
Turbulence in SPH

Pascal Ulrich Förster

Munich 2014

Turbulence in SPH

Bachelor’s thesis
at the

Ludwig–Maximilians–University Munich

handed in by

Pascal Ulrich Förster
(Matr. No.: 8052487)

born December 5, 1987 in Düsseldorf, Germany

supervised by
PD Dr. Klaus Dolag

and
Dr. Alexander Beck

Munich, September 30, 2014

Evaluator: PD Dr. Klaus Dolag

Date of the oral exam: September 30, 2014

Turbulenz in SPH

Bachelor-Arbeit
an der

Ludwig–Maximilians–Universität München

eingereicht von

Pascal Ulrich Förster
(Matr.-Nr.: 8052487)

geboren am 5. December 1987 in Düsseldorf, Deutschland

betreut von
PD Dr. Klaus Dolag

und
Dr. Alexander Beck

München, den 30. September 2014

Gutachter: PD Dr. Klaus Dolag

Tag der mündlichen Prüfung: 30. September 2014

Table of Contents

1. Introduction 1
1.1. Astrophysical motivation . 2
1.2. Outline . 4

2. A brief sketch of hydrodynamics 7
2.1. The continuity equation . 7
2.2. Euler’s equation of hydrodynamics 8
2.3. The motion of viscous fluids . 9
2.4. Similar flows and the Reynolds number 11

3. A short introduction to turbulence 13
3.1. The stationary flow . 13
3.2. The critical Reynolds number and the onset of turbulence 14

3.2.1. Turbulence at near-critical Reynolds numbers 15
3.2.2. Turbulence at over-critical Reynolds numbers 16

3.3. Fully developed turbulence . 18
3.3.1. The turbulent cascade . 18
3.3.2. Local Kolmogorov turbulence 19
3.3.3. Energy dissipation on small scales 21
3.3.4. The power spectrum . 22

4. Essentials of turbulent SPH simulations 25
4.1. Alternative simulation techniques . 25

4.1.1. The Cartesian grid . 25
4.1.2. Moving-mesh simulations . 26

4.2. Smoothed Particle Hydrodynamics 27
4.2.1. The basic concept of SPH . 28
4.2.2. Artificial viscosity . 30

4.3. Setting up initial conditions . 32
4.3.1. The need for a box . 32
4.3.2. Units, scales and basic conditions 34
4.3.3. Particle distribution . 35
4.3.4. The velocity field . 35

4.4. About GADGET . 38
4.5. Binning to the grid . 39

4.5.1. Standard SPH binning method 39
4.5.2. Modified SPH binning methods 39

viii Table of Contents

4.5.3. TSC and other frequently used window functions 40
4.5.4. The D20 sampling . 41

5. Our implementation of decaying turbulence 43
5.1. Motivation of this setup . 43
5.2. Properties and realization of our simulation 43

5.2.1. Setting up the turbulent box 44
5.2.2. Compiling GADGET . 44
5.2.3. Running the simulation . 45
5.2.4. Compiling Sph2Grid . 47
5.2.5. Binning the data . 47
5.2.6. Plotting the spectrum . 48

6. Results 51
6.1. Simulations with 30% turbulence . 51

6.1.1. GADGET-vs.-AREPO comparison 51
6.2. Simulations with 10% turbulence . 56

6.2.1. GADGET-vs.-AREPO comparison 56
6.2.2. Long run GADGET-vs.-AREPO comparison 60

6.3. Simulations with 5% turbulence . 62
6.3.1. GADGET-vs.-AREPO comparison 62

7. Discussion 67
7.1. Summary . 67
7.2. Conclusions . 68
7.3. Future prospects . 70

Acknowledgments 71

A. Appendix: Code repository 73
A.1. Creating the initial conditions . 73
A.2. Submitting the simulation for computation 84
A.3. Automated binning of numerous snapshots 84
A.4. Plotting the power spectrum from the grid files 85

B. Appendix: Configuration files 93
B.1. The GADGET compilation settings 93
B.2. The Sph2Grid compilation settings 94

C. Appendix: Parameter files 97
C.1. The GADGET parameters . 97
C.2. The Sph2Grid parameters . 100

Table of Contents ix

Bibliography 101

List of Figures 103

Selbstständigkeitserklärung 106

1. Introduction

Noli turbare circulos meos!

— Archimedes

Some philosophers argue that there is a part of human nature which seeks to find

order in the most tumultuous of affairs. Is it surprising, then, that physics, the natu-

ral science with the greatest aspiration to a fundamental knowledge of our universe,

is also the most prone to dissecting and reducing impossibly complex problems into

ever smaller bits, until the substructure lines up in front of the scientist’s eye and

is presented to him in an orderly fashion, sorted for example by fundamental force,

by subatomic particle, and so on?

The initial quote attributed to Archimedes of Syracuse moments before his death

– he was defending his geometric figures drawn in the sand against the destructive

footsteps of an ignorant soldier – expresses this appreciation of order, this percep-

tion of beauty in all things geometrical and symmetric, in all phenomena orderly

and reducible. We want to explore them down to their core and understand their

workings from the smallest instance up to their largest composition.

Turbulence evades that grasp, though, as the sheer numbers of its participants

makes it unfeasible to analyze the phenomenon on a microscopic, individual-particle

level. Even only one mole of gas has approximately 1024 particles, and usually we

will be dealing with several orders of magnitude more than that. Nonetheless,

turbulence can be treated physically, or else this would be a Bachelor’s thesis in

philosophy rather than in physics. But the approach is fundamentally different

and all-encompassing, since even the most unordered of turbulence can be handled

statistically, not from the bottom to the top, but on a huge, macroscopic or even

astronomical scale. And whatever the size or location of those turbulent eddies and

fluctuations, be they in the pipes of our sewers or in the gas between our stars, they

follow the same universal set of rules. In all their individual tangle, in all the tumult

and all their invincible complexity, they still adhere to that all-comprising order,

and thus are again in the physicist’s grasp. In a way, then, the physics of turbulence

is one of the greatest triumphs of science over what appeares to be a world of chaos.

There is a beauty to that.

2 1. Introduction

1.1. Astrophysical motivation

Turbulence is Nature’s way of transferring energy from larger to smaller scales by

finding increasingly intricate ways to “store” or better, say, maintain a certain kinetic

energy despite the limitations of outer conditions. Although being woefully neglected

in many undergraduate physics courses on fluid mechanics, turbulence is an integral

part of that topic and occurs in as many and different situations as seem possible.

As a phenomenon mainly defined by the ratio of inertial and viscous forces and not

by the actual magnitude of the forces involved, it ranges from the smallest eddies

of a liquid streaming through a minuscle pipe over the better part of terrestial

atmospheric circulation to the turbulent behavior of the intracluster medium (ICM),

which is the hot gas in between the galaxies of the largest gravitationally bound

systems of the known universe. Some astrophysical examples of turbulence are

listed below.

Stars

The surface and outer layer of stars like our own sun is called the convection zone and

is dominated by energy transport via convection, as opposed to e.g. the radiation

zone below it. The imprint of turbulent process on the surface of the Sun can

be nicely seen in figure 1.1. The maximum, external lengthscale for this kind of

turbulence is given by the radius of the star in question, which can range from

about 0.5R� up to 1700R�, with R� = 6.955 · 105 km the solar radius.

Interstellar medium

The matter between the star systems in a galaxy is called the interstellar medium

(ISM). It is composed of different phases and temperatures, and is interspersed

with stars and other massive objects that interact with it. In combination with

the overall rotation of the galaxy, this makes the ISM turbulent. The external

lengthscale for that turbulence is the outer dimension of the galaxy, which for our

Milky Way is about 100, 000 lightyears (ly) or about 30 kpc. For comparison: our two

orbiting dwarf galaxies, the Large and the Small Magellanic Cloud, “only” measure

approximately 25, 000 ly and 10, 000 ly (or about 7.7 kpc and 3.1 kpc), respectively.

Andromeda, which is depicted in figure 1.2, is the closest spiral galaxy to us. Besides

being about the same size as our Milky Way, it is believed to have very similar

characteristics and to be on a collision course with us.

1.1 Astrophysical motivation 3

Figure 1.1.: False-color image of the Sun observed in the extreme ultra-
violet region of the spectrum taken by the Atmospheric Imaging Assembly
(AIA 304) of NASA’s Solar Dynamics Observatory (SDO). Image courtesy
of NASA/SDO and the AIA, EVE, and HMI science teams.

Figure 1.2.: The Andromeda Galaxy as seen through a small telescope.
Image credit: Jacob Bers (bersonicastronomy.com).

http://bersonicastronomy.com/

4 1. Introduction

Intracluster medium

The vast expanses between galaxies of a cluster is host to the largest known form

of turbulence, which is occuring in the intracluster medium (ICM), a superheated

and thin plasma mainly consisting of ionised hydrogen and helium with a mean

free path of about one lightyear. The ICM interconnects all the galaxies of a cluster

with each other. As clusters of galaxies are some of the largest gravitationally bound

structures in the known universe (and in this regard only surpassed by superclusters),

the maximum lengthscale of the turbulence, in this case the size of the cluster, will

be mind-boggling 2 to 10 Mpc big. Figure 1.3 shows the massive Perseus Cluster,

containing thousands of galaxies.

Figure 1.3.: The Perseus Cluster of Galaxies, one of the closest galaxy
clusters. It is part of the Pisces-Perseus supercluster with more than 1000
galaxies. The view of this picture covers about 7.5 million light-years.
Image credit: Jean-Charles Cuillandre (CFHT) and Giovanni Anselmi
(Coelum Astronomia), Hawaiian Starlight.

1.2. Outline

The thesis at hand has been prompted by recent publications about the “natural”

limitations of smoothed particle hydrodynamics (SPH) with regard to the simula-

tion of turbulence. These findings center around unwanted side effects of artificial

viscosity, which needs to be introduced into the otherwise perfectly Lagrangian

scheme to implement dissipation. Most prominent in that regard is the paper by

http://www.cfht.hawaii.edu/
http://www.coelum.com/
http://www.cfht.hawaii.edu/hs

1.2 Outline 5

Bauer and Springel (2012) about deficits in the subsonic turbulent regime, which

dissuades further use of SPH codes in the regime and suggests the use of moving-

mesh codes like Arepo. Although a well-considered answer to that specific paper

already exists in form of Price (2012a), the idea had been sown to assess our cur-

rent SPH code Gadget-3 equipped with state-of-the-art schemes and compare it

to matching Arepo runs.

The structure of this thesis is as follows: In chapter 2 will we introduce the basic

equations of hydrodynamics necessary for our further understanding of turbulence,

then move on to the theory of turbulence itself in chapter 3. Both chapters are based

on the comprehensive work of Landau and Lifshitz (1991). Chapter 4 discusses the

basic concepts of smoothed particle hydrodynamics simulations, while chapter 5

presents the specifics of our simulations and chapter 6 their results. Finally, the last

chapter 7 consists of a short summary, an analysis of our efforts so far and of some

future prospects. The thesis also features an extensive appendix starting from page

73 with most of the code and all the configuration and parameter files.

2. A brief sketch of hydrodynamics

First of all, we need to clarify that since the hydrodynamical observations are macro-

scopic in nature, all effects observed and described are not so much properties of

individual particles making up the fluid as properties of the continuum they form.

This requires us to maintain, at any point, volume elements large enough with

respect to the individual molecules so that microscopic events are negligible. When-

ever we are speaking of “infinitesimally small volume elements”, this will mean

nothing else than the volume element at hand is sufficiently small with respect to

the surroundings and typical lengthscales but still big enough in the aforementioned

sense.

2.1. The continuity equation

Any fluid can be described by functions of the velocity distribution ~v (x, y, z, t)

and two arbitrary thermodynamical quantities1, a common example being pressure

p (x, y, z, t) and density ρ (x, y, z, t). All of these quantities are functions of the

coordinates in the sense that they describe the properties of the flow at that point

in space and time in the laboratory system and not the properties of a specific

particle or volume element of the fluid; they are not comoving.

The continuity equation describes the conservation of mass and is a concept shared

with other field theories. To obtain it, we examine the different possibilities in the

change of mass for a finite volume V0 that has an overall mass of
∫
V0
ρdV . The vector

surface element d~f of this volume shall be perpendicular to its surface, outward

oriented and its norm of the value of the surface it represents. With regard to units

it makes sense that the flow of mass and ergo fluid per time shall then be ρ~v d~f .

Hence we gain the expression ∮
∂V0

ρ~v d~f

with ∂V0 the closed surface of the volume. On the other hand, the obvious approach

1This is due to the fact that monoatomic fluids with ideal properties pose a two-dimensional
problem with respect to the state space and require the same number of parameters D to be
described by an equation of state. The description of the dynamic component is handled by
the velocity distribution.

8 2. A brief sketch of hydrodynamics

to the change in mass is its time derivative

− ∂

∂t

∫
V0

ρ dV .

Since we want to equate both expressions, we transform the first via the divergence

theorem (also known as Gauss’s theorem) as follows∮
∂V0

ρ~v d~f =

∫
V0

div (ρ~v) dV (2.1)

and combine them both into the equation∫
V0

[
∂ρ

∂t
+ div (ρ~v)

]
dV = 0 .

For this integral to be zero for any possible finite volume V0, the integrand needs to

be equal to zero, too, which gives us the continuity equation in either form

∂ρ

∂t
+ div (ρ~v) = 0 or

∂ρ

∂t
+ ρ div~v + ~v grad ρ = 0 . (2.2)

2.2. Euler’s equation of hydrodynamics

Now that we have gained insight into the conservation of mass and have deduced

the proper equation describing it, we need to understand more about the motion of

our fluid. The equation describing it is known as Euler’s equation. We start with

the force that the surrounding fluid exerts onto an arbitrary volume element V0.

That force can easily be quantified by the closed integral of the pressure p over the

surface ∂V0 of the fluid element, which again may be rewritten similarly to equation

(2.1) according to Gauss’ theorem:

−
∮
∂V0

p d~f = −
∫
V0

grad p dV .

Then the force per volume element dV is given by −grad p. Another approach to the

force per element of the fluid is, of course, the classical “mass times acceleration”-

approach derived from Newton’s second law, which in this case takes the form of the

product of the mass density ρ and the acceleration d~v
dt

. Both expressions are equal,

and thus

ρ
d~v

dt
= −grad p . (2.3)

2.3 The motion of viscous fluids 9

Please take note that the derivative d
dt

is not the same as ∂
∂t

. While the latter

occurred before in this thesis and constitutes the change of a physical property, e.g.

the velocity ~v, of the flow over time at a fixed point in space, the former gives us the

time dependent change of that property of a given fluid element moving within our

laboratory system. To be of further use to us we need to express it in the frame of

reference of the laboratory system. In the case of the velocity d~v, the first component

is the change of the velocity at a fixed point in our system during the infinitesimally

short time span dt, and its second component is the difference in velocity between

two fixed points in our flow with the distance d~r that is being traversed by a fluid

element during the aforementioned time span dt, namely dx ∂~v
∂x

+ dy ∂~v
∂y

+ dz ∂~v
∂z

=

(d~r∇)~v. If combined, we get

d~v =
∂~v

∂t
dt+ (d~r∇)~v ,

and after forming the substantial derivative through division by dt

d~v

dt
=
∂~v

∂t
+ (~v ∇)~v .

To obtain Euler’s equation of hydrodynamics as the equation of motion of our

fluid, we insert the above expression in (2.3) and write:

∂~v

∂t
+ (~v ∇)~v = −1

ρ
grad p . (2.4)

Changes to the above equation may be necessary when handling fluids with energy

dissipation that can be caused by heat exchange between different volume elements

or by the viscosity of the fluid, all of which we have ignored up until now. We will

further investigate the topic of viscous fluids since our simulations rely on viscosity

to form turbulence.

2.3. The motion of viscous fluids

In a viscous fluid, the momentum is not only transferred by the reversible motion

of volume elements of the fluid as assumed above but also through an irreversible

transfer from a point of higher velocity to one of lower velocity. When dealing with

classical fluids this usually happens through friction.

Since friction as well as viscosity in general is an effect of interaction between

two distinct volume elements of the fluid, we are then dealing with a problem best

described by a tensor, in this case the viscous stress tensor σ′, that is part of a

more general stress tensor σ describing the portion of the transport of impulse in

10 2. A brief sketch of hydrodynamics

the fluid not directly related to the motion of its mass.2 The viscous effects only

occur between different fluid elements moving at different speeds and, assuming

not to great a difference in velocity, we expect the part of the impulse transport

in question to be dependent on the first derivatives of the velocity and thus σ′ik to

be linear in ∂vi
∂xk

. Expressions independent of those derivatives are forbidden since

they would not vanish for ~v = const and friction would occur even between volume

elements of the same speed. A similar thought holds for the uniform rotation of the

entire fluid where no friction will be present, either. In that case, the velocity is

~v = ~ω × ~r and the aforementioned derivatives must vanish.

Assuming the isotropy of the fluid and using the Einstein notation we determine

the most general form a tensor of second order satisfying our demands can take,

which is

σ′ik = η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik
∂vl
∂xl

)
+ ζ δik

∂vl
∂xl

.

The scalar non-negative coefficients η and ζ are commonly referred to as dynamic

viscosities and describe the properties of the isotropic fluid sufficiently. The expres-

sion in brackets is constructed to equal zero for diagonal elements of the tensor,

leaving only the last summand.

To obtain the new equation of motion for a viscous fluid, we add the term
∂σ′
ik

∂xk
to

the right side of Euler’s equation (2.4), which for that purpose needs to be written in

its corresponding component notation. We get the most general equation of motion

for a viscous fluid, that is

ρ

(
∂vi
∂t

+ vk
∂vi
∂xk

)
= − ∂p

∂xi
+

∂

∂xk

{
η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik
∂vl
∂xl

)}
+

∂

∂xi

(
ζ δik

∂vl
∂xl

)
.

If we further assume that the differences in viscosity throughout the fluid are negli-

gible and η and ζ may then be assumed to be constant, both can be drawn out of

the derivative and we get the Navier-Stokes equation

ρ

[
∂~v

∂t
+ (~v ∇)~v

]
= −grad p+ η∆~v +

(
ζ +

η

3

)
grad div~v .

The above equation holds for compressible or incompressible fluids, but with our

later use in mind we will focus on incompressible fluids and are therefore able to

significantly simplify it. Due to the incompressibility, the mass density ρ = const

and the continuity equation (2.2) is reduced to div~v = 0, this in turn leading to the

2Please cf. Landau and Lifshitz (1991) for further details on the tensor notation of Euler’s
equation of motion and for the deduction of the impulse current of an ideal fluid.

2.4 Similar flows and the Reynolds number 11

last term of our Navier-Stokes equation being zero, too. Thus we finally obtain

∂~v

∂t
+ (~v ∇)~v = −1

ρ
grad p+ ν ∆~v (2.5)

with ν = η
ρ

the kinematic viscosity. In the next chapter on turbulence we will make

good use of this particular equation.

2.4. Similar flows and the Reynolds number

The Navier-Stokes equation teaches us that the solution to hydrodynamical problems

is encoded in its constituents. Since we typically wish to gain knowledge about the

velocity ~v and the pressure p of our flow, only the kinematic viscosity ν = η
ρ

will be

fed into the equation.3 Because a single parameter is by far not enough to describe

even a stationary problem adequately, we will explore other ways to characterize the

problem.

Assuming an incompressible fluid we can easily find that the outward appearance

of the flow around an arbitrary object is dependent on the viscosity of the fluid, the

shape of the object and its movement through the fluid.4 Additional effects may

be caused by boundaries of some sort. If the shape of the object is known, it is

sufficient to provide one of its dimensions in order to comprehensively describe it

as long as the other dimensions are kept to linear scale. We shall call that (rather

arbitrarily selected) dimension the typical length l. Furthermore, for the stationary

flow the relative velocity of the fluid around that object is constant, which allows us

to assign to it the scalar parameter u. Together with the kinematic viscosity ν as an

intrinsic property of the material fluid we have now gained three scalar parameters

to describe our problem. We emphasize at that point that we have not further

specified the nature of the hydrodynamical problem at hand. Thus any possible

configuration is covered by this approach, the caveat being that the fluid is viscous

and incompressible and the problem stationary.

To eliminate absolute measures in our classification and establish a relation be-

tween the three parameters, we take a look at their units

[ν] =
m2

s
, [l] = m , [u] =

m

s

and then combine them in the only fashion as to obtain a dimensionless number,

3More accurately, besides the velocity we wish to gain knowledge about the ratio p
ρ of the pressure

p (~r, t) and the constant density ρ, as found in the Navier-Stokes equation (2.5).
4As the relevant information is the relative motion between fluid and object, an equivalent de-

scription would be that of the movement of our fluid around the object.

12 2. A brief sketch of hydrodynamics

the result of which is called the Reynolds number :

Re =
u l

ν
. (2.6)

Any other dimensionless parameter can be expressed as a function of Re. As we

will proceed to measure lengths in measures of l and velocities in measures of u, we

express the velocity ~v as follows:

~v = u ~f

(
~r

l
, Re

)
.

For different setups of the same type of problem, e.g. in different sizes, the di-

mensionless velocities ~v
u

are only then described all by the same functions of ~r
l

if

the Reynolds numbers are identical. Flows of the same type and with the same

Reynolds number are thus similar in the sense that they only differ in the scale of

coordinates and velocities, but not in form.

Quite analog to the velocity we can construct a new notation for the pressure p

as well. Rearranging the density ρ and the velocity u for the units to fit, we get

p = ρu2 f

(
~r

l
, Re

)
.

This kind of construction can also be done for quantities that are not even functions

of the coordinates but only of the Reynolds number itself. A good example here is

the force F = ρu2l2 f(Re).

3. A short introduction to turbulence

In the previous chapter we have derived the fundamental equations of hydrodynamics

in order to be able to tackle the phenomenon known as turbulence. Despite common

usage of the word, the physical properties and necessities of the turbulent flow

are very well-defined. Here, we will start with the analysis of stability criteria for

stationary problems and proceed via the onset of turbulence to characterize the fully

developed turbulent flow.

