters. In total, these results indicate that the large scales do not drive the
stellar and DM shapes of galaxies and their halos.



102 Chapter 7 – Shapes & Large Scale Properties



8 Geometrical Symmetry

It has previously been mentioned that not all galaxies are appropriate for being described by
an ellipsoid, including the galaxy seen in Figure 3.4, for example. This is especially the case
for galaxies in the process of a merger. Not only the shapes can suffer from a reduced physical
meaning, but also other properties like the half-mass radius, as seen for the two “largest”
LTGs in Figure 5.5. Clearly, these kinds of outliers should be filtered out in these studies.
Another application for the symmetry parameters may be to identify ongoing mergers, which
could shed light on the question whether ETGs with ongoing star formation or relatively
young stellar populations are in the process of merging, since this could be the reason for
a recent starburst. A simple and reasonable approach to assessing which galaxies may be
unsuitable for considering their shapes or half-mass radii is to filter out galaxies that are too
unsymmetrical. For this, two different methods for measuring the symmetry of a galaxy are
introduced.

8.1 Symmetry Quantification

Half-Space Symmetry

The first method for quantifying the symmetry of a galaxy’s particle distribution is based on
the assumption that two halves of the determined shape ellipsoid should contain the same
amount of matter. The halves are given by the three planes that the ellipsoidal axes span, such
that there are three pairs of halves in total. By counting the number of particles within each
of the six halves, the symmetry is quantified by the ratio of the smallest and largest number of
particles, therefore obtaining a value between 0 and 1. The half-space method measures the
approximate mass ratio for the two halves with the largest asymmetry. Note that this simple
implementation assumes a constant mass for all particles, which should not differ greatly
from the results obtained by using the actual mass ratio.

Octant Symmetry

The second method instead splits the particles into eight groups according to the octants
spanned by the ellipsoidal axes. The symmetry is then quantified by the ratio of the smallest
and largest numbers of particles in the octants, again resulting in a value between 0 and 1.
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8.2 Comparison Between the Symmetry Methods

We first compare the two measures of symmetry for the stellar component of the galaxies.
Note that the ratios given by the octant symmetry, Symoct, and the half-space symmetry,
Symhalf , are related by

Symoct ≤ Symhalf . (8.1)

This can be derived as follows: given the number of particles in eight octants, #8 for
8 ∈ {1, . . . , 8}, we obtain

Symoct =
min8 (#8)
max8 (#8)

. (8.2)

The total number of particles in any four of the octants is then constrained by

4min8 (#8) ≤ # (4 octants) ≤ 4max8 (#8). (8.3)

Since this is also true for the four octants of any of the six halves of an ellipsoid, each having
# (half 9 ) particles for 9 ∈ {1, . . . , 6}, we finally obtain:

Symhalf =
min 9 (# (half 9 ))
max 9 (# (half 9 ))

≥ 4min8 (#8)
4max8 (#8)

= Symoct. (8.4)

Plotting the stellar symmetry values against each other at one and three stellar half-mass
radii, we find that the methods generally agree with each other with the octant method being
more sensitive to asymmetry than the half-spacemethod (top row of Figure 8.1). Themajority
of galaxies have large symmetry values, which is a good sign considering that galaxies are
overall expected to be symmetrical (apart from galaxies in ongoing mergers, of course). The
galaxies are more symmetrical at 1 '1/2,∗ than at 3 '1/2,∗, which mirrors the fact that more
substructures are located further out, of which not all are identified as subhalos by SUBFIND.
To confirm this, future tests will be necessary to relate the symmetry values to mergers,
substructures, and other features. Work with respect to the classification by morphological
features is in progress. There also appears to be a typical lower bound of the octant symmetry
for a given half-space symmetry that is approximately equal for the shapes at both 1 '1/2,∗
and 3 '1/2,∗. Further analysis of the galaxies and their particle distributions will be necessary
to determine what types of features lead to an especially low value of Symoct in comparison
to Symhalf . In the following sections, the values from the octant method will be used to
quantify the symmetry of galaxies because of Symoct being smaller than or equal to Symhalf
by definition, therefore suggesting a larger sensitivity of the octant method to asymmetries.

Considering the change of the symmetry values from 1 '1/2,∗ to 3 '1/2,∗, we find a close
trend for most galaxies of having similar symmetry values at both radial distances (bottom
row of Figure 8.1). As expected from the relations seen between the half-space and octant
methods (top row of Figure 8.1), there are a number of galaxies that have much lower
symmetry values at 3 '1/2,∗, especially for the octant method. These galaxies likely host
substructure between one and three stellar half-mass radii that is not detected or not entirely
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Figure 8.1: Top: Relation between the stellar symmetry parameters using the half-space and octant
methods at one and three stellar half-mass radii. Bottom: Comparison between the stellar symmetry
parameters at one and three stellar half-mass radii for the half-space and octant methods.
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removed by SUBFIND, leading to larger asymmetries at larger radii. The latter possibility
includes tidal arms and other asymmetric structures typically found in the outer regions of
galaxies that are not attributed to the substructure by SUBFIND. These suppositions will have
to be tested in the future, however.

