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1. Introduction

Eine ältere Dame in einem Usedomer Super-
markt nimmt eine ganze Palette von Joghurt mit
Tropenfrüchten aus dem Kühlregal und erklärt
dem Autor dieser Arbeit:
“Wissen Sie, ich nehme ja nur die Exoten.”

Pulsars are exotic in every aspect of their existence and take physics to yet another
extreme. They serve as both test-bed and showcase of lots of fundamental physics
like quantum electrodynamics in strong fields[HL06] or general relativity [KW09].
These rapidly rotating objects may e.g. give insights about the still unknown equa-
tion of state of the neutron star, the core of the pulsar. Providing high luminosity,
precision timings as well as fields exceeding 1013 Gauss they are of great interest for a
broad range of research topics. Especially the radio emission shows both interesting
structure and promising perspective to test fundamental physics. While already be-
ing actively used for research, its exact origin remains unknown. Exact identification
of the emission process would not only add another cornerstone to the understanding
of pulsar magnetospheres but also give the opportunity to gain accuracy in timing
models and the assumptions therein.
This thesis analyses one candidate driving process for radio emission, the two stream
instability both in terms of analytic calculations and simulations. As will be shown,
the TSI is not only strong and fast enough to be a candidate for radio emission but
also shows promising scaling behaviour with pulsar parameters as well as the right
mixture between existence in all pulsar magnetospheres and being suppressed for
most parts of an individual magnetosphere.
A basic knowledge of pulsars, a special category of neutron stars is vital to under-
stand the approximations and assumptions our analysis is based on. Therefore we
begin our thesis by reviewing the basic principles of pulsar and neutron star physics,
give reasoning on the structure of a pulsar magnetosphere and review the charac-
teristics of radiation output. Concluding our introductory chapter we will give an
overview over the various proposed radiation mechanisms.
Thereafter we will carry out a thorough analytical analysis of the TSI instability
presenting also numerical results to test both our derivation and the code. Proceed-
ing with analysing the interplay between the fields of a pulsar magnetosphere and
the TSI we will derive restrictions to the development of the instability and examine
where the TSI arises in a pulsar magnetosphere.
A process proposal would not be complete without at least an estimation on the
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1. Introduction

power output yielded. We give such a rough calculation in the chapter before con-
cluding the astrophysical part of our thesis by summarizing our results.
In the appendix we have collected a brief introduction to the PSC, the plasma sim-
ulation code used, as well as detailed descriptions of our case’s setup along with the
input data to the simulations presented throughout the thesis. The interested reader
will stumble upon some derivations of formulae used in the text.
As outlined, let us begin with the birth of a pulsar, introducing us to the basic pulsar
physics.

1.1. Pulsar formation and evolution

The following sections review common knowledge in the field of pulsar astronomy
and use arguments partly adapted from [Cam98, Rit93, Kra95].
Pulsars basically are fast rotating neutron stars(which themselves have been pro-
posed by Baade and Zwicky [BZ34] 1934). This type of star may be formed when
a main sequence star or a mass accreting white dwarf ends up in a supernova. The
basic mechanism is triggered by the depletion of lighter elements in the core and
the breakdown of the corresponding fusion processes. This leads to an absence of
radiation pressure. Consequently the star further collapses until the temperature
and pressure in it reaches the next higher fusion threshold. This goes on until iron is
produced, which has the maximum binding energy per nucleon and thus would not
set free any energy by fusion processes. This leads to a sudden pressure drop in the
core. The hull of the star falls onto the core. Gravitations pressure on the remnants
of the core is so heavy that the Fermi pressure on electrons rises to a level where
the inverse beta decay of electrons with protons to neutrons and electron neutrinos
is favoured. The iron core collapses to pure neutrons now forming a macroscopic
atomic nucleus. This happens if the iron core has a mass over the Chandrasekhar
limit[Cha83] of about 1.44M� . Because of its degenerated state the core is quite
inelastic and reflects the incoming shockwaves from the still ongoing collapse. The
shock, additionally driven by thermonuclear fusion of the remaining lighter elements,
blasts the hull into space. A neutron star consists of degenerate superfluid neutrons
and some protons in the core surrounded by a crust of iron with traces of other
elements. Since it possesses a density of an atomic nucleus and is formed out of the
remains of a normal star, a neutron star is, with a typical radius of about 10km
a very compact object. The super nova per se is a quite symmetric process and
thus can be assumed to conserve angular momentum. This conservation leads to a
speedup of the naturally existing rotation of the star. We may conclude:

Erot =
1

2
IpreΩ

2
pre =

1

2
INSΩ2

NS = INS
2π2

P 2
(1.1)