3.1. The stationary flow

Given stationary boundaries, any hydrodynamical problem should in principle have

stationary solutions of the basic equations of hydrodynamics, independent of the

exact shape or Reynolds number. Although this is the case, only those solutions

that are stable under small perturbations may actually be observed, be it in nature

or simulation. We can formalize the stability criterion by setting up the velocity

field ~v as a linear combination of the unperturbed stationary velocity ~v0 (~r) and

the infinitesimally small perturbation ~v1 (~r, t) and by implementing the pressure p

similarly, so that

~v = ~v0 + ~v1 and p = p0 + p1

satisfy the Navier-Stokes equation (2.5) and the continuity equation (2.2) for incom-

pressible viscous fluids which are given by

∂~v

∂t
+ (~v ∇)~v = −∇ p

ρ
+ ν ∆~v and div~v = 0 (3.1)

respectively. Inserting ~v and p into the above equation leads us straight to the

monstrous equations of

∂~v0

∂t
+
∂~v1

∂t
+ (~v0 ∇)~v0 + (~v0 ∇)~v1 + (~v1 ∇)~v0 + (~v1 ∇)~v1 = (3.2)

−∇ p0

ρ
− ∇ p1

ρ
+ ν ∆~v0 + ν ∆~v1 and div~v0 + div~v1 = 0 .

Here ~v0 and p0 are the velocity and pressure of the unperturbed problem and in

that respect naturally satisfy equations (3.1). We may therefore subtract the entire

14 3. A short introduction to turbulence

equations1

∂~v0

∂t
+ (~v0 ∇)~v0 = −∇ p0

ρ
+ ν ∆~v0 and div~v0 = 0

from their respective counterparts in (3.2). Taking into account that the pertur-

bation is infinitesimally small we further omit all higher orders of ~v1 and are left

with

∂~v1

∂t
+ (~v0 ∇)~v1 + (~v1 ∇)~v0 = −∇ p1

ρ
+ ν ∆~v1 and div~v1 = 0 . (3.3)

It also stands to reason that ~v1 must vanish adjacent to fixed surfaces.

The velocity ~v1 and the pressure p1 are thus fixed by a system of homogeneous

linear differential equations with time-independent coefficients, the general solution

to which can be expressed as a sum of particular solutions with an e−iωt time de-

pendence. The actual values of ω are not arbitrary but rather determined by the

equations (3.3) and the geometry and boundary conditions of the specific problem.

Since ω tends to be complex, it can be represented as ω = ω1 + i γ1, where ω1 and γ1

are real. If there exists any positive ω1 at all, the infinitesimally small perturbation

by ~v1 and p1 will grow without limit and the original pseudo-stationary flow repre-

sented by ~v0 and p0 will not be observed. Only for all ω1 < 0 will the perturbations

decline and the original setup be stable.

3.2. The critical Reynolds number and the onset of

turbulence

The Reynolds number allows us to classify variations in fluid velocity, typical length-

scale and viscosity of a setup, as discussed for u, l and ν in section 2.4. Experimental

findings clearly show that for low enough Reynolds numbers the flow past an object

is stable, but when reaching a certain Reynolds number Recrit called the critical

Reynolds number, the flow becomes unstable against infinitesimally small perturba-

tions and the stationary solution can no longer be observed. Experiments show us

that Recrit usually takes a value between 10 and 100, but as mathematical exami-

nations of such stability problems are non-trivial there is no theoretical explanation

for those values yet.2

1The term ∂~v0
∂t is already equal to zero for the stationary flow represented by ~v0. It has been left

in place for the purpose of a clearer arrangement.
2This section 3.2 is mainly guided by the older version of Landau and Lifshitz’ fluid mechanics

Landau and Lifshitz (1959) as opposed to the newer edition used otherwise.

3.2 The critical Reynolds number and the onset of turbulence 15

3.2.1. Turbulence at near-critical Reynolds numbers

We will now examine the onset of turbulence for Reynolds numbers very near to

the critical Reynolds number. If Re < Recrit, all complex frequencies ω = ω1 + i γ1

in the solutions of equations (3.3) have negative imaginary parts γ1. One of these

imaginary parts will be equal to zero for Re = Recrit and will continue to become

γ1 > 0 once the critical Reynolds number has been passed. Since we remain in close

proximity to Recrit, it is safe to assume γ1 � ω1 and to model the perturbation

velocity field as

~v1 = A(t) ~f(~r) with A(t) = const · eγ1te−iω1t , (3.4)

where ~f is a complex function of the location and A(t) is the complex amplitude.

The term eγ1t grows quickly with time, therefore the validity of our solution, in

which we assume sufficiently small ~v1, is limited to a very short period of time. It

would also be most unexpected if the amplitude of our perturbation would continue

to grow without limit, and we will now determine that limit.

Deriving the square of the absolute value of the amplitude |A|2 = AA∗ = e2γ1t

with respect to time for small t in accordance to equation (3.4) gives us

d|A|2

dt
= 2γ1 |A|2 ,

but the underlying assumptions require us to expand that to higher orders when

|A| increases even within reasonable limits. That series expansion first leads us to

the order of three, which will always contain a temporal dependence,3 but since we

care less for the actual development of ~v1 and more for the resulting limit of its

amplitude, we eliminate it by averaging over time. This averaging takes place on

scales larger than the periodical fluctuations 2π
ω1

but much smaller than the time

scale of significant increase in amplitude 1
γ1

due to ω1 � γ1 and also disposes of all

terms of the fourth order except the one proportional to A2A∗2 = |A|4. With the

Landau constant α accounting for the proportionality4 we are left with

d|A|2
dt

= 2 γ1 |A|2 − α |A|4

as the expansion up to the fourth order. Because the timescale of the average is

insignificantly small compared to 1
γ1

, the averaged amplitudes are no different from

the unaveraged ones and we will denote and treat them the same way. Thus we

3When expanding in A and A∗, only summands with matching numbers of both A and A∗ and
thus even powers of |A| have the potentially dominant exponential factor e−iω1t cancelled out.
The time derivative of summands of uneven powers will always contain such a dependence.

4For an arbitrarily small perturbation to cause the instability, α needs to be larger than zero.

16 3. A short introduction to turbulence

obtain the solution

1

|A|2
=

α

2γ1

+ const · e−2γ1t t→∞−−−→ |A|2max =
2γ1

α
. (3.5)

In a last step we circle back to the Reynolds number as our classification of

turbulence. To replace the usually unknown parameter γ1 and the constant α, we

expand γ1 in orders of Re−Recrit. In the previously assumed proximity to the critical

Reynolds number, the imaginary part of the complex frequency ω is approximately

γ1 = const · (Re− Recrit) .

This linearization satisfies our initial requirements that γ1 = 0 for Re = Recrit. We

insert it into equation (3.5) and finally get the relation

|A|max ∼ (Re− Recrit)
1
2 . (3.6)

3.2.2. Turbulence at over-critical Reynolds numbers

The previous considerations of this section hold true for turbulence with Reynolds

numbers near Rcrit, and we can regard the flow as the superposition of the stationary

flow ~v0 (~r) and the periodic flow ~v1 (~r, t) whose amplitude at changing Reynolds is

determined by the above equation (3.6). Similarly to equation (3.4) we write

~v1 = ~f1(~r) e−i(ω1t+β1) ,

introducing the initial phase β1 that is only determined by random fluctuations of

the initial conditions. This randomly set phase is a degree of freedom that is not

covered by the equations of hydrodynamics in chapter 2 and their initial conditions.

Thus the turbulent flow has a degree of freedom where the stationary flow has none.

If the degree of perturbation gets too high, however, a separation of the stationary

flow ~v0 and the periodic flow ~v1 is no longer justified and we only observe the periodic

flow with a phase of ϕ1 = ω1t + β1 and a period of 2π. The Fourier expansion of

this turbulent flow at higher Reynolds numbers leads to

~v =
∑
p∈Z

~Ap(~r) eiϕ1p (3.7)

where not only the fundamental frequency ω1 is featured but also its integer multi-

ples.

This periodic flow in turn becomes unstable if the Reynolds number is further

increased just enough. We may then again separate ~v into a now periodic basic

flow ~v0 (~r, t) with the frequency ω1 and a perturbation ~v2 (~r, t) and insert it into

3.2 The critical Reynolds number and the onset of turbulence 17

equations (3.1). In analogy to (3.3) we drop the second order terms of ~v2 and obtain

basically the same differential equations, with the difference that the coefficients are

now time-dependent with a period of 2π
ω1

. With the frequencies ω = ω2 + iγ2 being

determined by those equations we again construct

~v2 = ~f2(~r, t) · eγ2te−iω2t .

The function f2 contains the periodicity, and as before a positive imaginary part

γ2 of the perturbation frequency ω leads to the periodic flow’s absolute instability

against infinitesimally small perturbations. Since the same criteria apply as for our

considerations in the previous section, we may cut straight to the result and conclude

that the resulting flow will be quasi-periodic with two different frequencies ω1 and

ω2 and have two degrees of freedom due to an additional randomly set phase where

before there was one.

The very similar approaches to the occurrence of the first and second periodic flow

~v1 and ~v2 suggest that more instabilities and thus more levels of periodic behavior

may follow, and indeed they do. Following ever more closely onto the last periodic

flow than their progenitors did and occurring over ever shorter distances, any number

of additional flows ~vn may develop. This is called turbulence. The only limit usually

imposed is when the lengthscale of thermal dissipation is reached and the kinetic

energy is thus taken out of the system via friction and heat transfer at the lower

end of the energy cascade.5

We may formalize this knowledge in the following equation that poses a generalized

form of equation (3.7). For n different frequencies ωj and thus n different phases

ϕj = ωjt+ βj we expand the velocity as follows:

~v (~r, t) =
∑

p1,p2,...,pn

~Ap1,...,pn(~r) · exp
[
−i
∑n

j=1
pjϕj

]
With increasing Reynolds numbers and thus increasing numbers of fundemental

frequencies ωj and initial phases βj, the number of degrees of freedom increases

likewise. If Re tends to infinity, so does the number of degrees of freedom n.

The velocity ~v is, through its dependence on t, a function of the phases ϕj and thus

periodic in 2π. This makes states with the only difference being additional integer

multiples of 2π in ϕ physically indistinguishable from each other and practically

limits the relevant range of all the phases to 0 ≤ ϕj < 2π. Since any two frequencies

ω1 and ω2 are in general incommensurable, the corresponding reduced phases will

come arbitrarily close to any possible values for the phases ϕ1 and ϕ2 simultaneously,

given a long enough time span. This holds for all frequencies and phases, of course,

and is a quasi-periodic property of the turbulent flow.

5This will be discussed in greater detail in section 3.3.1 ff. of this thesis.

18 3. A short introduction to turbulence

3.3. Fully developed turbulence

At sufficiently high Reynolds numbers, the flow is characterized by unordered and

irregular changes of the velocity both over time in any given point of the flow,

and between any two points at a given time. This is commonly referred to as

fully developed turbulence. In the previous section we have seen that the turbulent

flow has a very large number of degrees of freedom, each of them corresponding

to a randomly set initial phase βj. Although in theory the complete knowledge of

all the phases in addition to the other properties of the setup6 would allow for a

completely deterministic description and prediction of the turbulent flow, this is not

only impractical but even physically meaningless. Instead, it is possible to choose

a statistical approach similar to the one in classical thermodynamics. Because the

fluid comes arbitrarily close to any possible states represented by the combined phase

ϕj = ωjt+ βj, given enough time the exact initial conditions with regard to βj will

cease to matter, much as the many different initial locations and impulses of the

atoms and molecules of a solid body will, in the end, not determine its overall state.

We will now further elaborate on this statistical behavior.

3.3.1. The turbulent cascade

The velocity ~v fluctuates around some mean velocity ~u that we obtain through

averaging over long intervals of time at every point in the flow. This mean velocity

has lost its turbulent character and transitions smoothly from one point to another,

though the difference between both velocities ~v′ = ~v − ~u still varies irregularly as is

expected from turbulence. It is a superposition of motions on different lengthscales,

the first of which form on the largest scales and are comparable in size with the

typical length l of the overall setup described in section 2.4. Although subsequently

smaller eddies will appear and turbulent elements with a wide range of sizes are

present at high Reynolds numbers, the largest motions still dominate the flow as

their velocities are of the same order of magnitude as the change of the mean velocity

∆u over the distance l, if not just as high. It stands to reason that the largest

eddies will not be exactly as large as the outer dimensions of the flow l, but a

bit smaller, as are the corresponding velocities.7 Smaller eddies can be regarded

as additional turbulent detail superimposed onto those larger structures, and they

contain a considerably smaller fraction of the overall kinetic energy.

In our previous considerations we have used the Reynolds number as a means

6Other properties typically are the velocity distribution ~v (~r, t) and two thermodynamical quan-
tities like the pressure p (~r, t) and the density ρ (~r, t), as previously described in section 2.1.

7Please note that the change in mean velocity ∆u is not to be confused with the mean velocity
~u itself, since the former is mainly influenced by larger turbulence induced changes in velocity
and is independent of arbitrary choices of the reference system, whereas the latter is not.

3.3 Fully developed turbulence 19

of classification for the whole hydrodynamical setup or flow as defined in section

2.4. Analogously to equation (2.6) we shall now define the Reynolds numbers of

individual eddies as

Reλ ∼
vλ λ

ν
,

where λ is the typical length of the eddy, vλ its typical velocity and ν the viscosity

of the fluid. Since λ and vλ are comparable to l and ∆u, large Reynolds numbers

of the whole turbulent flow will result in large Reλ of the major turbulent elements.

This in turn suggests that the viscosity plays no role in the motion on larger scales,

and that the dissipation of the kinetic energy must take place elsewhere, namely

on scales small enough for the Reynolds number to be Reλ ∼ 1. We deduce that

the energy fed to the turbulence on large scales (e.g. through turbulent driving8)

cascades down to the smallest scales almost without loss to get dissipated there.

As the viscosity ν is of no consequence for eddies much larger than the typical

lengthscale of dissipation λ0, changing ν to any reasonable value while keeping the

general setup fixed should not affect any of the other quantities. What’s more, we

can even gauge the total dissipated energy just by using those quantities on the

largest scales. The unit of the average energy dissipated per unit weight and time is

[ε] =
J

kg · s
=

m2

s3
,

and with the typical length again ∼ l and the velocity ∼ ∆u, there is only one

combination of the two to get the same dimensions as ε, which is

ε ∼ (∆u)3

l
. (3.8)

Therefore, despite its energy being dissipated at λ0 the finer structures of a turbulent

flow are not relevant to the magnitude of its dissipation.

3.3.2. Local Kolmogorov turbulence

We move on to lengthscales significantly smaller than the outer dimensions l but still

larger than the dissipation lengthscale λ0. In this so-called inertial subrange, the

relevant physical quantities are the density of the fluid ρ, the size of the turbulent

elements λ and the dissipated energy ε, since the latter determines the available

energy on all scales of the turbulent cascade. Both l and ∆u as well as ν have no

influence here since λ0 � λ� l. Furthermore, to avoid possible effects of boundary

conditions we are choosing areas of our flow far enough (with respect to λ) away

from any solid surfaces and thus can safely assume homogeneity and isotropy of the

8Turbulent driving, amongst other topics, will be discussed in the more applicatory section 4.3.

20 3. A short introduction to turbulence

turbulence in relation to the underlying ground flow.

To obtain a measure of the typical velocity vλ we combine the aforementioned

relevant quantities so that the result has the dimension of a velocity. There is only

one way to do that, which is

vλ ∼ (ε λ)
1
3 . (3.9)

This is Kolmogorov and Obukhov’s law of turbulence. An important conclusion

from this law is that the velocity variation vλ is proportional to the cube-root of

the associated lengthscale, which confirms our previous insight that the bigger the

turbulent element, the greater its contribution to the overall velocity variation. The

density ρ on the other hand does not have any effect on vλ since it is the only quantity

to feature the mass unit in its dimension, with [ρ] = kg
m3 . The length λ obviously

does not contain any refernce to the mass, and in the average energy dissipated per

unit weight and time ε the mass is already accounted for and thus taken out of the

equation: [ε] = J
kg·s = m2

s3
.

Another much more famous notation of Kolmogorov’s law in spectral form using

the wave number k ∼ 1
λ

is

E(k) ∼ ε
2
3k−

5
3 , (3.10)

where E(k) is the kinetic energy per mass unit contained in a fluctuation of the

magnitude k in the given range of dk. It is derived through consideration of the

involved units, as well: The unit of E(k) is given by [E] = m3

s2
, and the only com-

bination of ε and k to attain it is given in equation (3.10). As with ε, the term

does not contain the unit of weight, so a dependency on the density ρ is out of the

question. The above equation can easily be connected to the notation of equation

(3.9) through integration:

∞∫
k

E(k) dk ∼ ε
2
3

k
2
3

∼ (ελ)
2
3 ∼ v2

λ

The correlation to the square of the velocity vλ is legitimate as it is the dominant

factor in the term Ekin = 1
2
mv2 for the kinetic energy.

Besides this variation in velocity over certain distances at a fixed point in time,

we are interested in the velocity variation vτ at fixed coordinates during certain time

spans τ that are small in comparison to the overall timescale of the flow T ∼ l
u
.

Due to the fluid’s mean velocity u, a volume element will have moved the distance

of about τu in the meantime, which is equivalent to the distance λ as we assume the

mean velocity to be constant for timespans τ � T . With equation (3.9) we then

obtain

vτ ∼ (ετu)
1
3 .

3.3 Fully developed turbulence 21

To illustrate the self-similar nature of Kolmogorov turbulence, both vλ and vτ can

be transformed using the relation for the energy dissipation (3.8) so that

vλ
∆u
∼
(
λ

l

) 1
3

and
vτ
∆u
∼
(τ
T

) 1
3
. (3.11)

We see that the quantities characteristic for small scale turbulence are only distin-

guished by the scales they are measured on, but behave the same way.

3.3.3. Energy dissipation on small scales

Now we will take a quick look at the lower end of the turbulent cascade. At and

below the characteristic lengthscale λ0, which is often referred to also as the internal

scale, the viscosity ν gains significant influence on the dynamics of the fluid. To put

that influence into relation it is helpful to construct the local Reynolds number

Reλ in dependence on the overall Reynolds number9 Re ∼ ∆u l
ν

. Then using the

self-similarity in Kolmogorov turbulence in (3.11) we evolve

Reλ ∼
vλ λ

ν
∼ ∆u λ

4
3

ν l
1
3

∼ ∆u l

ν
· λ

4
3

l
4
3

∼ Re ·
(
λ

l

) 4
3

.

In combination with our criterion for the relevance of viscosity with regard to the

inertial forces Reλ0 ∼ 1 we are able to determine the lengthscale of dissipation λ0

and the corresponding velocity vλ0 to be

λ0 ∼
l

Re
3
4

and vλ0 ∼
∆u

Re
1
4

(3.12)

respectively. Both decrease with increasing overall Reynolds number of the flow.

Finally, at lengthscales much smaller than λ0 the flow becomes regular again since

the local Reynolds number is sufficiently small to dissuade any turbulent behavior

on that scale as the viscous forces truely dominate over the inertial forces. We can

develop a measure for the velocity vλ by assuming that vλ
λ
∼ vλ0

λ0
, which is reasonable

for the non-turbulent flow, and with the help of equation (3.12) we get

vλ ∼
v0

λ0

λ ∼ ∆u

l
λRe

1
2 .

9The original definition of the overall Reynolds number was Re = u l
ν in equation (2.6). As before

in this section, though, the velocity of the large scale turbulence is not proportional and of
the same order of magnitude of the actual mean velocity u, which depends on the choice of
the frame of reference. Instead, it relates to the fluctuation in the mean velocity on distances
comparable to the external scale l, which is exactly ∆u.

22 3. A short introduction to turbulence

3.3.4. The power spectrum

In the previous section we have outlined various properties of turbulence on different

scales. A most comprehensive way to analyze all the data of an experiment or

simulation, for example, with regard to its validity is to plot its kinetic energy E(k)

against the corresponding wave number k ∼ 1
λ
. Such a power spectrum allows us

to identify the different subranges and test their compliance with our theoretical

expectations. For fully developed turbulence, it can be naturally divided into three

different subranges:

• The energy subrange: The largest scales with λ ∼ l. They contain most of the

turbulent energy as described in section 3.3.1.

• The inertial subrange: The median scales with l� λ� λ0. Since the inertial

forces dominate this part of the spectrum, the energy is handed further and

further down via Kolmogorov turbulence, as discussed in section 3.3.2.

• The dissipation subrange: The smallest lengthscales with λ . λ0. Located at

low end of the spectrum, this is where the dissipation of the turbulent energy

occurs, as addressed in the previous section 3.3.3.

Figure 3.1 symbolically depicts these three subranges in an idealized power spectrum

plot.

We have already gained insight into the specific power spectrum of the Kolmogorov

part of our turbulence, which under ideal conditions is easy to identify in a log-log

plot as a straight line due to E(k) ∼ k−
5
3 . We expect the inertial subrange of any

turbulence to verge on this line as soon as the turbulence is fully developed. It

is important to note that the namesake −5
3

slope is the result of one-dimensional

considerations, though. To obtain the power law for three dimensions, we have to

take into account that E(k) in equation (3.10) is the kinetic energy per mass unit

contained in turbulent motions over the one-dimensional distance λ ∼ 1
k
. In three

dimensions, E(k) must relate to turbulence in the volume λ3 ∼ 1
k3

, which leads us

to the relation

E(k)
3D
∼ k−

11
3 , (3.13)

the Kolmogorov power law for fully developed three-dimensional turbulence.

3.3 Fully developed turbulence 23

lo
g

 E
(k

)

log k

-5/3

energy

subrange

inertial

subrange

dissipation

subrange

k inj k diss

Figure 3.1.: Representation of the idealized velocity power spectrum and
its different subranges. kinj denotes the end of the injection (or energy)
subrange, and kdiss the beginning of dissipation. Due to the logarithmic
scaling of the axes, the eponymous −5

3 -turbulence of the inertial subrange
is easy to recognize as the straight declining section of the powerspectrum.

4. Essentials of turbulent SPH

simulations

The previous chapters have helped us define the concept of turbulence. Since to this

day no self-contained analytical theory of turbulence exists, a common approach

to solving turbulent problems is simulation. This is especially true when setting

up experiments is out of the question, which is the case for most astrophysical

problems. With the theoretical groundwork done, we will now turn to different

methods of simulating turbulence and analyzing the data. Although we will use

smoothed particle hydrodynamics (SPH) as the principal simulation technique in

this thesis, we will first briefly introduce two other major simulation techniques and

only then expand on the topic of SPH. After that, we will give a short overview of

the general setup of our simulations and of the data processing, and subsequently

have a look at the methods of evaluating and visualizing the data.

4.1. Alternative simulation techniques

Our theoretical considerations have been based on the assumption that we may

divide any fluid into volume elements small enough to seem infinitesimally small

compared to the relevant lengthscales of the problem, but still large enough for

microscopic effects to be negligible. The two different approaches to simulating the

turbulent flow presented in this section implement those two properties: the overall

volume is divided into a high number of volume elements, and exact microscopic

behavior is left out of the simulation.1 This makes the volume elements the smallest

items to consider, and a major difference between the simulation techniques is how

those volume elements are obtained and handled.