8.3 Relations with the Symmetry

We now turn to the relations between the symmetry and the shape parameters for the stellar
component (Figure 8.2). While there appears to only be a slight trend with @ at both one and
three half-mass radii, where @ is lower for more asymmetric galaxies, there is a clear relation
for the minor axis ratio: galaxies with a larger symmetry tend to have larger values of B, i.e.,
they tend to be more spherical. The most asymmetric galaxies, on the other hand, have the
lowest values of B, which means that they are the flattest from an edge-on perspective. This is
true at both considered radii, but is more pronounced at 1 '1/2,∗. The trends are mostly lost
for the triaxialities, however. We also find a clear trend with the 1-value, which is discussed
in the following section.

Since one could argue that the meaningfulness of a shape is not affected by asymmetry in
octants, but only by asymmetry in the halves of the shape ellipsoid, the same set of plots for
the half-space symmetry values is shown in Appendix F. There, the same trends are found
with the shape parameters and the 1-value, as expected from the correlation between Symhalf
and Symoct (Figure 8.1).

8.4 Symmetry & Global Galaxy Properties

Finally, the relations between the octant symmetry values and some global properties of the
galaxies are investigated to gain a better understanding of where asymmetry tends to occur.

b-Value

As seen in Figure 8.2, LTGs can be the most asymmetric, whereas ETGs tend to be more
symmetric. Since this involves many disk galaxies, an interesting question that still remains
unclear is whether the asymmetries are usually caused by features in the disk plane or outside
of it; future work will be required to further investigate this. Unfortunately, this also raises
the question how meaningful the shapes determined for the LTGs in particular are, where the
asymmetry is the highest.

Wenowconsider the 1-value explicitly (Figure 8.3). Wehave already seen the overall trend
in Figure 8.2 that LTGs are more likely to have low symmetry values, whereas intermediate
galaxies and ETGs are more symmetric. Interestingly, among the LTGs and ETGs, increased
asymmetry generally corresponds to a higher 1-value, while there the opposite appears to be
true for the intermediate galaxies: large asymmetries tend to occur at 1-values of 1 & −4.35
(the limit between LTGs and intermediate galaxies) and at 1 ≈ −4.73 (the limit between the



8.4 Symmetry & Global Galaxy Properties 107

Symoct(1 R1/2,∗)

0.2

0.4

0.6

0.8

q(
1

R
1/

2,
∗)

Symoct(1 R1/2,∗)

s(
1

R
1/

2,
∗)

Symoct(1 R1/2,∗)
T

(1
R

1/
2,
∗)

0.2 0.4 0.6 0.8
Symoct(3 R1/2,∗)

0.2

0.4

0.6

0.8

q(
3

R
1/

2,
∗)

0.2 0.4 0.6 0.8
Symoct(3 R1/2,∗)

s(
3

R
1/

2,
∗)

0.2 0.4 0.6 0.8
Symoct(3 R1/2,∗)

T
(3

R
1/

2,
∗)

−6.0 −5.5 −5.0 −4.5 −4.0
b(3 R1/2)

Figure 8.2: Relation of the octant symmetry at 1 '1/2,∗ (top row) and 3 '1/2,∗ (bottom row) with the
shape parameters at the respective radial distances, @, B, and ) , for the stellar component, colored by
the 1-value. The solid black lines indicate the median values in the respective symmetry bins and
the shaded regions the 1f ranges (containing 68% of the galaxies above and below the median). The
dashed part of the lines indicates where there may be effects caused by low number statistics.
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Figure 8.3: Relation between the octant symmetry of the stellar component and the 1-value at
3 '1/2,∗. The dashed blue lines separate the ETGs (left) from the intermediate galaxies (middle)
and LTGs (right) by 1-value. The solid blackberry line indicates the median value in the respective
symmetry bins and the shaded region the 1f range (containing 68% of the galaxies above and below
the median). The dashed part of the line indicates where there may be effects caused by low number
statistics.