ΩNS

Ωpre

≈
√
Ipre
INS
≈ rpre
rNS

(1.2)
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1.1. Pulsar formation and evolution

Where Erot is the rotation energy, Ipre/NS the moment of inertia before and after
collapse, Ω the rotation frequency and P = 2π

Ω
the rotation period and we have

used that for the moment of inertia
∫

dV r2ρ ≈ mr2 approximately holds. Thus the
collapse leads to a spinup approximately determined by the radii’s ratio of star and
neutron star. This easily leads to factors of 106; typical rotation periods of days
for a star become seconds and beyond. There’s a lower limit to the period since a
neutron star may only rotate as fast as its surface stays below the velocity at which
centrifugal surmount gravitational forces. We thus conclude for a period:

ERot ≈
GM2

NS

rNS

(
Pcrit
P

)2

(1.3)

Pcrit = πrNS

√
rNS

GMNS

≈ 0.5ms for rNS ≈ 12km (1.4)

where we’ve assumed INS ≈ 1
2
MNSr

2
NS. Calculating for a neutron star of 1.5M�

at a period of 1s and radius of 10km we yield the total rotational energy Erot =
2.8 · 1048Erg.
The period is not the only quantity affected by the collapse. Stars generate a mag-
netic field by the magnetohydrodynamic dynamo mechanism of about 100G. It is
an elementary result of basic plasma physics, that, when the plasma is dominating
the magnetic field (which is the case for a star as whole) the magnetic field lines are
effectively frozen into the plasma and carried away with its movement. This means,
large scale change of an magnetic field in this case is coupled to the flow of plasma.
We know by Maxwell’s equation that the B-field is divergence free. This means by
Gauss’ theorem: ∫

V

d3xdiv ~B =

∫
∂V

d ~A~B = 0; (1.5)

If we now divide the whole surface of the star into a northern and southern hemi-
sphere, and let the B-field scale with B0, then this equation simply states that the
flux through the northern hemisphere equals the flux through the southern. The in-
tegrals are invariant to surface deformation and yield a constant. Now the surface of
the star will shrink since it collapses. This does not change topology of the problem
in our case, which means that the evolution of the collapse does not affect the flux:

d

dt
Φ =

d

dt

∫
hemisphere

d ~A~B = 0 (1.6)

by symmetry we conclude that the local flux is also conserved under transformation,
and thus

B0,NS = B0,star
Astar
ANS

(1.7)

which states that a neutron star may be a rotating magnetic dipole of B0 = 1014G.
For real pulsars, typical magnetic field strengths are 1012G indicating a loss of mag-
netic flux during formation.
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1. Introduction

Since the rotational and magnetic axes may not be aligned1 such a magnetic field of
course radiates and by that slows rotation.
We may calculate the loss of energy by observing the spindown, Ṗ , and deriving (1.1)
w.r.t. time:

Ėrot = −4π2INS
P 2

Ṗ

P
(1.8)

For typical relative slippages of 10−15 we yield an energy loss of tremendous 5.6 ·
1033erg/s which is about the power output by the sun. Only a small fraction of
this energy is converted into radio frequency. Typical total energy outputs are in
the range of 1030erg/s < Ėrot < 4 · 1038erg/s. Because of the tremendous rotational
energies involved, a pulsar can be taken as rigid timing device competing with atomic
clocks which are just reaching a relative accuracy of 10−15 [NIS06]. However there
are rare (w.r.t. time) but common (w.r.t. different pulsars) events of time slips2

accounted to structural deformation of the iron crust that nearly instantly modify
the moment of inertia.
The associated pulsar lifetime in a crude estimate by 1

Ṗ
is something like 1015s, yield-

ing 30 million years. Remaining nebulae created by the expelled hull of a supernova
vanish from sight by movement or dilatation after a few 10,000 years leaving the
pulsar in our view.

1.2. Observational picture and outer magnetosphere

Spectacular evidence of a young pulsar is the crab nebula. The supernova observed
AD 1054 by chinese astronomers3 created both nebula and the crab pulsar (see fig.
1.1). The nebula’s high radiation by gyration of charge carriers around a magnet
field of mG strength needs γ-factors of 106. The relaxation time for such a process is
much shorter than the lifetime of the nebula and thus the relativistic particles have to
be constantly supplied by the crab pulsar. The pictures thus show direct evidence of
the wind the pulsar drives with its energy dissipation of about 4 · 1038erg/s [Cam98]
The wind itself is caused by the rotating magnetic axis. In the case of non-aligned
rotation and magnetic axis, the dipole magnetic field has to show a form differing
from a dipole at the distance where the distance r from the rotation axis is Ωr > c
since the fields and particles cannot propagate with a speed exceeding the speed of
light. The field lines of a dipole field which lie completely within this so called light
cylinder roughly follow the classical dipole solution and are closed in the sense that
they start and end at the pulsar’s surface. The wind is driven by the so called open
field lines. They leave the pulsar’s surface near the pole to cross the light cylinder ,
wind up and stretch out until they interact with the ISM4.

