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Chapter 1

Introduction

1.1 Motivation

Galaxy clusters play an important role in cosmology, the mystery of dark matter, plasma
physics and in many other areas. Structure formation models can be tested by measuring
the abundance of large halos like galaxy clusters (Kravtsov and Borgani 2012). Dark Matter
was first observed by Fritz Zwicky in the Coma Cluster by measuring the velocity dispersion
of individual galaxies. Their velocities are so high that the cluster should fly apart if they
are only bound together by the mass of the luminous matter. He stated that dark matter
needs to have a much higher density within the cluster than previously expected (Zwicky
1933). Another interesting galaxy cluster is the so called Bullet Cluster shown in (Fig. 1.4).
It consists of a main cluster through which a sub cluster passes at a high velocity. Currently
this Bullet already had one core passage and now moves away from the center. By creating
gravitational lensing maps the complete mass of both clusters can be measured, revealing,
that the main component of the matter is separated from the X-ray emitting gas that used
to sit in between the galaxies but was stripped from them and now sits in the middle of their
respective stellar components. The gas clouds are slowed down by ram pressure, whereas
galaxies and DM pass through each other and themselves. From this offset an upper bound
to the self-interaction cross section of dark matter can be estimated. The result suggests that
dark matter is collisionless. The fact, that the mass peak calculated from the lensing maps
is coincident with the galaxies and not with the gas clouds is regarded as a proof for the
existence of dark matter by some (Clowe et al. 2006, Markevitch et al. 2004). As this X-ray
emitting gas is fully ionized it can be used as a laboratory for plasma physics. In merging
systems like the Bullet Cluster there will be shock fronts within the gas. A shock will heat
up ions immediately, while electrons are compressed adiabatically to a lower temperature,
because their thermal velocity is higher than the shock velocity. They then equilibrate via
Coulomb collisions over a certain time scale. But some observations suggest an immediate
shock heating of the electrons (ZuHone and Su 2022). A sketch of the gas of a merging system
like the Bullet Cluster is shown in (Fig. 1.1).

The gas-dark matter offset was simulated e.g. by (Mastropietro and Burkert 2008) confirming,
that such a system agrees with the currently accepted ΛCDM cosmology model. Many other
features of observed galaxy clusters have been simulated in the last decades. In order to not
just capture the physics of one specific cluster, but to study the structure formation in a
cosmological framework cosmological simulations like Magneticum1(Dolag et al. 2016) have
been and are performed. The goal of this work was to investigate how different particles types
move and to trace the properties of gas within merging galaxy clusters in such simulations.

1http://magneticum.org/index.html
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Figure 1.1: The gas of merging galaxy clusters; shaded circles depict dense cores of the colliding
subclusters; The shock fronts 1 and 2 in the central region will propagate to the outskirt without
affecting the cores; taken from (Markevitch and Vikhlinin 2007).

The results were supplemented with radial profiles over certain features of the cluster. In the
Introduction (Sec. 1), the cosmological framework, galaxy cluster formation and basic cluster
physics, focusing on mergers and the intracluster medium (ICM), is presented. Secondly
the Methodology (Sec. 2), from simulation tools to basic mathematical manipulations is
explained. The results of tracing gas particles and their properties, dark matter and star
particles and the radial profiles are displayed in (Sec. 3). Finally the results are summarized
in (Sec. 4).

1.2 Cosmology

1.2.1 Friedmann Equation

Galaxy clusters and the physics governing them act over cosmological distances. They can
give not only insight into the behavior of plasma and dark matter but also into cosmological
parameters (Kravtsov and Borgani 2012, p. 4). In order to be able to understand galaxy
cluster we need to know the basics of cosmology.

The first indication of the expansion of the universe was given 1917 by Vesto Slipher (1875-
1969) and Carl Wirtz (1876-1939) who observed that the majority of the then so-called nebulae
were moving away from us. In the early 1930s Edwin Hubble and Milton Humason could
determine that not only are they moving away from us but also do that in an accelerating
fashion as their distances become larger.

The second realization that lead to modern cosmology was the 1915 released Theory of General
Relativity (GR) by Albert Einstein (1879 - 1955), which determines how the matter and
energy content of the universe effect the geometry of space and how the geometry in return
governs the motion of matter and energy. In 1922 Alexander Friedmann derived a class
of cosmological models from GR. George Lemaître (1894 - 1966) also came to the same
conclusions independently and was the first to connect these models to the receding motion
of the galaxies. Today this is known as the Hubble-Lemaître law (if v ≪ c and D ≪ c

H0
)

v = H0D (1.1)
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where v is the escape velocity, D the distance of the galaxy and H0 the Hubble constant. In
this case it also can be shown that

1 + z =

(
c+ v

c− v

)1/2

≈ 1 +
v

c
=⇒ v ≈ cz (1.2)

In addition to the Theory of General Relativity two important assumptions are made:
1) Isotropy : Over large scales the properties (e.g. matter density) of the universe are the
same in every direction. 2) The cosmological principle: Our position in the universe is not
distinguishable from any other, i.e. for every other observer the first assumption also has to
be true, which makes the universe homogeneous.

The four dimensional space-time can be described by a metric (4 × 4-matrix gµν). A metric
that satisfies both above assumptions is called the Robertson-Walker (RW) metric given by
the line element

ds2 = −c2dt2 + a2(t)
[
dw2 + f2

K(w)dΩ2
]

(1.3)

where a(t) is the scale factor that describes the expansion of space, dw = dr
1+Kr2/4

is the
radial coordinate corrected for curvature K and dΩ = dθ2 + sin2 θdφ2. Also the radial
function fK(w) depends on the sign of K and is equal to w if K = 0 (flat geometry). Today
measurements show that K ≈ 0 and therefore the RW metric can be written as ds2 =
−c2dt2 + a2(t)

[
dr2 + r2(dθ2 + sin2 θdφ2)

]
.

Because of the expansion of space electro-magnetic waves moving through it get stretched
according to the scale factor which leads to a redshift z of the photons. For a comoving light
source and a comoving observer w is equal to 0 and therefore also r = 0. For light ds = 0 is
true. The RW metric becomes c|dt| = a(t)dw and with some calculations one ends up with

ve
vo

=
a(to)

a(te)
=

λo

λe
= 1 +

λo − λe

λe
=: 1 + z (1.4)

where the subscript e stands for the emitting reference frame and o for the observing reference
frame. ν and λ are the frequency and the wavelength of the photon respectively. a(t) and
z are the scale factor and the redshift. Most of the time a(to) ≡ 1 and a(te) = a(t) are
convention.

Finally, inserting the RW metric into the Einstein field equations

Gαβ =
8πG

c4
Tαβ − Λgαβ (1.5)

where Gαβ is the Einstein tensor which is constructed out of the curvature tensor, Tαβ is the
energy-momentum tensor, gαβ is the metric and the cosmological constant Λ describes the
dark energy, yields the Friedmann Equations

(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
(1.6)

A RW metric that satisfies these equations is called Friedmann-Lemaître-Robertson-Walker
(FLRW) metric (Bartelmann 2019, p. 2-11).



4 CHAPTER 1. INTRODUCTION

1.2.2 Cosmological Parameters

The cosmological density parameters describe the content of the universe which consists of
relativistic particles (radiation, also neutrinos are included here) and non-relativistic particles
(dust). Their density evolution can be described by

ρ(a) = ρ0a
−3(1+w) (1.7)

where a is the scale factor and w = P
ρc2

is the dimensionless ratio of pressure and energy
density. For radiation w = 1/3 and for dust it is w = 0. Therefore we get

ρr(a) = ρr,0a
−4 ρm(a) = ρm,0a

−3 (1.8)

For w = −1 the density evolution becomes ρΛ(a) = ρΛ,0 (constant), which is equal to the
scaling relation of the cosmological constant. That means Λ can also be a from of matter or
energy, which pressure equals a negative energy density.

Inserting (Eq. 1.8) into (Eq. 1.6) yields

(
ȧ

a

)2

=
8πG

3
ρr,0a

−4 +
8πG

3
ρm,0a

−3 −Kc2a−2 +
Λc2

3
(1.9)

We can define the Hubble function as the relative cosmic expansion rate and the Hubble
constant as its value at the current time (Bartelmann 2019, p.14f)

H(t) :=
ȧ

a
H0 := H(t0) (1.10)

Often cosmological measurements are given in terms of the dimensionless Hubble constant h
given by H0 = h 100 km s−1 Mpc−1, which characterizes the uncertainty of H0. One can also
find the parameter h50 =

H0

50 km s−1 Mpc−1 sometimes. (Schneider 2006, p.11)

By defining density parameters in terms of the critical density

ρc(t) =
3H2(t)

8πG
ρc,0 =

3H2
0

8πG
(1.11)

we get

Ωr,0 =
8πG

3H2
0

ρr,0 Ωm,0 =
8πG

3H2
0

ρm,0 ΩΛ,0 =
Λc2

3H2
0

(1.12)

and we can rewrite (Eq. 1.9) as

H2(a) = H2
0

(
Ωr,0a

−4 +Ωm,0a
−3 −Kc2a−2 +ΩΛ,0

)
(1.13)

Setting a = 1 and H2(a = 1) = H2
0 and solving for the K-dependent term yields

− Kc2

H2
0

:= ΩK,0 = 1− Ωr,0 − Ωm,0 − ΩΛ,0 (1.14)
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Ωb,0 Ωc,0 Ωm,0 ΩΛ,0 Ωr,0 H0 t0
0.0455 0.226 0.272 0.728 8.5 ·10−5 70.4 km s−1Mpc−1 13.76 Gyr

Table 1.1: The cosmological parameters (from left to right): Baryon density today, Cold dark matter
density today, Matter density today, Dark energy density today, Radiation density today, Hubble
constant and the age of the universe today as determined by (Komatsu et al. 2011, Tab. 1, column
2) except for Ωr,0, which was taken from (Bartelmann 2019, p.19). From these values one finds that
matter consists of about 16.7% baryons and 83.3% CDM.

which is the definition of the (current) curvature parameter. Measurements show that the
other three density parameters almost perfectly add up to one which means ΩK,0 = K = 0
and therefore the geometry of the universe is flat.

The final Friedmann equation is

H2(a) = H2
0

(
Ωr,0a

−4 +Ωm,0a
−3 +ΩK,0a

−2 +ΩΛ,0

)
=: H2

0E
2(a) (1.15)

where E(a) is the dimensionless expansion function (Bartelmann 2019, p.16f).

The values of these parameters in the current paradigm of cosmology - the ΛCDM model -
are given in (Tab. 1.1) which were determined from measurements by the WMAP2 explorer
by (Komatsu et al. 2011). These are also the values used in the Magneticum3 simulation.

The ΛCDM model has its name from the cosmological constant Λ and cold dark matter (CDM)
which is assumed to exist.

1.2.3 Distance Measures

First we need to start with the Hubble time tH ≡ 1
H0

= 9.78 · 109h−1 yr , which is the
simplest appraisal for the age of the universe. From that we can calculate the Hubble distance
DH ≡ c

H0
= 3000h−1 Mpc, which is an approximation for the radius of the observable

universe.

The simplest distance, the proper distance Dp, is the distance between two objects measured
by a ruler at the time at which they are observed. But more importantly is the comoving
distance δDc, which remains constant between two objects, that are moving with the Hubble
flow, i.e. they have no peculiar velocity. Therefore it is equal to the proper distance, corrected
for the expansion of the universe, which is characterized by a = (1+ z)−1: δDc = δDp(1+ z).
Integrating over δDc yields the total line-of-sight comoving distance from an object at redshift
z to us (at z = 0)

Dc = DH

∫ z

0

dz′

E(z′)
(1.16)

where E(z) is the expansion function from (Eq. 1.15).

If we want to know the comoving distance between two objects that were observed at the
same redshift in the sky (like two galaxy clusters shortly after or before they collide), we need
to multiply the angle at which they are separated δθ by their transverse comoving distance
DM , which is related to the line-of-sight comoving distance. If ΩK = 0 they are the same,

2https://map.gsfc.nasa.gov/
3http://magneticum.org/simulations.html

https://map.gsfc.nasa.gov/
http://magneticum.org/simulations.html


6 CHAPTER 1. INTRODUCTION

otherwise they are related via a sinh (ΩK > 0) or sin (ΩK < 0) function that depend on the
ΩK .

The next important measure it the angular diameter distance DA that is defined as the
physical transverse size that is considered divided by its angular size (in radian). If we know
this distance we can calculate the proper separation at the source with the angular separation
in a telescope. It has a maximum at z ∼ 1 and therefore an extended object at z ∼ 1 appears
larger than an the same object at z ∼ 0.5 in the sky if their physical size is the same. Without
the expansion, like in everyday life, we would expect, that the closer object (z ∼ 0.5) appears
larger. This distance is related to the comoving distances as

DA =
DM

1 + z

K=0
=

Dc

1 + z
(1.17)

The physical transverse size of a distance in the universe is dphy whereas its comoving size
is dcom = (1 + z) · dphy. We see it over an angle Φ = dcom/Dc. If we want to derive the
physical size from the observed angle we need to rewrite it as Φ = dphy(1+ z)/Dc ≡ dphy/DA

(Hu 2021). We see that the angular diameter distance is the comoving distance divided by
(1+z) because the physical distance perpendicular to the line of sight is also effected by the
expansion of the universe.

The last distance measure we want to discuss is the luminosity distance DL. It is defined by
the bolometric flux S and luminosity L as follows:

DL ≡
√

L

4πS
(1.18)

It is also related to the other distances by

DL = (1 + z)DM = (1 + z)2DA
K=0
= (1 + z)Dc (1.19)

This is because the flux has to be corrected two times with (1 + z)−1. Once because of the
energy loss of the photons due to the cosmological redshift and a second time because the
photon emitting source is moving away from us at a relativistic speed and therefore its time
is dilated to ours. Therefore the photons emitted per time unit are more than the photons
we receive per time unit.

Because redshift is related to the scale factor, which describes the expansion of the universe
over time, it can be related to a time measure. The time an observer on earth looks back in
time when he is looking at a far away object in an expanding universe is called the lookback
time tL. It is given by (Hogg 1999)

tL = tH

∫ z

0

dz′

(1 + z′)E(z′)
(1.20)

1.3 Dynamics of Galaxy Clusters

1.3.1 Formation of Galaxy Clusters

Galaxy clusters form in an hierarchical chain of accretion of subsystems and mergers governed
by DM, as DM dominates the gravitational field. Therefore its properties are only dependent
on the cosmological initial conditions in an expanding universe. For example, the temperature
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of the ICM increases through adiabatic compression and shocks, that are produced by infalling
substructures, before the gas settles into a hydrostatic equilibrium (Kravtsov and Borgani
2012, p. 4).