intermediate galaxies and ETGs), but overall less in between, seen by the small downward
scatter between the two dashed lines. While it is possible that this is only a result of low
number statistics, it is remarkable that the split occurs exactly in the region of the intermediate
galaxies. A possible interpretation of this relation is that intermediate galaxies tend to be
symmetric, whereas LTGs are the most asymmetric, and ETGs feature larger asymmetries
the higher their 1-value is. In the future, when the most common origins of asymmetry are
determined, it will be easier to interpret the found relation with the 1-value and possibly
relate it to the formation histories of the galaxies, since the morphology is linked to the
a galaxy’s merger history. One simple step in this direction will be to analyze the cause
of the asymmetries for the most asymmetric galaxies with 1-values at the border between
ETGs and intermediate galaxies and of the most asymmetric LTGs. Understanding their
similarities and differences may be insightful. Possible causes for the asymmetric LTGs
include substructure not identified by SUBFIND, shifted cores in the center, i.e., galaxies that
have the dense core off-center in the disk, and asymmetric spiral structures, which can also
be found in observations.
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Figure 8.4: Relation between the octant symmetry of the stellar component at 3 '1/2,∗ and the absolute
value of the average circularity, |〈ncirc〉|, of the stellar particles within 5 '1/2,∗, colored by the 1-value.
The solid black line indicates the median value in the respective symmetry bins and the shaded region
the 1f range (containing 68% of the galaxies above and below the median). The dashed part of the
line indicates where there may be effects caused by low number statistics.

Circularity

As a quantity that has a strong correlation with the 1-value, it is not surprising that we
also find a trend with the symmetries for the circularity, ncirc, which was introduced in
Section 1.2.2. In Figure 8.4, the symmetry is plotted against the absolute average circularity
of the stellar particles within 5 '1/2,∗. Since the circularity of particles in a perfect disk is
ncirc = ±1, LTGs are expected to have larger absolute average circularities than intermediate
galaxies and ETGs. This is precisely what we observe in Figure 8.4, which also results in
a trend between the symmetry and the absolute circularity: galaxies with larger absolute
circularities tend to be more asymmetric. The scatter of the symmetry value also increases
with the absolute circularity, recovering the trend that LTGs are found to span a large range
of symmetry values. Interestingly, two of the galaxies with the largest asymmetries have
very low absolute circularities of |〈ncirc〉| ≈ 0.1. Investigating these galaxies may prove to be
insightful with respect to kinematics and symmetries in the future.

Stellar Mass

The last galaxy property the symmetry is related to is the stellar mass. This is a quantity that
has a weak correlation with the 1-value, where most LTGs are low-mass galaxies and the
high-mass galaxies tend to be ETGs. With that in mind, it is not surprising that we find a trend
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Figure 8.5: Relation between the octant symmetry of the stellar component at 3 '1/2,∗ and the stellar
mass for the full galaxy sample (left), only the ETGs (middle), and only the LTGs (right), colored by
the 1-value. The solid black lines indicate the median value in the respective mass bins and the shaded
regions the 1f ranges (containing 68% of the galaxies above and below the median). The dashed part
of the lines indicates where there may be effects caused by low number statistics.

with the octant symmetry value (left plot of Figure 8.5): galaxies with higher stellar masses
tend to be more symmetric, whereas lower mass galaxies span a larger range of symmetry
values, which is particularly the case for stellar masses of "∗ ≈ 1010M�–1010.5M�. There,
the median symmetry is the lowest and the downward scatter the largest. To address the
question whether this trend is driven by the 1-value or the stellar mass, the ETGs and LTGs
are considered separately in the middle and right plot of Figure 8.5. In both cases, we find
an upward trend of the symmetry value with stellar mass. While the median symmetry of
the ETGs increases slowly towards larger stellar masses, the median symmetry of the LTGs
differs greatly between stellar masses, showing a median of Symoct ≈ 0.55 for "∗ ≈ 1010M�
and a much larger median of Symoct ≈ 0.8 for "∗ ≈ 1011M�. It therefore follows that the
symmetry is primarily related to the morphology, i.e., the 1-value, but also depends on the
stellar mass for a given morphology. In the future, the dependence on mass will need to be
further analyzed with respect to the origins of asymmetry in galaxies: it is possible that small
substructures not identified by SUBFIND lead to asymmetries in low-mass galaxies, whereas
in more massive galaxies, such small substructures are negligible compared to the total mass
and size of a galaxy and larger substructures are generally identified as subhalos by SUBFIND,
leading to remaining particle distributions that are more symmetric.

Formation History

In Section 5.4, it was found that there are a small number of ETGs that have ongoing star
formation or relatively young stellar populations. Under the assumption that some of these
galaxies experienced or are experiencing starbursts through a gas-rich merger, it is possible
that such mergers would be visible through larger asymmetries of the galaxies. However,
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Figure 8.6: Relation of the octant symmetry of the stellar component at 3 '1/2,∗ with the mean stellar
age within 1 '1/2,∗, the sSFR of the full galaxy, and the in-situ fraction within 1 '1/2,∗, colored by the
1-value. The solid black lines indicate the median value in the respective bins and the shaded regions
the 1f ranges (containing 68% of the galaxies above and below the median). The dashed part of the
lines indicates where there may be effects caused by low number statistics.

when determining the octant symmetry parameter of the galaxies without substructure, there
is no trend of the symmetry with the central stellar age or the sSFR at constant 1-value
(left two plots of Figure 8.6). In contrast, the galaxies are found to be more asymmetrical
the smaller the in-situ fraction is (right plot of Figure 8.6). The lack of a correlation with
the star formation and stellar ages and the existing trend with the in-situ fraction shows that
the symmetry is not driven by the star formation properties of the galaxies, but is more
closely related to the mass accretion history. A dependence on the details of how SUBFIND
determines the substructures cannot be excluded and will have to be investigated in the future.