1parallel alignment is called the case of an aligned rotator
2so called glitches
3and possibly others
4interstellar medium
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1.3. Inner magnetosphere and radio emission zone

Figure 1.1.: Observational
appearance of the crab
nebula in optical, UV and
γ-rays [NU96] most of the
energy output of the crab
pulsar drives the emissions
of the wind zone.

1.3. Inner magnetosphere and radio emission zone

The relevant area for this thesis however lies a few ten to hundred pulsar radii above
the surface of the pulsar and not in the wind zone. There we can model the pulsar
magnetosphere to consist of more or less closed field lines and a cone of open field lines
over every magnetic pole. This becomes clear since radio emissions are coupled to
the rhythm of this cone crossing the line of sight to earth. A pictorial approach to the
inner structure is given in fig.1.2. Goldreich and Julian 1969 [GJ69] proposed a model
for the structure of the inner magnetosphere. Even though it is a static model and
thus expected to break down for the open field lines, observations[KLO+06] suggest
that it is not far from the right picture and the Goldreich Julian density is still a
fairly good assumption for the plasma density. They take a closed magnetic dipole
field as basic assumption in which the neutron star’s plasma is rotating. To form a
static model, the arising Lorentz force ∝ ~v× ~B has to be balanced by an electric field
created by an arising charge density. This charge density is statically hold by the
closedness of the field lines restricting its movements to the field’s geometry. Putting
this into formulae yields [GJ69] (in spherical coordinates and aligned rotator case):

Φ(θ, r) = −BoΩr
5
NS

3cr3
P2(cos(θ)) (1.9)
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1. Introduction

Figure 1.2.: One may imagine the inner zone of a pulsar magnetosphere consisting
of closed field lines (depicted green) holding static density of plasma and a region of
open field lines (depicted blue) with high electric field gradients driving jets.

Where P2(cos(θ)) is the second Legendre Polynomial, which for small θ may be set
to 1 since it goes like θ4 around small θ. We use the approximation of an aligned
rotator throughout our thesis and expect the preceding to hold. Φ is the electric
potential created by the Goldreich Julian charge density,

|e · nGJ(r)| = 4
BoΩ

c

(rNS
r

)5

(1.10)

This of course only holds for the closed field line area since charge carriers on open
field lines are free to exit the pulsar at the poles. Gravitational forces, as strong they
might be are exceeded by electric forces by a factor of

Fel
Fgrav

eBoΩrNS

3c
GMNSme

r2NS

=
eBoΩr

3
NS

3cGMNSme

≈ 1011 (1.11)

for electrons or positrons. At such a ratio, it becomes clear that pulsars may drive
strong jets into the surrounding space.
The pulsar magnetosphere’s density often is described to be a factor of ζ, the so
called multiplicity, more dense than the net charge density derived nGJ suggests. At
such high field values it is agreed upon that a pulsar sustains a positron-electron-
plasma. However exact pair creation rates are unknown and expected not to have
a dramatic cascading behaviour. In this setting, the high fields parallel to the open
field lines excite the question of limitation of output flow. Both the emission work on
charge carriers from the polar cap region[JLK01] and the limit by space charge effects
[JLK02] have been intensively studied and may perhaps lead to an explanation of
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1.4. Radio footprint of a pulsar

Figure 1.3.: One of the first obser-
vations from the paper of Bell and
Hewish ’68[HBP+68]: a, A record of
the pulsating radio source in strong
signal conditions (receiver time con-
stant 0.1s). Full scale deflexion
corresponds to 20 · 10−24 W

m2Hz
. b,

Upper trace records obtained with
additional paths (240m and 450m)
in one side of the interferometer.
Lower trace: normal interferome-
ter records.(The pulses are small for
l = 240m because they occurred
near a null in the interference pat-
tern; this modifies the phase but
not the amplitude of the oscillatory
response on the upper trace.) c,
Simulated pulses obtained using a
signal generator.d, Simultaneous re-
ception of pulses using identical re-
ceivers tuned to different frequen-
cies. Pulses at the lower frequency
are delayed by about 0.2s.

the typical off-periods a pulsar undergoes. Before we turn to the possible origins of
radio radiation, let us describe the typical observational appearance of a pulsar in a
radio telescope.