As a measure of structure formation the density contrast field δ(x) = (ρ(x)− ρ̄m)/ρ̄m, where
ρ̄m is the mean mass density of the universe, can be used. An overdensity (δ(x) > 0) in this
field will form an object via gravitational collapse, that will take part in the formation of a
galaxy cluster later. The initial conditions of this field are assumed to be a homogeneous and
isotropic Gaussian random field (Kravtsov and Borgani 2012, p. 10).

A collapse like this can be described by the spherical collapse model, where the evolution of
a spherically-symmetric density fluctuation with the initial parameters of physical radius Ri,
amplitude δi > 0 and mass M = 4/3π(1 + δi)ρ̄R

3
i , where ρ̄ is the initial mean density of the

universe , is investigated. Because of its one-dimensionality only the radius R(t) needs to be
considered. After an initial increase of the radius and a turnaround at Rta = R(tta) it decreases
and reaches the virial radius Rvir = R(tvir), which physically is the radius within which the
gas satisfies the virial theorem (Kravtsov and Borgani 2012, p. 12) ⟨T ⟩t = −1/2⟨V ⟩t, where
T is the total kinetic energy and V is the total potential energy (Bartelmann 2015, p.118).

For ΩΛ = 0 these two radii satisfy Rvir = Rta/2 and the respective times are tvir = 2tta.
Because the overdensity collapses during the time interval tvir − tta this interval is equal to
the free fall time of a uniform sphere:

tvir − tta = tta = tff =
√

3π/(32Gρta) ⇐⇒ ρta = 3π/(32Gt2ta) (1.21)

And because ρ ∝ R−3 we get ρvir = 8ρta = 3π/(4Gt2ta) = 3π/(Gt2vir). The mean mass density
in a Einstein-de Sitter Universe (Ωm = 1,ΩΛ = 0) evolves as ρ̄m(t) = 1/(6πGt2) and therefore
the density contrast within a sphere of radius Rvir is

∆vir =
ρvir

ρ̄m(tvir)
= 18π2 ≈ 180 (1.22)

Similar estimates of ρvir and ρ̄m(tvir) can be made for the ΛCDM model. For values given
in (Tab. 1.1) at z = 0 this yields ∆vir ≈ 358 (Kravtsov and Borgani 2012, p.12).

Even though the spherical density model presents approximations for the virialization time
scale and the virial density contrast, it does not describe real collapses of density peaks. As
seen in numerical simulations, the boundaries of a cluster are not sharp and therefore different
parts of a overdensity collapse at different times and and therefore tvir is also not sharp.

Also the density field contains fluctuations within one peak and therefore collapses arise on
all spatial scales. At high redshifts many small-mass collapsed objects merge to build up
larger substructures until they are virialized and near the center of the overall density peak.
Nonlinear effects and mergers lead to relaxation and energy and mass exchange over all these
scales (Kravtsov and Borgani 2012).

1.3.2 Mass and Radius Definitions

For the above defined virial radius Rvir one can define the virial mass Mvir, which is the
mass encompassed within a sphere with radius Rvir: Mvir = (4π/3)ρvirR

3
vir. Following the

discussion of the density contrast above it can be approximated as a spherical overdensity
mass (SO mass). For a given cluster the center needs to be chosen as e.g. the density peak,
the potential minimum, the position of the most bound particle or the center of mass. The
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Figure 1.2: Virial overdensities ∆m and ∆c for ρm and ρc as a function of the redshift z in the ΛCDM-
model.

SO mass m∆ref is the mass within a sphere of radius r∆ref enclosing a given density contrast
∆ with respect to a reference density ρref(z):

m∆ref =
4π

3
∆ρ(z)r3∆ref (1.23)

As a reference density the critical density ρc(z) (Eq. 1.11) and the mean matter density
ρm(z) are in use. The density contrast for both are given by ∆m = ∆c/Ωm(z) and Ωm(z) =
Ωm,0(1 + z)3/E(z), where E(z) is given by (Eq. 1.15) (Kravtsov and Borgani 2012). ∆c =
18π2 + 82x − 39x2 describes how the critical overdensity changes with x = Ωm(z) − 1 for
Ωr = 0 (Bryan and Norman 1998). The virial overdensities ∆m and ∆c for ρm and ρc as a
function of the redshift z in the ΛCDM-model is shown in (Fig. 1.2). The virial mass Mvir

and radius Rvir are often approximated by m200c and r200c, because ∆m is close to 200 for
z > 1, where much of the structure formation takes place. Later in this work we will use the
radius r500c.

1.3.3 Accretion of Substructures

The collapsing density peaks discussed in (Sec. 1.3.1) are not alone in the universe but
are surrounded by other peaks (Kravtsov and Borgani 2012). The tidal forces of the most
massive overdensities disrupt the other peaks. The distance of disruption d can be estimated
by approximating a system of close galaxy clusters as a massive body of mass M and a smaller
body of mass m ≪ M which again is approximated by two even smaller bodies of masses m/2
(See. Fig. 1.3):

The attracting gravitational force between the two small spheres is

fatt = G
m/2 ·m/2

r2
=

Gm2

4r2
(1.24)
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Figure 1.3: Massive body of mass M and smaller body of mass m ≪ M approximated as two smaller
bodies of masses m/s in order to estimate tidal forces.

while the gravitational force pulling them apart, is the difference in attracting gravitational
forces between each of the small bodies and the massive body, which is

fdis = G
M ·m/2

(d− r/2)2
−G

M ·m/2

(d+ r/2)2
≈ G

Mm

d3
r (1.25)

where we used a Taylor expansion for the second step. Because the small body is disrupted
if fdis > fatt the so called Roche limit can be written as

G
Mm

d3
r > G

m2

r2
=⇒ d3

M
∝ r3

m
(1.26)

where we can imagine d as the radius of a sphere around the massive body through the smaller
one, M is its mass, r is the radius of the small body and m is the respective mass. As ρ̄ ∝ M/r3

(Eq. 1.26) can be rewritten in terms of the densities of these spheres: ρ̄massive ∝ ρ̄small. If we
consider d and r to be SO radii (Eq. 1.23) with the same overdensities ∆ this means a galaxy
or galaxy group can be disrupted after passing the point where its SO radius touches that of
the galaxy cluster it falls into.

The tidally stripped matter is formed into massive cosmological filaments that reach between
the most massive galaxy clusters along which most of the accretion of matter onto clusters
happens (Kravtsov and Borgani 2012).

1.3.4 Mergers

The accretion discussed in the section above consists of inter cluster gas, individual galaxies
and galaxy groups onto a large galaxy cluster. If two galaxy clusters collide with each other
the system is called a merger. If the masses of both components are comparable it is a called
a major merger, otherwise one would speak of a minor merger. (Markevitch and Vikhlinin
2007, p.48)

In any of these events the gas inside of the infalling or colliding structure (inter stellar medium
(ISM) for individual galaxies, ICM for galaxy cluster) experiences ram pressure given by
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Figure 1.4: Composite image of the Bullet Cluster (1E 0657-56). Optical background image from
HST and Magellan; Chandra X-ray Observatory image in pink; Projected total mass map obtained
from weak lensing in blue (Clowe et al. 2006) (Image created by the Chandra press group).

Pram = ρv2 (1.27)

where ρ is the density of the ICM (of the main cluster) and v is the velocity of a substructure
relative to said ICM (ZuHone and Su 2022, p.4). This effect is responsible for a variety
of phenomena in galaxy clusters, such as tails of ram-pressure stripped gas behind infalling
galaxies ("jellyfish galaxies") (ZuHone and Su 2022, p.14f), cold fronts (ZuHone and Su 2022,
Markevitch and Vikhlinin 2007) and shocks that we discuss below, (Markevitch and Vikhlinin
2007). The most prominent example for ram-pressure stripping is the Bullet Cluster as seen
in (Fig. 1.4). In this composite image the blue regions correspond to the total mass map
obtained by weak lensing and the pink regions show the hot ICM gas (Clowe et al. 2006).
One can clearly see, that because ram-pressure only affects the gas, while the galaxies and
the mass dominating dark matter pass each other collisionless, the ICM gets pushed behind
their respective galaxies and dark matter, creating a gas bridge.

In (Fig. 1.4) one can also see a surface brightness edge in front of the bullet-like substructure
at the western side. This is a surface of discontinuity. They occur in two different forms in
galaxy clusters: Cold fronts and shock fronts. This particular one visible in (Fig. 1.4) is a
cold front albeit a shock front is just 100 kpc in front of it (ZuHone and Su 2022).

Cold fronts are contact discontinuities (ZuHone and Su 2022), which are a special case of a
tangential discontinuity, i.e. pressure and velocities perpendicular to the front are continuous.
In a contact discontinuity on top of that, also the tangential velocities are continuous. Only
the density can remain discontinuous, but with it also other thermodynamical quantities e.g.
temperature (Landau and Lifshitz 1959, §84). Even though cold fronts are always called
contact discontinuities in the literature they often have discontinuous tangential velocities
(Markevitch and Vikhlinin 2007, p.12). The most striking difference to shock fronts is that,

https://chandra.harvard.edu/photo/2006/1e0657/more.html
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as the name already implies, the gas behind the front is colder then the ICM in front of
it. This is the case because every cold front has its origin in the cold, low entropy gas of a
cluster core. These merger cold fronts are most often observed on the inbound part of their
trajectory or close to the core, when ram pressure reaches its maximum and the hot ICM of
the infalling substructure is pushed behind its cold core, where the temperature and density
jump is most pronounced. The contradiction that the pressure is continuous but the densities
and temperature are not can be resolved by ram pressure: pthermal,cool = pthermal,ICM + pram.
If the cold substructure survives the core passage and enters the lower denisty region behind
the center, ram pressure drops and the "slingshot" stage of the cold fronts sets in. More
details on this stage and cold fronts in general can be found in (Markevitch and Vikhlinin
2007) and (ZuHone and Su 2022).

If a merger happens supersonically a cold front can form as well, but now a shock front will
propagate in front of it. Its velocity is often encoded by the Mach number M ≡ v/cs, where
v is the flow velocity and cs the sound speed of the medium, given by

cs =

√
γkBT

µmp
(1.28)

where T is the thermal temperature, γ = 5/3 is adiabatic index of a monatomic gas, kB
the Boltzmann constant and µ ≈ 0.6 the mean molecular weight (ZuHone and Su 2022). For
merger shocks M ≲ 3, because the temperature of the ICM of the main cluster and therefore its
sound speed and the velocity of infalling substructures reflect the same gravitational potential
of the main cluster (Markevitch and Vikhlinin 2007). As mergers involve the conversion of up
to ∼ 1065 erg of gravitational potential energy into kinetic energy of dark matter, ICM and
galaxies as well as into the thermal and magnetic energy of the ICM, these shock fronts are
the primary heating source for the hot cluster gas (ZuHone and Su 2022). Unlike cold fronts
shock fronts can have pressure and perpendicular velocity discontinuities. Only the tangential
velocities should be continuous (Landau and Lifshitz 1959, §84). Also their temperature jump
has the opposite sign of the jump in cold fronts, as the hotter gas is the shocked gas behind
the shock front. We know from simulations it is unlikely that they form during the inbound
segment of the subcluster’s trajectory as they have to climb up the density gradient of the
main cluster. Which makes them hard to find, because once they left the center the X-ray
brightness becomes too low for us to observe them and they need to propagate nearly in the
plane of the sky. Other origins of shock fronts are AGN bubbles in clusters center or accretion
shocks at the outskirts of clusters. These are hardly observable, because of the bubbles
low Mach number M ∼ 1 or because they only occur in low X-ray brightness regions, like
accretion shocks, where the Mach number would be high enough M ∼ 10− 100 (Markevitch
and Vikhlinin 2007).

1.3.5 Rankine-Hugoniot Jump Conditions

In order to examine shock fronts the discontinuities in the fluid properties are described by
the the Rankine-Hugoniot jump conditions. For a polytropic ideal gas, i.e. the equation of
state is pV = p/ρ = RT/µ with a heat function w = CpT = γpV

γ−1 = c2

γ−1 the jump ratios can
be derived from the conservation of mass, energy and momentum (Landau and Lifshitz 1959,
§84)

ρ1v1,x = ρ2v2x (1.29)
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ρ1v1,x

(1
2
v21 + w1

)
= ρ2v2,x

(1
2
v22 + w2

)
(1.30)

p1 + ρ1v
2
1,x = p2 + ρ2v

2
2,x (1.31)

where we omitted the conservation of tangential velocities, because they should be continuous
in a shock front and a contact discontinuity. The jump ratios for density, pressure and
temperature as a function of the Mach number M are

ρ2
ρ1

=
v1
v2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

(1.32)

p2
p1

=
2γM2

1

γ + 1
− γ − 1

γ + 1
(1.33)

T2

T1
=

(
2γM2

1 − (γ − 1)
)(

(γ − 1)M2
1 + 2

)
(γ + 1)2M2

1

(1.34)

In all these equations the subscript 1 corresponds to the gas in front of the shock (upstream)
and 2 corresponds to the shocked gas behind the shock (downstream). A derivation following
(Landau and Lifshitz 1959, §89) can be found in (App. A). (Fig. 1.5) shows these jump ratios
as a function of the Mach number for γ = 5/3 and γ = 4/3, which represents relativistic gas.
For large M ≫ 1 the density jump ratio approaches 4 while the temperature and pressure jump
ratios can grow infinitely with the Mach number, but for relativistic gas they grow slower.
Therefore the velocity jump ratio (which is the reciprocal of the density jump ratio) approaches
1/4 and the jump ratio for the kinetic energy Ekin,2/Ekin,1 = ρ2v

2
2/ρ2v

2
1 approaches the same

value. Typical values for γ = 5/3 are ρ2/ρ1(M = 3) = 3 and ρ2/ρ1(M = 10) = 3.9.
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Figure 1.5: The Rankine-Hugoniot jump ratios for density, pressure and temperature. For large
M ≫ 1 the density jump ratio approaches 4 while the temperature and pressure jump ratios can grow
infinitely with the Mach number; The dashed lines represent relativistic gas where γ = 4/3.

1.4 Properties of the ICM

It was observed from X-ray observations, that galaxy clusters are filled with the so called
intracluster medium (ICM), a hot and diffuse plasma at temperatures of Te ∼ 107 − 108 K
(kinetic electron temperature) and densities between n ∼ 10−2 cm−3 at the center and ∼ 10−4

cm−3 in the peripheral regions. It consists of electrons and ions, which are mostly protons, but
there is a trace of heavier, ionized elements, like iron, at abundances similar to the content in
the sun. A gas like that mainly emits radiation due to the process of thermal bremsstrahlung
(free-free) emission. At temperatures and densities which are at play in galaxy clusters, this
results in X-ray emission (Markevitch and Vikhlinin 2007, p. 3).