8.5 Summary & Conclusion

Two different simple methods for quantifying the symmetry, the half-space and the octant
methods, take the ratio of the numbers of particles in the half-space regions of the shape
ellipsoid and in the octants obtained by the ellipsoid into account. This quantification shows
how well the underlying particle distribution is actually described by the shape ellipsoid and
can potentially be used in the future to filter out galaxies whose shapes cannot be appropriately
described by ellipsoids. By definition, the octant method is more sensitive to asymmetry
than the half-space method, such that the usage of the octant method should be preferred.
Galaxies generally have similar symmetry values at 1 '1/2,∗ and 3 '1/2,∗. There are a number
of galaxies, however, that are considerably more asymmetric at 3 '1/2,∗, which may result
from substructure, tidal arms or other structures found further out.

The symmetry values are correlated with the flatness of galaxies, where flatter galaxies
tend to be more asymmetric than more spherical galaxies. There is no trend found for the
major axis ratio or the triaxiality. Because of the morphology’s correlation with the minor
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axis ratio, LTGs are also found to be more asymmetric than ETGs. Interestingly, it appears
that intermediate galaxies may tend to be more symmetric than ETGs with high 1-values,
although this feature may be a result of low number statistics. The exact reason for the trend
of the symmetry value with the morphology is still unclear, although possible drivers for the
asymmetry include substructures not being identified by SUBFIND due to the generally lower
masses of LTGs, off-center cores in the disk plane, and asymmetric spiral arms, which are
also found in some observed LTGs.

Because of the trend with the 1-value, the symmetry values also have a trend with another
property correlated with the 1-value: galaxies with large absolute values of the circularity
tend to be more asymmetric. Even the stellar mass, where more massive galaxies tend to be
ETGs, shows a clear correlation with the octant symmetry parameter: less massive galaxies
tend to be more asymmetric. This trend is even true for a given morphology, where the
differences between the symmetries of low-mass and high-mass LTGs are even larger than
for ETGs. This shows that both the morphology and the stellar mass of galaxies influence
their symmetries.

Finally, the mean central stellar age and the sSFR are found to not be drivers of the
symmetry, since there is no trend with the symmetry values at a given morphology. In
contrast, the in-situ fraction, which is strongly correlated with the formation history of a
galaxy (Remus & Forbes, 2021), has a correlation with the symmetry: galaxies with smaller
in-situ fractions tend to be more symmetric. Since the in-situ fraction is correlated with the
stellar mass of the galaxies (Figure 5.8), this result is expected. It can be concluded that not
the stellar age or the star formation rate drive the symmetry, but the formation history.

These first findings for the symmetries of galaxies should pave the way towards a more
accurate treatment of galaxy shapes and a better understanding of the drivers of asymmetries.
The next important step will be to compare the symmetry values with a classification of
galaxies by the presence of mergers, tidal arms, streams, and shells. This will lead to an
improved interpretation of the symmetry values themselves.



9 Summary & Conclusion

In this work, the shapes of a sample of galaxies from the cosmological hydrodynamical
simulation suite Magneticum Pathfinder were investigated and related to a variety of galaxy
properties, with a focus on kinematics and formation histories. The galaxies were taken from
the medium-sized Box4 (uhr) of Magneticum Pathfinder, which combines a sufficiently large
cosmological volume for the purposes of this work with high resolution. The galaxies were
selected by a stellar and DM mass cut of "∗/DM ≥ 1010M� to ensure a particle number
per galaxy that is sufficient for obtaining accurate results for the shapes. The DM mass cut
prevents satellite galaxies from being considered to which only a very small number of DM
particles were assigned by the halo finder, SUBFIND. Additionally, a threshold of at least twice
the stellar softening length for the stellar half-mass radii was adopted.

The shapes of halos and galaxies are typically described by ellipsoids in the literature.
Because of the large number of methods used to determine these ellipsoids, the theoretical
background of the shape determination methods and a thorough comparison of these were
first presented. For the sample of galaxies used, the method of choice for the local shape
of a galaxy is the iterative unweighted method, where the volume of the deforming ellipsoid
is kept constant. This is the method applied throughout this work. For the global shape of
a galaxy, the preferred approach is the iterative reduced ellipsoidal method. The shapes are
quantified by three parameters, where @ is the major axis ratio of the ellipsoid, corresponding
to one minus the face-on ellipticity, B is the minor axis ratio, corresponding to one minus the
edge-on ellipticity, and ) is the triaxiality, a quantity which solely depends on the two axis
ratios and quantifies how prolate or oblate the shape ellipsoid is.