4.1.1. The Cartesian grid

The most straightforward approach to discretizing the continuous flow of a given

setup is to put a fixed Cartesian grid onto it. The advantage is its simplicity in

1While the microscopic behavior is not usually explicitly considered, macroscopic properties as
an effect of microscopic effects such as the temperature T , the pressure p, the density ρ and
other state variables may very well be calculated.

26 4. Essentials of turbulent SPH simulations

design: Since the grid doesn’t move, many computional operations elsewise needed

just to maintain a useful discretization are unnecessary. The immobility of the

mesh brings about its very own problems, though. First of all, such a simulation

is not Galilei-invariant and is thus affected by possible bulk motions with large

masses crossing in and out of individual cells at a high rate. Second, the spatial

resolution is constant over time and space, so to obtain a high enough resolution for

simulations that sport high density contrasts and dynamics over several orders of

magnitude, the computional effort and cost increases at least with the third power

of the number of grid cells per dimension Ngrid. Both situations are frequent in

astrophysical simulations, e.g. those of cosmological structure growth.2 There is the

possibility of artificially reducing the spatial resolution in areas of less interest and

of increasing it where needed to accurately follow the physical processes involved.

Albeit this adaptive mesh refinement (AMR) remedies the latter of the two problems

described above, it brings about other problems, the most prominent one of them

being the need for an effective automatic adaption routine predicting where higher

or lower future resolutions will be required.

4.1.2. Moving-mesh simulations

A further improvement of the Cartesian grid approach is to devise a mesh that is

adaptive in both shape and spatial resolution as well as being comoving with the

local flow. The latter eliminates the problem of Galilei-invariance, since the relative

motion between the mesh cells and the flow of mass is kept to a minimum, whereas

the first is necessary to adapt the mesh to the ever-changing demands of e.g. a

turbulent flow, increasing the effective resolution of a simulation while maintaining

the same overall number of cells. Usually, areas of higher mass density constitute

areas of greater importance. For example, in a simulation of loosely distributed gas

converging someplace to form an accretion disc, the areas of higher mass density in

and around the disc are dynamically more active and require a higher number of cells

to be properly resolved. On the other hand, the outlying sectors that are gradually

being drained of gas and whose density decreases accordingly usually feature much

less dynamics and physical interaction and need not be resolved as accurately. A

higher effective resolution can then be achieved by keeping the mass inside a cell as

constant as possible while at the same time minimizing the flow of mass through the

boundaries of any given cell as well, which will effectively result in the cells following

the mass to areas of higher density and better resolving the processes there.

A key part of any moving-mesh code is the scheme used to set up and maintain

a sensible mesh. In the case of Arepo, the moving-mesh code by Volker Springel

2For more information on the various advantages and disadvantages of different hydrodynamic
codes, please cf. Tasker et al. (2008) and Wadsley et al. (2008).

4.2 Smoothed Particle Hydrodynamics 27

Figure 4.1.: Voronoi (left) and Delaunay (middle) tessellation of a two-
dimensional periodic box. The Delaunay tessellation provides a complete
set of perpendicular bisectors needed for the construction of the irregular
moving-mesh.
Image credit: Springel (2010a)

used for some comparison runs in this thesis, a Voronoi tessellation is invoked. This

basically constitutes a multitude of points, each of which is assigned the region of

space around them that is closer to them than it is to any of the other points. Figure

4.1 shows how this tessellation can be achieved via the perpendicular bisectors of

any two neighboring points in two dimensions. In the initial setup, those points

are distributed across the volume of the simulation such that any cell contains the

same mass irrespective of its shape and size, although the density ρ = M
V

may vary

accordingly. The whole cell is represented by one point particle so that in the run

of the simulation, the hydrodynamical calculations are performed on those particles

rather than on volumes of the fluid.3

4.2. Smoothed Particle Hydrodynamics

The bulk of the simulations in this thesis were performed with the help of smoothed

particle hydrodynamics. This Lagrangian simulation scheme was first devised by

Lucy (1977) and Gingold and Monaghan (1977), and has been utilized and refined

by many numerical astrophysicists ever since. More specifically, we used Gadget-

3, a widely used SPH code. We will review the key features and the resulting

advantages and disadvantages of SPH below.

3This is just a very brief scetch of the design of a functional moving-mesh scheme. For detailed
information on the matter please cf. Springel (2010a), the original Arepo proposal paper.

28 4. Essentials of turbulent SPH simulations

4.2.1. The basic concept of SPH

In contrast to the grid or mesh based simulation schemes described above, smoothed

particle hydrodynamics is not based on a clear split of the continuous fluid into seper-

ate cells. It is fairly clear, though, that a discretization is necessary for numerical

processing because the resolution of our simulation, no matter its complexity, will

be finite. So instead of clean-cut divisions we use smoothed particles to represent

our fluid and move with the flow. Those particles have fixed mass and are each

represented by a central point from which a so-called smoothing kernel W extends

a weighted mass function that specifies how much of the particle mass mj is present

at which distance |~r − ~rj| from the central point of particle j. This simply allows

us to compute the density ρ(~r) at any arbitrary point of our simulation via a kernel

weighted sum

ρ(~r) =

Nngb∑
j=1

mjW (|~r − ~rj|, h) , (4.1)

Nngb being the number of smoothing neighbors and h the smoothing length. The

latter determines how far the kernel extends the “smoothed” influence of the particle

at hand. A plausible choice for the smoothing kernel W is the three-dimensional

Gaussian, given by W = 1/(
√
πh)3 · exp (−r2/h2); in practice its non-zero nature

would be hindering, so close approximations with a finite non-zero range are used.4

A set number of smoothing neighbors Nngb guarantees every point in space to have

a sufficient overlap of weighted mass from different hydrodynamic particles. Due to

possibly very different spacing of the particles in the face of a wide dynamic range,

individual and variable smoothing lengths hj for every particle are usually necessary.

The individual smoothing lengths will then adapt according to the following equation

4π

3
h3
j ρj = Nngbm , (4.2)

with m the average mass of a particle.

Since the particle mass mj of every single particle is permanently fixed, the effec-

tive resolution follows the mass, as the mass density ρ of a local volume can only

increase if the number of local particles does, too. Another benefit of mj = const

is the exact conservation of the total mass regardless of the simulation. Even more,

from the density sum (4.1) we can easily derive the Lagrangian

Lsph =
∑
j

mj

[
1

2
v2
j − uj(ρj, sj)

]
,

4For more information on different kernels and a good and extensive review of SPH, please cf.
Price (2012b).

4.2 Smoothed Particle Hydrodynamics 29

Figure 4.2.: Different methods to compute a continuous density from
point mass particles are: the particle-mesh method (left), constructing a
local volume according to the local density of particles (middle), and the
approach adopted in smoothed particle hydrodynamics (right).
Image credit: Price (2012b)

with vj the particle velocity and uj the specific internal energy as a function of the

density ρj and the entropy sj of each particle. Using the Euler-Lagrange equations

d

dt

(
∂L

∂~v

)
=
∂L

∂~r
(4.3)

and the first law of thermodynamics, we obtain the equations of motions for each

particle i as
d~vi
dt

= −
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇W (|~ri − ~rj|, h) ,

which is the comoving version of Euler’s equation (2.3) in a discretized form. This

is the simplest form of the equations of motion as proposed by Monaghan (1992),

since we have assumed a uniform and constant smoothing length h. For variable

and different smoothing lengths hi and hj, corrections of the form

gi =

(
1 +

hi
3ρi

∂ρi
∂hi

)−1

to the pi
ρ2i

terms (for j respectively) are needed. The result is a more accurate

equation of motion

d~vi
dt

= −
∑
j

mj

(
gi
pi
ρ2
i

∇iWij(hi) + gj
pj
ρ2
j

∇jWij(hj)

)
,

where W (|~ri − ~rj|, h) has been abbreviated as Wij(h). A more detailed description

can be found in Springel and Hernquist (2002) and Springel (2010b).

Some more key features of SPH as a result of the above equations include an exact,

30 4. Essentials of turbulent SPH simulations

time-independent solution to the continuity equation, the perfectly done advection,

the absence of intrinsic dissipation, the exact and simultaneous conservation of both

linear and angular momentum as well as energy and entropy, and a guaranteed

minimum energy of the particles. The implications of these features are important

to a fully-fledged understanding of smoothed particle hydrodynamics.5 We will

further elaborate on the lack of intrinsic dissipation and on the need for an artificial

viscosity in the following section.

4.2.2. Artificial viscosity

Since SPH is completely Lagrangian, dissipation has to be implemented “artifi-

cially”. This artificial viscosity should not be mistaken for some arbitrary, unphys-

ical addition to bring the simulation closer to our expectations. On the contrary,

the need for artificial viscosity is a direct result of our use of the Euler-Lagrange

equations (4.3), where we have implicitly assumed that the quantities in the La-

grangian are differentiable and continuous. That is clearly not the case when shocks

and other discontinuities occur, and a special treatment is needed, though not only

from a numerical point of view, but also from a strictly physical one.6

The artificial viscosity term is usually implemented as a viscous force:

d~vi
dt

∣∣∣∣
visc

= −
∑
j

mjΠij∇iW ij ,

with, vi the velocity of particle i, W ij the arithmetic average of the smoothing

kernels Wi and Wj and Πij the vicous tensor7 as defined by

Πij = −α
2

(ci + cj − 3wij) · wij
ρij

. (4.4)

Here, ci and cj are the sound speed of the particles i and j, and wij is the amount

of relative velocity between them in the direction towards particle j. To make sure

the artificial viscosity only operates when the pair of particles is approaching each

other and thus the entropy produced by it is positive definite, it is set up to be

wji =

{
~vij · ~rij|~rij | if ~vij · ~rij < 0

0 otherwise .

The introduction of artificial viscosity addresses many problems of dissipation-free

5For a more detailed analysis of the key features please cf. Price (2012c).
6For a detailed review of the artificial viscosity in SPH please cf. Price (2012b).
7Please cf. section 2.3 for our previous elaborations on the viscous stress tensor and Landau and

Lifshitz (1991) for more information on the subject of viscous tensors in general.

4.2 Smoothed Particle Hydrodynamics 31

Figure 4.3.: The Keplerian ring test, a standard test against a code’s
treatment of fluid instabilities, here applied to various viscosity schemes.
From left to right: Standard SPH with Balsara (1995) switch, the Morris
and Monaghan (1997) method without and with Balsara switch, and the
Cullen and Dehnen (2010) scheme without and with their new limiter.
Image credit: Cullen and Dehnen (2010)

SPH, however some new problems are introduced. The most prominent one is that

the constant artificial viscosity parameter α can lead to questionable viscosity away

from shocks, dissolving structure on scales much larger than the effective resolution

and inhibiting the generation of turbulence from fluid instabilities. This is well

illustrated by the Keplerian ring test in figure 4.3.

Therefore, an important modification is the so-called Balsara switch.8 It is used to

turn down the artificial viscosity in regions of strong shear and thereby prevents the

unwanted transport of angular momentum induced by a constant artificial viscosity

parameter α. A convenient criterion for that regulation is the vorticity of the flow, as

it is a measure for its rotation. The switch is constructed to not affect the artificial

viscosity when the particles move fairly straight ahead, meaning the divergence

|∇ ·~v | ≈ max, but to gradually reduce it the greater the vorticity |∇×~v |i gets. For

particle i, these considerations lead us to

fi =
|∇ · ~v |i

|∇ · ~v |i + |∇ × ~v |i
.

As the viscous tensor Πij always concerns two particles, the above expression is

8For the original proposal, please cf. Balsara (1995).

32 4. Essentials of turbulent SPH simulations

calculated for both particles and the median
fi+fj

2
is taken and gets multiplicatively

adjoined to the α in equation (4.4). The Balsara switch is a standard feature of our

SPH code.

Another way to improve the performance of SPH with regard to its artificial

viscosity is to assign an individual artificial viscosity parameter αi to every particle.

Its time dependent evolution is defined by

dαi
dt

= −αi − αmin

τ
+ Si ,

where αmin is the minimum value of αi, τ is the decay time scale that determines how

many sound crossing times it takes for the viscosity to decay in smooth regions of the

flow, and Si is a source term that swiftly increases αi when the particle approaches

a shock. The fixed α in equation (4.4) is then replaced by the median
αi+αj

2
of both

involved particles’ time-dependent parameters. This scheme was first proposed by

Morris and Monaghan (1997), and prominently introduced into the Gadget-2 code

by Dolag et al. (2005). Another prominent switch of similar intent is the scheme

proposed by Cullen and Dehnen (2010), possibly constituting the state of the art

in the field as they not only aim to reduce the artificial viscosity away from shocks

but to eliminate it. We ourselves have used the brand-new, not yet public artificial

viscosity scheme by Alexander Beck.9

A deliberate analysis of various kinds of discontinuities in SPH and the right ways

to treat them may be found in Price (2008).

4.3. Setting up initial conditions

Usually, the correct setup of the initial conditions (ICs) would deserve a whole

chapter of its own. We will stick to the basics, though, and highlight the crucial

parts of the process to give an overall idea of the methods and problems involved.

4.3.1. The need for a box

A simulation, irrespective of its scope, will only ever have a finite amount of com-

puting power and thus span a finite amount of space. That confined space is usually

referred to as the box and needs to be well defined, since the kind of box and

especially its boundary conditions will significantly determine the outcome of the

simulation. Three important types of boundary conditions are listed below as well

as illustrated in figure 4.4:

9Dr. Alexander Beck, Universitätssternwarte München, Munich, Germany.

4.3 Setting up initial conditions 33

L

L

2 L

W

Figure 4.4.: Visualization of different boundary conditions of a box in two
dimensions: A box with fixed boundaries (left), a periodic box (middle)
and a box with zero-padding (right) and kernel W .

• Fixed boundaries : The box has solid boundaries that render it quite similar

to an actual, material box. Because the walls of such a box reflect incoming

particles, momentum is not conserved, though energy is.

A typical application is classical simulations of hydrodynamic behavior where

the form of the box is part of the problem and boundary effects such as wave

reflection at the surface are desired.

• Periodic boundaries : The box acts as if it had no physical boundaries. In-

stead, if a particle passes out on one “end” of the box, it just “reappears” on

the other side, retaining all its original properties including pulse and energy.

Perhaps a more accurate interpretation of the periodic boundary conditions

is that the box effectively gets mapped all around itself, but without addi-

tional computional expense.10 So, not only do particles travel from one side

to the other, but also do physical effects like gravitational fields extend past

the (imperceptible) boundary into the next instance and thus into itself.

Cosmological simulations usually use periodic boxes, namely for two reasons:

firstly, because boundary effects are not desired at all, and secondly because

it is usually assumed that there will be other, adjoining structures all around

which are in this case emulated by the box itself without further effort.

• Zero-padding : The box ensures that the simulated object or region is isolated

and is not subjected to external influences. To that end, what would have

been the contents of the box in case of one of the above setups is placed inside

10In the first layer in three dimensions there would be twenty-six identical boxes, in the second
layer ninety-eight boxes, and ever so on in all directions. Please note that by identical we
mean that they are not only set up in the same fashion, but that those boxes exactly mirror
everything in the “original” box. As a matter of fact, those boxes are indistinguishable as they
are one and the same, and thus need only be represented by a single one.

34 4. Essentials of turbulent SPH simulations

a much bigger periodic box. This buffer is not empty but rather presents an

“uneventful” extension of the original box. It features the same basic prop-

erties properties (e.g. the gas density, temperature, pressure etc.) to prevent

unwanted dynamics in the border region, but none of the events or objects

like shock fronts, massive central objects or other anomalies that initiate the

physical processes we actually want to simulate.

This padding basically keeps the kernel from reaching the limits of the box

while evaluating the core region and thus isolating the contents of the inner

“box” from any interactions with itself. To that avail, the kernel is sized as

to still fit the original box with its smaller dimensions, and explicit evaluation

of the padding region is strongly dissuaded. Usually, the padding box is of

twice the size per dimension, which results in serious increases of demand for

memory and computional power. The increase in memory consumption alone

to store a zero-padded box instead of a simple periodic box is proportional to

2dim, which means that in three dimensions 7
8

of the box will practically go to

waste.

Simulations of isolated objects like that of a forming disk make good use of

zero-padded boxes, since only the one object and not its possible interactions

with some environment is of interest.

4.3.2. Units, scales and basic conditions

Traditionally, the SI system of units is not much used in astrophysics. It is both

traditional and in some cases rather convenient to use the Gaussian CGS system,

as e.g. the 4πε0 in Maxwell’s equations are replaced by the (dimensionless) number

1. That being said, the simulation code usually will not perform any calculations in

standard CGS units, as the scales in astrophysical problems are huge in comparison

with the standard units and all numerical values would need significantly more

memory besides being near-unreadable. Instead, so-called internal units are defined,

placing the value of 1 on a reasonable scale. It is necessary to only define a minimum

set of internal units, because the rest can easily be constructed of them. They are

given in their numerical, unitless CGS values to the simulation code, and all other

input into the simulation will be in these custom units.

Besides the system of units, other specifics of the initial conditions need to be

defined, too. This includes the size of the box, of course, but also such parameters

as the hydrogen mass fraction Hfrac, the temperature T , the Boltzmann constant

kB, the total mass and many more.11

11For a full review of the initial parameters, please cf. make data.pro in appendix A.1.

4.3 Setting up initial conditions 35

4.3.3. Particle distribution

A large amount of code lines go into creating the initial distribution of the particles.

The hexagonally close packed particle distribution (HCP) needs to be implemented

accordingly, since it is naturally favored for its dense character rendering specific

rearrangement motions of the particles as a consequence of the initial setup obsolete.

A simple cubic distribution, for example, infuses the particles with potential energy

caused by the unequal distances between close neighbors that renders the setup

instable and effectively increases the kinetic energy inadvertently.

Still, HCP is not the most dense distribution achievable for a finite volume. A

possibility to gain an even more relaxed initial distribution is to run the box full of

HCP distributed particles with SPH and no external forces and let them “wriggle”

on their own account due to the still inherent energy, then take that energy out

successively until a maximally relaxed distribution is reached. The result is often

referred to as a glass file due to its amorphous, glass-like structure. For many

applications a hexagonally close packed distribution will be sufficient, though.

4.3.4. The velocity field

In the case of a turbulent setup, some thought needs to go into creating a feasible

velocity field. This is best done in k-space, because the motions on various length-

scales correspond to a wave number k ∼ 1
λ

regardless of their actual position in the

box. As has been discussed before in section 3.3, turbulence is best characterized

by the spectrum of the power contained in its impossibly complex motions on dif-

ferent scales rather than by any set of specific motions. Only the latter would be

best described in real space, while k-space allows for the statistical distribution of

velocity according to the appropriate power laws.

Setting up a complex grid

First, a velocity grid in three dimensions needs to be created that has a total of

(NGrid)3 cells. It is then populated with all modes available to a box of size L. The

smallest mode is the box mode kmin, it corresponds to motions on the largest scales

in the box, and the largest mode is the Nyquist mode kmax, which is determined

by the smallest length that can be resolved with any given spatial resolution NGrid

according to the Nyquist-Shannon sampling theorem.12 They are given by

kmin =
2π

L
and kmax =

π ·NGrid

L
.

12For a thorough discussion of various aspects of digital signal processing in cosmology, including
but not limited to this one, please cf. Jasche et al. (2009).

36 4. Essentials of turbulent SPH simulations

0,0 1,0 2,0 -3,0 -2,0 -1,0

0,1 1,1 2,1 -3,1 -2,1 -1,1

0,2 1,2 2,2 -3,2 -2,2 -1,2

0,-3 1,-3 2,-3 -3,-3 -2,-3 -1,-3

0,-2 1,-2 2,-2 -3,-2 -2,-2 -1,-2

0,-1 1,-1 2,-1 -3,-1 -2,-1 -1,-1

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

0,-3 1,-3 2,-3-3,-3 -2,-3 -1,-3

0,-2 1,-2 2,-2-3,-2 -2,-2 -1,-2

0,-1 1,-1 2,-1-3,-1 -2,-1 -1,-1

-3,0 -2,0 -1,0

-3,1 -2,1 -1,1

-3,2 -2,2 -1,2

0 1 2 3 4 5

0 5 4 3 2 1

0

1

2

3

4

5

0

5

4

3

2

1

 i

 iconj

jjcon

Figure 4.5.: Reduced schematic of the setup of a complex grid with
Ngrid = 6. Only two dimensions are depicted, with kz = 0. The pair of
numbers in each grid cell represent the values of kx and ky as multiples
of kmin. Left: allocation of kx and ky according to the grid index and its
conjugated counterpart. For details cf. appendix A.1. Right: reorganized
grid according to kx and ky, so that the sphere in k-space (cf. equation
(4.5)) is visible as the grey circle. In this representation, kmag are only
calculated for cells whose center overlaps with the circle.

All modes in between are integer multiples of kmin. Every grid cell has three of

these one-dimensional modes referred to as kx, ky and kz assigned to it in a rather

elaborate fashion both to cover all relevant cases and to cut back on computational

expenses through the use of symmetries. From them a cell-specific three-dimensional

wave number kmag is calculated so that

kmag =
√
k2
x + k2

y + k2
z ≤ kmax . (4.5)

Please take note that the processes described both in the current as well as the

following paragraph are (at least in theory) performed for every single cell of the

grid [i, j, k], with i, j, k = {0, 1, . . . , NGrid − 1}. The whole scheme is depicted in

figure 4.5 for a small example, for the full details please consult the source code in

appendix A.1.

Computing the velocity in k-space

Next, the equivalent of the velocity field in k-space is created using the above grid.

To later obtain a physically meaningful velocity field, it is of paramount importance

to set up this complex field to be Hermitian, for only then will its Fast Fourier

Transform (FFT) be real.

4.3 Setting up initial conditions 37

The combined wave number kmag of every specific cell is used to generate the

matched power P (k) according to the predictions of Kolmogorov turbulence in three

dimensions,13 so that the norm

kmax∫
kmin

dk P0 4π k2 k−11/3 =
[
6π k−2/3

]kmax

kmin

!
= 1

is fulfilled.

This P (k) in turn is used to scale a pair of pseudo-random values per cell in

accord to the desired power. Actual random numbers are by concept not obtainable

via computional methods, but random number generators mostly do a good job of

providing reasonably unforseeable substitutes. Out of convenience, we will refer to

them as “random numbers” from now on. Since we need those values to follow a

Gaussian distribution, the so-called Box-Muller transform is invoked to generate

sets of two independent standard normal distributed random numbers Crl and Cim

from two independent uniformly distributed random numbers U1 and U2, the latter

of which are readily available via internal procedures of IDL and other programming

languages. The Gaussian random numbers are defined as

Crl = A · cosϕ and Cim = A · sinϕ ,

where A is the amplitude and ϕ is the phase. Both amplitude and phase are derived

from the uniformly distributed random numbers U1 and U2 according to

A =
√
− ln (U1) · P (k) and ϕ = 2π · U2 .