In the following section a few different densities will be used. Number densities are denoted
by n and have units cm−3 and mass densities are denoted by ρ and have units g cm−3. We
will distinguish between electron and proton densities with the subscripts e and p respectively.
Combining both yields the gas density with the subscript g. In a plasma with conditions like
the ICM electron and proton densities are connected by (Sarazin 1986)

ne = 1.21np (1.35)

and the number and mass density is connected via

n =
ρ

µmp
(1.36)

where µ is the mean molecular weight, that can be calculated with

µ =

(∑
i

Xi(1 + Zi)

Ai

)−1

(1.37)
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where Xi is the mass fraction, Zi the charge number and Ai the mass number of the nucleus
i. In the ICM the main components are hydrogen and helium with XH = 0.75, XHe = 0.25,
ZH = 1, ZHe = 2 and AH = 1, AHe = 4 which yields µ ≈ 0.6 (Kippenhahn and Weigert
1990, p.103).

1.4.1 Isothermal Beta Model

In general the ICM can be described as a fluid, because the collision time scales for ions
and electrons are much shorter than any dynamical time scales or temperature changing time
scales. A sound wave will take no significant fraction of the age of the cluster to pass it
and also the cooling time of the thermal bremsstrahlung is greater than the sound crossing
time, which makes hydrostatic equilibrium possible. The simplest form of a hydrostatic gas
distribution is a isothermal one (Sarazin 1986, p.78).

The gas distribution in the isothermal β-model can be described by

ρk(r)

ρk,0
=

nk(r)

nk,0
=

(
1 +

( r

rc

)2
)−3β/2

(1.38)

where k = {g, e, p} and the subscript 0 indicates the density in the core, rc is the core radius
and β is given by

β =
µmpσ

2
r

kBTg
(1.39)

where σr is the line-of-sight velocity dispersion. From this model many useful parameters like
the total gas mass and the emission integral can be found. (Sarazin 1986,p. 16 and p. 78)
(Fig. 1.6) shows the total mass and the total gas mass given by this model and (Fig. 1.7)
shows the β-model applied to the Bullet Cluster.

1.4.2 Time Scales and Length Scales

To get a good intuition how processes work in a plasma and to get a quick overview time
and length scales can be used, similar to the justification of hydrostatic equilibrium in the
previous section.

As particle interaction in the ICM are mediated by the electric force (neglecting magnetic
fields), the most basic length scale is the mean free path, which is the distance a particle can
travel between two so called Coulomb collisions (distant or nearby).

λmfp =
33/2(kBT )

2

4π1/2nq4 ln(Λ)
(1.40)

where T is either the electron temperature Te or the ion temperature Ti, q and n are the
respective charge and density and Λ is the ratio of largest to smallest impact parameter. ln(Λ)
is called the Coulomb logarithm and has typical values of ∼ 30− 40. Below this length scale
hot ionized plasma can not be approximated as a fluid and gradients in the fluid properties
are smeared out by particle diffusion (ZuHone and Su 2022, p. 3). The corresponding time
scale is the (self) collision time:

tcoll ≡
λmfp

⟨v⟩rms
=

3m1/2(kBT )
3/2

4π1/2nq4 ln(Λ)
(1.41)
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Figure 1.6: Top: Total hydrostatic mass and total gas mass profiles as given by the isothermal β-model
(Eq. 1.38); Bottom: Ratio of Gas Mass and Total Mass. It suggests, that the fraction of gas is higher
in the outskirts, i.e. there is more DM in the core. The typical values used are ng = 0.05 cm−3,
Tg = 4 keV, rc = 100kpc and β = 0.6.

where ⟨v⟩rms =
√

3kBT/m is the root mean square velocity and the other quantities are the
same as described for the mean free path (Spitzer 1962 p.78ff, Sarazin 1986, p.72f). Generally
one finds

tcoll(p, p) ≈ (mp/me)
1/2tcoll(e, e) tcoll(p, e) ≈ (mp/me)tcoll(e, e) (1.42)

This is also the time scale at which a non-Maxwellian particle distribution will relax to a
Maxwellian distribution via elastic collisions. This equilibration will be reached by electrons
on time scales set by (Eq. 1.41) (with values for electrons) and according to the left hand side
of (Eq. 1.42) protons need roughly 43 times longer. To reach equipartition Te = Tp the time
scale is about 1870 times longer, as seen in the right hand side of (Eq. 1.42). The longest
time scale will be tcoll(p, e) ∼ 6 · 108yr and since this is shorter than the age of the cluster it
is safe to assume Te = Ti = Tg in most parts of the galaxy cluster.

Because the factor m1/2 in the collision time is compensated by a factor of m−1/2 in the root
mean square velocity ⟨v⟩rms, one can see, that the mean free path of electrons and protons is
the same (Sarazin 1986, p.72f, Spitzer 1962, p.80f).

Another important time scale is the cooling time. Because the primary cooling mechanism of
the ICM is thermal bremsstrahlung, the cooling time is given by the rate at which the thermal
energy is radiated away by this process. If the gas cools isobarically the time scale is given by

tcool = 8.5 · 1010yr
(

np

10−3cm−3

)−1( Tg

108K

)1/2

(1.43)
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Figure 1.7: Top: Blue dots are radial binned data points taken from the ACCEPT Archive (Cavagnolo
et al. 2009); The red line is a least-square fit to the β-model (Eq. 1.38); The dashed line is at the
radius 340 kpc which is roughly where the substructure is located; Bottom: Ratio of radial binned
data points and the β-model fit showing a peak where the substructure is located.

where np is the proton density and Tg the gas temperature. As discussed in the last section
this time scale is longer than the sound crossing time and therefore hydrostatic equilibrium is
justified (Sarazin 1986, p. 69). This also shows, that radiative cooling of the ICM is inefficient
and can be neglected (almost everywhere), because this time scale is longer than the average
cluster age (Markevitch and Vikhlinin 2007, p. 3).

Further we discuss the sound crossing time and the dynamical time scale. The former is the
time a sound wave in the ICM takes to cross a cluster and the latter is equal to half the orbital
period of a (infalling) substructure moving with keplerian speed vK =

√
GM(< R)/R. They

are therefore given by

tsound =
2R

cs
tdyn =

πR

vK
(1.44)

where R is the radius of the cluster and the sound speed cs is given by (Eq. 1.28). Therefore
the sound crossing time can be expressed by

tsound = 6.6 · 108yr
(

Tg

108K

)−1/2( 2R

Mpc

)
(1.45)

where the variable are the same as above (Sarazin 1986, p.77). One implication of this time
scale was already discusses above but one can also come to the conclusion that because it is
relatively short the cluster would lose a lot of gas and therefore there needs to be a constant
flow of gas onto the cluster (Sarazin 1986, p. 83).

https://web.pa.msu.edu/astro/MC2/accept/
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The ICM is an example of a so-called high βmag-plasma. Here the parameter βmag is not the
same as used in the isothermal beta model, but is given by

βmag ≡ pgas

pmag
=

8πpgas

B2
(1.46)

where B is the magnetic field strength, pgas = ngkBTg is the thermal pressure of the gas
and pmag = B2

8π is called the magnetic pressure. In a high βmag-plasma the thermal pressure
dominates the magnetic pressure βmag ≫ 1 (Kunz et al. 2019).

Now we can turn to the electric and magnetic length scales. First is the Debye length (or
Debye shielding distance). A charge is shielded by particles of opposite sign at distances
greater than λDebye. It is given by

λDebye =

(
kBT

4πnee2

)1/2

(1.47)

where Tg is the gas temperature and ne is the electron density (Spitzer 1962, p.17). The
corresponding Debye time is the time it takes the particle to equalize a charge difference.
Therefore the Debye scales are not physical but encode a collective behaviour of the plasma.
Also the above interpretations are only valid if there are enough particles NDebye inside the
Debye sphere:

NDebye = ng
4

3
πλ3

Debye (1.48)

For a fully ionized gas to be called a plasma it is required that NDebye ≫ 1 in addition to
λDebye ≪ L, where L are the dimensions of the system (Chen 2016, p.11).

Second is the Lamor radius (or radius of gyration). If the electric field E vanishes, the
acceleration of a moving, charged particle in a magnetic field B is always perpendicular to
the velocity and a gyrating motion of the particle will occur. The radius of this gyration is
the Lamor radius given by

λLamor =
mv⊥
qB

=
mcv⊥
eB

(1.49)

where m is the mass of the particle, c is the speed of light and v⊥ is the component of the
particles velocity perpendicular to the magnetic field B. The angular frequency of the gyration
is given by the cyclotron frequency ωc = qB/m = eB/mc. The velocity component parallel to
the magnetic field won’t effect the motion perpendicular to the field and the combined motion
will be a helix (Spitzer 1962, p. 2). By comparing this length scale to the mean free path
and finding, that it is much smaller, one can conclude that the motion perpendicular to the
magnetic field caused by other effects is suppressed if a magnetic field is present. Therefore
thermal conduction and viscosity in the ICM are supposed to be anisotropic with respect to
the magnetic field (ZuHone and Su 2022, p.20).

Typical values for all these scales can be found in (Tab. 1.2) and how they change with the
radius of a galaxy cluster is shown in Fig. 1.8.

1.4.3 Entropy in the ICM

When analysing the thermodynamical properties of the ICM entropy is often considered. The
thermodynamical entropy of an ideal gas is given by the Sackur-Tetrode equation (Schollwöck
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Figure 1.8: Length (left panel) and Time scales (right panel) as predicted by the above equations and
the isothermal beta model. The typical values used are ng,0 = 0.05 cm−3, Tg = 4keV, rc = 100kpc
and β = 0.6.

radius density temperature βmag B NDebye
electrons 300 kpc 0.006 cm−3 4 keV 100 3 µG 5.5 ·1015protons

tcool tdyn tsound tcoll tLamor tDebye λmfp λLamor λDebye
electrons 9 Gyr 1 Gyr 1 Gyr 20 kyr 0.1 s 0.2 ms 1 kpc 700 km 6 kmprotons 760 kyr 3.4 min 7 ms 29000 km

Table 1.2: Time and length scales that are of interest in the ICM for electrons and protons; The last
two time scales were calculated as tDebye = λDebye/v and tLamor = 2πλLamor/v, where v =

√
2kBT/m

is the most probable velocity in a Maxwellian velocity distribution.

2021, p.540):

S = NkB

(
ln
[V
N

(E

N

)3/2])
+
3

2
ln
(4πm
3h2

)
+

5

2
(1.50)

The specific entropy is s = S/N . Inserting the definition of the number density n = N/V ,
the equation of state for ideal gas E = 3

2NkBT ⇐⇒ E/N ∝ T and ignoring all the constants
yields

s ∼ ln

(
T 3/2

n

)
(1.51)

Multiplying with 2/3 gives 2
3S ∼ ln(T/n2/3) and finally we end up at

s ∼ 3

2
ln
( T

n2/3

)
≡ 3

2
ln(K) (1.52)

In the context of galaxy clusters the logarithm is ignored as well and the term K itself is called
entropy or specific entropy (Dolag et al. 2004,p.3). Its units usually are keV cm2. Calculating
this from gas density and temperature can be done with

K =
kBT

(ρ/µmp)2/3
(1.53)
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Figure 1.9: The blue dots are radial binned data points taken from the ACCEPT Archive (Cavagnolo
et al. 2009); The red line is a least-square fit to the K-model (Eq. 1.54); The dashed line is at the
radius 340 kpc which is roughly where the substructure is located.

This is convenient because temperature and density are observable quantities. In galaxy
clusters the core is a low-entropy region, whereas the gas in the outskirts has a higher entropy
(Markevitch and Vikhlinin 2007, p.8).

A model that can be used to fit entropy profiles is given by

K(r) = K0 +K100

(
r

100kpc

)α

(1.54)

where K0 is called core entropy and K100 is a normalization for entropy at 100 kpc (Cavagnolo
et al. 2009). The radial entropy profile of the Bullet Cluster can be seen in (Fig. 1.9). It is
increasing from a low entropy region in the center of the main cluster and continually increases
outwards with a small dip at about r = 340kpc, which represents the outgoing substructure.
This means the small gas cloud used to be the center of a galaxy cluster and therefore has
low entropy.

1.4.4 Metallicity in the ICM

In astrophysics all elements heavier then hydrogen and helium all called metals, simply because
the first two elements are most abundant in the universe and metals are just traces in most
astrophysical systems (Schneider 2006, p.46). The metallicity Z is a measure for how common
metals are within a gas. It is defined as the mass of an element divided by the mass of hydrogen
within a system

Zj =
mj

mH
(1.55)

The total metallicity is the sum over all metals excluding hydrogen and helium:

Z =
∑
j

Zj (1.56)

https://web.pa.msu.edu/astro/MC2/accept/
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Often this value is given w.r.t. the abundance of metals in the sun, therefore given by

Zrel =
Z

Z⊙
(1.57)

Hydrogen and helium were produced shortly after the big bang in what is called primordial
nucleosynthesis. This produced hydrogen and helium in mass fraction of approximately 75%
and 25% and 2H,3H and Li in trace amounts (Bartelmann 2019). As the universe evolved
heavier metals were produced within stars. It is currently considered that there are three
main channels in which metals make their way from stars into the interstellar gas: Type II
Supernovae (SNII), Type Ia Supernovae (SNIa), and asymptotic giant branch stars (AGBs)
(Dolag et al. 2017). A so called core collapse supernovae (SNII) occur if massive (> 8M⊙)
stars reach the end of their life. Consecutive fusion of hydrogen to heavier elements up to iron
produced a onion-like shell structure with an iron core after roughly 107 years. Under the
extreme conditions in the core photodisintegration of iron and electron capture by protons
lead to the core losing its pressure support and to the begin of a collapse. This collapse will
eventually be stopped by the Pauli exclusion principle and the core will rebound sending a
shock wave outwards. Supported by neutrino energy this shock wave then leads to the rapid
expansion of the stars material into the interstellar regime. Thermonuclear supernovae of
type Ia are the result of the accretion of matter of a gas giant onto a white dwarf within a
binary system. If the white dwarf reaches a certain mass threshold nuclear reactions begin
in the core, which will destroy the star. AGB stars develop superwinds in the late stages of
their evolution, which expel matter at a rapid rate. This process also enriches the interstellar
medium (Carroll and Ostlie 2017, p.513, p.588f, p. 751f). These channels are implemented
in most models of chemical enrichment in simulations.

It has to be noticed here, that solar metallicity is not well defined. There are different methods
to determine the abundances of elements in the solar system. Spectroscopy of the sun can be
performed, but also the planets or asteroids (large rocks located in the asteroid belt) can be
considered. The first method can only examine the solar photosphere and its corona, whereas
value for the latter are determined by analyzing meteorites (asteroids that fell down on earth).
Depending on which method was used authors get different results. For this work data from
(Anders and Grevesse 1989)4 was used. The authors combined meteorite, photosphere and
solar corona data.