1.4. Radio footprint of a pulsar

What Bell and Hewish[HBP+68] have detected on the 28th of November 1967 was
what its later name states: a pulsating star. It was a periodically emitting point
of radio radiation in the sky. Fluctuations in radio signals are quite common, since
the interstellar medium can cause scintillation5 that also appear as a point source.
Distinguishing noise from a regular occurring signal was not easy at that time, es-
pecially when usually a periodical signal meant, that one has caught a terrestrial
disturbance. Figure 1.3 shows the signals displayed in the original paper published
in Nature. Besides the periodicity, one already may extract another characteristic
feature of radio emissions in part b of the figure: A pulsar may interrupt its signal
for several periods. This phenomenon was entitled nulling. The underlying process

5scintillation in astrophysics usually means the twinkling of a star by atmospheric disturbances
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1. Introduction

Figure 1.4.: Comb-like frequency structure observed for ns to µs subpulses. Graphic
from [HKWE03]

causing the nulling has to take a timescale comparable to one to several pulsar peri-
ods. Observing lots of succeeding periods in detail, one finds another two timescales
of variation. A single period is never like the other and consists of lots of seemingly
random radiation outbreaks. However averaged over several hundred pulsar periods,
every pulsar radiates according to its characteristic fingerprint and is thus distin-
guishable from other pulsars. The fingerprint may perhaps only change significantly
over long time or after period glitches which are expected to correspond to larger
changes on the surface of the neutron star. We conclude that the average profile
varies on the scale of thousands of pulsar periods. But every pulse itself turns out to
consist of nanosecond outbreaks (nanoshots) cumulating to microbursts of radiation
in the hundred Mhz to Ghz range[HKWE03]. This holds perhaps not only for some
but for all pulsars. Since the timescale is near the wavelength one has to put some
effort into reconstructing frequencies out observational data but thorough analysis
suggests that these subpulses may have a comb-like structure (see fig. 1.4). Overall
radiated energy in the radio range is considerably less than 1/1000 of total output
and typically yield absolute values of 1028erg/s. Concluding from the plot in fig. 1.4
one deduces that luminosities are only weakly dependent on the pulsar parameters.
(The broad distribution comes with varying distance to the pulsars since displayed
are measured luminosities per area and frequency range). E.g. the mean observed
luminosities vary only about one and a half magnitudes w.r.t. B/P which demands
the radiation process to be only weakly dependent on B and P alone. A possible
radiation process producing such nanoshots is only happening a tiny fraction of the
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1.4. Radio footprint of a pulsar

Figure 1.5.: Graphics from
[AH00]: Depicted with filled
dots are young pulsars. Old
pulsars are marked with cir-
cles while the dotted line is
a fit over the overall popu-
lation and the normal line is
fitted to the old population.

whole time, thus its calculated peak power should be a few magnitudes higher than
the overall averaged luminosity perceived. Propagation of this pulse through the
magnetosphere furthermore may reduce its radiation power. Consequently a viable
candidate process should have a peak power at least two or three orders bigger than
1028erg/s to account for the luminosities observed. The ns to µs duration of such
a shot also indicates, that the emission region is quite narrow and on the order of
centimetres and meters. Could the radio output be simply of thermal origin? One
may estimate the brightness temperature of an object by the formula from it’s power
output in a given narrow frequency band as (a quick derivation is given in A.1):

Tbb =
c2Lν

2ν2δνA
≈ 1029K (1.12)

evaluated for ν = 108Hz,∆ν = 107Hz,A = 1013cm2.These tremendous temper-
atures will not be found in a pulsar magnetosphere and consequently incoherent
radiation by e.g. thermal radiation is to be excluded. Accordingly the search for an
appropriate radio emission process concentrated on coherent processes.
Another phenomenon gaining a lot of attention is the polarization of the received
radiation. Since most processes are oriented due to restriction of motion along the
field lines, the thus emitted radiation is highly polarized for most of the candidate
processes. Travelling through the magnetosphere, both refraction and propagation
of each mode implies complex coupling mechanisms. The impact of these in our case
secondary processes can therefore not be taken into account. To model a possible
signal by the processes described within this thesis, one would have to implement a
reasonable calculation to respect propagation. This was left for future investigation.
A useful overview over pulse propagation through the magnetosphere can be found
in [Gra99].
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1. Introduction