It has been proven by Box and Muller (1958) that the resulting numbers Crl and

Cim are independent of each other.

Also, on a side note regarding our later application of this scheme, this is where

the range of modes we want to seed in our box can easily be selected. It may for

example be of greater interest to let the energies cascade down thorough the different

lengthscales than to seed the full spectrum. In that case, we would simply set the

amplitude A to zero for all kmag > kseed,max, effectively depriving them of any power.

13In previous chapters we have referred to P (k) as E(k), the energy per mass unit contained in
turbulent motions on the scale λ ∼ 1

k . Please cf. equations (3.10) and (3.13) and the respective
section 3.3 for more information. In simulations, it is customary to simply call this quantity
the power denoted P (k).

38 4. Essentials of turbulent SPH simulations

Transformation from k- to real space

Now, as may have been guessed by their denotation, Crl and Cim happen to be the

real and the imaginary part of the velocity field in k-space, respectively. Since there

is a pair of those random values for every cell in the complex grid, we may as well

write

C[i,j,k] = Crl[i,j,k] + i Cim[i,j,k]

and transform them via FFT to the real space. A subsequent check of the result

is in order too, since if the symmetries in k-space are just slightly off, the resulting

velocity field in real space will be unphysical. Then we may resize the amplitude

of the entire velocity field to agree with the desired amount of turbulent velocity as

defined by the fraction of turbulent energy with regard to the total thermal energy

in the box.

4.4. About GADGET

Gadget, short for GAlaxies with Dark matter and Gas intEracT, is a massively

parallel TreeSPH code. The first version was originally written by Volker Springel as

part of his PhD project at the Max-Planck-Institute for Astrophysics in Garching,

Germany. The second version constituted an almost complete rewrite of the original

version, improving on many features and adding some more, like the TreePM scheme.

The current version Gadget-3 again sports significant improvements in accuracy

and functionality, but the code is not public yet. For the original papers of Version

1 and 2 please cf. Springel et al. (2001) and Springel (2005), respectively.

We have used Gadget to perform all the SPH simulations in this thesis. Since

the code is very versatile, it can be adapted to quite different demands. By itself it

is capable of N -body/SPH simulations and TreeSPH14, and it has been continuously

extended by numerous contributors over the years. Fields of application range from

star formation, to colliding galaxies, to the formation of the large-scale structure of

the universe.

14The TreeSPH scheme was first described by Hernquist and Katz (1989). It unites smoothed
particle hydrodynamics with the hierarchical treatment of gravity.

4.5 Binning to the grid 39

4.5. Binning to the grid

After running the simulation, the particle distribution will in general be irregular

and not follow the lines of any ordinary grid. Therefore, we need to sample the SPH

data back onto a grid for evaluation, which is also referred to as binning the data.

A selection of different methods to do this will be presented below.

4.5.1. Standard SPH binning method

The straightforward approach is to superpose the whole box with a uniform grid of

high resolution and to sample the value of some desired quantity Λ at the center of

every cell, henceforth denoted as ~r. Since Λ has been calculated by e.g. Gadget for

every SPH particle j and can be regarded as a property of its central point, we can

use an approach similar to the one described in section 3.3.3, where we calculated

the mass density ρ(~r) at an arbitrary point of our simulation. To this end, the

quantity Λ is introduced on both sides of equation (4.1), so to say: On the left side,

Λ(~r) relates to its yet unknown value at the sampling point ~r, while on the right

side, the various Λj correspond to the already calculated values for all particles j

with the central points ~rj whose smoothing kernel W makes them overlap with ~r.

Both sides of the equation are also set into relation with the mass density ρ: The left

side is divided by the combined density ρ(~r) at the sample point, which so vanishes,

while on the right side every summand is divided by the average density ρj of the

respective particle. Thus we get

Λ(~r) =

Nngb∑
j=1

mj
Λj

ρj
W (|~r − ~rj|, hj) . (4.6)

To achieve near-perfect results, all the cells need to be smaller than the smallest

particle, which means the resolution of the grid will be especially high for simulations

covering a wide dynamical range. Also, low grid resolutions will compromise the

output of otherwise correctly calculated conserved quantities like the total mass.

4.5.2. Modified SPH binning methods

There are several approaches to improve the binning with regard to the high memory

requirements of the standard SPH method. The aim of these methods is to yield an

accuracy comparable to that of the standard method but at a lower formal resolution

of the grid.

The first approach increases the number of sampling points from one per grid

cell to a higher number Nsmp. A typical choice is Nsmp = 9, so that the additional

sampling points form a cube around the central point ~r and are well-spaced around

40 4. Essentials of turbulent SPH simulations

the volume of the cell. The quantity Λ is then determined as follows:

Λ(~r) =
1

Nsmp

[∑
j=1

mj
Λj

ρj
W (|~r − ~rj|, hj) +

∑
j=1

mj
Λj

ρj
W (|~r + a√

3
(1, 1, 1)− ~rj|, hj) +

∑
j=1

mj
Λj

ρj
W (|~r + a√

3
(−1, 1, 1)− ~rj|, hj) + . . .

]

While the memory requirements remain the same as those of the standard method,

the computational costs increase about linearly with Nsmp. For large variations of

Λ on the lengthscale of the grid cells, the results will be better with this method.

The second modified SPH binning method, called broadened SPH, adds the width

of one grid cell to the smoothing length and thus prevents particles from falling

through the grid:

Λ(~r) =

Nngb∑
j=1

mj
Λj

ρj
W (|~r − ~rj|, hj + lcell) ,

with lcell the length of a cell. Computional costs can be decreased due to more

widely spaced grids, but at the cost of considerable smoothing.

4.5.3. TSC and other frequently used window functions

There are several traditional window functions used to assign the irregular simulation

data to a regular grid. They determine which area around the center of a grid cell is

sampled in order to assign a value for a certain quantity to that cell, and how exactly

every particle sampled for this cell is weighted in the process. The most commonly

used window functions are the nearest grid point (NGP), the cloud-in-cell (CIC)

and the triangular-shaped-cloud (TSC) method. We will only briefly describe them

here, since they probably should not be used anymore except for performance or

comparison reasons. Figure 4.6 depicts their window functions W (~x) = ΠiW (xi)

both in real as well as in Fourier space.

• NGP : The nearest grid point method simply samples all particles within the

width of a cell with full weight to that cell. Its window function reads as

follows:

W (xi) =

{
1, |xi| < 0.5 ,

0, else .

4.5 Binning to the grid 41

Figure 4.6.: The three common window functions NGP, CIC and TSC
(left), and the square of their counterparts in Fourier space(right). Image
credit: Cui et al. (2008)

• CIC : The cloud-in-cell method samples particles in a range of twice the cell

length. The weighting decreases linearly with the distance of the particle to

the cell’s center. Its window function is:

W (xi) =

{
1− |xi|, |xi| < 1 ,

0, else .

• TSC : The triangular-shaped cloud method is similar to CIC, only that the

form of the window function is smooth and remindinds of a Gaussian. The

sampling range extends over thrice the grid cell length. The slightly more

complicated window function is:

W (xi) =


0.75− x2

i , |xi| < 0.5 ,

(1.5− |xi|)2

2
, 0.5 < |xi| < 1.5 ,

0, else .

An important feature of these three functions is their compact support in real space,

which allows for computionally efficient binning, since only a finite (and not too

large) number of particles is sampled per grid cell.

4.5.4. The D20 sampling

The above binning methods all share some inherent flaws with regard to the sampling

quality: Since they provide no top-hat support in Fourier space, the sampling will

42 4. Essentials of turbulent SPH simulations

Figure 4.7.: The D12 and D20 window functions (left) and the square of
their counterparts in Fourier space (right) as well as the top-hat window
function in Fourier space corresponding to W (xi) = sin(πx) / (πx) in real
space are shown. Image credit: Cui et al. (2008)

be biased and the power spectrum will not be the true power spectrum but rather

a version that is convoluted with the window function W (xi) in use.15

From a sampling point of view, the ideal window function would be W (xi) =

sin(πx) / (πx). It offers a perfect top-hat shape in Fourier space and would thus

be aliasing-free. It has no compact support in real space, though, which makes it

computationally unfeasible since a very large number of particles would be assigned

to each and every grid cell.

To be practically free of the aforementioned sampling errors and especially the

convolution issue but still have a good cost-benefit ratio, scaling functions of the

Daubechies wavelet transformations as described by Daubechies (1992) can be used

instead. The Daubechies 12 and 20 function (D12 and D20, respectively) both come

very near to the optimum shape of a sampling function in Fourier space, providing

a very good compromise between near-perfect top-hat-like support in Fourier space

and compact support in real space. The former reduces sampling effects to a mini-

mum, and the latter is necessary for computionally efficient mass assignment. Both

D12 and D20 are depicted in figure 4.7, together with the Fourier transformed of

W (xi) = sin(πx) / (πx) for comparison. In this thesis, we will use the more accurate

D20 function.

15For a detailed analysis of this alias effect and an elegant scheme to correct it afterwards, please
cf. Jing (2005).

5. Our implementation of decaying

turbulence

5.1. Motivation of this setup

In recent years several publications have given rise to the doubt about SPH’s abil-

ities to properly simulate turbulence. Most prominent in that regard is Bauer and

Springel (2012), where the authors claim that smoothed particle hydrodynamics is

not suitable for simulations of subsonic turbulence. Instead, the use of moving-mesh

codes like Arepo is encouraged, as the diffusive nature of SPH due to its necessary

artificial viscosity is blamed.1

One cannot help but notice that most recent comparison papers that seriously

question SPH’s abilities, like Bauer and Springel (2012), compare runs with the best

settings of the alternative code to runs with basically the worst SPH settings. For

example, simple viscosity limiters like the Balsara switch described in section 4.2.2

are not enabled, although their implementation into Gadget predates the newer

codes by what must be a decade. This has motivated us to examine the performance

of the not yet public but frequently used SPH code Gadget-3 in simulations of

decaying turbulence in combination with up-to-date settings, and to compare it

with matching Arepo runs. To that end we have performed Gadget-3 runs with

three different degrees of turbulent energy Eturb/Etherm = {5%, 10%, 30%} at two

different resolutions NPart = {1283, 2563} each, and Christian Alig2 was kind enough

to provide us with the comparison runs done in Arepo at NPart = 1283. Please cf.

table 5.1 for a full listing of the different simulations.

5.2. Properties and realization of our simulation

In the following section we describe the details of our setup and how the simulations

were carried out. We decided for a periodic box of decaying turbulence, which has

the advantage of not needing any further power injection routine from “outside”, as

opposed to driven turbulence. To be able to witness the formation of full-fledged

1We have earlier discussed the need for an artificial viscosity in section 4.2.2.
2Dr. Christian Alig, Universitätssternwarte München, Munich, Germany.

44 5. Our implementation of decaying turbulence

30% 10% 5%

G T30R128 G T10R128 G T05R128

1283 vG T30R128 vG T10R128 vG T05R128

A T30R128 A T10R128 A T05R128

2563 G T30R256 G T10R256 G T05R256

Table 5.1.: Overview of the Gadget-3 and Arepo simulations carried
out in this thesis, sorted by turbulent energy fraction and resolution.

turbulence and the cascade of energy down through the lengthscales, we only seeded

the largest 70 or so modes, similar to what Bauer and Springel (2012) aimed for with

their driven turbulent box.

5.2.1. Setting up the turbulent box

The basic setup of our simulations consists of a 3000 kpc box filled with gas of the

density ρ ≈ 1.5 ·10−6 g
cm3 and at a temperature of 107 K, which in that regard mimics

the intracluster medium. The temperature determines the thermal energy Etherm,

and we have varied the turbulent energy, which is to say the energy invested into

our initial turbulent velocity field, Eturb according to the ratio of the two. “turb30”,

for example, is short for Xturb = (Eturb/Etherm) = 30%.

We have created the initial conditions file fibo initial.ic by starting IDL in the

simulation’s ICs directory on dorc and then compiling make data.pro and executing

make box. The commands issued are:

1 IDL> . run make data . pro

2 IDL> make box

The settings of the box can be adjusted in make data.pro before compilation.

For the code of the procedure file please cf. appendix A.1.

5.2.2. Compiling GADGET

Because the simulation code Gadget-3 is extremely versatile, the options to com-

pile it are numerous. Our simulation features turbulent gas of a density so low

that self-gravitational effects are negligible, so gravitation may be turned off. After

several tries, we decided for compilation settings that are part of the Gadget-2014

scheme by Alexander Beck. This configuration proved to be the best choice, since

they include a novel, as yet unpublished treatment of the artificial viscosity problem.

One exception from the adherence to the scheme was the use of the Wendland C6

kernel (WC6) instead of the WC4.

5.2 Properties and realization of our simulation 45

To use Gadget for our simulation, the executable file P-Gadget3 needs to be

compiled from the source code in the way specified by the Config.sh file. This is

done via the following command in Gadgets main directory:

1 /ptmp / . . . / P−Gadget3> Makef i l e

The routine Makefile is part of the Gadget code and uses Config.sh for the

compile-time options. For our final settings please cf. appendix B.1.

5.2.3. Running the simulation

Crucial for a sucessful simulation are finely tuned execution parameters. Finding

a sensible compromise between computational costs and accuracy is by itself not

easy, but the real challenge lies in finding the parameters that lead to physically

reasonable results. In our case, early settings featured much too high an artificial

viscosity resulting in unphysically fast dissipation and gravitational softening of a

kind to easily increase the computional time by a factor of 20 or more. In the

end, again, the newest settings by Alexander Beck from Gadget-2014 were the

best choice, although some slight alterations due to the different kernel used at

compilation were necessary.

Whereas the configuration file of the previous section contains information on the

functions of Gadget-3 included in the executable, the paramfile fibo hands the

specifics of the simulation to the code. Those settings include rather straightforward

items like the size of the box (3000 kpc), the internal units (ulength, umass, uvelocity)

and the location of the initial conditions file, but also some rather delicate ones.

Those are listed below:

• Duration of the run: The according parameters determine how long the simu-

lation will run, and they are given in internal units. It is important to choose

a time span long enough to cover all substantial developments in the box.

This subject is closely related to the next item on this list, the time between

snapshots. A good measure for such processes is the sound crossing timescale

of the whole box, given by tsc = lBox/cs. Our simulations run over course of

approximately 1.5 · tsc.
Name: TimeBegin and TimeEnd.

• Time between snapshots : The parameter sets the time span between two con-

secutive output files and together with the duration of the run ultimately de-

termines how many of these so-called snapshots will be written to disc. Please

note that this output period is not equivalent to the time steps that Gadget

actually does its calculations in. Those are much smaller and should be dy-

namically adjusted by the code itself. Also, the time between snapshots is a

46 5. Our implementation of decaying turbulence

parameter where the need for higher time resolution and the limits of accept-

able memory consumption need to be reconciled. We have set the parameter

such that 201 snapshots will be written.

Name: TimeBetSnapshot and TimeOfFirstSnapshot.

• Number of neighbors : The parameter designates the number of smoothing

neighbors a particle should have. It is important since the individual smooth-

ing length hi of every particle is linked to it via equation (4.2). In our case,

Nngb is set to 295, and the maximum deviation allowed from this value is 0.01.

Name: DesNumNgb and MaxNumNgbDeviation

• Softening lengths : The numerous parameters determine the gravitational soft-

ening for various types of particles. We only use gas particles, but nonetheless

they need to be well set. These are some of the settings that increased the

runtime to unreasonable lengths, especially given that we use no gravitation.

In the end, our simulations were performed with all parameters set to 1.

Name: SofteningGas, ∼Halo, ∼Disk, ∼Bulge, ∼Stars, ∼Bndry and maxi-

mum values for all of these: SofteningGasMaxPhys etc.

• Artificial bulk viscosity constant : Since we use time-dependent artificial vis-

cosity as previously specified in Config.sh for compilation, we need to set the

general artificial viscosity to a rather high value. In our case, this means a

value of 3, whereas without the new scheme it would have been 1.

Name: ArtBulkViscConst

• Viscosity settings : The source scaling is deactivated, since we employ the novel

scheme Gadget-2014. The viscosity decay length determines the reach of the

persistence of the artificial viscosity, while αmin = 0.025 poses the lower limit

away from shocks. The underlying scheme (with the source term activated)

was originally proposed by Dolag et al. (2005) and has been briefly outlined

in section 4.2.2. For our runs we have set the decay length to 4.

Name: ViscositySourceScaling, ∼DecayLength and ∼AlphaMin

• Artificial conductivity : These parameters are owed to our use of the artificial

conductivity feature specified at compilation. The artificial conductivity con-

stant is set to 1, and the lower limit to 0.

Name: ArtCondConstant and ArtCondMin

For the full parameter file please cf. appendix C.1.

It is possible to directly execute Gadget with these given parameters in the

command line, but to utilize the massively parallel architecture of the code by using

a larger number of processors, it is recommended to submit the simulation to the

job management system of the dorc mashines via the following commands:

5.2 Properties and realization of our simulation 47

1 /ptmp / . . . / run3> qsub f i b o s c r i p t r u n 3 . sh

The script fibo_script_run3.sh contains the information on the technical aspects

of the job, like the requested number of processors ncpus=48 and allocated memory

mem=24 in GB. It can be found in appendix A.2.

The current status as well as the CPU time used so far by the simulation can be

checked with qstat, and in combination with a so obtained job id qdel can be used

to cancel individual runs.

5.2.4. Compiling Sph2Grid

Once the simulation has run through and all the snapshots have been written to

disc, the data needs to be binned for further use.3 For this task, we employ the

routine Sph2Grid by Julius Donnert,4 a program that by default uses a D20 kernel

to sample the SPH data to a grid. Also particularly helpful is the option to compute

the velocity power spectrum of every snapshot on the fly and store it together with

the corresponding k values. That way, later we just need to extract the result for

P (k) from the grid files and plot it according to our wishes. Most other options are

deactivated, since we will only analyze the velocity power spectrum.

The desired executable is called Sph2Grid or Sph2Grid_D20 and is compiled out

of the configuration file by going to the Sph2Grid main directory and typing the

command:

1 /ptmp / . . . / Sph2Grid> . / Make f i l e

This automatically generates the specified version of it. Makefile is a routine orig-

inal to Sph2Grid, but the corresponding Config file can be found in appendix

B.2.

5.2.5. Binning the data

Of course, Sph2Grid needs some parameters, too, and they are stored in the file

sph2grid.par in the routine’s main directory. Most of the settings there are of a

more technical nature, for example the location of the input and output file, the

size of the box and, again, the internal Gadget units. Two of them are a bit more

significant, though: The number of grid points per dimension (GridPoints) and

the total number of bins (Nbins). Both are set to the same value as the spatial

resolution of our SPH simulation per dimension, which is (NPart)
1/3 = 128 and 256,

respectively. We will not further elaborate on that matter, but note that this is a

question of sampling performance and all by itself not a trivial choice.

3Please cf. our previous discussion in section 4.5 for more details.
4Dr. Julius Donnert, Istituto di Radioastronomia, Bologna, Italy.

48 5. Our implementation of decaying turbulence

By itself, Sph2Grid only processes a single snapshot file per call. The command

to do so is:

1 /ptmp / . . . / Sph2Grid> . / Sph2Grid sph2gr id . par

For a few hundred of them, executing that by hand would be tedious and time-

consuming, to say the least. Thus we have devised a handy script that allows for

a more convenient workflow: The number of the first and of the last snapshot file

to be binned have to be specified in the script itself, and a simple executive call

of the script suffices to start the automated routine. Therefore, it recognizes the

snap_*** and the grid_*** filenames in the sph2grid.par parameter file, replaces

the number parts with the lowest specified number, calls Sph2Grid as specified

above, increments the number by one and loops over the whole process until the

highest specified snapshot has been binned. To call the script type:

1 /ptmp / . . . / Sph2Grid> . / s c r ip t Sph2Gr id . sh

The script script_Sph2Grid.sh can be found in appendix A.3, the parameter

file in appendix C.2.

5.2.6. Plotting the spectrum

Last but not least we arrive at the final step of our workflow, the extraction and

plotting of the already calculated velocity power spectrum P (k). To do that, we use

an extensive IDL routine by the name of powerspectrum2.pro. It is based on the

routine powerspectrum.pro by Julius Donnert, and has been greatly modified and

extended to allow for several different output options. Same as the original version,

the extended one needs to be compiled twice before execution:

1 IDL> . run powerspectrum2 . pro

2 IDL> . run powerspectrum2 . pro

The heart of the plotting routine is the powerspectrum_subroutine procedure.

It does the actual reading, calculating (as far as necessary) and plotting. Both

procedures powerspectrum_serial and powerspectrum_multi are just frontends

designed for different purposes. They primarily determine format and number of

the plots produced.

• Serial functionality : Numerous single JPEG files of rather low resolution are

produced by powerspectrum_serial. We have created this feature especially

for quick and dirty outputs while the simulations are still running. With the

already available snapshot files binned and then processed this way, necessary

assessments with regard to the usefulness of the run can be made. Also, a

whole batch of the low-resolution images can easily be converted into a GIF

file, visualizing the evolution of the spectrum over time.

5.2 Properties and realization of our simulation 49

Keywords: fname and fend need to be set to the name of the first and last

grid file to be processed. Typical call:

1 IDL> powerspect rum ser ia l , fname = ’./ gr id 000 ’ , fend = ’./ gr id 200 ’

• Multi-page functionality : A number of different power spectrum plots is done

on the same page. The output is as an EPS file and will have print quality.

This front-end allows for highly customizable plots, and all the multi-plot

figures and many of the single plots created for this thesis have been done

with powerspectrum_multi.

Keywords: twofiles or threefiles tells the routine the number of data

sets (grid files) per sub-plot; if the keyword is undefined, only a single file

is used. ncols and nrows specify the number of sub-plots in the horizontal

and vertical expanse, respectively; if undefined, they default to 1. nodetails

disables in-plot annotations and the like; this is useful for plots containing a

large ammount of rather small sub-plots. fname, f2name and f3name specify

the names of the first one, two or three files to be plotted; if they are not

set, the routine will prompt the user to enter the right amount of file names.

block allows it to read information other than the velocity power spectrum,

to which it defaults; should be left unset, since we only computed that with

Sph2Grid. Typical call:

1 IDL> powerspectrum multi , t h r e e f i l e s =1, nco l s =2,nrows=3, n o d e t a i l s=1

The user will the be asked to enter the path to the first file and, depending on

the ∼files settings, to the second and third one for every iteration and thus

sub-plot. To end the input and properly close the file, please type end instead

of the first filename of a new iteration. Also, the scheme has an automatic exit

if two subsequent filenames

Fine-tuned adaptions to the plots like changes of color, linestyle or annotations

need to be done in the code of powerspectrum_subroutine itself. The full source

code of powerspectrum2.pro can be found in appendix A.4.