As expected from an intuitive understanding that disk galaxies are flat from an edge-on
perspective and have oblate shapes, while elliptical galaxies have more spherical shapes,
the relations between the shape parameters and the morphological parameter used in this
work, the 1-value, show clear trends: LTGs, which have large 1-values and are typically disk
galaxies, have the flattest shapes (i.e., low values of B) and are the most oblate. ETGs, which
have small 1-values and are typically elliptical galaxies, have the most spherical shapes (i.e.,
large values of B). While the shape parameters are generally similar at one and three stellar
half-mass radii, the major axis ratio tends to be larger at 3 '1/2,∗ than at 1 '1/2,∗, which leads
to a shift towards more triaxial to oblate shapes at 3 '1/2,∗.

Because of the strong correlation between the 1-value and the minor axis ratio, B, any
properties having a sufficiently tight relation with the 1-value are found to also be correlated
with B. This includes the _'-parameter, which quantifies the rotational support of a galaxy,
where galaxies with more rotational support tend to be flatter. This relation can be identified
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with the _'-n plane for the edge-on ellipticity n = 1− B, in which the fast rotators are typically
distinguished from the slow rotators (e.g. Schulze et al., 2018). Since the anisotropy has a
tight relation within this plane, the anisotropy is also found to correlate with the minor axis
ratio. In fact, the minor axis ratio together with the 1-value can be used to constrain the
anisotropy well. Since the 1-value is a measure of the morphology, which in turn is generally
understood to be a result of the merger history of a galaxy, a number of quantities related
to the formation history correlate with the 1-value and therefore with the minor axis ratio:
galaxies with higher sSFR tend to be flatter, as do galaxies with younger stellar populations
within one half-mass radius. Even for a given 1-value, galaxies with younger central stellar
populations tend to be flatter, where only few ETGs have especially young average stellar
ages, which are linked to ongoing star formation, likely caused by starbursts in mergers.
While these ETGs with young stellar populations or ongoing star formation could be linked
to galaxies in the process of merging and therefore have more asymmetric shapes, this could
not be found in the analysis of the galaxies when ignoring substructure.

There are remarkable trends of the shapes with the in-situ fraction, however: at a given
stellar mass, all three shape parameters have a tight correlation with the in-situ fraction. This
will allow observers to further constrain the in-situ fractions (which is difficult to determine
from observations) through the projected shape and the stellar mass. In contrast, the stellar
mass itself shows no trends with the shapes. Only the mass distribution, described by the
mass-size relation, is related to the shapes.

The alignment of the stellar and DM angular momenta are also related to the 1-value:
LTGs are typically found to have better alignment angles, such that flat galaxies generally have
well aligned stellar andDM angular momenta. The trend breaks down at largemisalignments,
where the shapes of the galaxies (mostly ETGs) become independent of the angular momenta
alignment.

An important finding is that DM follows the stellar component’s radial profiles of shape
and its alignment, which was investigated out to 5 '1/2,∗. The DM only has a different
orientation in the core region, which may be linked to resolution issues. This is true across
the different kinematic groups, all of which feature distinct shape profiles. Regular rotators
are typically more oblate and have a good alignment between the stellar minor axis and
the stellar angular momentum, non-rotators are triaxial to prolate and have poor alignment
between the stellar minor axis and j∗, KDCs feature a decoupled stellar shape from the DM in
the core region, and prolate rotators have remarkably prolate shapes, even at large radii, and
a maximum misalignment between the stellar minor axis and j∗. For all groups except the
prolate rotators, the alignment of the DM’s minor axis and its angular momentum is worse
than for the stellar component. Overall, a clear link between the inner kinematics of galaxies
and their shapes is found.

For the radial _'-profile groups, the shape profiles are similar between the increasers
and the flats, and only the decreasers distinguish themselves through more rotational support
and more oblate shapes, very similar to the regular rotators. This is related to their different
formation history that is dominated by mini and minor mergers at late times, where the peak
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_'-value indicates the location of the transition from the in-situ dominated inner region to
the ex-situ dominated outer region (Schulze et al., 2020). Interestingly, the alignment profiles
of the increasers and decreasers are similar, whereas the flats feature worse alignments
between the minor axes and angular momenta of the stellar and DM components. Clearly,
the kinematic groups are found to have the stronger correlation with the shapes, which shows
how they are more tightly connected to the formation histories than the _'-profile groups.

Despite there being a correlation between the stellar global spin parameter and _'1/2 ,
there is only a minor trend between the stellar minor axis ratio and the stellar global spin
parameter through the existence of a lower bound of B. Aside from that relation, there are
no clear trends between the shape parameters and the global spin parameters, neither for the
inner stellar or DM shapes, nor for the shape of the full DM halo. This indicates that the
global spin parameter is not a driver of the stellar or DM shapes.