1.5. Radio Emission Processes

The following section intents to give an overview about emission process candidates
found in literature. It abbreviates the considerations given in [Gra99]. The emission
processes can be split up into the region they come from and the driving process. At
the polar cap, we could expect thermal emissions, however the temperatures involved
may perhaps account for the γ-ray fraction, but not the radio part. Thinking first
order, the strong electric field that causes acceleration may drive a radiation process
(see e.g. [RK10]). The bending of field lines also force the particles onto curved
trajectories leading to curvature emission(for example [Stu71]). While reasonable in
the infrared and shorter wavelength regime[CL02] these approaches do not account
for radio emissions since the power output simply turns out to be too small and
the timescales involved too large. Lots of efforts have been made to compensate
for that by some kind of bunching mechanism, be it electron-positron avalanches at
polar caps or the outer gap region (the region before the open field lines cross the
light cylinder). When bunched, a mechanism of this kind is radiating coherently
and goes as N2 unless limited by total energy loss considerations. Even though lot
of effort was put in these kind of models, they have been considered to fail to ex-
plain the radio emission since i) a satisfactory bunching mechanism could not be
found ii) bunches would disperse too fast [Mel78a]. This failure gave way to exam-
ine elementary coupling mechanisms of plasmas. On one hand elementary plasma
waves like Alven or Langmuir waves were considered being driven by a free energy
source provided by curvature radiation. This leads to the curvature maser types of
mechanisms[LM92]. They depend on a positive distribution gradient in momentum
space in the frame of reference for the plasma waves or another free energy source.
On the other hand, stream instabilities of various kind were considered, coupled
to a free electron maser[Jar05, Sch02]. They naturally exhibit expected behaviour
like the short timescale. Most of them were rendered unlikely since the instabilities
develop too slow[MG99] or the setup simply seems too artificial and ad hoc. The
radio radiation possibly could also be accounted to various processes being coupled
or all happening at the same time. However once established, one would get the
intensity “for free” out of plasma instability based models given an explanation why
the process happens in the strong constrained way outlined in the previous sections
and explicitly stated in the following section.

1.6. Constraints to be fulfilled

The two stream instability may drive both a maser or free electron mechanism and is
analysed with no concern whatsoever to the radiation process involved. We will only
present a chapter estimating two possible radiation process. The main constraints
the TSI or a subsequent radio process should reproduce are

12



1.6. Constraints to be fulfilled

1. Coherent radiation output

2. Small emission region

3. Strong bursts on short scale...

4. ...but specific place of occurrence in magnetosphere (for e.g. fingerprint)

5. Polarisation

6. Ubiquitously occurring for broad range of B0 and P ...

7. ...but at rather the same frequency, lengthscales and power output

We refrain from proposing a radio emission mechanism and then trying to analyse its
behaviour. Instead, the arguments presented try to establish the inevitability that
the two stream instability will happen in pulsar magnetospheres. Then we will derive
limits to the instability which naturally will restrict it to parameters that may fit the
radiation observed. We will then motivate how a radiation process may be driven by
the two stream instability and may “shine a light” onto a radio telescope. We reason
that virtually any radiation process based on the TSI may fulfill the characteristics
known from observation.

13





2. Analysis of the two stream
instability

Amongst processes I’m finding
And schemes that need designing
With procedures for applying
And purifying
’Procedures’ by Amplifier

2.1. Derivation of the dispersion relation

We are about to calculate the dispersion relation for the two stream instability of
a quasi-neutral flow of electrons and positrons. We do this in the cold beam limit,
setting the temperature to zero. At background magnetic fields of about 1012 Gauss
the movement of charged particles is effectively limited to one dimension. Thus a
very quick damping of electron/positron movement perpendicular to the field lines
by self radiation sets in limiting the movement of both species to trajectories along
the field lines. Consequently we will carry out our analysis in 1D. We begin by
setting a space constant initial electron positron beam with opposite momenta ±p0

and densities no. We add a small harmonic disturbance δn0exp[i(ωt± kx)].

fpositron
electron

= f±(x, p, t) = δ(p± p0)(n0 + δn0exp[i(ωt± kx)]) (2.1)

The phase space distribution functions are governed by the Vlasov equation(see also
method’s sec. B.1.2) stated here. The last term on the left hand side implements
the force exerted on the phase space element. In our case it suffices to consider the
electromagnetic force generated by the fields of the overall charge distribution. We
do not need to implement a Boltzmann term modelling collisions since this term is
- as often in astrophysics - negligible for the plasma being thin enough.

∂tf + v∂xf + (∂pf)F = 0 (2.2)

Since we carry out a linear analysis we can neglect the contributions of currents and
thus neglect the magnetic term leaving only electrostatic forces. Inserting our distri-
bution functions (2.1) into the Vlasov equation (2.2) we get the following equations
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2. Analysis of the two stream instability

with a yet to be determined electric field E.