4https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node116.html

https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node116.html


Chapter 2

Methodology

2.1 N-Body Simulations

The gravity dominating CDM can be described by a collisionless, non-relativistic fluid of
particles of mass m, positions x and momentum p. Because the universe is expanding with
the scale factor a = (1+ z)−1 (Eq. 1.4), x is the comoving position (Eq. 1.16) and the phase-
space distribution function f(x,p, t) is described by the collisionless Boltzmann equation

∂f

∂t
+

p

ma2
∇f −m∇Φ

∂f

∂p
= 0 (2.1)

and the Poisson equation

∇2Φ(x, t) = 4πGa2[ρ(x, t)− ρ̄(t)] (2.2)

where Φ is the gravitational potential and ρ̄(t) is the background density. These equations are
solved by sampling the phase-space density by a finite number N of particles. Said particles
do not represent individual dark matter particles, because simulating all DM particles would
require way to much computation time. Therefore they only produce collective, statistical
properties. The equations of motion (in comoving coordinates) for such a system are

dp

dt
= −m∇Φ

dx

dt
=

p

ma2
(2.3)

By defining the proper peculiar velocity v = aẋ these can be combined into

dv

dt
+ v

ȧ

a
= −∇Φ

a
(2.4)

where the derivative of the scale factor is given by ȧ = H0E(a) with E(a) being the expansion
function (Eq. 1.15) (Dolag et al. 2008).

2.1.1 Calculation of the Gravitational Potential

The easiest way to solve the N-body problem by solving the Poission equation (Eq. 2.2 is to
directly sum the contributions of all particles

21



22 CHAPTER 2. METHODOLOGY

Φ(r) = −G
N∑
j

mj√
(|r− rj |2 + ϵ2)

(2.5)

where r is the position where the gravitational potential is evaluated, rj are the particle
positions, mj their mass and ϵ is the so-called gravitational softening. The direct-sum produces
the most accurate solution for the potential from which the accelerations can be computed,
but we need to remember that the particles only have collective meaningfulness. In order
to correct some effects that are introduced by this simplification the gravitational force if
smoothed by ϵ. The downside to this approach is, that the computation time is ∝ N2, which
therefore becomes quite large for a small number N of particles (Dolag et al. 2008).

Beneficial to reduce the computational time the so-called Tree algorithm, a hierarchical mul-
tipole expansion, was introduced. Grouping together distant particles into larger cells and
computing theirs gravity according to a multipole force, the number of force evaluations per
particle can be reduced, because these groups are treated as macro particles in the sum of
(Eq. 2.5). In this way the computation time can be reduced to ∝ N log(N). The manner in
which the particles are grouped, and the reason why this algorithm bares the name Tree, is a
recursive subdivision of space. The "root" is a cubical node volume that contains all particles.
The volume then is divided into 8 daughter nodes of half the side-length each. This is repeated
again and again until the algorithm reaches nodes that only encompass single particles. These
could be called "leaves". In order to obtain the forces, the tree is "walked", i.e. in every node
the algorithm has to decide whether the multipole expansion yields an accurate enough partial
force. Answering "yes" to this question cancels the "walk" and the multipole force is used,
otherwise the node is "opened" and its daughter nodes are examined. A multipole expansion
is accurate enough, if the nodes are sufficiently small and distant. Evidently, this algorithm
only approximates the true force, but can be made arbitrarily accurate by using lower levels
of the tree (Dolag et al. 2008).

The last method we want to address briefly are Particle-Mesh (PM) methods. Here forces are
computed on a mesh and then interpolated from this mesh to obtain potentials and forces at
the particle positions. This typically is done by assigning densities to the mesh points from
the particle positions, transforming this density field into Fourier space, where the solution of
the Poisson equation and the potential are acquired and then the derivatives of the potentials
are interpolated to the particle positions to produce the individual forces. The advantage
of this method is, that the calculations can be done very fast via Fast Fourier Transform
(∝ N log(N)). On the flip side its resolution is limited, because the amount of mesh cells
typically equals the number of particles in the simulation (Dolag et al. 2008).

The best performance today is obtained by combining the Tree algorithm and a Particle-Mesh
method (tree-PM ). Here the potential in Fourier space is split into a long-range and a short-
range part. The long-range part is computed with the mesh method in Fourier space while
the short-range part is solved by the Tree algorithm in real space (Dolag et al. 2008).

2.1.2 Time Integration

In the last section we described how the forces acting on the particles can be calculated
efficiently in N -body simulations. In order to create a simulation evolving over time these
calculations need to be evaluated in many time steps. The important variables in the N -body
problem are the positions and the velocities of all particles, which both can be solved by
ordinary differential equations ẋ = v and v̇ = f(v), where the first ODE can easily be solved
after the solution for the second is known. There are several methods to solve these ODEs.
We will focus on the Runge-Kutta method (RK) and the leap-frog method.
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The RK scheme achieves its accuracy by splitting the time step ∆t from step n to step n+ 1
into subsets. If the variable that is to be evaluated is y the subsets for a fourth order accuracy
are constructed by

k1 = f(yn, tn)

k2 = f(yn + k1∆t/2, tn +∆t/2)

k3 = f(yn + k2∆t/2, tn +∆t/2)

k4 = f(yn + k3∆t/2, tn +∆t) (2.6)

where yn is the value of the variable of the current step and the coefficients k2,3 are evaluated
at the so called mid-points. The value of the variable for the next step yn+1 then is given by
(Dolag et al. 2008, p.10f)

yn+1 = yn +

(
k1

6
+

k2

3
+

k3

3
+

k4

6

)
∆t (2.7)

If we want to solve the ODEs for the positions and the velocities, we not only have one
variable y, but two: v and x. In this case we need to calculate the coefficients in (Eq.
2.6) for both alternately, because the coefficients for the velocities and the positions are
accelerations and velocities respectively and we need the velocities to find the positions at
which the accelerations are evaluated and in return the accelerations to calculate the velocities.
One way to implement this in python1 can be found in (App. B.1). This is a part of the
code that created (Fig. 2.1).

The leap-frog method can directly integrate second order ODEs of the form ẍ = f(x), by
shifting the evaluations of the forces and positions by half a time step. There are two different
schemes that achieve this. One starts with a drift (D) of the positions by half a time step,
and the other one starts by updating the velocities with the forces at the actual time (kick,
K). The first one is abbreviated as DKD

xn+1/2 = xn + vn∆t/2

vn+1 = vn + f(xn+1/2)∆t

xn+1 = xn+1/2 + vn+1∆t/2 (2.8)

and the second is the KDK version (Dolag et al. 2008, p.11)

vn+1/2 = vn + f(xn)∆t/2

xn+1 = xn + vn+1/2∆t

vn+1 = vn+1/2 + f(xn+1)∆t/2 (2.9)

An illustration of how these schemes integrate an orbit of a point mass around a fixed massive
center and how the specific orbital energy evolves over time is shown in (Fig. 2.1). In the
upper left panel it can be seen, that a second order RK scheme has a huge drift in the orbital
energy even for a few orbits. The KDK leap-frog integration (lower panel) is also second
order accurate and shows only a precession of the elliptical orbit while conserving the energy.
Even the computationally more expensive fourth order RK scheme (upper right panel) shows
a drift of the orbital energy (for illustrative reasons a bigger time step is used in this panel).

1https://www.python.org/

https://www.python.org/
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A linear and exponential fit to the orbital energies of the fourth and second order RK scheme
results in a decay of 70% after 20a for the fourth order RK scheme and a gain of 70% for
the second order RK scheme. (Dolag et al. 2008) give the decay and gain as ∼ 40% over 200
orbits and ∼ 30% over 50 orbits, respectively. Because the orbital energy is not conserved in
these schemes the leap frog integration is the preferred method of integration.

The phenomenon, that the leap-frog method conserves energy and the RK method doesn’t
can be explained by checking if they are time reversible. As stated by the Noether theorem,
a symmetry of the equations of motion leads to a conserved quantity. Invariance under time
translation (time reversibility) leads to the conservation of energy (Bartelmann 2015, p.198).
This is not the case for the RK integration. We can see this by inserting (Eq. 2.6) into (Eq.
2.7). The second summand in (Eq. 2.7) then is proportional to (∆t)2.

Only after introducing a variable time step, most often based on ∆t ∝ 1/
√
|a|, the leap-

frog integration schemes time reversibility is lost. In this case a small error develops, which
grows four times faster in the DKD variant. Nevertheless a variable time step is needed for
cosmological simulations because many regions have different densities and therefore require
different time steps. Because of the smaller error the KDK scheme is the preferred method
in cosmological simulations (Dolag et al. 2008).

2.2 Hydrodynamical Simulations

We explained how DM is simulated in the above section and now we will turn to baryonic
particles. From these we can also derive properties like temperature, entropy or metallicity.
In order to do so we have to solve four equations that describe the evolution of fluid. The
Euler equation

dv

dt
= −∇P

ρ
−∇Φ (2.10)

the continuity equation

dρ

dt
+ ρ∇v = 0 (2.11)

and the first law of thermodynamics

du

dt
= −P

ρ
∇ · v − Λ(u, ρ)

ρ
(2.12)

where v and P are the velocity and pressure for all particles, Φ is the gravitational potential,
ρ the fluid density, u the internal energy of the gas and Λ(u, ρ) the cooling function. Φ was
already determined with the methods from (Sec. 2.1.1) and Λ(u, ρ) is neglected. If we assume
an ideal, monatomic gas (γ = 5/3), the last equation we need is the equation of state

P = (γ − 1)ρu (2.13)

By using these sets of equations the highly non-linear gravitational clustering in the universe
can be studied in great detail. Two main features emerge in cosmological hydrodynamical
flows: 1) Supersonic velocities that develop shock discontinuities which can be described by
the Rankine–Hugoniot jump conditions (Sec. 1.3.5). 2) Vast dynamical range in space and
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Figure 2.1: Evolution of an orbit of a point mass around a fixed massive center and the evolution of
the specific orbital energy computed with different integration schemes: Second Order Runge-Kutta
(upper left panel), fourth order Runge-Kutta (upper right panel) and KDK leap-frog integration (lower
panel). The energy evolution shows, that the Runge-Kutta integration schemes don’t conserve energy
while the leap-frog integration does. In the fourth order Runge-Kutta integration a longer time step
was used for illustrative reasons.
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time, e.g. hierarchical structure formation includes scales of single galaxies to the largest
interconnected structures.

Again there is a range of possible solving schemes for these equations. We will focus on a
particle method, i.e. discretizing mass (Dolag et al. 2008).

2.2.1 SPH

SPH stands for smoothed particle hydrodynamics, which already suggests one key point of
this method, namely that fluid quantities of a particle are smoothed out over a certain region
in space, to produce continuous distributions. This is the reason why it performs good in
high density regions but poorly in low density regions. It solves the Lagrangian form of
the Euler equation. Other weaknesses lie in shocks and dynamical instabilities, because a
sizeable artificial viscosity and spurious pressure forces on particles in regions with high density
gradients are introduced. Yet, the adaptive nature of SPH makes it the most common method
in numerical hydrodynamical simulations.

Because of the discretization of mass it is clear that particles in collapsed structures are closer
together than in low density regions, which makes SPH adaptive in spatial resolution whilst
the mass resolution stays constant. The fluid quantities will be smoothed according to the
smoothing kernel. This function can be Gaussian in the easiest implementation2, but the most
used variant is called the B2-spline, which is given by

W (x, h) =
σ

hν


1− 6

(
x
h

)2
+ 6

(
x
h

)3
, 0 ≤ x

h < 0.5,

2
(
1− x

h

)3
, 0.5 ≤ x

h < 1,

0, 1 ≤ x
h

(2.14)

where ν is the dimensionality, i.e. 1,2 or 3, h is the smoothing length and the normalisation
σ is given by

σ =


16
3 , ν = 1
80
7π , ν = 2
8
π , ν = 3

(2.15)

therefore 4π
∫
xν−1W (x, h)dx = 1 holds. Another important property the kernel needs to

satisfy is, that is collapses to a delta function if the smoothing length approaches zero:
W (x, h) → δ(x) for h → 0. This property is required because if the smoothing length
would be zero the property should not be smoothed out over a volume around the particle,
but all of it should be concentrated on the particle. Also the B2-spline is favoured over the
Gaussian kernel (comparison in App. B.2), because it has compact support (i.e. W (x, h) = 0
for x| > h) and therefore only the particles within a sphere of radius h instead of all the
particles have to be considered in the summation below. Using the number of particles in
this sphere Nsph a variable smoothing length can be defined by fixing it to a constant value.
Then h changes with density h3 = 3Nsph/4πng. Usually this is done with Nsph = 32 to 80,
but a symmetric kernel W (xi − xj , hi, hj) = W̄ij has to be constructed and correction terms
of ∂W/∂h are ignored, which leads to a difficulty to conserve entropy and internal energy at
the same time. This kernel can now be used to create continuous fluid quantities as follows

2https://philip-mocz.medium.com/create-your-own-smoothed-particle-hydrodynamics-simulatio
n-with-python-76e1cec505f1

https://philip-mocz.medium.com/create-your-own-smoothed-particle-hydrodynamics-simulation-with-python-76e1cec505f1
https://philip-mocz.medium.com/create-your-own-smoothed-particle-hydrodynamics-simulation-with-python-76e1cec505f1


2.2. HYDRODYNAMICAL SIMULATIONS 27

⟨A(x)⟩ =
∫

W (x− x′, h)A(x′)dx′ (2.16)

The continuous fluid quantity then can be found, if one knows the discretized values Aj and
the positions xj and their masses mj , as

⟨Ai⟩ = ⟨A(xi)⟩ =
∑
j

mj

ρj
AjW (xi − xj , h) (2.17)

where the volume element dx = dx3 was replaced by the ratio of mass and density mj/ρj = Vj

of the particles and it is assumed, that W (xi−xj , h) = W (|xi−xj |, h). Considering the density
Ai = ρi in (Eq. 2.17), it becomes

⟨ρi⟩ =
∑
j

mjW (xi − xj , h) (2.18)

which is the density of the fluid element represented by particle i. Also derivatives of the fluid
properties can be calculated by

∇⟨Ai⟩ =
∑
j

mj

ρj
Aj∇iW (xi − xj , h) (2.19)

where ∇i is the derivative with respect to xi. One way to achieve a symmetric formulation
of the derivatives in SPH is to use the identity

∇
(
A

ρ

)
=

∇A

ρ
− A

ρ2
∇ρ ⇐⇒ ∇A

ρ
= ∇

(
A

ρ

)
+

A

ρ2
∇ρ (2.20)

which leads to the derivative

∇⟨Ai⟩
(2.20)
= ρi∇

(
⟨Ai

ρi
⟩
)
+ ρi

Ai

ρ2i
∇⟨ρi⟩

(2.18),(2.19)
=

= ρi
∑
j

mj

ρj
· Aj

ρj
∇jW (xi − xj , h) + ρi

Ai

ρ2i

∑
j

∇jW (xi − xj , h) =

= ρi
∑
j

mj

(
Aj

ρ2j
+

Ai

ρ2i

)
∇iW (xi − xj , h) (2.21)

With these identities the hydrodynamic equations can be written in their SPH variation. The
Euler equation (Eq. 2.10), where Φ is already determined and therefore is omitted, becomes

dvi

dt
= − 1

ρi
∇Pi

(2.21)
= −

∑
j

mj

(
Pj

ρ2j
+

Pi

ρ2i

)
∇iW (xi − xj , h) (2.22)

An identity similar to (Eq. 2.20) can be derived from ∇(ρ · A), used with (Eq. 2.20) and
averaged over for the first law of thermodynamics (Eq. 2.12) where Λ(u, ρ) is omitted, which
yields

dui
dt

=
1

2

∑
j

mj

(
Pj

ρ2j
+

Pi

ρ2i

)
(vj − vi)∇iW (xi − xj , h) (2.23)
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Simulation Box0 Box1 Box2b Box2 Box3 Box4 Box5
Size [Mpc] 3818 1273 909 500 182 68 26

mr 2 · 45363 2 · 15123 — 2 · 5943 2 · 2163 2 · 813 —
hr — — 2 · 28803 2 · 15843 2 · 5763 2 · 2163 2 · 813
uhr — — — — 2 · 15363 2 · 5763 2 · 2163
xhr — — — — — 2 · 15363 2 · 5763

Table 2.1: Specifications of the simulation boxes: row 2 lists the volumes of the boxes and rows 3 to 6
list the numbers of particles for each resolution level mr (medium resolution), hr (high resolution), uhr
(ultra high resolution), xhr (extra high resolution). Box3/uhr and Box5/xhr were stopped at about
z ∼ 2; Box4/xhr is planned for the future and Box2b/hr was stopped at around z ∼ 0.25. These
values were taken from the Magneticum Website and verified in (Dolag et al. 2017).