In this work, the local cosmic environment is quantified using the average density within
5Mpc of a galaxy. This value is correlated with the total global spin parameter, where
galaxies with higher global spin parameters tend to be found in more dense environments.
Just as for the global spin parameters, using this quantification for the cosmic environment,
there is no evidence of the environment affecting the shapes of galaxies or their halos.

To assess how well the shape ellipsoids describe the underlying particle distributions,
two methods to describe the symmetry of galaxies (with the substructure removed) were
introduced. The half-space symmetry value is equal to the smallest ratio of the number of
particles per half of the shape ellipsoids, and the octant symmetry value is equal to the smallest
ratio of the number of particles per octant of the ellipsoids. Both symmetry values show
overall agreement in distinguishing symmetric from more asymmetric galaxies. The octant
symmetry method is preferred in usage because of its greater sensitivity to asymmetries in
galaxies.

There is a clear trend of the symmetry with theminor axis ratio and the 1-value: flat galax-
ies and LTGs tend to be more asymmetric. While the origin of this is still unclear, possible
reasons include substructure not being identified by SUBFIND because of LTGs mostly having
low stellar masses, and thus the satellites may have masses below the identification threshold,
off-center cores in the disk, asymmetric spiral arms, and merger remnants like streams and
shells. As the circularity is strongly related to the 1-value, there is also a correlation between
the symmetry and the circularity. In addition to the morphology, there is also a trend with the
stellar mass and the in-situ fraction at constant 1-value: more massive galaxies and galaxies
with smaller in-situ fractions tend to be more symmetric. In contrast, the symmetry values
are independent of the mean stellar age and the specific star formation rate. The symmetry is
therefore influenced more by the formation history and not by the internal processes of star
formation driven by gas.

In summary, this work has shown that the stellar shape parameters are correlated with
a broad range of galaxy properties, from morphology and formation history to kinematics.
It was also demonstrated that the minor axis ratio, i.e., the edge-on ellipticity, is the shape
parameter that is most correlated with other properties. This is an important point for
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observations, where the edge-on ellipticity can be obtained through the projected view and
an estimation of the inclination of the galaxy. There is almost no evidence for correlations of
the stellar and DM shapes with the investigated large scale galaxy properties, the global spin
parameters and the cosmic environment, suggesting that the details of the shapes are mainly
driven by the exact formation history and the resulting inner kinematics. In contrast, the inner
kinematic groups feature distinct radial stellar and DM shape and alignment profiles. For
the _'-profile groups, this is mostly only the case for the decreasers due to their particular
formation histories compared to the increasers and flats. Finally, an important finding is that
the DM overall follows the stellar component in shape and alignment, independent of the
kinematics, with the exception of the core region of KDCs. This is an especially important
result for the modeling of DM in galaxies, which is necessary for Jeans modeling, lensing
models, andmany other applications in astrophysics that try to connect the DM to the baryonic
components to shed further light on the nature of DM.



A Shapes

A.1 Reduced Ellipsoidal Method Applied to a Merger

Applying the iterative reduced ellipsoidal method, keeping the volume of the deforming
ellipsoid constant, to the merging galaxy shown in Figure 3.4 (for the unweighted method)
at three half-mass radii results in the shape contour seen in Figure A.1. The shape is almost
identical to the result found for the iterative unweighted method (dotted line for comparison),
which shows that even the reduced ellipsoidal method, which is generally supposed to be less
influenced by substructures, reaches its limits for such major mergers. The large number of
particles in the merging structure appears to dominate the sum for the shape tensor even with
the squared radial weighting applied by the reduced methods. Clearly, such ongoing mergers
lead to shapes with questionable meaningfulness, further supporting the approach taken in
Chapter 8 to provide the means to filtering out those objects by quantifying the asymmetry
of a galaxy.
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FigureA.1: Surface densitymap of the example galaxy seen in Figure 3.4with the overplotted ellipsoid
contour at three half-mass radii for the iterative reduced ellipsoidal shape determination method with
constant volume (solid ellipse). The galaxy is viewed edge-on in the eigenvector coordinate system of
the shape tensor. The dotted ellipse is the same ellipse as shown for the iterative unweighted method
in Figure 3.4 for comparison.
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Figure A.2: Axis ratios @ and B of the dark matter component of the galaxy sample at three half-mass
radii for the iterative reduced and reduced ellipsoidal methods at constant ellipsoid volume. On the
left, the points are plotted semi-transparently to better show their distribution, while the same points
are colored by 1-value on the right. The solid lines indicate the borders between prolate, triaxial, and
oblate shapes, from left to right, respectively.