6. Results

In this section we present our findings and analyze the resulting data from the

numerous simulations mainly with the help of power spectra. The results are sorted

by degree of turbulence, starting with the highest. An overview of the naming

scheme was given in table 5.1 on page 44.

6.1. Simulations with 30% turbulence

Of the different simulation setups we have run, those evolving from initial conditions

with a ratio Xturb = Eturb/Etherm = 30% of turbulent to thermal energy in the

velocity field are the ones least prone to artificial viscosity problems.

6.1.1. GADGET-vs.-AREPO comparison

Low resolution runs

Both 1283 particle simulations G T30R128 (Gadget) and A T30R128 (Arepo)

start out so similar that in the first two snapshots presented in figure 6.2 they are

practically indistinguishable. This does not come as a surprise, because the early

development of the velocity power spectra is substantially influenced by the initial

conditions, and both runs use exactly the same ICs file. They continue to behave

very similarly up until about 0.5 tsc, with tsc ≈ 3.268 · 1017 s the sound crossing time

of our 3000 kpc box.

From snapshots 075 through 150 in figure 6.3, A T30R128 stays at lower powers

and sports a steeper, less Kolmogorov-like slope than G T30R128. The difference

becomes relevant at k ≈ 0.04 kpc−1, which is well below k〈sml〉 ≈ 0.065 kpc−1, the

wave number of the average smoothing length 〈hsml〉 ≈ 96.78 kpc of the lower resolu-

tion Gadget run. This means that the Arepo run contains less energy on smaller

lengthscales at that point in the simulation.

Sometime around 1.2 tsc (between snapshots 150 and 175), A T30R128 catches

up to his Gadget counterpart and again produces near-identical results, up to their

veering from the theoretically predicted Kolmogorov −11
3

slope. Only at the average

smoothing length k〈sml〉 do they separate, Arepo for now showing much more shot

noise at the highest end of the spectrum. It is remarkable that while the tails of

52 6. Results

line name abbrev. definition

−− −− box mode kbox 2π/L

− · · ·− minimal seeding kseed,min π/2 · kbox

− · · ·− maximal seeding kseed,max π · kbox

− − − average smoothing length (2×) k〈sml〉 2πNPart /(
∑

j hsml,j)

−− −− Nyquist mode kNyquist 2NGrid/L

Table 6.1.: Overview of the important k-values shown as vertical lines
in all our major power spectrum plots. The Nyquist mode is shown for
NGrid = 256 only. Listed according to their left-to-right appearance.

both Gadget runs (low and high resolution) vary less than an order of magnitude

during the whole run of the simulation, the lower end ot Arepo’s power spectrum

continually increases, having gained three orders of magnitude by the time of the

final snapshot at 1.5 tsc.

High resolution run

The high resolution Gadget run G T30R256 is, over the course of the 1.5 tsc long

run of the simulation, in general agreement with both lower resolution setups. It

starts with less energy for values of k beyond the seeding range, since its higher

spatial resolution NGrid lowers that discretization noise significantly as the half-

sized particles excert only smaller rearrangement motions. After less than 0.4 tsc
have passed, G T30R256 and the two lower resolution runs feature the same major

slope of still developing Kolmogorov turublence.

The former holds true except near the resolution limit of both G T30R128 and

A T30R128, which can roughly be gauged by the average smoothing length k128
〈sml〉 of

the lower resolution Gadget run. In this region of the power spectrum, G T30R256

follows the straight line of a power law longer, even before a −11
3

like slope is estab-

lished, then shows the same dip in energy aroud k256
〈sml〉 as its lower resolution pendant.

It is arguable that turbulence on scales below the average smoothing length is not

sufficiently resolved to carry any physical meaning, though, so the so-called shot

noise, characteristic for the final steep increase of the power spectrum at high values

of k, could as well be cut off or carefully isolated and corrected.

More information on the minimum wave number kseed,min and the maximum wave

number kseed,max of the seeding range1 as well as the Nyquist mode kNyquist and other

important wave numbers can be found in table 6.1.

1We have used a similar seeding range for our decaying turbulence as Bauer and Springel (2012)
have for their driven turbulence.

6.1 Simulations with 30% turbulence 53

Comparison plots of various snapshots

The plots in figure 6.1 show the first and the last snapshot of the previously discussed

30% runs, while the figures 6.2 and 6.3 also present the evolution of the box in

between.

Figure 6.1.: Velocity power spectra of the first and the last snapshot for
the Gadget-3 runs and the Arepo run with 30% turbulence each. The
graphs shown are: G T30R128 (blue), G T30R256 (red) and A T30R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

54 6. Results

Figure 6.2.: Velocity power spectra of snapshots 000 through 050 for
the Gadget-3 runs and the Arepo run with 30% turbulence each. The
graphs shown are: G T30R128 (blue), G T30R256 (red) and A T30R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

6.1 Simulations with 30% turbulence 55

Figure 6.3.: Velocity power spectra of snapshots 075 through 200 for
the Gadget-3 runs and the Arepo run with 30% turbulence each. The
graphs shown are: G T30R128 (blue), G T30R256 (red) and A T30R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

56 6. Results

6.2. Simulations with 10% turbulence

This section presents our simulations based on Xturb = Eturb/Etherm = 10% in the

initial conditions. At this amount of turbulent energy, we may expect to see the

first signs of possible problems with the artificial viscosity in our SPH runs, since

with the serious decrease in kinetic energy the balance between inertial and viscous

forces has shifted in favour of the latter.

6.2.1. GADGET-vs.-AREPO comparison

Low resolution runs

As opposed to the 30% turbulence runs of the previous section, G T10R128 and

A T10R128 do not start out exaclty the same way. First of all, the discretization

noise beyond the seeding range is about half an order of magnitude higher for the

Gadget run, as can be seen in the first plot of figure 6.4 as well as figure 6.5.

The latter shows further differences between both our low resolution runs: Where in

snapshots 20 through 40 the Arepo run A T10R128 behaves similarly to its higher

turublence version A T30R128 and slowly populates the smaller modes,2 the low

resolution Gadget run G T10R128 prominently increases the energy on smaller

scales within 0.1 tsc and assumes an almost Kolmogorov-like slope.

Somewhere between snapshots 050 and 075 (or at about 0.5 tsc), the two low res-

olution runs reach general concurrence again, and carry on to do so for the better

part of the run. Only after approximately 1.3 tsc do they diverge again, mainly be-

cause A T10R128 takes on a steeper than −11
3

slope and develops the characteristic

minimum in P (k) around the average smoothing length of its Gadget counterpart,

while G T10R128 retains the Kolmogorov spectrum.

High resolution run

In the beginning, the high resolution a run G T10R256 behaves similar to A T10R128

with regard to the gradual population of the smaller modes (see figures 6.5, snap-

shots 000 through 040). Between snapshots 040 and 750, G T10R256 exceeds both

lower resolution runs in its power and assumes a Kolmogorov slope at snapshot 100

(about 0.7 tsc. From thereon, G T10R256 behaves very similar to its lower resolu-

tion pendant G T10R128, although the latter sports an offset power of about half

an order of magnitude down compared to it.

2By “smaller modes” we mean modes of smaller dimension L in real space. This commutes with
larger values k = 2π/L in Fourier space and in the power spectrum plots.

6.2 Simulations with 10% turbulence 57

Comparison plots of various snapshots

The plots in figure 6.4 show the first and the last snapshot of the previously discussed

10% runs, while the figures 6.5 and 6.6 also present the evolution of the box in

between.

Figure 6.4.: Velocity power spectra of the first and the last snapshot for
the Gadget-3 runs and the Arepo run with 10% turbulence each. The
graphs shown are: G T10R128 (blue), G T10R256 (red) and A T10R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

58 6. Results

Figure 6.5.: Velocity power spectra of snapshots 000 through 050 for
the Gadget-3 runs and the Arepo run with 10% turbulence each. The
graphs shown are: G T10R128 (blue), G T10R256 (red) and A T10R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

6.2 Simulations with 10% turbulence 59

Figure 6.6.: Velocity power spectra of snapshots 075 through 200 for
the Gadget-3 runs and the Arepo run with 10% turbulence each. The
graphs shown are: G T10R128 (blue), G T10R256 (red) and A T10R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

60 6. Results

6.2.2. Long run GADGET-vs.-AREPO comparison

To further explore the long-time development of both Gadget-3 and Arepo at

medium to low amounts of turbulent energy Xturb = 10%, we have extended the

lower resolution runs G T10R128 and A T10R128 to the total runtime of 4.5 tsc.

The results are shown in figure 6.7.

The most distinctive feature of the long run comparision plots is the overall dis-

agreement between G T10R128 and A T10R128 over the magnitude of P (k). The

already significant differences in the seedings range between kseed,min and kseed,max

compound themselves when transferred to smaller, individually less energetic modes,

such that in the about end two orders of magnitude in power separate the moving-

mesh from the SPH code over large parts of the spectrum.

Our plots show Gadget to dissipate visibly more energy over the whole length

of the run than Arepo. This becomes evident in the seeding range, where the

power of G T10R128 has sunk to levels more than half an order of magnitude lower

than A T10R128. As time progresses, the power spectrum of our SPH run “sags”

ever more, displaying a significant loss of energy, probably to viscosity, over large

parts of what should actually be the inertial subrange and thus by definition near

viscosity-free.

Intersting enough, Arepo all the while continues its general upward trend in the

power spectrum plots and only later achieves a Kolmogorov-like slope in the very

center of the spectrum. Its characteristic dip in P (k), which was located around the

average SPH smoothing length at the end of our original comparision at snapshot

200 (about 1.5 tsc), moves up to larger modes and reduces the effective resolution of

the moving-mesh code, though.

6.2 Simulations with 10% turbulence 61

Figure 6.7.: Velocity power spectra of snapshots 200, 400 and 600 for the
lower resolution Gadget-3 and Arepo runs with 10% turbulence each.
The graphs shown are: G T10R128 (blue) and A T10R128 (green) as
well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

62 6. Results

6.3. Simulations with 5% turbulence

In this last section of the current chapter, we present the results for our simulations

with the least turbulent energy, determined via Xturb = Eturb/Etherm = 05% in the

initial conditions. At this ratio between intertial and viscous forces, one may expect

our SPH code Gadget to be at a disadvantage compared to the moving-mesh code

Arepo. We will observe if that is the case.

6.3.1. GADGET-vs.-AREPO comparison

Low resolution runs

Quite similar to the low resolution runs in the previous section on 10% turbulence,

the Gadget run G T05R128 takes off pretty fast and assumes its Kolmogorov-like

slope before 0.1 tsc have passed. Meanwhile, A T05R128 ever so slowly transfers

power to the smaller modes, as is to be expected from developing turbulence. In

contrast to the 10% runs, there is not initial offset in the discretization noise between

both codes.

At snapshot 075 (or about 0.5 tsc), both runs converge at least in middle parts of

the spectrum, but Arepo does not develop the −11
3

slope typical for Kolmogorov

turublence at all, and does not so over the run of the whole simulation of about

1.5 tsc. Instead, the previously observed dip in power around the average smoothing

length k〈sml〉 ≈ 0.065 kpc−1 of the Gadget run is even more pronounced than before.

G T05R128 on the other hand maintains a very steady and quite Kolmogorov-like

spectrum until the end.

High resolution run

The high resolution Gadget run G T05R256 starts out similar to its higher en-

ergy counterparts with much less energy outside the seeding range than the lower

resolution runs G T05R128 and A T05R128. It then slowly but steadily fills up

the smaller modes of the spectrum, which is well-pronounced by the ever shrinking

flat region in figure 6.9 basically constituted of discretization noise. At the time of

snapshot 075 (about 0.5 tsc) the flat region has been completely replaced by a sloped

spectrum that evolves into the expected Kolmogorov spectrum before a simulation

time of 0.9 tsc is reached. G T05R256 keeps this form until the end of our simulation

and is in good accord with its lower resolution pendant G T05R128.

6.3 Simulations with 5% turbulence 63

Comparison plots of various snapshots

The plots in figure 6.8 show the first and the last snapshot of the previously discussed

10% runs, while the figures 6.9 and 6.10 also present the evolution of the box in

between.

Figure 6.8.: Velocity power spectra of the first and the last snapshot for
the Gadget-3 runs and the Arepo run with 10% turbulence each. The
graphs shown are: G T05R128 (blue), G T05R256 (red) and A T05R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

64 6. Results

Figure 6.9.: Velocity power spectra of snapshots 000 through 050 for
the Gadget-3 runs and the Arepo run with 5% turbulence each. The
graphs shown are: G T05R128 (blue), G T05R256 (red) and A T05R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

6.3 Simulations with 5% turbulence 65

Figure 6.10.: Velocity power spectra of snapshots 075 through 200 for
the Gadget-3 runs and the Arepo run with 5% turbulence each. The
graphs shown are: G T05R128 (blue), G T05R256 (red) and A T05R128
(green) as well as the Kolmogorov k−11/3 spectrum (dash-dotted line).

7. Discussion

In this final chapter we will condense our previous findings. The following discussion

will compare the results with our expectations and point out likely reasons for new

developments. Then we will outline some points of interest that go beyond this

thesis and risk a glimpse into the possible future.

7.1. Summary

We have set out to examine the current version of Gadget-3 employing the not yet

public Gadget-2014 settings and schemes, and to compare it to the moving-mesh

code Arepo. To that end we first have established the basic theory of hydrody-

namics and turbulence in chapters 2 and 3. They lead to our understanding of fully

developed turbulence, the main ideas of which are dissipation on small scales, a

−11
3

Kolmogorov power spectrum for the inertial range in three dimensions and, in

general, the turbulent cascade with its practically dissipation-free energy transport

down along the whole range of the power spectrum.

The more applicatory chapters 4 and 5 have seen the introduction of essential

simulation techniques and their adaption to our needs. Besides the basic concept

of our employed simulation and analysis techniques as well as the description of

our setups, potential strengths and weaknesses of smoothed particle hydrodynamics

were discussed.

Finally, in the previous chapter, we moved on to our simulation results. We have

found both Gadget-3 and Arepo to perform very similar in the 30% turbulence

scenario, but to show significant differences in runs with decidedly less overall tur-

bulent energy, such as Xturb = 10% or even 5%. While low resolution SPH tends to

have a generally lower power spectrum, it still manages a more or less Kolmogorov-

like slope over the central part of the spectrum, thus agreeing with our theoretical

expectations of turublence. Arepo has severe problems forming a sufficiently large

intertial range and Kolmogorov turublence in the very low turublence setting, but

suffers not from the probably constant energy drain Gadget experiences in the

extended 10% run. The higher resolution SPH runs deliveres the most physically

and consistently sound results.

68 7. Discussion

7.2. Conclusions

The results of our simulations in chapter 6 have lead us to several conclusions about

the ability of SPH codes in general and of Gadget-3 with state-of-the-art viscosity

schemes in specific to simulate turbulence in the subsonic regime.

Expected resolution limits

The resolution limit of Gadget and Arepo is, at the very best, expected to be the

average smoothing length 〈hsml〉 of an SPH run with the same number of particles,

since at that scale dissipation occurs. This makes sense from a physical point of

view, as the discretized volume elements of the fluid are treated as particles, and in

motions well below their average outer dimensions, friction, attraction and internal

effects would dominate. Also, from the more practical perspective of simulations,

motions below the typical length of particles will en masse just occur within those

particles and be neither for SPH nor for moving-mesh codes resolved by equations

of motion that handle those point particles as smallest (and only) entities.

The role of artificial viscosity

At the same resolution and relatively high ammounts of turbulent energy (30%),

Gadget and Arepo perform almost identically, with a slight advantage for Gad-

get, as the SPH scheme stays closer to the “ideal” theoretical Kolmogorov spectrum

of developed turbulence. Quite clearly, a Gadget run of significantly increased res-

olution outperforms both of them, which was expected.

For noticeably less turbulent energy (10%), a lower resolution run of Gadget

transfers power to the smaller modes much faster than the Arepo run of the same

or the Gadget run of a higher resolution does. The cause for that is not clear

yet and should be subject to further examination. Quite fascinatingly, in the later

course of the simulation not only the higher resolution but also the lower resolution

Gadget run fare much better in forming the characteristic −11
3

Kolmogorov slope

of three-dimensional fully developed turbulence. The moving-mesh code Arepo

loses a lot of power on the smaller scales well above the average smoothing length

of the corresponding SPH run. This is even more distinct for the least turbulent

simulations (5%).

The generally good performance of Gadget is due to its new artificial viscosity

scheme by Alexander Beck. Since SPH is in its original version perfectly Lagrangian

and thus non-dissipative, the only reason why it could loose energy on smaller scales

would be because of the later on introduced artificial viscosity. Contrary to that,

our long run comparison seems to point towards some low but permanent artificial

viscosity present in our version of Gadget that over the course of several sound

7.2 Conclusions 69

crossing times steadily robs the spectrum of its power and effectively impedes tur-

bulent motions on different scales. As the (shorter) higher resolution Gadget runs

show a different behavior, this might in part be a resolution issue and is worth

investigating.

In case of the very low turbulence setting (5%), the new scheme employed in our

state-of-the-art simulations reduces the artificial viscosity away from shocks to such

a low amount, that dissipation occurs well below the effective resolution. Thus the

maximum range of turbulence for the particular resolution is achieved, while Arepo

is prevented from forming turbulence by its natural mixing.

We find that especially Gadget-2014 is reliable when it comes to fully developed

turbulence, and that for comparatively low resolutions like NPart = 1283 caution

during the formation period of the Kolmogorov spectrum is in order.

Additional remarks

The omnipresent increase in power at the low end tail of the power spectrum both

in our SPH and Gadget simulations is due to the so-called shot-noise effect. It

stems from the discretization of an originally continuous fluid problem and is one of

several possible sampling effects to occur. Since by using the D20 binning method we

eliminated most of the other effects, the shot-noise is the most prominent distortion

to our results.1 Its significance is limited to the usually not well resolved lower end

of the spectrum beyond the average smoothing length, though, so it is often left in

place or just cut off.

1The D20-proposal paper by Cui et al. (2008) also briefly addresses other sampling effect besides
the convolution with different window functions.

70 7. Discussion

7.3. Future prospects

It will be interesting to see how the new artificial viscosity and conductivity schemes

comprised in Gadget-2014 handle fluid instabilities. Several standad tests like one-

dimensional shock tubes, Kelvin-Helmholtz instabilities and the Keplerian ring test

remain to be demonstrated, but if the performance so far is any indication it will

clear those hurdles with grace.

Future comparisons with moving-mesh codes may have to take greater care with

the binning mechanisms used on the Arepo snapshots. Due to the high compati-

bility between Gadget-3 and Arepo output, we have implicitly assumed that we

may use our binning scheme on the moving-mesh code’s results, as well. It is quite

possible, though, that the cell structure needs to be taken into better account.

Also, future investigations could try to isolate the power actually contained in the

turbulent cascade from the energy of the seeding range and thus further examine the

cascading process, especially with regard to possible influences of dissipative terms

in areas outside the low end dissipation subrange of the spectrum. This would

probably require some advanced deconvolution methods.

Acknowledgments

This is the place to sincerely thank all the great people who helped and supported

me over the course of my bachelor’s thesis:

PD Dr. Klaus Dolag and Dr. Alexander Beck, for their great support

and supervision. They did a formidable job, and between them I could

not imagine it to be done any better.

Prof. Dr. Harald Lesch, for his undergraduate courses in astrophysics

and his inspirational nature that made me remember why I wanted to

become an astrophysicist in the first place.

Julius Donnert, for putting up with my endless questions and providing

the great routines I worked on and with.

Madhura Killedar, for having to deal with my English quirks, and for

answers big and small.

Christian Alig, for his work on the Arepo comparision runs.

David Schlachtberger, Johann Weber and Rhea-Silvia Remus for helping

with all the minor questions and mayor concerns that keep coming up

when one are new at something.

The rest of the Cast team and all the other great people at USM, for

the warm welcome and wonderful time. I’d be happy to join them again,

and soon.

My wonderful girlfriend, Alina, who had to put up with an even more

scatterbrained me than usual, and my parents, who graciously made this

all happen.

And last but not least you, the reader, for perusing this somewhat humongous

bachelor’s thesis: Thank you!