In both these equation inside the big brackets usually the so-called artificial viscosity Πij is
included. It adds the capability to account for shocks. The last hydrodynamical equation,
the continuity equation (Eq. 2.11) is automatically solved by this particles based method,
as density can be calculated at any time from the particle positions (Eq. 2.18) (Dolag et al.
2008).

2.3 Magneticum

The Magneticum Simulation3 (Dolag et al. 2016) is based on the cosmological simulation code
p-gadget 34 (Springel 2005a). It utilises the TreePM algorithm described in (Sec. 2.1.1) to
compute gravitational forces and for the ideal gas the smoothed particle hydrodynamics (SPH)
method is used (Sec. 2.2.1); here in a specific entropy conserving formulation (also internal
energy is conserved). The time integration is done by a variant of the leap-frog integration
presented in (Sec. 2.1.2). The specifics of the implementation of other physical features,
e.g. thermal conduction, can be found in the already cited of following papers that discuss
results of the Magneticum Simulation. As already mentioned (Sec. 1.2.2) the cosmological
parameters of a ΛCDM model are adopted as measured by (Komatsu et al. 2011) and are given
in (Tab. 1.1). Their results for the initial power spectrum were n = 0.963 and σ8 = 0.809.

In order to reach high resolutions and high cosmological volumes, the simulations consists of
several boxes with varying sizes and resolutions, as given in Tab. (Tab. 2.1). The cluster
examined in this work was taken from Box2b with a high resolution (hr) (Hirschmann et al.
2014).

2.3.1 Snapshot File

The output of the simulation is written into so called snapshot files, which is the output format
of the p-gadget 3 Code. These files simply contain the state of the whole system at certain
times. For large simulations they can be distributed into several files (i.e. snapshot_026.0
to snapshot_026.15). Each of these files contain a variable number of particles. Within
one snapshot file the data is organised in blocks. There is a block for coordinates, one for
velocities, one or temperature, etc. A list for these blocks in Magneticum can be found in
(App. C.1). The first block acts as a header. Similar to a header in a fits file5, it contains
general information about the snapshot, like the number of particles per type in the snapshot,

3http://magneticum.org
4https://wwwmpa.mpa-garching.mpg.de/gadget/
5https://fits.gsfc.nasa.gov/

http://magneticum.org
https://wwwmpa.mpa-garching.mpg.de/gadget/
https://fits.gsfc.nasa.gov/
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Figure 2.2: Peano-Hilbert curves in 3D (top row) and 2D (bottom row). Image taken from (Springel
2005a).

the redshift of the snapshot or flags informing about enabled code features like cooling. In
(App. C.2) there is also a table listing the headers content. For each block the particles are
sorted by six particle types. For our simulation these types are gas (ptype = 0), dark matter
(ptype = 1) and stars (ptype = 4). Types 2, 3 and 5 (black holes) are not relevant for this
work. Because the array of particles changes from snapshot to snapshot, or a given particle is
stored in a different (sub-) snapshot file, a block that contains particle IDs is implemented in
each snapshot file (Springel 2005b). Also, by cutting out a specific box within a snapshot file
the sequence of particles changes, as particles can move in or out of that box. Therefore the
particle IDs are important for tracing a particle between subsequent snapshots. Magneticum
specifically writes to the Format 2 variant of the snapshot file. Here an identifier, a 4-character
string, leads every block. For example the position and the mass block are preceded by the
strings "POS " and "MASS" respectively. The other identifiers are listed in the table in (App.
C.1) (Springel 2005b). Using these identifiers the data can easily be read into a python script
using the g3read module by Antonio Ragagnin6.

The sequence in which the particles are stored in the snapshot files is oriented along so called
Peano-Hilbert curves. This is a space-filling fractal, which maps a 3D 2n × 2n × 2n grid onto
a 1D curve. Such a curve can be described by a one-to-one mapping pn(i, j, k), where the
value pn ∈ [0, . . . , n3 − 1] is the position of the cell i, j, k on the curve. In (Fig. 2.2) examples
for the Peano-Hilbert curve in two and three dimensions are shown. The original idea behind
this mapping was to decompose the computation volume into a set of domains, which are
each assigned to one processor in parallel computing systems. Particles are mapped onto the
1D curve which then is simply split into pieces that define the individual domains (Springel
2005a, p.13f). That this also defines the sequence in the output array is just a byproduct,
which can be useful or disadvantageous.

2.3.2 Services and CosmoWebPortal

The Cosmological Web Portal7 (Ragagnin et al. 2017) can currently be used to explore Box2hr
and Box2bhr. There are several services available. For example: PHOX creates virtual X-
ray observations (Biffi et al. 2012), SMAC creates maps of physical quantities (e.g. baryonic

6https://github.com/aragagnin/g3read
7https://c2papcosmosim.uc.lrz.de/

https://github.com/aragagnin/g3read
https://c2papcosmosim.uc.lrz.de/
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density, bolometric X-ray luminosity etc.) as a fits file, ClusterFind creates data tables and
scaling relations, where the global properties of the clusters can be specified. The service
SimCut extracts a snapshot file which contains all original particle data in a region centered
on a galaxy cluster. The size in the x-y-plane can be specified as a multiple of r500c and the
z-size adjusted arbitrarily. In order to use the service more independently the SimCut IDL
routine of Klaus Dolag was executed by Ildar Khabibullin on the LRZ: Linux Cluster8. The
data is stored there, because the simulation was run on the LRZ supercomputer SuperMUC9.

2.3.3 Units

The positions and velocities are given in comoving units. That means to convert to physical
coordinates and velocities one has to divide positions "POS " by (z + 1) and h and velocities
"VEL " by

√
z + 1 .The resulting units are kpc and km/s. Masses of each of the three

particle types are given in units of 1010M⊙/h. Dark matter particles have a constant mass
of mdm ≈ 6.9 · 108M⊙/h at the hr resolution level. Gas and star particle masses are variable
and their mean masses are mgas ≈ 1.4 · 108M⊙/h and mstars ≈ 2.6 · 107M⊙/h. In the next
sections positions will stay in comoving units. Everything else will be converted to physical
units. Further we will look at gas density and entropy. Entropy will be calculated from
temperature and gas density. Therefore we also need to convert gas density to physical units:

ρphy = ρcode · (1 + z)3 · munit

l3unit
· h2 (2.24)

where munit = 1.989 ·1043 and lunit = 3.085678 ·1021. The resulting units are g cm−3 (Springel
2005b).

2.4 Center of Mass

We want to explore the motion of the particles of an infalling cluster with respect to the main
cluster. For the focus to be fixed onto the region between them it is best to look at the center
of mass (COM) of the particles. The center of mass is defined as

COM =
1

M

∑
i

mixi (2.25)

where M =
∑

imi is the total mass of the system, mi and xi are the mass and the coordinate
of the i− th particle. If the sum of all external forces acting on the system vanishes the COM
moves with the velocity

vCOM =
1

M

∑
i

mivi (2.26)

where vi is the velocity of the i − th particle (Bartelmann 2015, p. 89). Converting the
positions and velocities into the center of mass frame requires subtracting the COM from the
positions and the velocity of the COM from the velocities.

xCOM,i = xi −COM vCOM,i = vi − vCOM (2.27)

8https://doku.lrz.de/display/PUBLIC/Linux+Cluster
9https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

https://doku.lrz.de/display/PUBLIC/Linux+Cluster
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
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The COM in the COM frame has the coordinates (0, 0, 0), the positions have smaller values,
namely just the distances from the COM, and the velocities are also corrected.

2.5 Calculating Radial Velocities

In the center of mass frame the velocities at each position can easily be decomposed into its
radial and tangential fraction. The subscript COM is omitted in the further sections. The
radial velocity vr of a particle is the part of the velocity v that is parallel or antiparallel to
the radial unit vector r̂, which points from the center (0, 0, 0) to its position x. It can be
calculated with the scalar product:

vr = v ◦ r̂ = v ◦ x

|x|
(2.28)

As tangential, radial and total velocity constitute a right triangle (Fig. 2.3), the tangential
velocity can be calculated from the other two by the Pythagorean Theorem:

vt =
√
v2 − v2r (2.29)

where v is the absolute value of the total velocity v. Since every particle has a different velocity
it is important to normalize them in order to analyze if a particles velocity is predominantly
radial or tangential. The normalized values are the radial velocity fraction and tangential
velocity fraction:

fr =
vr
v

ft =
vt
v

(2.30)

Determining these fractions and coloring the particles of a galaxy cluster w.r.t. to fr reveals
which particles are infalling, outgoing or mostly tangential.

2.6 Phase Diagrams

After obtaining the radial velocities one can create a phase diagram to further identify sub-
structures and infalling particles. The x-axis represents the radii while the y-axis represents
the radial velocities. Infalling particles will have high negative radial velocities and high radii
and therefore be located in the bottom right corner. Outgoing particles will have moderate
positive radial velocities at moderate radii and will be located in the top left corner. After one
core passage infalling particles will become outgoing and eventually turn around at high radii,
while their radial velocities are decreasing and become negative again. This will continue in
a loop. The exact evolution depends on how the velocities change during a core passage and
therefore depend on the particle type. The idealized phase-space distribution of DM particles
and the radial velocity profile of gas is shown in (Fig. 2.4). In reality gas particles will not
suddenly stop after a certain radius as shown in this graphic, but follow a similar path then
the DM particles but stop after about one core passage in the contrary to DM which can pass
several times.
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Figure 2.3: Decomposition of the velocity v into radial velocity vr and tangential velocity vt.

Figure 2.4: Idealized phase-space distribution of DM particles (black) and radial velocity profile of
gas; taken from (Zhang et al. 2021).



Chapter 3

Analysis

A cluster with a very high m500c mass was chosen for this work (as found in the cluster.txt
file accessed from the Magneticum Website1), because usually the bigger the mass is, the
more merger activity is present in a cluster. As the evolution of its state is to be examined,
six snapshots at different times corresponding to different redshifts were accessed. SimCut
was used to create snapshots of a box with comoving side lengths of 20 Mpc centered on the
position of the cluster for each snapshot. A Table listing all properties for each snapshot can
be found in (App. D). (Fig. 3.1) shows the X-ray emission map of snapshot s0272 created
from a photon list extracted by Stephan Vladutescu-Zopp using PHOX and translated into
the maps by Ildar Khabibullin.

The positions and velocities in these snapshots were converted into the center of mass frame
as described in (Sec. 2.4). Because we want to focus on a smaller region, the COM was
calculated for the particles within a box with half a side length of r500c for each snapshot.
All particle type were considered, because each particle regardless of its type moves according
to the combined gravitational potential. As dark matter dominates the mass and therefore
gravity, it is very important to include it when calculating the COM, even if we just want
to look at e.g. how the gas particles behave. Next, all particles in the 20 Mpc box were
translated into the center of mass frame of this COM.

As already stated, we want to focus on a small region around the center. Therefore only
particles within a cube centered on the COM in each snapshot were considered. The side
length of this cube in each snapshot is the same, namely the mean value of r500c for each
time step (∼ 1240 kpc). In addition, the particle number has to be reduced again, firstly to
reduce the computation time needed for the analysis. The second, more significant reason
is that if we look at those particle along one projection axis, and produce a scatter plot the
particles that are stored at the end of the array are plotted last. This can have the effect,
that the center of the cluster is covered by particles in the outskirt. For these reasons only
6% of the particles, that means every 17th entry in the arrays is used for most of the analysis.
This way the considered particles are randomly selected and therefore can still represent the
simulation data accurately. This leaves e.g. about 50000 gas particles to analyze.

3.1 Projected Scatter Plots

Before we can create scatter plots projected along one axis, we have to solve one last problem.
If we create scatter plots with the arrays that we obtained now, the Peano-Hilbert curve (Sec.

1http://magneticum.org/data.html#FULL_CATALOUGES
2A short video showing the evolution can be found here https://johannesstoiber.de/resources.html
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Figure 3.1: X-ray emission map of the UID 1 cluster in s027; the colorbar shows the total number of
counts for a virtual observation with tobs = 107 s and an effective area of Aeff = 103 cm2; left panel:
20 × 20 Mpc/h box; right panel: zoomed in 5 × 5 Mpc/h box.

2.3.1) is visible, because the particles in the array follow the same sequence in which they
were stored in the snapshot file. In order to counteract this this the arrays were shuffled right
after reading them into the analysis code.

Now we can look at several properties. The positions are scatter plotted and colored according
to suitable color scales. The radial velocity fraction was calculated according to (Sec. 2.5)
and plotted this way. The result is shown in (Fig. 3.2) for gas, (Fig. 3.3) for DM and (3.4)
for stars. In the top two and the middle left panels of (3.2) a lot of infalling (red) particles
can be seen in the bottom left corner. They represent the gas of an infalling substructure.
They hit the center of the main cluster in the middle right panel. Afterwards (bottom two
panels) a lot of particles are outgoing (green) in the top right corner. The exact movement of
these particles is more complex and will be investigated in (Sec. 3.3). Similar motion can be
seen in (Fig. 3.3) and (Fig. 3.4) with the difference that bulk of outgoing particles already
leave the frame in the bottom left panel. This suggests, that DM and stars pass through the
cluster much faster.