A.2 Axis Ratios of the Reduced Methods

The axis ratios @ and B of the galaxy sample are dependent on the shape determination method
used (Section 3.3.1). As discussed in that section, the reduced method has a bias towards
more spherical shapes. Precisely this behavior is observed for the axis ratios at 3 '1/2,∗ in
Figure A.2, with both @ and B shifting up towards larger values compared to what is observed
for the iterative unweighted method in Figure 4.1. For the reduced ellipsoidal method (bottom
of Figure A.2), we find a distribution of points which lies approximately between what was
observed for one and three half-mass radii for the unweighted method in Figure 4.1. This is
consistent with the conclusion drawn in Section 3.3.1, that the reduced ellipsoidal method
describes the average shape within the determined ellipsoid.

Neither of the two methods affects the correlation with the 1-value observed for the
unweighted method at 3 '1/2,∗, however. This shows that the reduced and reduced ellipsoidal
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methods affect all galaxies similarly, distorting the absolute values of the axis ratios in a
systematic rather than completely random way.



B Radial Profiles of Individual Galaxies

To give an idea of what the individual stellar and DM shape and alignment profiles look
like that make up the median lines and scatter regions of Figure 6.3 and Figure 6.4 for the
four kinematic groups, the profiles of selected galaxies from each group are presented here.
For the radial shape parameters, the profiles of the 20 most massive galaxies in each group
(Figure B.1) and those for the single most massive galaxy in each group (Figure B.2) are
plotted. For the radial alignments, only the profiles of the single most massive galaxy in
each group (Figure B.3) are plotted. The plots with the respective 20 most massive galaxies
in each kinematic group give an impression of what the scatter region shown in Figure 6.3
represents and how much the individual profiles in the same kinematic group can deviate
from each other. For the single most massive galaxies, it becomes very clear how similar the
stellar and DM shape and alignment profiles can be to each other, emphasizing how the DM
follows the stellar component. An interesting feature is found for the most massive KDC,
where the shape of the DM component clearly has a large twist between 2 '1/2,∗ and 3 '1/2,∗
(seen for the black line in the second and third column of the KDC row in Figure B.3). Note,
however, that the DM shape is also rather spherical for that KDC (seen for the BDM-profile of
the KDC in Figure B.2), such that twists can easily occur because small changes of the shape
can lead to large changes of the principal axes.
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Figure B.1: Radial shape profiles of the stellar (blue) and DM (black) components of the 20 most
massive galaxies in each of the kinematic groups from one to five stellar half-mass radii. The lines
are only plotted for the radial distances that are larger than the softening length (1 kpc for the stellar
component, 2 kpc for the DM component).
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Figure B.2: Radial shape profiles of the stellar (blue) and DM (black) components of the single most
massive galaxy in each of the kinematic groups from one to five stellar half-mass radii. The lines
are only plotted for the radial distances that are larger than the softening length (1 kpc for the stellar
component, 2 kpc for the DM component).



123

30

60

θ(
sh

ap
e(
∗,

D
M

))
/d

eg regular rotators

θ(
sh

ap
e(

R
),

j ∗)
/d

eg

stellar DM

θ(
sh

ap
e(

R
),

j D
M

)/
de

g

30

60

θ(
sh

ap
e(
∗,

D
M

))
/d

eg non-rotators

θ(
sh

ap
e(

R
),

j ∗)
/d

eg

θ(
sh

ap
e(

R
),

j D
M

)/
de

g

30

60

θ(
sh

ap
e(
∗,

D
M

))
/d

eg KDCs

θ(
sh

ap
e(

R
),

j ∗)
/d

eg

θ(
sh

ap
e(

R
),

j D
M

)/
de

g

1 2 3 4
R/R1/2,∗

30

60

θ(
sh

ap
e(
∗,

D
M

))
/d

eg prolate rotators

1 2 3 4
R/R1/2,∗

θ(
sh

ap
e(

R
),

j ∗)
/d

eg

1 2 3 4
R/R1/2,∗

θ(
sh

ap
e(

R
),

j D
M

)/
de

g

Figure B.3: Radial alignment profiles of the stellar (blue) and DM (black) components of the single
most massive galaxy in each of the kinematic groups from one to five stellar half-mass radii. The left
column shows the angles between the minor axes of the stellar and DM shapes, the middle column
the angles between the stellar angular momentum at 3 '1/2,∗ and the minor axis of the stellar and DM
shapes, and the right column the angles between the DM angular momentum at 3 '1/2,∗ and the minor
axis of the shapes. The lines are only plotted for the radial distances that are larger than the softening
length (1 kpc for the stellar component, 2 kpc for the DM component).