Munich, September 30, 2014

Pascal Ulrich Förster

A. Appendix: Code repository

A.1. Creating the initial conditions

The IDL procedure make data.pro by Julius Donnert singelhandedly creates the
initial conditions of the simulation as previously described in section 4.3. We have
modified it mainly in regard to the specific setup of our simulation First Box (FiBo),
and a prominent alteration of that kind is that we only seed the largest 70 or so
modes instead of the full spectrum.

make data.pro

1 ; This f i l e conta in s r o u t i n e s to produce a gadget snapshot
2 ; o f a p e r i o d i c box with a Kolmogorov v e l o c i t y power spectrum
3 ; from a g l a s s f i l e . The turbu l ent v e l o c i t y conta in s the f r a c t i o n
4 ; X turb o f the thermal energy in the box . Temperature and dens i ty
5 ; are s e t to va lue s r ea sonab l e f o r a galaxy c l u s t e r atmosphere .
6 ; Note : This i s not a r e a l GADGET snapshot as hsml i s s e t to a
7 ; r ea sonab l e constant . Upon running GADGET i s going to r e c a l c u l a t e i t .
8 ;
9 ; Some r o u t i n e s from Klaus ’ l i b r a r y are needed :

10 ; ∗ wri te head . pro
11 ; ∗ add block . pro
12 ;
13 ; Note : you have to compi le t h i s twice
14

15 ; make i n i t i a l c o n d i t i o n s f o r a turbu l ent box
16 pro make box , npart , debug=debug
17

18 i f not keyword set (npart) then $
19 npart = 128Lˆ3
20

21 npart = ulong (npart)
22

23 print , ”Npart = ” , npart
24

25 ; Gadget un i t s & chemistry
26 m unit = 1.989 d43 ; [10ˆ10 Msol]
27 l u n i t = 3.085678 d21 ; [kpc]
28 v un i t = 100000D ; [km/ s]
29

30 H frac = 0.76
31 umol = 4 . 0 / (5 . 0∗ H frac +3.0)
32 mp = 1.6726231 e−24 ; proton mass cgs
33 k b o l t z = 1.3806580 e−16 ; [cgs]

74 A. Appendix: Code repository

34

35 ; input va lue s
36 f out = ’ . / snap 000 ’ ; output f i l ename
37 X turb = 0 .3 ; E turb / E therm
38

39 boxs i z e = 3000D ; [kpc]
40

41 T = 1d7 ; [K]
42 rho = 1d−27/(m unit / l u n i t ˆ 3 .) ; [GADGET]
43 mass = rho ∗ boxs i z e ˆ3
44

45 ; make p o s i t i o n s
46 pos = make pos i t i ons hcp (boxs ize , boxs ize , boxs ize , npart)
47

48 ; make data s t r u c t u r e s
49 head = make head ()
50 ve l = make array (3 , npart , / f l o a t)
51 id = make array (npart , / u int)
52 u = make array (npart , / f l o a t)
53 hsml = make array (npart , / f l o a t)
54 dens = make array (npart , / f l o a t)
55

56 head . npart = [1 , 0 , 0 , 0 , 0 , 0] ∗ npart
57 head . massarr = [1 , 0 , 0 , 0 , 0 , 0] ∗ mass/ npart
58 head . time = 1
59 head . r e d s h i f t = 1 ./ head . time −1
60 head . f l a g s f r = 0
61 head . f l a g f e e d b a c k = 0
62 head . p a r t t o t a l = head . npart
63 head . f l a g c o o l i n g = 0
64 head . n u m f i l e s = 1
65 head . boxs i z e = boxs i z e
66 head . omega0 = 0 .3
67 head . omegalambda = 0 .7
68 head . hubbleparam = 0.7
69

70 ; IDs
71 id = ul indgen (npart)+1
72

73 ; i n t e r n a l energy
74 u [∗] = u2t (T, / inv)
75

76 ; thermal energy
77 mass cgs = mass ∗ m unit
78 Etherm = mass cgs /umol/mp ∗ 3 . / 2 . ∗ k b o l t z ∗ T
79

80 print , ’ Thermal Energy in Box [cgs] = ’ , Etherm
81

82 ; hsml
83 hsml [∗] = 75 .51 ; what GADGET f i n d s on average f o r t h i s g l a s s
84

85 ; make v e l o c i t i e s (the hard part)
86 Etherm /= m unit ∗ v un i t ˆ2 ; cgs to gadget

A.1 Creating the initial conditions 75

87 v2 = npart ∗2 .0∗Etherm/mass∗X turb ; t o t a l vˆ2 o f p a r t i c l e s
88

89 ngr id = long (npart ˆ (1 . / 3 .))
90

91 vgr id = make vel (ngrid , boxs ize , v2 , debug=debug)
92

93 ; N c e l l s = Npart
94 c e l l s i z e = boxs i z e / ngr id
95

96 ve l [0 , ∗] = idlNGP (pos/ c e l l s i z e , vgr id [0 , ∗ , ∗ , ∗])
97 ve l [1 , ∗] = idlNGP (pos/ c e l l s i z e , vgr id [1 , ∗ , ∗ , ∗])
98 ve l [2 , ∗] = idlNGP (pos/ c e l l s i z e , vgr id [2 , ∗ , ∗ , ∗])
99

100 ; d ens i ty
101 dens [∗] = rho
102

103 ; output
104 print , ’ Writing : ’+fout
105

106 write head , fout , head
107 add block , fout , f l o a t (pos) , ’POS ’
108 add block , fout , f l o a t (v e l) , ’VEL ’
109 add block , fout , ulong (id) , ’ ID ’
110 add block , fout , f l o a t (u) , ’U ’
111 add block , fout , f l o a t (hsml) , ’HSML’
112 add block , fout , f l o a t (dens) , ’RHO’
113

114 end
115

116 ; make v e l o c i t y g r id (t h i s i s where the magic happens :−)
117 function make vel , ngrid , boxs ize , amp, debug=debug
118

119 seed = 14041981
120

121 kmin = 2∗ ! p i /(boxs i z e) ; box mode
122 kmax = ! p i ∗ ngr id / boxs i z e ; Nyquist mode
123

124 ve l = make array (3 , ngrid , ngrid , ngrid , / f l o a t , va l =0)
125 kmag = make array (ngrid , ngrid , ngrid , / f l o a t , va l =0)
126 cdata = make array (3 , ngrid , ngrid , ngrid , / complex , va l =0)
127 c d a t a r l = make array (ngrid , ngrid , ngrid , va l =0,/ double)
128 cdata im = make array (ngrid , ngrid , ngrid , va l =0,/ double)
129 i c o n j = 0
130 j c o n j = 0
131 kconj = 0
132

133 for axes =0,2 do begin
134 for i =0, ngrid−1 do $
135 for j =0, ngrid−1 do $
136 for k=0, ngr id /2 do begin
137 ; Generate k value f i r s t (thank you Volker)
138 ; Def ine conjugated i n d i z e s o f the g r id
139 i f i ne 0 then i c o n j = ngr id − i $

76 A. Appendix: Code repository

140 else i c o n j = 0
141 i f j ne 0 then j c o n j = ngr id − j $
142 else j c o n j = 0
143 i f k ne 0 then kconj = ngr id − k $
144 else kconj = 0
145

146 ; Def ine g r id
147 i f i LE ngr id /2 . then kx = i ∗ kmin $
148 else kx = − i c o n j ∗ kmin
149

150 i f j LE ngr id /2 . then ky = j ∗ kmin $
151 else ky = −j c o n j ∗ kmin
152

153 i f k LE ngr id /2 . then kz = k ∗ kmin $
154 else kz = −kconj ∗ kmin
155

156 kmag [i , j , k] = s q r t (kxˆ2 + kyˆ2 + kz ˆ2)
157

158

159 i f kmag [i , j , k] GT kmax then $
160 cont inue ; Only do a sphere in k space
161

162 i f i+j+k eq 0 then $
163 cont inue ; no DC current
164 ; i f (i eq ngr id /2) or (j eq ngr id /2) or (k eq ngr id /2) then

$
165 ; cont inue ; no DC current
166

167 i f i gt ngr id /2 then $
168 cont inue ; the se are done v ia symmetry
169

170 ; Power spectrum P(k)
171 Pk = kmin∗ kolmog 3D (kmag [i , j , k] , kmax , kmin)
172

173 ; Generate normal d i s t r i b u t e d random numbers with d i s p e r s i o n Pk
174 ; us ing Box Muel ler method
175 A = s q r t (−a log (randomu (seed , / double)) ∗ Pk)
176 phase = 2 . ∗ ! p i ∗randomu (seed , / double)
177

178 ; Cutting o f f a l l except the ˜70 l a r g e s t modes (Bauer&Spr inge l2012)
179 IF kmag [i , j , k] LT (6 . 25/ 4) ∗kmin THEN $
180 A = 0
181 IF kmag [i , j , k] GT (12 . 57/4) ∗kmin THEN $
182 A = 0
183

184 ; Set power so we get a r e a l v e l a f t e r i n v e r s e FFT
185 i f i gt 0 then begin ; g r i d i s hermit ian in i>ngr id /2
186 c d a t a r l [i , j , k] = A ∗ cos (phase)
187 cdata im [i , j , k] = A ∗ s i n (phase)
188

189 c d a t a r l [i c on j , j con j , kconj] = c d a t a r l [i , j , k]
190 cdata im [i con j , j con j , kconj] = −1∗cdata im [i , j , k]
191 end else begin ; i = 0 needs s p e c i a l treatment

A.1 Creating the initial conditions 77

192 i f j eq 0 then begin ; f i r s t row
193

194 i f k gt ngr id /2 . then $
195 cont inue
196

197 c d a t a r l [i , j , k] = A ∗ cos (phase)
198 cdata im [i , j , k] = A ∗ s i n (phase)
199

200 c d a t a r l [i , j , kconj] = c d a t a r l [i , j , k]
201 cdata im [i , j , kconj] = −1∗cdata im [i , j , k]
202 end else begin ; j != 0 here
203 i f j gt ngr id /2 . then $; r e s t o f the plane
204 cont inue
205

206 c d a t a r l [i , j , k] = A ∗ cos (phase)
207 cdata im [i , j , k] = A ∗ s i n (phase)
208

209 c d a t a r l [i , j con j , kconj] = c d a t a r l [i , j , k]
210 cdata im [i , j con j , kconj] = −1∗cdata im [i , j , k]
211 end
212 end
213 end
214

215 cdata [axes , ∗ , ∗ , ∗] = COMPLEX(cda ta r l , cdata im)
216 data = reform (FFT(cdata [0 , ∗ , ∗ , ∗] , / inve r s e , / double)) /Ngrid ˆ3
217

218 ; check i f we got the symmetries c o r r e c t
219 for i =0, ngr id ˆ3−1 do $
220 i f abs (imaginary (data [i])) gt 1e−7∗abs (r e a l p a r t (data [i]))

then $
221 stop
222

223 ; s e t v e l o c i t i e s
224 ve l [axes , ∗ , ∗ , ∗] = r e a l p a r t (data)
225

226 end
227

228 ; norm to t o t a l amplitude because kolmog 3D i s wrong
229 norm = s q r t (t o t a l (v e l [0 ,∗ ,∗ ,∗] ˆ 2 +ve l [1 ,∗ ,∗ ,∗] ˆ 2 +ve l

[2 ,∗ ,∗ ,∗] ˆ 2))
230

231 ve l ∗= s q r t (amp) / norm
232 cdata ∗= s q r t (amp) / norm ; Parseval ’ s theorem −> ngr id ˆ3
233

234 ; t e s t i n g
235 i f keyword set (debug) then begin
236 ; t o t a l energy o f data
237 v2 k = t o t a l (abs (FFT(ve l [0 , ∗ , ∗ , ∗])) ˆ2 . $
238 +abs (FFT(ve l [1 , ∗ , ∗ , ∗])) ˆ2 . $
239 +abs (FFT(ve l [2 , ∗ , ∗ , ∗])) ˆ 2 .) ∗ ngr id ˆ3
240 print , ’ vˆ2 in k space : ’+s t rn (v2 k)
241

242 ; t o t a l energy in r e a l space

78 A. Appendix: Code repository

243 v2 = t o t a l (v e l [0 ,∗ ,∗ ,∗] ˆ 2 +ve l [1 ,∗ ,∗ ,∗] ˆ 2 +ve l [2 ,∗ ,∗ ,∗] ˆ 2)
244 print , ’ vˆ2 in r e a l space : ’+s t rn (v2)
245 print , ’ Requested vˆ2 : ’+s t rn (amp)
246

247 ; 3D Spectrum from data
248 lcData = cData [0 ,∗ ,∗ ,∗] ˆ2+ cData [1 ,∗ ,∗ ,∗] ˆ2+ cData [2 ,∗ ,∗ ,∗] ˆ 2
249

250 plot , kmag , s q r t (l cda ta ∗4∗ ! p i ∗ kminˆ2) $
251 , xrange =[2e−3, 0 . 2] , psym=3, yrange =[1e−8,1 e3] , / ylog , / x log $
252 , y t i t l e=’ s q r t (P(k) 4 !7 p !X k ! Dmin !N! U2 !N) [km/ s] ’ , x s t y l e=1 $
253 , x t i t l e=’ k=2!7p !X/L [1/ kpc] ’
254 oplot , [1 . , 1] ∗ kmin , [1 e−10 ,1 e10] , c o l =16711680
255 oplot , [1 . , 1] ∗ kmax , [1 e−10 ,1 e10] , c o l =16711680
256

257 ; 3D spectrum a n a l y t i c a l l y
258 k = kmin + f indgen (10000) /9999 . ∗ (kmax−kmin)
259 Pk = kolmog 3D (k , kmax , kmin) ∗ 8
260 oplot , k , s q r t (Pk ∗ 4 ∗ ! p i ∗ kmin ˆ2) , c o l =65280
261

262 ; Spectrum from vel , t h i s l e a k s in to l a r g e k , because o f
numerica l e r r o r

263 kData = make array (3 , ngrid , ngrid , ngr id)
264 kData [0 , ∗ , ∗ , ∗] = abs (FFT(ve l [0 , ∗ , ∗ , ∗] , / double)) ∗ ngr id ˆ3
265 kData [1 , ∗ , ∗ , ∗] = abs (FFT(ve l [1 , ∗ , ∗ , ∗] , / double)) ∗ ngr id ˆ3
266 kData [2 , ∗ , ∗ , ∗] = abs (FFT(ve l [2 , ∗ , ∗ , ∗] , / double)) ∗ ngr id ˆ3
267

268 lkData = kData [0 ,∗ ,∗ ,∗] ˆ 2 + kData [1 ,∗ ,∗ ,∗] ˆ 2 + kData [2 ,∗ ,∗ ,∗] ˆ 2
269

270 oplot , kmag , s q r t (lkdata ∗ 4 ∗ ! p i ∗ kmin ˆ2) , c o l =16711680 ,
psym=3

271

272 stop
273 end
274

275 return , v e l
276 end
277

278 function kolmog 3D , k , kmax , kmin
279 ; here we r e q u i r e 1 = i n t ˆkmax kmin dk P 0 ∗ 4 p i kˆ2 kˆ(−11/3)
280 norm = (6∗ ! p i ∗ (kmin ˆ(−2 ./3 .) − kmaxˆ(−2 ./3 .))) ˆ(−1)
281 return , norm ∗ k ˆ(−11.0/3.0)
282 end
283

284 ; sample Grid at Pos v ia NGP the IDL way
285 function idlNGP , pos , i n g r i d
286

287 ngr id = n elements (i n g r i d) ˆ (1 . / 3 .)
288

289 g r id = reform (ingr id , ngrid , ngrid , ngr id)
290

291 npos = n elements (pos) /3
292

293 u = reform (pos [0 , ∗] , npos)

A.1 Creating the initial conditions 79

294 v = reform (pos [1 , ∗] , npos)
295 w = reform (pos [2 , ∗] , npos)
296

297 i = f l o o r (u)
298 j = f l o o r (v)
299 k = f l o o r (w)
300

301 return , g r i d [i , j , k]
302 end
303

304 ; make a gadget header
305 function make head
306 head = { npart : l o n a r r (6) , $
307 massarr : db la r r (6) , $
308 time : double (1) , $
309 r e d s h i f t : double (1) , $
310 f l a g s f r : long (0) , $
311 f l a g f e e d b a c k : long (0) , $
312 p a r t t o t a l : l o n a r r (6) , $
313 f l a g c o o l i n g : long (0) , $
314 n u m f i l e s : long (1) , $
315 boxs i z e : double (1) , $
316 omega0 : double (0 . 3) , $
317 omegalambda : double (0 . 7) , $
318 hubbleparam : double (0 . 7) , $
319 f l a g s t e l l a r a g e : long (0) , $
320 f l a g m e t a l s : long (0) , $
321 npartTotalHighWord : l o n a r r (6) , $
322 Labels : bytarr (2 , 15) , $
323 l a : bytarr (256−6∗4

− 6∗8 − 8 − 8 − 2∗4 − 6∗4 − 2∗4 − 4∗8 − 2∗4 − 6∗4 − 2∗15) }
324

325 return , head
326

327 end
328

329 ; convert i n t e r n a l energy to temperature f o r GADGET
330 FUNCTION u2t , u , rad=rad , inv=inv , xH=xH, uve l=uvel , gamma=gamma
331

332 i f not keyword set (gamma) then $
333 gamma = 5 . / 3 .
334

335 IF NOT keyword set (xH) THEN $
336 xH = 0.76
337

338 IF NOT keyword set (uve l) THEN $
339 uve l=1e5
340

341 bk=1.380658d−16 ; k boltzmann in cgs
342 prtn =1.672623d−24 ; m proton in g
343

344 yhelium = (1 . − xH) / (4 ∗ xH)
345

80 A. Appendix: Code repository

346 mean mol weight = (1 . + 4 . ∗ yhelium) / (1 . + 3 . ∗ yhelium + 1)
347

348 IF keyword set (inv) THEN BEGIN
349 T = U
350 u = T /((gamma−1) ∗ uve l ˆ2 ∗ prtn ∗ mean mol weight / bk)
351 return , u
352 END ELSE BEGIN
353 T = u ∗ (gamma−1) ∗ uve l ˆ2 ∗ prtn ∗ mean mol weight / bk
354 return , T
355 END
356 END
357

358 ; opt imal hcp p a r t i c l e d i s t r i b u t i o n in a p e r i o d i c
359 ; box , with ntot being a rough upper bound o f p a r t i c l e s to
360 ; d i s t r i b u t e . r e turn pos and ntot
361 ; ntot va lue s l i k e Xˆ3 recommended f o r cub ic boxes
362 function make pos i t ions hcp , Lx , Ly , Lz , ntot , debug=debug
363

364 i f n params () l t 3 then begin
365 print , ’ Usage : pos = make pos i t i ons hcp (Lx , Ly , Lz , ntot ,

debug=debug) ’
366 print , ’ Lx : Boxs ize in x d i r e c t i o n ’
367 print , ’ Ly : Boxs ize in y d i r e c t i o n ’
368 print , ’ Lz : Boxs ize in z d i r e c t i o n ’
369 print , ’ ntot : Max t o t a l number o f p a r t i c l e s ’
370 print , ’ debug : Show p e r i o d i c i t y d i a g n o s t i c s ’
371 return , −1
372 end
373

374 ; ntot i s b e t t e r d i v i s i b l e by two
375 i f ntot mod 2 ne 0 then $
376 ntot−−
377

378 ; f i n d by combining spac ings with Ntot
379 r = (s q r t (2 . 0D) ∗Lx∗Ly∗Lz /8 .0D / ntot) ˆ (1 . 0D/3D)
380

381 ; spac ings
382 dx = 2 .0D∗ r
383 dy = s q r t (3 . 0D) ∗ r
384 dz = s q r t (6 . 0D) ∗2 .0D/3 .0D∗ r
385

386 ; p a r t i c l e numbers
387 np = make array (3 , va l=0D)
388 np [∗] = long (ntot ˆ (1 . / 3 .))
389

390 ; e n f o r c e p e r i o d i c i t y
391 dx += (lx−dx∗np [0]) /np [0]
392 dy += (ly−dy∗np [1]) /np [1]
393 dz += (lz−dz∗np [2]) /np [2]
394

395 ; d i a g n o s t i c s
396 print , ’ P a r t i c l e numbers : ’
397 print , ’ Nx = ’+st rn (np [0])

A.1 Creating the initial conditions 81

398 print , ’ Ny = ’+st rn (np [1])
399 print , ’ Nz = ’+st rn (np [2])
400 print , ’ Total = ’+s t rn (np [0] ∗ np [1] ∗ np [2])
401 print , ’ Wanted = ’+st rn (ntot)
402 print , ’ Delta = ’+s t rn (double (ntot)−np [0] ∗ np [1] ∗ np [2])
403

404 ntot = np [0] ∗ np [1] ∗ np [2]
405

406 ; p a r t i c l e p o s i t i o n s
407 x = make array (np [0] , np [1] , np [2] , / double)
408 y = make array (np [0] , np [1] , np [2] , / double)
409 z = make array (np [0] , np [1] , np [2] , / double)
410

411 i dxa r r = double (l indgen (np [0]))
412

413 ; A(0) plane
414 ; 0 s t row
415 x [∗ , 0 , 0] = r + idxa r r ∗dx
416 y [∗ , 0 , 0] = r
417 z [∗ , 0 , 0] = r
418

419 ; 1 s t row
420 x [∗ , 1 , 0] = idxa r r ∗dx
421 y [∗ , 1 , 0] = r + dy
422 z [∗ , 1 , 0] = r
423

424 ; A−plane
425 ; even rows
426 for i=2L , np [1]−1 ,2 do begin
427 x [∗ , i , 0] = x [∗ , 0 , 0]
428 y [∗ , i , 0] = y [∗ , 0 , 0] + i ∗dy
429 z [∗ , i , 0] = z [∗ , 0 , 0]
430 end
431

432 ; odd rows
433 for i=3L , np [1]−1 ,2 do begin
434 x [∗ , i , 0] = x [∗ , 1 , 0]
435 y [∗ , i , 0] = y [∗ , 1 , 0] + (i −1)∗dy
436 z [∗ , i , 0] = z [∗ , 1 , 0]
437 end
438

439 ;B(1)−plane
440 ; 0 r s t row
441 x [∗ , 0 , 1] = r + idxa r r ∗dx
442 y [∗ , 0 , 1] = 0
443 z [∗ , 0 , 1] = r + dz
444

445 ; 1 s t row
446 x [∗ , 1 , 1] = idxa r r ∗dx
447 y [∗ , 1 , 1] = dy
448 z [∗ , 1 , 1] = r + dz
449

450 ; B−plane

82 A. Appendix: Code repository

451 ; even rows
452 for i=2L , np [1]−1 , 2 do begin
453 x [∗ , i , 1] = x [∗ , 0 , 1]
454 y [∗ , i , 1] = y [∗ , 0 , 1] + i ∗dy
455 z [∗ , i , 1] = z [∗ , 0 , 1]
456 end
457

458 ; odd rows
459 for i=3L , np [1]−1 , 2 do begin
460 x [∗ , i , 1] = x [∗ , 1 , 1]
461 y [∗ , i , 1] = y [∗ , 1 , 1] + (i −1)∗dy
462 z [∗ , i , 1] = z [∗ , 1 , 1]
463 end
464

465 ; a l l p lanes
466 ; even p lanes
467 for i=2L , np [2]−1 , 2 do begin
468 x [∗ ,∗ , i] = x [∗ , ∗ , 0]
469 y [∗ ,∗ , i] = y [∗ , ∗ , 0]
470 z [∗ ,∗ , i] = z [∗ , ∗ , 0] + i ∗dz
471 end
472

473 ; odd p lanes
474 for i=3L , np [2]−1 , 2 do begin
475 x [∗ ,∗ , i] = x [∗ , ∗ , 1]
476 y [∗ ,∗ , i] = y [∗ , ∗ , 1]
477 z [∗ ,∗ , i] = z [∗ , ∗ , 1] + (i −1)∗dz
478 end
479

480 ; make p a r t i c l e a r rays
481 pos = make array (3 , ntot , / double)
482

483 bin = ulong (0)
484 for i =0,np [0]−1 do $
485 for j =0,np [1]−1 do $
486 for k=0,np [2]−1 do begin
487 pos [0 , bin] = x [i , j , k]
488 pos [1 , bin] = y [i , j , k]
489 pos [2 , bin] = z [i , j , k]
490 bin++
491 end
492

493 ; randomize
494 seed = 14041981
495 for k=0, 2∗ ntot do begin
496 i = round (randomu (seed) ∗(ntot−1))
497 j = round (randomu (seed) ∗(ntot−1))
498

499 tmp = pos [∗ , i]
500 pos [∗ , i] = pos [∗ , j]
501 pos [∗ , j] = tmp
502 end
503