The motion of the gas can also be investigated by analyzing temperature (Fig. 3.5), gas
density (Fig. 3.6) and entropy (Fig. 3.7). In the following temperature will be given in keV
calculated from the "TEMP" block from the snapshot file, gas density is calculated from the
"RHO " block with (Eq. 2.24) and entropy is calculated from the former two with (Eq. 1.53).
Metallicity as defined by (Eq. 1.57), i.e. relative to the suns metallicity, will be used in (Sec.
3.3.2). In (3.5) one can see, that the center of the main cluster is hotter then its surroundings.
On top of that, one can see how the gas is heated by the infalling gas in the top right and
the middle left panel. The middle right panel shows the highest temperature as the infalling
gas reaches the main core. After this the gas in the top right corner is heated as seen in the
bottom left panel. This is a outgoing shock that was initiated by the infalling gas. It passes
through the core undisturbed and continues to travel outward. Snapshot s028 (middle left
panel) will be further investigated in (Sec. 3.5). The heating is due to adiabatic compression
of the gas and shocks that develop as the infalling gas is slowed down by the main clusters
gas.

In (Fig. 3.6) the substructure is best seen in snapshot s028 (middle left panel). The density
is increased there, because the infalling gas is compressed as it encounters the gas particles of
the cluster at the center. This will also be analyzed in more detail in (Sec. 3.5).
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Figure 3.2: Scatter plot of gas particles colored according to their radial velocity fractions in the
reference frame of the COM; green: negative (infalling); red: positive (outgoing); yellow: close to zero
(mostly tangential).
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Figure 3.3: Scatter plot of DM particles colored according to their radial velocity fractions in the
reference frame of the COM; green: negative (infalling); red: positive (outgoing); yellow: close to zero
(mostly tangential).
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Figure 3.4: Scatter plot of star particles colored according to their radial velocity fractions in the
reference frame of the COM; green: negative (infalling); red: positive (outgoing); yellow: close to zero
(mostly tangential).



38 CHAPTER 3. ANALYSIS

Figure 3.5: Scatter plot of gas particles colored according to their temperature.
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Figure 3.6: Scatter plot of gas particles colored according to their gas density.
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The low entropy core of the main cluster is the most prominent feature in (Fig 3.7) (every
panel). The infalling substructure also has low entropy as seen in the middle left panel. Again
there is a eye catching high entropy region visible in the top right corner of the bottom left
panel attributed to a shock. The entropy profile in snapshot s028 (top right panel) will also
be determined in (Sec. 3.5).

3.2 Phase Diagrams

Supplementary to the above view of the radial velocity fraction phase diagrams (Sec. 2.6)
were produced for gas, DM and stars. They are shown in (Fig. 3.8 - 3.10).

Again the motion of each particle type can be seen. There is a branch from r = 1000 kpc
to r = 1800 kpc and vr = −800 km/s to vr = −200 km/s in the top middle panel in (Fig.
3.8) which represents the infalling gas. The bulk of the particles (yellow) has negative radial
velocities, which then become positive and finally settle roughly at zero again in the next
panels (top right, and the bottom three). It can also be noticed, that the center of the bulk
reaches almost r = 400 kpc in the bottom left panel before it move to almost r = 1000 kpc.
(Fig. 3.9) presents a similar development for the DM particles. The bulk is more concentrated
for DM and therefore the movement looks sharper. In comparison to the gas particles, DM
achieves higher magnitudes of radial velocities. The bulk of the star particle in (Fig. 3.10)
stays at a low radius, where the BCG (Brightest cluster galaxy) is located. But its radial
velocity also slightly oscillates around zero. The individual infalling galaxies and groups can
be distinguished from each other best in this plot as they are concentrated in little blobs. The
motion of all the particles is similar to the flow described in (Sec. 2.6). In order to better
understand the dynamics of individual particles their path is traced in the next section.

3.3 Tracing Particles

3.3.1 Sub Sample

As mention in (Sec. 2.3.1) the particles can be traced by their unique IDs. But before this can
be done a sub sample of particles needs to be selected. We want the chosen particles to belong
to the same structure, which means their position and also their velocities are comparable.
In order to ensure this it is best to select particles within a six dimensional sphere in phase
space. The condition a particle needs to fulfill can be written as

3∑
i=1

(xi − x̄i)
2

r2x
+

3∑
i=1

(vi − v̄i)
2

r2v
< 1 (3.1)

where i stands for the three spatial dimensions, x and v are position and velocity and x̄ and
v̄ are the mean position and velocities of particles within a preselected rectangle in phase
space. rx and rv take on the role of a radius for the six dimensional sphere. The preselection
rectangle corresponds to the branch of infalling particles described in the last section and is
also restricted to only include particles within the octant in with the infalling substructure is
located. rx and rv are 800 kpc and 1800 km/s for each particle type. The sub sample consists
of ∼ 2500 particles for gas, ∼ 1500 for DM and ∼ 1600 for stars. Now the positions and
velocities for stars and DM and additionally temperature, gas density, entropy and metallicity
for gas were traced. This sub sample is shown on top of the phase diagrams in (Fig. 3.11) to
(Fig. 3.13).
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Figure 3.7: Scatter plot of gas particles colored according to their entropy.
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Figure 3.8: Phase diagrams for gas particles.

Figure 3.9: Phase diagrams for DM particles.

Figure 3.10: Phase diagrams for star particles.
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Figure 3.11: Phase diagrams for gas particles and traced gas particles.

Figure 3.12: Phase diagrams for DM particles and traced DM particles.

Figure 3.13: Phase diagrams for star particles and traced star particles.
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The traced gas particles in (Fig. 3.11) have large radii with large negative radial velocities
in the top left and middle panel, then move inwards as the radial velocities and radii become
smaller (top right panel) and finally pass through the center as the velocities transition from
negative to positive in the bottom left panel. Afterwards the gas has small positive radial
velocities but settles around zero (last two panels) over a large section of radii. Traced DM
behaves the same in (Fig. 3.12) in the top three panels but reaches higher magnitudes of
radial velocities. The bottom left panel shows that the DM particles are outgoing with higher
velocities then gas and they don’t settle in the next snapshots, but turn around in the bottom
middle panel as their radial velocities become negative again and are infalling in the last
panel. The picture for stars (Fig. 3.13) is analogical to the DM except, that the particles
are concentrated in clumps. The top left panel shows the first traced infalling clump which is
followed by another two in the top middle panel. The first one passes through the center in
between s027 and s028 whereas the other two follow in between s028 and s029. In the bottom
middle panel one can see that the two clumps already turned around and fall towards the
center again (negative radial velocities) and the last galaxy follows in the bottom right panel.

The movement of these particles was also traced in real space as shown in (Fig. 3.14) - (Fig.
3.16).

(Fig. 3.15) shows that infalling DM particles just pass through the center from the bottom
right corner to the top right corner. One can not really tell, that they turn around and fall
back to the center in the bottom right panel, but this was seen clearly in phase diagram (Fig.
3.12). The same is true for the traced star particles (Fig. 3.13).

A more interesting result is seen by tracing the gas particles (Fig. 3.14). The top two panels
show the same behaviour - gas particles fall towards the center. But already in the middle
left panel one can see that the gas is stopped and moved slightly to the left of the center as
seen in the middle right panel. The bottom two panels show the gas wrapping around the
center on both sides and the observed outgoing particles in the bottom middle panel of the
phase diagram (Fig. 3.11) are not just attributed to particles that manage to pass around
and leave the center in direction of the top right corner, but also because particles bounce of
off the center and move radially to the left or to the bottom.

It was expected that the DM and stars behave differently then gas. DM was implemented as
collisionless and the distances between stars and galaxies are so large, that the probabilty of
a collision is rather small. Gas on the other hand interacts with itself and experiences ram
pressure and thermal pressure, which slows it down and eventually stops it.

In order to really see what happens to these gas particles not just their positions and velocities
were traced but also their physical properties. In order to be able to compare this to the rest
of the cluster the properties of the bulk of the particles in the center were also traced as a
background.

3.3.2 Tracing of Gas Properties of the Sub Sample

For the temperature, gas density and entropy of the sub sample particles the median was
calculated and to estimate the range of the properties the 32-quantile and 68-quantile was
used. The resulting evolution is shown in (Fig. 3.17).

The top left panel shows that the temperature of the sample increases from ∼ 3 keV up to ∼ 8
keV in snapshot s029 and decreases afterwards to ∼ 6 keV. The bulk of the cluster particles
is hotter then the sub sample but also rises at the same time to ∼ 10 keV. The sub sample
temperature only surpasses the bulk temperature in s028. This gain coincides temporally
with the stopping of the infalling particles as seen in (Fig. 3.14). In the last snapshot the
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Figure 3.14: Scatter plot of gas particles colored according to their radial velocity fractions and traced
gas particles in cyan.
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Figure 3.15: Scatter plot of DM particles colored according to their radial velocity fractions and traced
DM particles in cyan.
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Figure 3.16: Scatter plot of star particles colored according to their radial velocity fractions and traced
star particles in cyan.
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Figure 3.17: From top left to the bottom: temperature, gas density and entropy; the blue line is the
median of each property, the red lines are the 32- and 68-quantile and the black line is the median of
the background particles (bulk of cluster).

temperatures of the bulk particles is the same as the temperature of the sample particles. In
the top right panel the gas density exhibits a corresponding evolution from 5 · 10−4 cm−3 up
to 2 · 10−3 cm−3 and down to 8 · 10−3 cm−3. This is clear because stopping moving particles
at a front increases the density. Similar to temperature the bulk gas density is also higher and
is only surpassed by the sub sample in s028. In the bottom left panel one can see that the
entropy of the sub sample is steadily increasing almost identical to the entropy of the bulk
particles from 420 keV cm2 to 570 keV cm2. The increase of temperature and density is due
to compression that happens to the infalling gas as it enters the gas cloud of the main cluster.
Depending on how high the infall velocity is, also a shock could develop and contribute to the
rise of temperature and pressure behind it as discussed in (Sec. 1.3.5).

In order to analyze the chemical enrichment of the ICM the metallicity of the particles in
the sub sample was traced. For comparison also the metallicity of background particles was
considered in the same way as for the other properties. The results are shown in (Fig. 3.18).
The top left panel shows the mean total metallicity evolution. The sub sample metallicity is
about 0.2 whereas the background metallicity is about 0.4. They both are slightly increasing
which is better represented by the bottom left panel. There the normalized metallicities
are shown, i.e. the metallicities divided by the mean over all snapshots. Indeed both are
increasing at roughly the same rate (∼ 5 % over 2 Gyr). In the top right panel one can
see the ratio of the mean iron abundance to the mean oxygen abundance. The sub samples
values lie roughly in between 1.38 and 1.45 and are increasing for the last five snapshots. The
background ratio starts at about 1.2 and rises steadily to 1.27. In both components the iron
content relative to the sun is higher than the oxygen content relative to the sun. Apparently
more iron compared to oxygen is present in the sub sample. Again in the bottom right panel
the normalized values are shown, depicting that the background and sub sample increase
their iron content (relative to the oxygen content) at the same rate. The initial (and lasting)
difference in total metallicity between the main cluster and the sub sample is due to the fact
that the main cluster is older, therefore has a higher mass and stellar content, which had more
time to enrich the ISM and ICM. This difference can in principle also be observed by X-ray
observatories, because the spectrum of hot gas with a higher metallicity shows stronger iron
emission lines (Spitzer 1962). X-ray missions might be able to distinguish between the main
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Figure 3.18: Top left: Mean of the total metallicity of the sub sample (blue) and mean of the total
metallicity of the main cluster (black) in solar units; bottom left: Same as above but normalized
(divided by the mean of all snapshots); top right: Mean of the ratio of the iron abundance to the
oxygen abundance for the sub sample (blue) and the main cluster (black) in solar units; bottom left:
Same as above but normalized.

cluster and infalling structures by using this result.

3.3.3 Particles Tracks

Another view of this situation can be gained by creating tracks of a few particles so that it
can be seen which way an individual particle takes. This was done for DM and gas particles.
The same selection algorithm as described above (Eq. 3.1) was used with smaller rv and rx.
50 tracks were produced for both particles types. The results are shown in (Fig. 3.19) and
(Fig. 3.20).

In the top two panels of (Fig. 3.20) the start position and the first step of the gas particles is
shown. They start to spread out but most of the tracks still go straight towards the center in
the middle left panel. Already in the middle right panel there are at least two particles that
now move radially outward in the center of the left hand side, but still a large portion moves
towards the center. This slight change in directions becomes radical in the bottom row. Now
all directions are present and the infalling gas starts to wrap around the core of the main
cluster which continues in the last panel.

This flow is radically different for DM as seen in (Fig. 3.19). The top row looks similar to the
top row of (Fig. 3.20). But in the middle row it is already clear, that the DM particles stay
close together and head straight for a point near the center of mass. The bottom row shows
how they then continue on a their orbit, that means the tracks have a kink and the particles
leave the frame at the top.

3.3.4 Tracing the Radial Velocities of the Tracks

For these individual tracks the radial velocity fraction of gas and DM were traced. On the
contrary to above no median was calculated but just the individual values are shown in (Fig.



50 CHAPTER 3. ANALYSIS

Figure 3.19: Tracks of 50 gas particles.
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Figure 3.20: Tracks of 50 DM particles; the bottom two panels are the same because the DM particles
left the shown frame.
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Figure 3.21: Top: Radial velocities of the gas particles; Bottom: Radial velocities of the DM particles.

3.21).

On top the radial velocity fraction of gas is shown, which is almost -1 for all 50 tracks at
the beginning. The first velocities become outgoing (radial velocity fraction of almost 1) at
s028 and almost all follow at s029. In the end (s031) the radial velocity fraction is randomly
distributed over all radial velocity fractions, meaning there are velocities that are mostly radial
and other that are mostly tangential. The directions are randomized by Coulomb collisions
with the undisturbed gas of the main cluster.

On the other hand the bottom panel shows the radial velocity fraction of DM. All 50 particles
have a fraction of almost -1 in the beginning, as well. On the contrary to the gas velocities
they change continuous from -1 to about 0.75. Here just 5 snapshots are shown, because the
DM particles leave the considered frame before s031. It is likely that they become even closer
to 1 in the next snapshot. The radial velocity fractions are roughly the same for all particles
in one snapshot, as they change together from snapshot to snapshot.