δ(p± p0)δn0exp[i(ωt± kx)]i[ω ± kv] ± (∂pf±)Ee = 0 (2.3)

The electric field is to be calculated using Gauss’s law. We emphasize that the ±
signs in the last line of (2.4) just express two ways of writing the same formula whilst
in (2.3) they mean two independent equations.

∇E = 4π
∑
±

(±e)ρ± = 4π
∑
±

(±e)
∫

dpf±

E = 4πeδn0

∫
dxexp[iωt](exp[ikx]− exp[−ikx]) =

= −i4πeδn0
1

k
exp[iωt± kx](1 + exp[∓2ikx]) (2.4)

Let us insert this into (2.3) and divide through the common factor iδn0exp[i(ωt±kv)].
Now it comes clear why we expressed the electric field in two ways.

δ(p± p0)∓ 4πe2 ∂pf

(ω ± kv)k
(1 + exp[∓2ikx]) = 0 (2.5)

Let us now integrate over momentum space. The first term leaves us with a 1, the
second one needs a bit more attention. Let us first calculate∫

dp
∂pf

ω ± kv
P.I. of δ()in f

= −
∫

dpf∂p
1

ω ± kv
=

We can rewrite the partial integral as ∂
∂p

= ∂v
∂p

∂
∂v

= 1
mγ3

∂
∂v

and carry that out

= ±
∫

dpf
1

γ3m

1

(ω ± kv)2
k = (2.6)

= ± 1

γ3
0m

1

(ω ± kv0)2
k(no + o(δn0)) (2.7)

Where zero indices of γ0 and v0 indicate that these are parameters depending on p0

and not variables any more. Inserting this back into (2.5) we get the following two
equations for positrons and electrons,respectively:

1− 4πe2n0

mγ3
0︸ ︷︷ ︸

ω2
p,rel

[1 + exp[∓2ikx]]
1

(ω ± kv0)2
= 0 (2.8)

where we have omitted the term of o(δno). We may do so since this term is a
quadratic contribution, keeping in mind that we’ve divided by a factor of δn0 earlier.
Multiplying the equations with exp[±ikx] and adding them we get
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2.2. Analysis of dispersion relation

2 cos(kx) = 2 cos(kx)ω2
p,rel

[
1

(ω + kvo)2
+

1

(ω − kvo)2)

]
Getting rid of the Cosine factor we finally arrive at the dispersion relation for an
equally dense counter-streaming electron positron beam:

1 = ω2
p,rel

[
1

(ω + kvo)2
+

1

(ω − kvo)2

]
, where ωp,rel =

√
4πe2n0

mγ3
0

(2.9)

One finds dispersion relations of this type in standard text books, most commonly
for a non relativistic beam into a background plasma, for example in [NW94].

2.2. Analysis of dispersion relation

Having derived the dispersion relation (2.9) we now analyse it w.r.t. stability. Pulling
ωp,rel into the denominator we can define normalized ω and k as

1 =
1

( ω
ωp,rel

+ kvo
ωp,rel

)2
+

1

( ω
ωp,rel

− kvo
ωp,rel

)2
=

1

(ω + k)2
+

1

(ω − k)2
(2.10)

Multiplying with the denominators and expanding leads to a biquadratic equation:

0 = ω4 − ω22(k
2

+ 1) + k
2
(k

2 − 2) (2.11)

⇒ ω2 = 1 + k
2 ±

√
4k

2
+ 1 (2.12)

In order to yield complex roots the right hand side of (2.12) has to be smaller than
zero. Since we take k to be a purely real quantity1 both the factor under the root
and before it are positive. Thus only the solution with the minus sign will adapt a
complex branch. The condition

1 + k
2
<

√
4k

2
+ 1 (2.13)

leads to the requirement that ∣∣k∣∣ < √2 (2.14)

1this restricts our solution to the spatial harmonic case with no evanescent wave solutions

17



2. Analysis of the two stream instability

Hence the solutions for a positive sign of ω read

ω+ =

√
1 + k

2
+

√
4k

2
+ 1

ω− =


√

1 + k
2 −

√
4k

2
+ 1 for

∣∣k∣∣ ≥ √2

i

√√
4k

2
+ 1− (1 + k

2
) for

∣∣k∣∣ < √2

(2.15)

A plot of this dispersion relation can be found in figure (2.1). We get the maximum
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Figure 2.1.: Plot of the dispersion relation of the two stream instability. Plotted in
dashed red is the unstable mode of exponential growth.

unstable mode of (2.15) by setting the derivative of the imaginary branch to zero
yielding