A.1 Creating the initial conditions 83

504 i f keyword set (debug) then begin
505 o ld pmul t i = ! p . mult i
506 ! p . mult i [1 : 2] = [3 , 2]
507

508 ; check spac ings
509 plot , x , y , psym=4, / i so , xrange =[0 , Lx] , yrange =[0 , Ly] , $
510 x t i t l e=’ x ’ , y t i t l e=’ y ’
511 oplot , x [0 , 0 , 0] + [0 , dx] , y [0 , 0 , 0] ∗ [1 . , 1 .] , c o l=c o l o r (1)
512

513 plot , x , z , psym=4, / i so , xrange =[0 , Lx] , yrange =[0 , Lx] , $
514 x t i t l e=’ x ’ , y t i t l e=’ z ’
515 oplot , x [0 , 0 , 0] ∗ [1 , 1] , z [0 , 0 , 0] + [0 , dz] , c o l=c o l o r (1)
516

517 plot , y , z , psym=4, / i so , xrange =[0 , Ly] , yrange =[0 , Lz] , $
518 x t i t l e=’ y ’ , y t i t l e=’ z ’
519 oplot , y [0 , 0 , 0] + [0 , dy] , z [0 , 0 , 0] ∗ [1 . , 1 .] , c o l=c o l o r (1)
520

521 ; check p e r i o d i c i t y
522 bad = where (x gt Lx or x l t 0 , nbadx)
523 bad = where (y gt Ly or y l t 0 , nbady)
524 bad = where (z gt Lz or z l t 0 , nbadz)
525 print , ’ Points ou t s i d e the box : ’+s t rn (nbadx+nbady+nbadz)
526

527 e r r = make array (3 , / double)
528 e r r [0] = Lx − dx∗np [0]
529 e r r [1] = Ly − dy∗np [1]
530 e r r [2] = Lz − dz∗np [2]
531

532 print , ” Error in sampling p e r i o d i c i t y : ”
533 print , ” ”+s t rn (e r r [0] , l en =7)+” p a r t i c l e spac ings in x”
534 print , ” ”+s t rn (e r r [1] , l en =7)+” p a r t i c l e spac ings in y”
535 print , ” ”+s t rn (e r r [2] , l en =7)+” p a r t i c l e spac ings in z”
536

537 x [∗ , ∗ , ∗] += 2∗dx
538 bad = where (x gt Lx)
539 x [bad] −= Lx
540

541 y [∗ , ∗ , ∗] += 2∗dy
542 bad = where (y gt Ly)
543 y [bad] −= Ly
544

545 z [∗ , ∗ , ∗] += 2∗dz
546 bad = where (z gt Lz)
547 z [bad] −= Lz
548

549 plot , x , y , psym=4, / i so , xrange =[0 , Lx] , yrange =[0 , Ly] , $
550 x t i t l e=’ x ’ , y t i t l e=’ y ’
551 oplot , 2∗dx ∗ [1 , 1] , [0 . , Ly] , c o l=c o l o r (1)
552 oplot , [0 , Lx] , 2∗dy ∗ [1 , 1] , c o l=c o l o r (1)
553

554 plot , x , z , psym=4, / i so , xrange =[0 , Lx] , yrange =[0 , Lx] , $
555 x t i t l e=’ x ’ , y t i t l e=’ z ’
556 oplot , [0 , Lx] , 2∗dz ∗ [1 , 1] , c o l=c o l o r (1)

84 A. Appendix: Code repository

557 oplot , 2∗dx ∗ [1 , 1] , [0 . , Lz] , c o l=c o l o r (1)
558

559 plot , y , z , psym=4, / i so , xrange =[0 , Ly] , yrange =[0 , Lz] , $
560 x t i t l e=’ y ’ , y t i t l e=’ z ’
561 oplot , 2∗dy ∗ [1 , 1] , [0 . , Lz] , c o l=c o l o r (1)
562 oplot , [0 , Ly] , 2∗dz ∗ [1 , 1] , c o l=c o l o r (1)
563

564 stop
565

566 ! p . mult i = o ld pmul t i
567

568 return , −1
569 end
570

571 return , f l o a t (pos)
572 end

A.2. Submitting the simulation for computation

The short script below has been used to run the simulation on the dorc mashines
at USM. The specifications include the number of cores and the amount of memory
(in GB) used as well as the path of the Gadget executable and the parameter file
of the run.

fibo script run3.sh

1 #! / bin /bash
2

3 #PBS −N FiBo res128 turb30 v2
4 ##PBS −o out . l og
5 ##PBS −e e r r . l og
6 #PBS − l ncpus=48
7 #PBS − l nodes =1:ppn=48
8 #PBS − l mem=24
9 #PBS −d /ptmp/ f o e r s t e r / Fir s t Box / d i f f e r e n t I C s / FiBo res −128 turb−30 v2

10

11 (mpiexec −np 48 . /P−Gadget3/P−Gadget3 p a r a m f i l e f i b o 0 > out . l og) >&
e r r . l og

A.3. Automated binning of numerous snapshots

This custom bash-script was written to automatize the time-consuming binning of
large numbers of snapshots into grid files. The process can take up to several min-
utes per file for higher resolutions.

script Sph2Grid.sh

1 #! / bin /bash

A.4 Plotting the power spectrum from the grid files 85

2

3 FIRST=0 ##Number o f the f i r s t snapshot f i l e to be converted to g r id
4 LAST=200 ##Number o f the l a s t snapshot f i l e to be converted to g r id
5

6 echo ” ”
7 echo ”o

==o
”

8 echo ” | S c r i p t f o r b inning o f g rea t numbers o f snapshots v ia Sph2Grid
| ”

9 echo ” | Change the d e s i r e d range in t h i s s c r i p t f i l e i t s e l f , i f
nece s sa ry | ”

10 echo ”o
==o
”

11 echo ” ”
12 echo ” Proce s s ing snapshots $ (p r i n t f ”%03d” $FIRST) to $ (p r i n t f ”%03d

” $LAST) ”
13 echo ” (t h i s may take a while , approx 1 min per snapshot) ”
14

15 for ((c=$FIRST ; c<=$LAST; c++))
16 do
17 echo ” ”
18 echo ” ”
19 echo ” Performing task $ (($c − $FIRST + 1)) /$ (($LAST − $FIRST + 1)) ”
20 snr=$ (printf ”%03d” $c)
21 echo ”Sph2Grid : snap $snr −−> g r i d $ s n r ”
22 sed − i ” s / snap [0−9]∗/ snap $ { snr }/g” . / sph2gr id . par
23 sed − i ” s / g r i d [0−9]∗/ g r i d $ { snr }/g” . / sph2gr id . par
24

25 ##Run Sph2Grid (and wait f o r i t <−− by d e f a u l t)
26 . / Sph2Grid sph2gr id . par
27 done
28

29 echo ” ”
30 echo ” ”
31 echo ” Done ! ”
32 echo ” ”

A.4. Plotting the power spectrum from the grid files

The IDL procedure powerspectrum2.pro has been used to extract the already cal-
culated velocity power spectrum P (k) from the data binned by Sph2Grid, and to
plot it. It is based on the procedure powerspectrum.pro by Julius Donnert and
has been modified extensively, for example to remove faulty data or to comfortably
allow different types of output. All the power spectrum plots original to this thesis
have been created with powerspectrum2.pro.

powerspectrum2.pro

86 A. Appendix: Code repository

1 ; p l o t v e l o c i t y powerspectrum on a gr id made by Sph2Grid
2 ; and compare to IDL FFT. Note that d i f f e r e n c e s at smal l k are due
3 ; to the d i f f e r e n t data layout . IDL i n c l u d e s the redundant Hermitian
4 ; part o f the FFT data , which g i v e s d i f f e r e n c e s in the binning .
5

6

7 pro powerspect rum ser ia l , fname=fname , fend=fend
8 ; produces a s e r i e s o f p l o t s and saves them as jpg , ready to be

converted to g i f l a t e r
9

10 i f not (keyword set (fname) && keyword set (fend)) then $
11 begin
12 print , ’ Did not ente r any o f both nece s sa ry keywords : ’
13 print , ’ ” fname=” (name o f f i r s t f i l e) and ” fend=” (name o f l a s t

f i l e) ’
14 print , ’ Aborting ! P lease r e s t a r t proper ly . ’
15 STOP
16 endif
17

18 i f not keyword set (fname) then $
19 begin
20 print , ’ Did not ente r keyword ”fname=” (name o f f i r s t f i l e) ’
21 print , ’ Aborting ! P lease r e s t a r t proper ly . ’
22 STOP
23 endif
24

25 i f not keyword set (fend) then $
26 begin
27 print , ’ Did not ente r keyword ” fend=” (name o f l a s t f i l e) ’
28 print , ’ Aborting ! P lease r e s t a r t proper ly . ’
29 STOP
30 endif
31

32 SET PLOT, ’ x ’
33 s e t c o l o r s
34

35 ; beg in loop
36 oname=’ rea l ly new p lo t powerspec t rum 000 ’
37 fnumber=long (s t rcompress (strmid (fname , 2 , / r e v e r s e o f f s e t) ,/

r emove a l l)) ; fnumber=f i l enumber in long i n t e g e r
38 fnumber str=strcompress (s t r i n g (fnumber) ,/ r emove a l l)
39 strput , oname , fnumber str , (s t r l e n (oname)−s t r l e n (fnumber str))
40

41 REPEAT BEGIN
42

43 print , ’ s t a r t i n g powerspectrum subrout ine with ’ + fname
44 powerspectrum subroutine , fname=fname
45 save sc r een , oname
46

47 ; p repar ing next round
48 fname old=fname
49 fnumber=long (s t rcompress (strmid (fname , 2 , / r e v e r s e o f f s e t) ,/

r emove a l l))

A.4 Plotting the power spectrum from the grid files 87

50 fnumber=fnumber+1
51 fnumber str=strcompress (s t r i n g (fnumber) ,/ r emove a l l)
52 strput , fname , fnumber str , (s t r l e n (fname old)−s t r l e n (

fnumber str))
53 strput , oname , fnumber str , (s t r l e n (oname)−s t r l e n (fnumber str))
54

55 ; e x i t c l a u s e
56 i f (STRCMP(fname old , fend , / f o l d c a s e) EQ 1) then $
57 fname=!NULL
58

59 ENDREP UNTIL not keyword set (fname)
60

61 print , ’Done ! ’
62

63 end
64

65

66 pro powerspectrum multi , fname=fname , f2name=f2name , f3name=f3name ,
t w o f i l e s=t w o f i l e s , t h r e e f i l e s=t h r e e f i l e s , b lock=block , n co l s=nco l s ,
nrows=nrows , n o d e t a i l s=n o d e t a i l s

67

68 i f not keyword set (b lock) then $
69 block = ’VEL ’
70

71 i f not keyword set (nco l s) then $
72 nco l s = 1
73

74 i f not keyword set (nrows) then $
75 nrows = 1
76

77 ; i n i t i a l i z e multi−p lo t
78 !P .MULTI=[0 , nco l s , nrows , 0 , 0]
79 SET PLOT, ’ ps ’
80 DEVICE, /ENCAPSULATED
81 DEVICE, FILE=’ p lot powerspectrum mult i . eps ’ , x s i z e =10, y s i z e =22
82 ; DEVICE, FILE=’ p lot powerspectrum mult i . eps ’ , x s i z e =11, y s i z e =16.5
83 ; DEVICE, FILE=’ p lot powerspectrum mult i . eps ’ , x s i z e =15, y s i z e =22
84 DEVICE,COLOR=1
85 DEVICE,XOFFSET=1
86 DEVICE,YOFFSET=1
87 ; !X.OMARGIN = [8 , 1 . 5]
88 ; !Y.OMARGIN = [4 , 1]
89 ; ! x . margin = [0 , 0]
90 ; ! y . margin = [0 , 0]
91

92 ; read 1 s t f i l ename o f fname
93 f i l ename=’ ’
94 i f not keyword set (fname) then $
95 begin
96 read , f i l ename , prompt=’ Enter Filename : ’
97 f i l ename=s t r t r i m (f i l ename , 2)
98 fname = f i l ename
99 endif

88 A. Appendix: Code repository

100

101 ; check f o r ” t h r e e f i l e s ” keyword
102 i f keyword set (t h r e e f i l e s) then $
103 begin
104 ; a c t i v a t e ” t w o f i l e s ” , so en t e r i ng ” t h r e e f i l e s ” s u f f i c e s
105 t w o f i l e s =1
106 end
107

108 ; check f o r ” t w o f i l e s ” keyword
109 i f keyword set (t w o f i l e s) then $
110 begin
111 ; read 1 s t f i l ename o f f2name
112 f i l ename=’ ’
113 i f not keyword set (f2name) then $
114 begin
115 read , f i l ename , prompt=’ Enter second Filename : ’
116 f i l ename=s t r t r i m (f i l ename , 2)
117 f2name = f i l ename
118 endif
119 endif
120

121 ; check f o r ” t h r e e f i l e s ” keyword
122 i f keyword set (t h r e e f i l e s) then $
123 begin
124 ; read 1 s t f i l ename o f f32name
125 f i l ename=’ ’
126 i f not keyword set (f3name) then $
127 begin
128 read , f i l ename , prompt=’ Enter t h i r d Filename : ’
129 f i l ename=s t r t r i m (f i l ename , 2)
130 f3name = f i l ename
131 endif
132 endif
133

134

135 ; s t a r t count ing
136 c c o l s=0
137 crows=0
138

139 REPEAT BEGIN
140 powerspectrum subroutine , fname=fname , f2name=f2name , f3name=

f3name , n o d e t a i l s=n o d e t a i l s
141

142 ; p repar ing next round
143 fname old=fname
144 read , fname , prompt=’ Enter Filename : ’
145

146 i f (STRCMP(fname , ’ end ’ ,3 , / f o l d c a s e) EQ 1) then $
147 fname=!NULL
148

149 i f (fname EQ fname old) then $
150 fname=!NULL
151

A.4 Plotting the power spectrum from the grid files 89

152 ; i n c r e a s e the count , check f o r end o f p l o t by number
153 c c o l s+=c c o l s
154 i f c c o l s ge nco l s then $
155 begin
156 c c o l s = 0
157 crows+=crows
158 endif
159 i f crows ge nrows then $
160 fname=!NULL
161

162 ; next round f o r second f i l e
163 i f keyword set (t w o f i l e s) then $
164 begin
165 read , f2name , prompt=’ Enter second Filename : ’
166 endif
167

168 ; next round f o r t h i r d f i l e
169 i f keyword set (t w o f i l e s) then $
170 begin
171 read , f3name , prompt=’ Enter t h i r d Filename : ’
172 endif
173 ENDREP UNTIL not keyword set (fname)
174

175 DEVICE, /CLOSE
176 end
177

178

179 pro powerspectrum subroutine , fname=fname , f2name=f2name , f3name=f3name
, n o d e t a i l s=node ta i l s , b lock=block

180

181 i f not keyword set (fname) then $
182 fname = ’ . / g r id 000 ’
183

184 i f not keyword set (b lock) then $
185 block = ’VEL ’
186

187 v e l g r i d = readgr id (fname , block , head=head)
188

189 g r i d s i z e = head . g r i d s i z e
190 ngr id = head . ngr id
191 c e l l s i z e = g r i d s i z e / ngr id
192

193 kmin = 2∗ ! p i /(g r i d s i z e) ; box mode ; o r i g i n a l code ,
but

194 kmax = ! p i ∗ ngr id / g r i d s i z e ; Nyquist mode ; maybe not what I
need ?

195

196 ; read f i l e b e f o r e p l o t t i n g
197 Pk = readgr id (fname , ”VEL” , /pk)
198 print , Pk ; f o r NAN c o n t r o l r easons
199 bin pos = readgr id (fname , ”KPK”)
200

201 ; c a l c u l a t e time and make s t r i n g (Pasca l Foe r s t e r)

90 A. Appendix: Code repository

202 time=head . time /10 .59 d ; d iv ided by sound c r o s s i n g time
203 time=ROUND(time ∗1000d) /1000d ; round i t o f f
204 t i m e s t r=strcompress (s t r i n g (time) ,/ r emove a l l)
205 t i m e s t r=strmid (t ime s t r , 0 , 5)
206

207 ; p l o t
208 s e t c o l o r s
209 fname short=STRMID(fname , 2 , /REVERSE OFFSET)
210 plot , d i s t (2) , /nodata , / xlog , / ylog , xrange =[(0 .9∗ kmin) , (1 . 2∗kmax)

] $
211 , x t i t l e=’ k = 2 !4 p !X/L [kpc !U−1!N] ’ , y t i t l e=’P(k) [arb . un i t s] ’

$
212 , x s t y l e =1, y s t y l e=1 $; | only f o r i n d i v i d u a l p l o t s −−−> ,

yrange=minmax(Pk [where (Pk ne 0)]) $
213 ;CHANGE NAME OF THE RUN HERE! (P. Foe r s t e r)
214 , t i t l e= ’ snap : ’+fname short+’ time : ’+t i m e s t r+’ x t ! ISC !N ’

$; added by P. Foe r s t e r
215 , c h a r s i z e =1.0 $; added by Pasca l Foe r s t e r
216 , yrange =[1.0d−10 ,10] ; added by Pasca l Foerster , make them

comparable (f o r j u s t P(k))
217

218 ; remove NANs through i n t e r p o l a t i o n and p lo t c o r r e c t e d ”Pk good”
219 Pk good = Pk
220 where good = WHERE(FINITE(Pk good , /NAN))
221 Pk good [where good] = (Pk [where good − 1] + Pk [where good + 1]) /2 .0

d
222 Pk good [SIZE (Pk good , /DIMENSIONS)−1]=Pk [SIZE (Pk good , /DIMENSIONS)

−1] ; c o r r e c t l a s t entry aga in s t p o s s i b l e ” u p l i f t ”
223 oplot , b in pos , Pk good , c o l=mycolor (33) ,psym=−6, symsize =0.1 ;

p l o t t i n g NaN−f r e e P(k) data
224

225 ;ONLY IF there i s a 2nd f i l e :
226 i f keyword set (f2name) then $
227 begin
228 ; read f i l e 2 be f o r e p l o t t i n g
229 P2k = readgr id (f2name , ”VEL” , /pk)
230 print , P2k
231 bin2 pos = readgr id (f2name , ”KPK”)
232

233 ; same c o r r e t i o n s o f P2k as f o r Pk (c l e an in g v ia
i n t e r p o l a t i o n)

234 P2k good = P2k
235 where2 good = WHERE(FINITE(P2k good , /NAN))
236 P2k good [where2 good] = (P2k [where2 good − 1] + P2k [

where2 good + 1]) /2 .0 d
237 P2k good [SIZE (P2k good , /DIMENSIONS)−1]=P2k [SIZE (P2k good , /

DIMENSIONS)−1] ; c o r r e c t l a s t entry aga in s t p o s s i b l e ” u p l i f t ”
238 oplot , b in2 pos , P2k good , c o l=mycolor (57) ,psym=−6, symsize =0.1

; p l o t t i n g NaN−f r e e P(k) data
239 endif
240

241 ;ONLY IF there i s a 3 rd (! !) f i l e :
242 i f keyword set (f3name) then $

A.4 Plotting the power spectrum from the grid files 91

243 begin
244 ; ; read f i l e 3 be f o r e p l o t t i n g
245 P3k = readgr id (f3name , ”VEL” , /pk)
246 print , P3k
247 bin3 pos = readgr id (f3name , ”KPK”)
248

249 ; same c o r r e t i o n s o f P3k as f o r Pk and P2k (c l e an ing v ia
i n t e r p o l a t i o n)

250 P3k good = P3k
251 where3 good = WHERE(FINITE(P3k good , /NAN))
252 P3k good [where3 good] = (P3k [where3 good − 1] + P3k [

where3 good + 1]) /2 .0 d
253 P3k good [SIZE (P3k good , /DIMENSIONS)−1]=P3k [SIZE (P3k good , /

DIMENSIONS)−1] ; c o r r e c t l a s t entry aga in s t p o s s i b l e ” u p l i f t ”
254 oplot , b in3 pos , P3k good , c o l=mycolor (48) ,psym=−6, symsize =0.1

; p l o t t i n g NaN−f r e e P(k) data
255 endif
256

257 ; p l o t Kolmogorov 3D spectrum (−11/3)
258 oplot , b in pos , b in pos ˆ(−11./3 .) /2 .7 e9 , c o l=mycolor (20) , l i n e s t y l e

=3 ; added c o l o r and dotted l i n e s
259

260 ; p l o t average smoothing l ength
261 sname=fname
262 STRPUT, sname , ’ snap ’ , STRLEN(fname)−8
263 readnew , sname , hsml , ’HSML’
264 av hsml = MEAN(hsml)
265 k av hsml =2.0∗ ! p i / av hsml
266 k av hsml array=make array (ngrid , VALUE=k av hsml , /DOUBLE)
267 v e r t i c a l l i n e a r r a y=dindgen (ngr id) ∗ (1 . 0 d2 /(ngr id)) + 1d−20
268 oplot , k av hsml array , v e r t i c a l l i n e a r r a y , l i n e s t y l e =2, c o l=

mycolor (22)
269 i f not keyword set (n o d e t a i l s) then $
270 begin
271 xyouts , (0 . 98∗ k av hsml) , 0 . 7 d−9, ’ k ! ISML !N ’ , a l ignment =1,

c h a r s i z e =0.9 , c o l o r=mycolor (33)
272 endif
273

274 ;ONLY IF there i s a 2nd f i l e : (w i l l not done be done f o r 3 rd −−>
Arepo)

275 i f keyword set (f2name) then $
276 begin
277 s2name=f2name
278 STRPUT, s2name , ’ snap ’ , STRLEN(f2name)−8
279 readnew , s2name , h2sml , ’HSML’
280 av h2sml = MEAN(h2sml)
281 k av h2sml =2.0∗ ! p i / av h2sml
282 k av h2sml array=make array (ngrid , VALUE=k av h2sml , /DOUBLE)
283 v e r t i c a l l i n e a r r a y=dindgen (ngr id) ∗ (1 . 0 d2 /(ngr id)) + 1d−20
284 oplot , k av h2sml array , v e r t i c a l l i n e a r r a y , l i n e s t y l e =2, c o l

=mycolor (22)
285 i f not keyword set (n o d e t a i l s) then $
286 begin

92 A. Appendix: Code repository

287 xyouts , (0 . 98∗ k av h2sml) , 0 . 7 d−9, ’ k ! ISML !N ’ , a l ignment =1,
c h a r s i z e =0.9 , c o l o r=mycolor (57)

288 endif
289 endif
290

291 ; p l o t Nyquist mode and box mode
292 k Nyquist =! p i / c e l l s i z e
293 k Nyqu i s t ar ray=make array (ngrid , VALUE=k Nyquist , /DOUBLE)
294 k box =2∗! p i / g r i d s i z e
295 k box array=make array (ngrid , VALUE=k box , /DOUBLE)
296 v e r t i c a l l i n e a r r a y=dindgen (ngr id) ∗ (1 . 0 d2 /(ngr id)) + 1d−20
297 oplot , k Nyquis t array , v e r t i c a l l i n e a r r a y , l i n e s t y l e =5, c o l=

mycolor (22)
298 i f not keyword set (n o d e t a i l s) then $
299 begin
300 xyouts , (0 . 98∗ k Nyquist) , 0 . 7 d−9, ’ k ! INyquist !N ’ , a l ignment =1,

c h a r s i z e =0.9
301

302 endif
303 oplot , k box array , v e r t i c a l l i n e a r r a y , l i n e s t y l e =5, c o l=mycolor

(22)
304 i f not keyword set (n o d e t a i l s) then $
305 begin
306 xyouts , (1 . 02∗ k box) , 0 . 7 d−9, ’ k ! Ibox !N ’ , a l ignment =0, c h a r s i z e

=0.9
307 endif
308

309 ; p l o t k seed min and k seed max (see func t i on make vel @
make data . pro f o r more in fo rmat ion)

310 k seed min =(6.25/4) ∗2∗ ! p i / g r i d s i z e
311 k seed min ar ray=make array (ngrid , VALUE=k seed min , /DOUBLE)
312 k seed max =(12.57/4) ∗2∗ ! p i / g r i d s i z e
313 k seed max array=make array (ngrid , VALUE=k seed max , /DOUBLE)
314 v e r t i c a l l i n e a r r a y=dindgen (ngr id) ∗ (1 . 0 d2 /(ngr id)) + 1d−20
315 oplot , k seed min array , v e r t i c a l l i n e a r r a y , l i n e s t y l e =4, c o l=

mycolor (22)
316 i f not keyword set (n o d e t a i l s) then $
317 begin
318 xyouts , (1 . 02∗ k seed min) , 0 . 7 d−9, ’ k ! ISEED , min !N ’ , a l ignment =0,

c h a r s i z e =0.9
319 endif
320 oplot , k seed max array , v e r t i c a l l i n e a r r a y , l i n e s t y l e =4, c o l=

mycolor (22)
321 i f not keyword set (n o d e t a i l s) then $
322 begin
323 xyouts , (1 . 02∗ k seed max) , 0 . 7 d−9, ’ k ! ISEED , max !N ’ , a l ignment =0,

c h a r s i z e =0.9
324 endif
325 end

B. Appendix: Configuration files

B.1. The GADGET compilation settings

The following configuration file named Config.sh determines the specific features
of Gadget-3 available for later use when running the simulation on the compiled,
executable version of it. Since there are numerous extensions and often more than
a few methods to handle the same situation in Gadget, it is necessary to choose
the compilation settings wisely. Also, only settings that were included at compile
time can be activated later, off course.