3.4 Temperature and Gas Density Jump Ratios and Image
Arithmetic

We want to asses of which nature the temperature and density changes are. They could
be adiabatic, isobaric or isothermal (no temperature change). At first the temperature and
density jump from snapshot to snapshot is calculated for each particle

Tj,jump =
Tj

Tj−1
ρj,jump =

ρj
ρj−1

(3.2)
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where j represents the current snapshot. This was done for each snapshot just for particles
that are included in the set box in the current snapshot and the former one. Because only
s026 to s031 were analysed there is no temperature jump plot for s026 as the data for s025 was
not included. Scatter plots colored according to the particles temperature jump and density
jump are shown in (Fig. 3.22) and (Fig. 3.23).

The difference between these scatter plots is only minimal. Particles that are heated up or
are compressed have a ratio greater then one and are shown in red. Decreasing jumps (< 1)
are colored blue. In both figures (Fig. 3.22, Fig. 3.23) one can see in the top right panel,
that the infalling particles are slightly heated up and compressed and proceed to do so even
more in the middle left panel. As they hit the center in the middle right panel this process is
continued. Afterwards there is a heating and compressing bow shaped region in the top right
corner of the bottom left panel. The temperature and gas density jump can be positive or
negative correlated. The correlation is characterized by

log(Tj,jump)

log(ρj,jump)
≡ αj (3.3)

If αj is positive, temperature and gas density change in the same way, e.g. if temperature
increases also gas density increases. If it is negative, the properties change in the opposite
way, e.g. if temperature increases gas density decreases. In a more detailed analysis one would
find the following values for the individual types of processes

α =


2/3 adiabatic, γ = 5/3

−1 isobaric, γ = 0

0 isothermal, γ = 1

(3.4)

In galaxy clusters, adiabatic changes can be attributed to (weak) shocks that propagate
through the gas, isobaric variations to slow and gentle displacements of fluid from their equi-
librium due to gravity and isothermal perturbations to the expansion of bubbles of relativis-
tic gas (ejected by AGNs). This discussion follows (Churazov et al. 2016) who presented
this arithmetic for X-ray images. A scatter plot colored according to α for particles with
Tj,jump > 1.2 is shown in (Fig. 3.24).

In the top right panel, the middle panels and the bottom left panel in (Fig. 3.24) one can
see that the heated particles of the infalling gas, the following heated particles in the center
and the heated particles in the bow shaped region have α ≈ 0.72 to α ≈ 1, which can be
attributed to adiabatic changes (α ≈ 0.66) like shocks or less extreme adiabatic compression
and heating. Interestingly there are some particles with α ≲ 0 located near the center. This
is investigated in (Fig. 3.25), which shows a scatter plot colored according to α < 0.1 for
particles with tj,jump > 0.95.

There, most particles have α ≈ −0.5 to α < 0.1, which would correspond to bubbles of
relativistic gas (α ≈ 0). This matches with the fact that there are many of these particles
close to the center, e.g. in the top right or middle left panel to the top right of the COM.
But many of these particles probably don’t belong to a bubble but are just unheated particles
within the cluster farther away from the center. There are also a lot of particles close to the
center with α ≈ −2 to α ≈ −3, e.g. in the top right and both middle panels. They are
also visible in (Fig. 3.24). These would rather correspond to isobaric gravity displacements
(α ≈ −1). But the discussion of (Churazov et al. 2016) for relativistic gas bubbles refers to
cavities where the ambient pressure is in equilibrium with the gas within, which can be seen
in X-ray as a drop of the thermal pressure without apparent changes in temperature. As our
data does not come form X-ray images but directly from the simulation, particles within such
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Figure 3.22: Scatter plot colored according to the temperature jump.
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Figure 3.23: Scatter plot colored according to the gas density jump.
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Figure 3.24: Scatter plot colored according to α for Tjump > 1.2.
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Figure 3.25: Scatter plot colored according to α < 0.1 for Tjump > 0.95.



58 CHAPTER 3. ANALYSIS

Figure 3.26: Temperature radial profile in direction of substructure; blue line: median; red lines: 32-
and 68-quantiles; green: linear fit; Tjump, points is calculated from the points where the dashed lines
cross; Tjump, fit is calculated from the maximum of the left fit over the maximum of the right fit.

a bubble are also heated by the AGN feedback and therefore α will be more negative for them.
In conclusion the particles close to the center shown in (Fig. 3.25) can also represent such a
bubble.

3.5 Radial Profiles via Radial Binning

Another way in which the substructure discussed in the last section can be seen are radial
profiles for temperature or density. Radial profiles for such a huge number of data points
can be smoothed by collecting several points close to each other in bins and calculating the
median for each bin. The bins used here are spherical shells of width 15 kpc, i.e. the first shell
gos from the COM to r = 15 kpc, the second one from r = 15 kpc to r = 30 kpc, etc. In the
following snapshot s028 was further investigated. In addition to the shells the bins are also
restricted to the octant in which the substructure is located. This was done for temperature
(Fig. 3.26), gas density (Fig. 3.28) and entropy (Fig. 3.29). Where it is suited a linear least
square fit was performed.

3.5.1 Profiles over the Infalling Substructure

In (Fig. 3.26) the temperature is high in the center, increases up to about r = 470 kpc, then
there is a sharp decrease from r ≈ 550 kpc to r ≈ 590 kpc after which the temperature is
steadily decreasing. As seen in (Fig. 1.1) in the situation where two gas spheres collide, two
shocks will occur. One propagating in the same direction as the infalling cluster through the
gas of the main cluster and one in the opposite direction though the gas of the infalling cluster.
As the first shock has to move through the denser gas it is weaker and therefore not visible
in the temperature profile. The detectable discontinuity represents the second shock. The
temperature jump was calculated from the bins before and after the discontinuity and from a
linear fit before and after the same. The results are Tjump, points ≈ 1.47 and Tjump, fit ≈ 1.55.
From the temperature jump the Mach number of the infalling gas can be calculated using
(ZuHone and Su 2022)
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Figure 3.27: Left: Geometry of s028 in temperature and the vertical dotted lines from (Fig. 3.26);
Right: Geometry of s028 in gas density and the vertical dotted line from (Fig. 3.28).

M =

(
(γ + 1)2(T2/T1 − 1)

2γ(γ − 1)

)1/2

(3.5)

which can be derived from the Rankine-Hugoniot jump conditions (Sec. 1.3.5). The resulting
Mach number is Mpoints ≈ 1.32 and Mfit ≈ 1.22 for γ = 5/3. This velocity is not the velocity
of the infalling substructure but it is close to it. The geometry of the cluster in snapshot s028
and the radii at the vertical dotted lines is shown in (Fig. 3.27).

The density profile (Fig. 3.28) doesn’t show a sharp discontinuity around the same radii as
the temperature profile. But it follows a similar course as it is highest in the center, declines
fluctuating, reaches a local minimum at r ≈ 500 kpc before it rises again up to r ≈ 650 kpc
before it decreases as the normal density profile does. The Mach number can not be calculated
from the density profile. The lack of a discontinuity can be explained, because the density
jump is smaller then the temperature jump (see Fig. 1.5). The shock is also weaker because
it has to climb up the density gradient of the main cluster. Again the geometry is shown in
(Fig. 3.27).

The low entropy region of the substructure can easily be seen in (Fig. 3.29). The entropy
grows from the center outwards as expected (Sec. 1.4.3) until a sharp decline at r ≈ 580 kpc.
It starts to increase again after about r ≈ 980 kpc. The geometry is shown in (Fig. 3.30).

In order to find the velocity at which the structure is infalling the radial velocity profile was
produced as well. It is shown in (Fig. 3.31). The velocity difference between r = 440 kpc and
r = 635 kpc is ∆vrad ≈ 1200 km/s. The speed of sound derived from the temperature profile
is cs ≈ 1300 km/s. This yields a Mach number (Sec. 1.3.4) of M ≈ 0.95. It is slightly smaller
than the Mach number derived from the temperature jump. In conclusion the velocity of the
infalling structure can be characterized by M ≈ 1.

3.5.2 Profile over the Whole Cluster

The radial density profile of the whole cluster obtained in the same manner (Fig. 3.32), i.e.
no restriction of the spherical bins to one octant, can be compared to the observed profile of
the Bullet Cluster (Fig. 1.7). They both show a bump where their substructure is located. In
the simulation data at r ≈ 635 kpc and in the Bullet cluster at r ≈ 360 kpc. One difference
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Figure 3.28: Gas density radial profile in direction of substructure; blue line: median; red lines: 32-
and 68-quantiles; there is no discontinuity as in the temperature profile.

Figure 3.29: Gas density radial profile in direction of substructure; blue line: median; red lines: 32-
and 68-quantiles; There is a sharp discontinuity at r = 580 kpc and a small one at r = 980 kpc.
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Figure 3.30: Geometry of s028 in entropy and the vertical dotted line from Fig. 3.29.

Figure 3.31: Radial velocity radial profile in the direction of the substructure; blue line: median; red
lines: 32- and 68-quantiles; the velocity difference ∆vrad ≈ 1200 km/s is calculated from the points
where the dashed lines cross; cs ≈ 1300 km/s is calculated from the temperature in the bin at the
dashed line at r = 590 kpc.
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Figure 3.32: Top: Gas density radial profile for the whole cluster; blue line: median; red lines: 32-
and 68-quantiles; green: fitted β-profile (Eq. 1.38); Bottom: Ratio of radial binned data points and
the β-model fit; There is a peak at r ≈ 635 kpc which is where the substructure is located.

that can not be derived from the density profile is that the substructure in the simulation is
infalling and the one in the Bullet Cluster is outgoing.

3.5.3 Profile over the Outgoing Shock

At last the outgoing shock visible in the top right corner of the bottom left panel in the above
scatter plots is investigated. In order to capture it completely the boundaries of the zoomed
in box are increased. The temperature profile in the direction of the shock is shown in (Fig.
3.33).

There the typical profile for a shock can be observed. The temperature is almost isothermal at
low radii and slightly increases up to r ≈ 1375 kpc after which the profile shows a discontinuity
and decline. The temperature jump again was calculated as for the infalling substructure.
Tjump, points ≈ 1.67 translates to a Mach number of Mpoints ≈ 1.47 and Tjump, fit ≈ 1.47 to
Mfits ≈ 1.23. This velocity is also comparable to the Mach number derived from the shock at
the infall and the Mach number derived from the radial velocity profile. This is because the
outgoing shock was caused by the infalling gas. The geometry is shown in (Fig. 3.34).
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Figure 3.33: Temperature radial profile in direction of substructure; blue line: median; red lines: 32-
and 68-quantiles; green: linear fit; Tjump, points is calculated from the points where the dashed lines
cross; Tjump, fit is calculated from the maximum of the left fit over the maximum of the right fit.

Figure 3.34: Geometry of s030 in temperature and the vertical dotted lines from (Fig. 3.33).
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Chapter 4

Summary and Conclusion

4.1 Summary

Different behavior of Dark Matter and Gas

The different behavior of DM and stars to gas during a merger was confirmed in the cosmolog-
ical simulation. Gas is slowed down and stopped by ram pressure and thermal pressure, while
the velocity directions are randomized. DM and stars pass through the cluster collisionless
and their velocity directions stay about the same all the time. Phase diagrams and real space
visualisations (tracing and tracks) were used to produce this result. This is expected as DM
was implemented as being collisionless and the distances between stars and galaxies is larges
enough, that collisions are not probable. This behaviour is observed in the Bullet cluster in
the real universe.

Also the mixing of the infalling gas with the main gas cloud and the mixing of the infalling
DM particles with the main DM component is different as seen in the phase diagrams. Gas
is completely mixed after one core passage whereas the DM spirals around more often.

Infalling substructure and outgoing shock

Infalling (i.e. negative radial velocities) gas, DM and star particles were found. The increase
of the temperature and gas density of the gas was seen in scatter plots for temperature,
gas density and their jumps, evolution plots (tracing sub sample gas properties) and radial
profiles. That the changes were due to adiabatic processes could be confirmed by looking
at the correlation of the density and temperature changes. That means the gas is heated
and compressed by adiabatic compression and shock fronts. It could also be seen that their
entropy is lower than the entropy of the surrounding gas, but is steadily increasing. The
increase in temperature and gas density was further investigated in radial profiles. Entropy
and radial velocity profiles were produced as well. From a discontinuity in the temperature
profile, the Mach number could be calculated and compared to the velocity difference in the
radial velocity profile. Combining the results, the Mach number is approximately unity (M
≈ 1).

In the same manner the Mach number of the outgoing shock behind the core caused by the
infalling gas was calculated to be approximately M ≈ 1.3 which is comparable to the Mach
number of the infalling gas.
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Metallicity evolution

Both the total metallicity and the iron to oxygen ratio for the main cluster and the infalling
sub sample are increasing. No difference in the rate of the gain is visible. They both are still
increasing their iron enrichment. The difference of metallicity between the sub sample and
the main cluster could be used to distinguish them in X-ray observations.

AGN bubble

As a sidenote the existence of a AGN feedback bubble near the center of mass could be dis-
cussed. The gas there is heated while being diluted.

4.2 Problems

It should be noted, that structures with only a few particles could have been missed completely
because only 6% of the particles were plotted. The histograms for some properties of the
traced particles or the particles within one bin have large (asymmetric) wings with high
values. Because of this the median was used to calculate a value for the properties as it is not
as strongly effected by these wings as the mean, except for metallicity where the mean was
used. All the scatter plots show a projection along the z-axis but projections along the other
axes are also available. In all projections the same structures are visible. This effect also is
not important for the radial profiles and the traced properties as the three dimensional data
was used for the results.

4.3 Conclusion

In conclusion this work sums up a few phenomena that take place within galaxy clusters and
gives an introduction to hydrodynamic simulations and how they are analyzed.

The possibility to have access to all the three dimensional information gives great insights
in the physical nature but the results are not comparable to what observers see. Therefore
analyses with virtual observatories like PHOX, that were neglected in this work, are important
for future studies.