ωmax =
i

2
at kmax =

√
3

4
(2.16)

or expressed in absolute quantities

Γmax =
ωp,rel

2
(2.17)

kmax =

√
3

4

ωp,rel

v0

=

√
3πe2n0

m

√
1

c2γ0(γ2
0 − 1)

(2.18)
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2.2. Analysis of dispersion relation

Later on we want to have some estimate on the timescale and dimensions of the
arising wavepackets until nonlinear effects kick in. Since the growth rate of

ωp,rel

2
is

quite strong, we expect the two stream instability to form only very short wavepackets
of a few plasma wavelengths before entering the nonlinear regime. Being generated
out of white noise2 we can derive an approximate solution with Gaussian envelope
and study it’s properties. In order to do so we approximate the dominant imaginary
part of the dispersion relation by a parabola. Deriving (2.15) w.r.t. k twice and
evaluating this at kmax we gain the value of it’s curvature,−3

2
, and conclude

ω ≈ −3

2
(k − kmax)2 +

1

2
(2.19)

This approximation is depicted in figure (2.1). Having derived the linear solution
to the Vlasov equation(2.2), we can immediately superpose a white noise spectrum
initial distribution, f ± (k,±p, t = 0) = const · f(p) to study the evolution of the
instability:

f+(x, p, t) = δ(p+ p0)

(
n0 + δn0

∫
dkexp[i(wt+ kx)]

)
= δ(p+ p0)

(
n0 + δn0

∫
dkexp[(−3

2
(k − kmax)2 +

1

2
)t+ ikx)]

)
(2.20)

Over-lined variables are dimensionless quantities we have to normalize at the end to
get the solution with correct units. Getting rid of the δ-function by integrating over
p and just looking at the white noise perturbation we yield

δf(x, t) = δn0

∫
dkexp[(−3

2
(k − kmax)2 +

1

2
)t︸ ︷︷ ︸

part I

+ ikx︸︷︷︸
part II

)]

= δn0exp[(
1

2
− 3

2
k

2

max)t]

∫
dkexp[−3

2
t(k − kmax +

ix

3t
)2]·

· exp[
3

2
t(k

2

max −
2

3t
ikmaxx−

x2

9t
2 ]

= δn0exp[
1

2
t] · exp[−ikmaxx]

√
2π

3t
exp[− x2

2 · 3t
] (2.21)

Reintroducing units and scaling might look cumbersome at first sight. However
keeping in mind that part I of (2.21) comes from ωt, we conclude that t = tωp,rel

using the definition of ω in (2.10). We analogous conclude from part II that x is to

2noise equally strong in the whole k-space considered
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2. Analysis of the two stream instability

be substituted with
ωp,rel

v0
x. Thus we end up with

f(x, t) = δn0exp[
ωp,relt

2
] · exp[−ikmaxx]

√
2π

3t
exp[− x2

2 · 3 v2o
ωp,rel

t
] (2.22)

This describes an exponentially growing, standing wave with a k-vector of kmax and
Gaussian envelope. The width of the package as a function of t is

∆x(t) = 2

√
3t

v2
0

ωp,rel

(2.23)

2.3. Structure formation and limits of application

But under which conditions and to what extend are these wavepackets formed before
they vanish into nonlinear effects? Clearly, the presented approximations do not hold
any longer when the perturbation’s density equals the background density. This is
the case when

1 ≈ δno(tmax)

n0

1 =
δn0exp[

ωp,rel

2
tmax]

n0

leading to a tmax of

tmax =
2

ωp,rel

ln
no
δn0

(2.24)

This amounts to a maximum width of

∆xmax =

√
18 ln

n0

δn0

1

kmax

(2.25)

We conclude that the instability can be observed only for a few plasma cycles. For
numerical simulation this fact imposes harsh restrictions. What one would like to
simulate is a noisy plasma developing the full instability out of the noise at the
calculated wavelength of λmax. The easiest way to set up this noise in a PIC sim-
ulation would be a thermalized electron positron plasma, where the charge density
is generated by setting up pairs of electron and positron quasiparticles with average
opposite momenta p0 and a thermalized spectrum. This method avoids the need to
calculate any initial coulomb fields because the charge density is zero everywhere.
The fluctuations in the charge density due to the finite number of quasiparticles can
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2.3. Structure formation and limits of application

be described by a Poisson process. Noise introduced by the quantisation of a flow is
also often referred to as shot noise. The characteristic scale of shot noise is a fuction
of the average number of particles in a given volume. For plasma physics and the
simulation a reasonable scale is given by the plasma wavelength, λp,rel = 2πc