C Randomly Oriented Axes

For two randomly oriented axes, we find the probability distribution function (pdf) of the
angle between them (in the range 0°–90°) to be proportional to the circumference of a circle
on a sphere given by the polar angle, \ (which corresponds to the alignment angle). Such
a polar angle is shown in Figure C.1 between the two red lines, for which the circle on the
sphere is also highlighted in red. The circumference of a circle at a given polar angle, \, is
2c sin \, such that we obtain the pdf ?(\) ∝ sin \. It turns out that the proportionality factor
is 1 since the pdf is already normalized:∫ c

2

0
3\ sin \ = 1, (C.1)

which means that the wanted pdf is (Ho & Turner, 2011):

?(\) = sin \. (C.2)

From this, we can derive the angle, \@, corresponding to a given quantile, @:

@
!
=

∫ \

0
3\′ sin \′ = 1 − cos \ (C.3)

⇒ \ = arccos(1 − @). (C.4)

For the median at @ = 0.5, this gives us \median = 60°, for the upper bound containing 68%
of the data above the median, @ = 0.5 − 0.5 · 0.68 = 0.16, giving us 33°, and for the lower
bound containing 68% of the data below the median, @ = 0.5 + 0.5 · 0.68 = 0.84, giving us
81°.

Figure C.1: Visualization of the derivation of the probability distribution function for randomly
aligned axes, which is proportional to the circumference of a circle given by a polar angle, \. The
angle between the two red lines is an example for such a polar angle.



D Total & DM Global Spin Parameters

The total and DMglobal spin parameters are generally very similar to each other (Figure D.1).
This mainly results from the DM dominating the total mass of galaxies, as can be seen by
the coloring of the data points, where the outliers are satellite galaxies with small amounts
of DM that were associated with the subhalos by SUBFIND. Also note that while the gas
component can lose spin via redistribution of its angular momentum or through feedback
leading to expulsion of gas, the DM only interacts gravitationally, preventing it from losing
spin over time. As a result, the DM’s spin can be expected to remain close to the total spin.
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Figure D.1: Comparison between the total and the DM global spin parameters within 'vir, colored
by the relative difference between the total and DM mass. The dashed line indicates the one-to-one
relation between the global spin parameters



E Cosmic Environment Correlations

As seen in Section 7.2, the quantification of the cosmic environment used in this work –
the average density within a 5Mpc radius of each galaxy – shows no trend with the stellar
or DM shape parameters (Figure 7.5) and only a weak relation with the total global spin
parameter (Figure 7.4). In the course of this work, a large number of possible correlations
with other galaxy properties were analyzed for the cosmic environment. Surprisingly, one
of the properties that correlates best with it is the index of each galaxy in the output list of
SUBFIND, which is referred to as the SUBFIND ID in the following (left panel of Figure E.1):
the galaxies with the smallest IDs are found in the densest environments, whereas galaxies
with larger IDs are typically found in less dense regions. The origin of this relation is found
through a second galaxy property that is correlated with the average local density: the stellar
mass (right panel of Figure E.1). The most massive galaxies, which are the main galaxies
in cluster and group environments, are located in the densest regions, whereas less massive
galaxies are found in all types of environments, such that the median local density is much
lower for low-mass galaxies. Since SUBFIND lists the the galaxy groups approximately sorted
by their total mass and the main subhalos are found in the same order as their corresponding
groups (with the satellites listed after their respective main subhalo), the correlation found
for "∗ with the environment gives rise to the one found for the SUBFIND ID.
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Figure E.1: Relations of the average local density within a 5Mpc radius with the subhalo ID from
SUBFIND (left) and with the stellar mass (right). The solid blackberry lines indicate the median values
in the respective ID bins and the shaded regions the 1f range (containing 68% of the galaxies above
and below the median). The dashed part of the lines indicates where there may be effects caused by
low number statistics.



F Shapes & Half-Space Symmetry

In Figure 8.2, a clear trend between the octant symmetry, the minor axis ratio, B, and the
1-value is found at 1 '1/2,∗ and 3 '1/2,∗. To investigate whether this relation is only linked
to the octant method or if it also is a trend found for the second discussed quantification of
symmetry, the half-space method, the relation between the half-space symmetry values and
the shape parameters at 1 '1/2,∗ and 3 '1/2,∗ are shown in Figure F.1. The relation is very
similar to the one found for the octant symmetry method in Figure 8.2. The major difference
is that Symhalf spans a smaller range of values and is larger or equal to Symoct (which is
necessarily the case, see Section 8.1). As for the octant symmetry, we here find a slight
trend at both considered radii for the major axis ratio, @, which tends to be lower for larger
asymmetries. Interestingly, the downward scatter of @ appears to be smaller for the largest
asymmetries at 1 '1/2,∗, although this may be due to the small number of galaxies with the
largest asymmetries. We again find the clear trend of the minor axis ratio being smaller for
larger asymmetries, and finally, the trend is lost for the most part for the triaxiality. We also
find the trend between the symmetry values and the 1-value: galaxies with small values of
Symhalf tend to be LTGs, while ETGs tend to be more symmetric.
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Figure F.1: Relation of the half-space symmetry at 1 '1/2,∗ (top row) and 3 '1/2,∗ (bottom row) with
the shape parameters at the respective radial distances, @, B, and ) , for the stellar component. The
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the 1f ranges (containing 68% of the galaxies above and below the median). The dashed part of the
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