Config.sh

1 # General code s e t t i n g s
2 PEANOHILBERT
3 WALLCLOCK
4 MYSORT
5 PERMUTATAION OPTIMIZATION
6 MOREPARAMS
7 ALLOWEXTRAPARAMS
8 PERIODIC
9

10 AUTO SWAP ENDIAN READIC # Enables auto ENDIAN swapping f o r read ing ICs
11 READ HSML # reads hsml from IC f i l e
12

13 MULTIPLEDOMAINS=8
14

15 WENDLAND C6 KERNEL
16 WC6 BIAS CORRECTION
17 JD VTURB
18

19 OPENMP=2
20 KD ACTIVE PARTICLE LIST FOR OPENMP
21 SORT FROM L3
22 OMP MYSORT
23 OMP SORT
24

25 KD BUFFER MANAGEMENT=0.3
26 KD HMAX ESTIMATE
27 KD RESTRICT NEIGHBOURS
28

29 # Simulat ion Setup
30 DOUBLEPRECISION
31 NOGRAVITY
32

94 B. Appendix: Configuration files

33 WAKEUP=3.0
34

35 ARTIFICIAL CONDUCTIVITY # enab l e s Price−Monaghan ar t conduc t i v i ty
36 TIME DEP ART COND=1.0
37 AB COND GRAVITY=3.0
38 TIME DEP ART VISC=1.0
39 AB ART VISC=1.0
40

41 AB SHEAR

B.2. The Sph2Grid compilation settings

The compilation settings listed in the Config file below determine which physical
quantities will be processed by Sph2Grid and how this processing will be done.
Only data processed and included in the grid files will be available for further use,
e.g. to be plotted.

Config

1 ## Compile Time Options ##
2 MASS
3 RHO
4 VEL
5 #MOMENTUM
6 #INTENERGY
7 #BFLD
8 #SCALAR BFLD // magnetic f i e l d s t r ength
9 #NPART

10 SCALARVEL /∗ ve l ˆ2 ∗/
11 #DENSVEL /∗ Density weighted v e l o c i t y ∗/
12 #VELDISPERSION
13 #VELFILTERED /∗ ve l f i l t e r e d on 5 c e l l cant be used with

VELDISPERSION ∗/
14

15 ## gene ra l opt ions ##
16 PERIODIC /∗ Per i od i c Boundary Condit ions ∗/
17

18 #VISIT /∗ V i s i t output ∗/
19

20 #TREE /∗ Build p a r t i c l e t r e e (not p a r a l l e l i s e d , buggy) ∗/
21 #HSMLFIND /∗ Find Hsml ∗/
22

23 OVERSAMPLING /∗ sample SPH ke rne l 27 t imes ∗/
24

25 OPENMP /∗ Use OpenMp threads on machines with shared mem
∗/

26 #OMP FFTW3 /∗ Use OpenMp in FFT c a l c u l a t i o n s ∗/
27

28 ## FFT opt ions ##
29 FOURIERTRANSFORM /∗ Master Switch FFT ∗/

B.2 The Sph2Grid compilation settings 95

30 #HACKFFTW3 /∗ Hacks f f t w m p i l o c a l s i z e m a n y f o r some cpu/
ngr id combis ∗/

31

32 KGRID /∗ s t o r e k va lue s o f the g r id ∗/
33

34 FFT IDL NORM /∗ s e t s IDL FFT norm 1/(nx∗ny∗nz) ∗/
35 #FFT SYM NORM /∗ s e t s symmetric norm 1/ s q r t (nx∗ny∗nz) ∗/
36

37 #FFT BIG LAYOUT /∗ s t o r e redundant data layout (=IDL) ∗/
38

39 POWERSPECTRUM /∗ compute P(k) on the f l y ∗/
40 #NO FFT OUTPUT /∗ do not wr i t e FFT and kGrid data , only Pk ∗/
41

42 #FFT NO ZEROPADDING /∗ no zero padding , a l s o when PERIODIC not s e t ∗/

C. Appendix: Parameter files

C.1. The GADGET parameters

The following parameter file named paramfile fibo contains all relevant intruc-
tions on how the Gadget executable is supposed to run the simulation. These
settings are crucial, since they determine everything from computional parameters
(e.g. time steps between calculations) to physical properties (e.g. viscosity settings)
of the simulation. By changing any of those parameters, the outcome of the simu-
lation may strongly change, and not necessarily in a physically sensible way.

paramfile fibo

1 s% Relevant f i l e s
2

3 In i tCondFi l e ICs/ f i b o i n i t i a l . i c
4 OutputDir .
5

6 SnapshotFi leBase snap
7

8 EnergyFi le energy . txt
9 I n f o F i l e info . tx t

10 TimingsFi le t imings . txt
11 CpuFile cpu . txt
12 TimebinFi le t imebin . txt
13

14 R e s t a r t F i l e r e s t a r t
15

16 % CPU−time l i m i t %%%%%%%%%%%%%% TimeLimitCPU∗0.6= BetRest
17

18 TimeLimitCPU 2160000
19 CpuTimeBetRestartFile 90000
20 ResubmitOn 0
21 ResubmitCommand xxx
22

23 % Code opt ions
24

25 ICFormat 2
26 SnapFormat 2
27 ComovingIntegrationOn 0
28

29 NumFilesPerSnapshot 1
30 NumFi lesWrittenInPara l l e l 1
31

32 CoolingOn 0

98 C. Appendix: Parameter files

33 StarformationOn 0
34

35 % C a r a c t e r i s t i c s o f run
36

37 MaxMemSize 1500
38 TimeBegin 0 .0
39 TimeMax 16 .0
40

41 Omega0 0
42 OmegaLambda 0
43

44 OmegaBaryon 0
45 HubbleParam 0 .7 ; only needed for c o o l i n g
46

47 BoxSize 3000 .0
48 PeriodicBoundariesOn 1
49

50 % Output f requency
51

52 OutputListFilename o u t p u t s s e l e c t i o n . txt
53 OutputListOn 0
54

55 TimeBetSnapshot 0 .08
56 TimeOfFirstSnapshot 0
57

58 TimeBetSta t i s t i c s 0 .05
59

60 % Accuracy o f time i n t e g r a t i o n
61

62 TypeOfTimestepCriterion 0
63 ErrTolIntAccuracy 0 .1
64

65 MaxSizeTimestep 0 .1
66 MinSizeTimestep 1 .0 e−8
67

68 % Tree a lgor i thm and f o r c e accuracy
69

70 ErrTolTheta 0 .6 %%
71

72 TypeOfOpeningCriterion 1
73 ErrTolForceAcc 0 .05 %%
74 MaxRMSDisplacementFac 0 .25
75

76 %TreeUpdateFrequency 0 .1
77

78 % Parameters o f SPH
79

80 %DesNumNgb 64
81 DesNumNgb 295 % i f us ing q u i n t i c k e rne l
82 MaxNumNgbDeviation 0 .01
83

84 ArtBulkViscConst 3 .0
85 InitGasTemp 0

C.1 The GADGET parameters 99

86 MinGasTemp 0.01
87 CourantFac 0 .15
88

89 % Further code parameters
90

91 PartAl locFactor 3 .0
92 B u f f e r S i z e 20
93 TreeDomainUpdateFrequency 0 .025
94

95 % System of un i t s
96

97 UnitLength in cm 3.085678 e21 ; 1 . 0 kpc /h
98 UnitMass in g 1 .989 e43 ; s o l a r masses
99 U n i t V e l o c i t y i n c m p e r s 1e5 ; 1 km/sec

100 Gravi tyConstant Interna l 0
101

102 % Sof t en ing l eng th s
103

104 MinGasHsmlFractional 0 . 0 % minimum gas smoothing in terms o f the
g r a v i t a t i o n a l s o f t e n i n g l ength

105

106 SofteningGas 1 .0 % 0 .4
107 Sof ten ingHalo 1 .0
108 Sof ten ingDisk 1 .0
109 Sof ten ingBulge 1 .0
110 S o f t e n i n g S t a r s 1 . 0
111 SofteningBndry 1 .0
112

113 SofteningGasMaxPhys 1 .0 %0 .4
114 SofteningHaloMaxPhys 1 .0
115 SofteningDiskMaxPhys 1 .0
116 SofteningBulgeMaxPhys 1 .0
117 SofteningStarsMaxPhys 1 .0
118 SofteningBndryMaxPhys 1 .0
119

120 %Uncommment f o r Magnetic d i s s i p a t i o n
121 A r t i f i c i a l M a g n e t i c D i s s i p a t i o n C o n s t a n t 0 .25
122 A r t i f i c i a l M a g n e t i c D i s s i p a t i o n M i n 0 .001
123

124 A r t i f i c i a l M a g n e t i c D i s s i p a t i o n S o u r c e 15 .0
125 Art i f i c i a lMagne t i cD i s s i pa t i onDecay t ime 0 .3
126

127 ArtCondConstant 1 .0
128 ArtCondMin 0 .0
129

130 V i s c o s i t y S o u r c e S c a l i n g 0 .0
131 Viscos ityDecayLength 4 .0
132 ViscosityAlphaMin 0 .025
133

134 S h o c k f i n d e r N o i s e l e v e l 0 .05

100 C. Appendix: Parameter files

C.2. The Sph2Grid parameters

The parameter file named sph2grid.par informs the Sph2Grid executable on the
properties of the simulation and instructs it on how it is supposed to bin the simu-
lation data contained in the snapshot files to the grid. The following edition of the
file is devised for one of our runs with a resolution of Npart = 1283. Therefore a grid
with Ngrid = 128 points per dimensioin is used, and the number of final bins is 128.

sph2grid.par

1 % Sph2Grid Parameter F i l e
2

3 Cosmology 0
4

5 % Image P r o p e r t i e s in kpc comoving
6

7 Center X 1500
8 Center Y 1500
9 Center Z 1500

10

11 Use Barycenter 0
12

13 GridSize 3000
14 GridPoints 128
15

16 I n p u t F i l e /ptmp/ f o e r s t e r / Fir s t Box / d i f f e r e n t I C s / FiBo res −128 turb −30/
snap 000

17 N IOTasks 1
18

19 NoClobber 0
20 Output Fi le /ptmp/ f o e r s t e r / Fir s t Box / d i f f e r e n t I C s / FiBo res −128 turb

−30/ g r id 000
21

22 UnitLength in cm 3.085678 e21 % 1 .0 kpc
23 UnitMass in g 1 .989 e43 % 1 .0 e10 s o l a r masses
24 U n i t V e l o c i t y i n c m p e r s 1e5 % 1 km/ sec
25

26 Nbins 128 % POWERSPECTRUM

Bibliography

Balsara, D. S. (1995). von Neumann stability analysis of smooth particle hydrody-
namics – suggestions for optimal algorithms. Journal of Computational Physics,
121:357–372.

Bauer, A. and Springel, V. (2012). Subsonic turbulence in smoothed particle hy-
drodynamics and moving-mesh simulations. Monthly Notices of the Royal Astro-
nomical Society, 423:2558–2578.

Box, G. E. P. and Muller, M. E. (1958). A Note on the Generation of Random
Normal Deviates. The Annals of Mathematical Statistics, 29(2):610–611.

Cui, W., Liu, L., Yang, X., Wang, Y., Feng, L., and Springel, V. (2008). An Ideal
Mass Assignment Scheme for Measuring the Power Spectrum with Fast Fourier
Transforms. The Astrophysical Journal, 687:738–744.

Cullen, L. and Dehnen, W. (2010). Inviscid smoothed particle hydrodynamics.
Monthly Notices of the Royal Astronomical Society, 408:669–683.

Daubechies, I., editor (1992). Ten lectures on wavelets.

Dolag, K., Vazza, F., Brunetti, G., and Tormen, G. (2005). Turbulent gas motions in
galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity.
Monthly Notices of the Royal Astronomical Society, 364:753–772.

Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics
– Theory and application to non-spherical stars. Monthly Notices of the Royal
Astronomical Society, 181:375–389.

Hernquist, L. and Katz, N. (1989). TREESPH - A unification of SPH with the
hierarchical tree method. Astrophysical Journal Supplement Series, 70:419–446.

Jasche, J., Kitaura, F. S., and Ensslin, T. A. (2009). Digital Signal Processing in
Cosmology. ArXiv e-prints.

Jing, Y. P. (2005). Correcting for the Alias Effect When Measuring the Power
Spectrum Using a Fast Fourier Transform. The Astrophysical Journal, 620:559–
563.

Landau, L. D. and Lifshitz, E. M. (1959). Fluid mechanics, volume VI of Course of
theoretical physics. Pergamon Press, 1st edition.

102 Bibliography

Landau, L. D. and Lifshitz, E. M. (1991). Hydrodynamik, volume VI of Lehrbuch
der theoretischen Physik in 10 Bänden. In dt. Sprache hrsg. von Paul Ziesche. 5th
edition.

Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis.
Astronomical Journal, 82:1013–1024.

Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual Review of
Astronomy and Astrophysics, 30:543–574.

Morris, J. P. and Monaghan, J. J. (1997). A Switch to Reduce SPH Viscosity.
Journal of Computational Physics, 136:41–50.

Price, D. J. (2008). Modelling discontinuities and Kelvin Helmholtz instabilities in
SPH. Journal of Computational Physics, 227:10040–10057.

Price, D. J. (2012a). Resolving high Reynolds numbers in smoothed particle hy-
drodynamics simulations of subsonic turbulence. Monthly Notices of the Royal
Astronomical Society, 420:L33–L37.

Price, D. J. (2012b). Smoothed particle hydrodynamics and magnetohydrodynamics.
Journal of Computational Physics, 231:759–794.

Price, D. J. (2012c). Smoothed Particle Hydrodynamics: Things I Wish My Mother
Taught Me. In Capuzzo-Dolcetta, R., Limongi, M., and Tornambè, A., editors,
Advances in Computational Astrophysics: Methods, Tools, and Outcome, volume
453 of Astronomical Society of the Pacific Conference Series, page 249.

Springel, V. (2005). The cosmological simulation code GADGET-2. Monthly Notices
of the Royal Astronomical Society, 364:1105–1134.

Springel, V. (2010a). E pur si muove: Galilean-invariant cosmological hydrodynam-
ical simulations on a moving mesh. Monthly Notices of the Royal Astronomical
Society, 401:791–851.

Springel, V. (2010b). Smoothed Particle Hydrodynamics in Astrophysics. Annual
Review of Astronomy and Astrophysics, 48:391–430.

Springel, V. and Hernquist, L. (2002). Cosmological smoothed particle hydrodynam-
ics simulations: the entropy equation. Monthly Notices of the Royal Astronomical
Society, 333:649–664.

Springel, V., Yoshida, N., and White, S. D. M. (2001). GADGET: a code for
collisionless and gasdynamical cosmological simulations. New Astronomy, 6:79–
117.

Bibliography 103

Tasker, E. J., Brunino, R., Mitchell, N. L., Michielsen, D., Hopton, S., Pearce, F. R.,
Bryan, G. L., and Theuns, T. (2008). A test suite for quantitative comparison of
hydrodynamic codes in astrophysics. Monthly Notices of the Royal Astronomical
Society, 390:1267–1281.

Wadsley, J. W., Veeravalli, G., and Couchman, H. M. P. (2008). On the treat-
ment of entropy mixing in numerical cosmology. Monthly Notices of the Royal
Astronomical Society, 387:427–438.

List of Figures

1.1. False-color image of the Sun . 3
1.2. The Andromeda Galaxy . 3
1.3. The Perseus Cluster of Galaxies . 4

3.1. The idealized power spectrum . 23

4.1. Voronoi and Delaunay tessellation of a two-dimensional periodic box . 27
4.2. Computing a continuous density from point mass particles 29
4.3. Keplerian ring test for various viscosity schemes 31
4.4. Visualization of different boundary conditions 33
4.5. Schematic setup of a complex grid . 36
4.6. Three common window functions and their Fourier counterparts . . . 41
4.7. The D12 and D20 window functions and their Fourier counterparts . 42

6.1. Velocity power spectra of the first and the last snapshot for G T30R128,
G T30R256 and A T30R128 . 53

6.2. Velocity power spectra of snapshots 000 to 050 for G T30R128, G T30R256
and A T30R128 . 54

6.3. Velocity power spectra of snapshots 075 to 200 for G T30R128, G T30R256
and A T30R128 . 55

6.4. Velocity power spectra of the first and the last snapshot for G T10R128,
G T10R256 and A T10R128 . 57

6.5. Velocity power spectra of snapshots 000 to 050 for G T10R128, G T10R256
and A T10R128 . 58

6.6. Velocity power spectra of snapshots 075 to 200 for G T10R128, G T10R256
and A T10R128 . 59

6.7. Velocity power spectra of snapshots 200, 400 and 600 for G T05R128
and A T10R128 . 61

6.8. Velocity power spectra of the first and the last snapshot for G T05R128,
G T05R256 and A T05R128 . 63

6.9. Velocity power spectra of snapshots 000 to 050 for G T05R128, G T05R256
and A T05R128 . 64

6.10. Velocity power spectra of snapshots 075 to 200 for G T05R128, G T05R256
and A T05R128 . 65

Selbstständigkeitserklärung

Hiermit versichere ich,

dass ich diese Bachelorarbeit zum Thema “Turbulence in SPH” (deutsch: “Turbu-

lenz in SPH”) selbstständig verfasst habe. Ich habe keine anderen als die angegebe-

nen Quellen und Hilfsmittel benutzt, sowie Zitate kenntlich gemacht.

Mir ist bekannt, dass Zuwiderhandlung auch nachträglich zur Aberkennung des Ab-

schlusses führen kann.

München, den 30. September 2014

Ort, Datum Unterschrift

	Introduction
	Astrophysical motivation
	Outline

	A brief sketch of hydrodynamics
	The continuity equation
	Euler's equation of hydrodynamics
	The motion of viscous fluids
	Similar flows and the Reynolds number

	A short introduction to turbulence
	The stationary flow
	The critical Reynolds number and the onset of turbulence
	Turbulence at near-critical Reynolds numbers
	Turbulence at over-critical Reynolds numbers

	Fully developed turbulence
	The turbulent cascade
	Local Kolmogorov turbulence
	Energy dissipation on small scales
	The power spectrum

	Essentials of turbulent SPH simulations
	Alternative simulation techniques
	The Cartesian grid
	Moving-mesh simulations

	Smoothed Particle Hydrodynamics
	The basic concept of SPH
	Artificial viscosity

	Setting up initial conditions
	The need for a box
	Units, scales and basic conditions
	Particle distribution
	The velocity field

	About GADGET
	Binning to the grid
	Standard SPH binning method
	Modified SPH binning methods
	TSC and other frequently used window functions
	The D20 sampling

	Our implementation of decaying turbulence
	Motivation of this setup
	Properties and realization of our simulation
	Setting up the turbulent box
	Compiling GADGET
	Running the simulation
	Compiling Sph2Grid
	Binning the data
	Plotting the spectrum

	Results
	Simulations with 30% turbulence
	GADGET-vs.-AREPO comparison

	Simulations with 10% turbulence
	GADGET-vs.-AREPO comparison
	Long run GADGET-vs.-AREPO comparison

	Simulations with 5% turbulence
	GADGET-vs.-AREPO comparison

	Discussion
	Summary
	Conclusions
	Future prospects

	Acknowledgments
	Appendix: Code repository
	Creating the initial conditions
	Submitting the simulation for computation
	Automated binning of numerous snapshots
	Plotting the power spectrum from the grid files

	Appendix: Configuration files
	The GADGET compilation settings
	The Sph2Grid compilation settings

	Appendix: Parameter files
	The GADGET parameters
	The Sph2Grid parameters

	Bibliography
	List of Figures
	Selbstständigkeitserklärung