Since many different aspects and analysis methods were included, in the future one of these
aspects could be studied in more detail and the sample of investigated clusters could be
increased. By studying the steady increase of metallicity and entropy in more detail, the
evolutionary stage of the merger could be estimated. The offset in metallicity between main
cluster and infalling substructure could help X-ray missions to distinguish between them, as
well. Especially future X-ray observatories might profit from this result.
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Appendix A

Derivation of the Rankine-Hugoniot
Jump Conditions

As mentioned in Sec. 1.3.5 one can derive the Rankine-Hugoniot Jump Conditions from the
conservation of mass, energy and momentum

ρ1v1 = ρ2v2 ≡ j (A.1)

1

2
v21 + w1 =

1

2
v22 + w2 (A.2)

p1 + ρ1v
2
1 = p2 + ρ2v

2
2 (A.3)

The following definition is useful

V =
1

ρ
(A.4)

The "heat function":

w = CPT =
γpV

γ − 1
=

c2

γ − 1
(A.5)

The ideal gas law:

pV = NkBT (A.6)

The Mach number:
M =

v

cs
(A.7)

From (A.4) and (A.1) the velocities can be written as

v1 = jV1 v2 = jV2 (A.8)

Inserting (A.8) into (A.3) yields
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p1 + j2V1 = p2 + j2V2 ⇐⇒ p2 − p1 = j2(V1 − V2)

j2 =
p2 − p1
V1 − V2

(A.9)

Starting with (A.2)

w1 − w2 =
1

2
(v22 − v21)

(A.1)
=

1

2
j2(ρ−2

2 − ρ−2
1 )

(A.4)
=

1

2
j2(V 2

2 − V 2
1 ) =

(A.9)
=

1

2
(p2 − p1)

V 2
2 − V 2

1

V1 − V2
= −1

2
(p2 − p1)(V1 + V2) =

1

2
(p1 − p2)(V1 + V2)

(A.5)⇐⇒ 2γp1V1

γ − 1
− 2γp1V1

γ − 1
= V1p1 + p1V2 − p2V1 − p2V2

⇐⇒ 2γ

γ − 1
p1V1 −

2γ

γ − 1
p2V2 − p1V1 + p2V2 = V2p1 − V1p2

⇐⇒
(

2γ

γ − 1
− 1

)
p1V1 −

(
2γ

γ − 1
− 1

)
p2V2 = V2p1 − V1p2

⇐⇒
(
γ + 1

γ − 1

)
p1V1 −

(
γ + 1

γ − 1

)
p2V2 = V2p1 − V1p2

·V −1
1⇐⇒ γ + 1

γ − 1
p1 −

γ + 1

γ − 1
p2

V2

V1
= p1

V2

V1
− p2

⇐⇒ V2

V1

(
γ + 1

γ − 1
p2 + p1

)
= p2 +

γ + 1

γ − 1
p1

⇐⇒ V2

V1

(
(γ + 1)p2 + (γ − 1)p1

γ − 1

)
=

(
(γ − 1)p2 + (γ + 1)p1

γ − 1

)
V2

V1
=

(
(γ + 1)p1 + (γ − 1)p2

)
(γ − 1)

(γ − 1)
(
(γ + 1)p2 + (γ − 1)p1

=
(γ + 1)p1 + (γ − 1)p2
(γ + 1)p2 + (γ − 1)p1

(A.10)

From the ideal gas law (A.6)

T2

T1
=

p2V2

p1V1
(A.11)

Inserting (A.10) into (A.9)

j2 =
p2 − p1

V1 − V1
(γ+1)p1+(γ−1)p2
(γ+1)p2+(γ−1)p1

=
(p2 − p1)/V1

1− (γ+1)p1+(γ−1)p2
(γ+1)p2+(γ−1)p1

=

=

(
(γ − 1)p1 + (γ + 1)p2

)
(p2 − p1)/V1

(γ − 1)p1 + (γ + 1)p2(γ + 1)p1 − (γ − 1)p2
=

(
(γ − 1)p1 + (γ + 1)p2

)
(p2 − p1)/V1

2(p2 − p1)
=

j2 =
(γ − 1)p1 + (γ + 1)p2

2V1
(A.12)

Inserting (A.12) in (A.8)

v21 = j2V 2
1

(A.12)
=

1

2
((γ − 1)p1 + (γ + 1)p2))V1

(A.5)
=

c21
2γ

(γ − 1 + (γ + 1)p2/p1) (A.13)
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Now we can finally start with the jump ratios. Starting with pressure: Inserting (A.7) into
(A.13)

v21 =
v21

2γM2
1

(γ − 1 + (γ + 1)p2/p1) ⇐⇒ 2 =
γ − 1

γM2
1

+
p2(γ + 1)

p1γM2
1

⇐⇒ 2− γ − 1

γM2
1

=
p2
p1

γ + 1

γM2
1

⇐⇒

p2
p1

=
2γM2

1

γ + 1
− γ − 1

γ + 1
(A.14)

Now the density ratio. Combining (A.10) and (A.4):

ρ2
ρ1

=
V1

V2
=

(γ − 1)p1 + (γ + 1)p2
(γ + 1)p1 + (γ − 1)p2

=
(γ − 1) + (γ + 1)p2/p1
(γ + 1) + (γ − 1)p2/p1

(A.14)
=

=
(γ − 1) + (γ + 1)

2γM2
1−γ+1
γ+1

(γ + 1) + (γ − 1)
2γM2

1−γ+1
γ+1

=
γ − 1 + 2γM2

1 − γ + 1

γ + 1 + γ−1
γ+1(2γM

2
1 − γ + 1)

=

=
2γM2

1 (γ + 1)

(γ + 1)2 + (γ − 1)(2γM2
1 − γ + 1)

=
2γM2

1 (γ + 1)

(γ + 1)2 + 2γM2
1 (γ − 1)− (γ + 1)2

=

=
2γM2

1 (γ + 1)

2γM2
1 (γ − 1) + γ2 + 2γ + 1− γ2 + 2γ − 1

=
2γM2

1 (γ + 1)

2γM2
1 (γ − 1) + 4γ

=

ρ2
ρ1

=
V1

V2

(A.8)
=

v1
v2

=
M2

1 (γ + 1)

M2
1 (γ − 1) + 2

(A.15)

At last the temperature ratio. Starting with (A.11) and (A.4):

T2

T1
=

p2V2

p1V1
=

p2ρ1
p1ρ2

(A.11),(A.14)
=

2γM2
1 − (γ − 1)

γ + 1
· (γ − 1) + 2/M2

1

γ + 1
=

T2

T1
=

(
2γM2

1 − (γ − 1)
)(

(γ − 1)M2
1 + 2

)
(γ + 1)2M2

1

(A.16)
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Appendix B

Methodology

B.1 Python Code Orbit

import numpy as np
import matp lo t l i b . pyplot as p l t

de f grav (M,m,R, r ,G) :
"""
Ca lcu la te the g r a v i t a t i o n a l f o r c e between two masses
M i s a s c a l a r o f one mass
m i s a s c a l a r o f the other mass
R i s a 1 x 3 matrix o f the po s i t i o n o f one mass
r i s a 1 x 3 matrix o f the po s i t i o n o f the other mass
G i s the g r a v i t a t i o n a l constant (6 .67430 e−11 Nm2kg−2)
"""
dx = R[ 0 ] − r [ 0 ]
dy = R[ 1 ] − r [ 1 ]
dz = R[ 2 ] − r [ 2 ]
d = np . s q r t ( dx∗∗2 + dy∗∗2 + dz ∗∗2)
f = np . z e r o s (3 )
f [ 0 ] = G∗M∗m∗dx/d∗∗3
f [ 1 ] = G∗M∗m∗dy/d∗∗3
f [ 2 ] = G∗M∗m∗dz/d∗∗3

return f

de f KDK(Nt , dt , r , R, vel , M, m, G) :
"""
Loop f o r a KDK leap−f r o g i n t e g r a t i o n
Nt i s a s c a l a r o f the t o t a l number o f time s t ep s
dt i s a s c a l a r o f a time step
r i s a N x 3 matrix o f the po s i t i o n o f one p a r t i c l e
R i s a 1 x 3 matrix o f the po s i t i o n o f the cent e r
v e l i s a 1 x 3 matrix o f the v e l o c i t y
M i s a s c a l a r o f the cen te r mass
m i s a s c a l a r o f the p a r t i c l e mass
G i s the g r a v i t a t i o n a l constant (6 .67430 e−11 Nm2kg−2)
"""
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#save p o s i t i o n s
r_save = np . z e r o s ( (Nt+1, 3 ) )
r_save [ 0 ] = r
f o r i in range (Nt ) :

v e l = ve l + grav (M,m,R, r ,G)/m∗dt /2 # 1/2 k ick
r = r + ve l ∗dt #d r i f t
v e l = ve l + grav (M,m,R, r ,G)/m∗dt /2 # 1/2 k ick
r_save [ i +1] = r

re turn r_save

de f DKD(Nt , dt , r , R, ve l , M, m, G) :
"""
Loop f o r a KDK leap−f r o g i n t e g r a t i o n
Nt i s a s c a l a r o f the t o t a l number o f time s t ep s
dt i s a s c a l a r o f a time step
r i s a N x 3 matrix o f the po s i t i o n o f one p a r t i c l e
R i s a 1 x 3 matrix o f the po s i t i o n o f the cent e r
v e l i s a 1 x 3 matrix o f the v e l o c i t y
M i s a s c a l a r o f the cen te r mass
m i s a s c a l a r o f the p a r t i c l e mass
G i s the g r a v i t a t i o n a l constant (6 .67430 e−11 Nm2kg−2)
"""

#save p o s i t i o n s
r_save = np . z e r o s ( (Nt+1, 3 ) )
r_save [ 0 ] = r

f o r i in range (Nt ) :
r = r + ve l ∗dt /2 # 1/2 d r i f t
v e l = ve l + grav (M,m,R, r ,G)/m∗dt #kick
r = r + ve l ∗dt /2 # 1/2 d r i f t
r_save [ i +1] = r

re turn r_save

de f second_RK(Nt , dt , r , R, vel , M, m, G) :
"""
Loop f o r a second order Runge−Kutta i n t e g r a t i o n
Nt i s a s c a l a r o f the t o t a l number o f time s t ep s
r i s a N x 3 matrix o f the po s i t i o n o f one p a r t i c l e
R i s a 1 x 3 matrix o f the po s i t i o n o f the cent e r
v e l i s a 1 x 3 matrix o f the v e l o c i t y
M i s a s c a l a r o f the cen te r mass
m i s a s c a l a r o f the p a r t i c l e mass
G i s the g r a v i t a t i o n a l constant (6 .67430 e−11 Nm2kg−2)
"""

#save p o s i t i o n s
r_save = np . z e r o s ( (Nt+1, 3 ) )
r_save [ 0 ] = r

f o r i in range (Nt ) :
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k_1 = grav (M,m,R, r ,G)/m
h_1 = ve l
k_2 = grav (M,m,R, r+h_1∗dt ,G)/m
h_2 = ve l+k_1∗dt
ve l = ve l + 0 . 5∗ ( k_1+k_2)∗ dt
r = r + 0 . 5∗ (h_1+h_2)∗ dt
r_save [ i +1] = r

re turn r_save

de f fourth_RK_energy (Nt , dt , r , R, vel , M, m, G) :
"""
Loop f o r a second order Runge−Kutta i n t e g r a t i o n
Nt i s a s c a l a r o f the t o t a l number o f time s t ep s
r i s a N x 3 matrix o f the po s i t i o n o f one p a r t i c l e
R i s a 1 x 3 matrix o f the po s i t i o n o f the cent e r
v e l i s a 1 x 3 matrix o f the v e l o c i t y
M i s a s c a l a r o f the cen te r mass
m i s a s c a l a r o f the p a r t i c l e mass
G i s the g r a v i t a t i o n a l constant (6 .67430 e−11 Nm2kg−2)
"""

#save p o s i t i o n s
r_save = np . z e r o s ( (Nt+1, 3 ) )
r_save [ 0 ] = r

f o r i in range (Nt ) :
k_1_v = grav (M,m,R, r ,G)/m
k_1_r = ve l
k_2_v = grav (M,m,R, r+k_1_r∗dt /2 ,G)/m
k_2_r = ve l+k_1_v∗dt /2
k_3_v = grav (M,m,R, r+k_2_r∗dt /2 ,G)/m
k_3_r = ve l+k_2_v∗dt /2
k_4_v = grav (M,m,R, r+k_3_r∗dt ,G)/m
k_4_r = ve l+k_3_v∗dt
ve l = ve l + dt /6∗(k_1_v+2∗k_2_v+2∗k_3_v+k_4_v)
r = r + dt /6∗(k_1_r+2∗k_2_r+2∗k_3_r+k_4_r)
r_save [ i +1] = r

re turn r_save
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B.2 Comparison of a Gaussian and B2-spline Kernel for SPH

Figure B.1: Comparison of gaussian and B2-spline kernel for SPH.



Appendix C

Snapshot File

C.1 Snapshot Blocks

# format 2 identifier block content
1 ’HEAD’ File header
2 ’POS ’ Particle positions
3 ’VEL ’ Particle velocities
4 ’ID ’ Particle IDs
5 ’MASS’ Mass of particlesa

6 ’U ’ Internal energy of gas particles
7 ’RHO ’ Density
8 ’NE ’ Number density of free electrons
9 ’NH ’ Number density of neutral hydrogen
10 ’HSML’ Variable smoothing length of gas particles h

11 ’SFR ’ Star formation rate
12 ’AGE ’ Expansion factor at which star (or BH) is born
19 ’POT ’ Potential
20 ’PHID’ dPotential/dt
21 ’ABVC’ Artificial bulk viscosity constant for gas particle
24 ’TNGB’ True number of neighbors (gas particles) (Nsph)
26 ’Zs ’ Metallicity (e.g. Composition) of gas and stars (11 dimensions)
29 ’TEMP’ mean gas temperature [K]

Table C.1: Snapshot file data blocks (less important blocks are not shown).
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C.2 Snapshot Header

# name description
1 npart Number of particles in the snapshot per type
2 massarr Mass of particles per typea

3 time Time of snapshot
4 z Redshift of snapshot
7 nall Total number of particles in the simulation per particle type
9 num_files Number of snapshots over which the simulation data is distributed
10 boxsize Total size of the simulation box
11 omega_0 Omega matter
12 omega_l Omega dark enery
13 h0 dimensionless Hubble constant
21 fill The HEAD block needs to be filled with zeros to have a size of 256 bytes

Table C.2: Snapshot file header (less important parts are not shown)

a: If a particle type has a constant mass for each particle its value is stored in the massarr in
the header. If a particle type has a non constant mass the corresponding element in massarr
will be zero and the masses will be stored in the ’MASS’ block.



Appendix D

Data of the Investigated UID1 Cluster

The investigated cluster has the UID 1 in the Magneticum Box 2bhr. The cosmological
parameters are Ωc = 0.272, ΩΛ = 0.728 and h = 0.704. r500c is the radius of a sphere within
which the mean density is 500 times the critical density at the respective redshift z. The
sphere is centered on the center of the cluster. m500c is the total mass within this sphere
(See Sec. 1.3.2).

snapshot number redshift z r500c [kpc/h] m500c [M⊙/h] T [keV]
s026 0.47019408 1180.01 4.78589E14 6.23096
s027 0.42372720 1157.33 4.72399E14 6.49616
s028 0.37872894 1252.78 6.28383E14 6.8865
s029 0.33515290 1283.52 7.10309E14 8.36688
s030 0.29295412 1307.45 7.90967E14 7.76548
s031 0.25208907 1262.35 7.51708E14 7.31031

Table D.1: Data of the UID 1 cluster in Box 2bhr for several snapshots. Data taken from the
Magneticum Website.
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