ωp,rel
. Pro-

cesses smaller than this wavelength can not be followed collectively by the plasma.
We may estimate the number of charges populating an elementary volume of plasma
interaction as

N# = n · λ3
p,rel = c3

(
mγ3π

e2

) 3
2 1√

n
(2.26)

E.g. for a pulsar magnetosphere we have a relativistic astrophysical plasma of
n = 106 1

cm3 or 1010 1
cm3 (calculated with low γ-factors). This yields about 1016− 1020

particles in that volume. The impossibility of dealing computationally with such
huge numbers3 of particles have lead to the introduction of quasiparticles. Because
of the simbox usually consisting of about 105 elementary cells, we are limited to a few
hundred quasiparticles per cell each representing a huge amount of real counterparts
(see also sec.B.1.2. This choice has huge implications on the shot noise. As a poisson
process, the fluctuation of the number of particles per cell, N# has a standard devia-
tion of σN =

√
N#. Thus in a thermalized plasma we expect the particle number per

plasma wavelength volume to fluctuate as σN
N#

= 1√
N#

= δn0

n0
. Calculating the time

of validity(2.24) for the real plasma we find tmax ≈ 50
ωp,rel

. Our quasiparticle approach

optimistically reaches tmax ≈ 7
ωp,rel

. Thus for white noise, there is no way to directly

measure the wavelength or envelope of the rising two stream instability(2.22). Fur-
thermore we aggravate the problem by grid refinement. With the better resolution
comes higher frequencies being enlarged. Starting with lots of sharp delta perturba-
tions in position space with no time to interact, the white noise just starts to grow
exponentially, just as theory predicts it to do. Only for grid resolutions near the
sampling limit of λp,rel we expect rather stable wavepackets to form. This on one
hand can be accounted to less higher modes poisoning the formation. On the other,
noise on the scale of the plasma wavelength already has a big component at λmax

and we rather do not start with a delta distribution but with a distribution which is
already somewhat broader in spatial dimensions and thus sharper in k-space. Figure
2.2.a shows a simulation of a box of 20m ·20m ·500m where the resolution is carefully
chosen to be near the plasma frequency. The clearly formed bumps of low and high
electron density (separated about 20m) are overlapped by a high frequency at the
sampling resolution of 1 meter. Fig. 2.2.b depicts the same simulation at a later time
where the interaction became nonlinear. Fig. 2.2.c/d show the same simulation done
with a three times better resolution. While c is a snapshot of early development, d
depicts the same timestep as a. It is immediately evident from the picture that noise
has replaced the clearly visible structure formation observed in a.

3Computationally feasible numbers are 109 - 1012 per whole simulation
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2. Analysis of the two stream instability

a

b

c

d

Figure 2.2.: a: TSI in a low res simulation allowing for development out of white
noise, linear regime. b: Nonlinear regime of the same simulation. c: early stage of
high-res simulation. d: simulation at same time as a but done with three times the
resolution of a and b. For simulation details see table D, a,b: 1c5ab01 c,d: d4643aa.

2.4. Numerical measurement

Having dealt with the peculiarities of a plasma simulation (see sec.B.2), we are able
to measure the γ-dependency of the dominant wavelength. This is done varying p0

in simulation 6d73ddb.. (see sec. D) and analysing every outcome by software. We
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Figure 2.3.: power spec-
trum of the electron
density. For a momentum
of p0 = 1 we achieve quite a
good resolution in position
space and thus have the
Fourier transformation
reproducing the theoreti-
cal expectations for λmax.
However, since λmax is quite
near the eigenmode of the
plasma, we also excite a
resonance at the plasma
frequency.
The Fourier spectra of
the other simulations do
not show a peak at the
expected frequencies due to
destructive interference.

expect the rise of small wavepackets of different phases. Because the phases do not
match, destructive interference occurs and Fourier analysis becomes partly useless
for determining the maximal amplified wavelength (see fig.2.3). Only for large mo-
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2.4. Numerical measurement

menta we are able to see λmax in the Fourier spectrum since only a few packets fill
the whole simbox and destructive interference can not yet average out the signature.
However, one can simply measure the desired wavelength taking just one wavepacket
in position space. Looking at a typical plot(fig. 2.4) of the electron density, one can
verify this fact immediately. A plot as well as a tabular of measured values can be
found in figure 2.5.
Measurements and theoretical results are in rather fair agreement taking into con-

sideration lots of error sources. As already argued, the grid resolution has to be
low to encounter the instability, leading to a bad sampling at low λ values. One
begins to speak of a moderately good sampling if one has more than ten samples per
wavelength. This is clearly violated for the higher frequencies, remembering that we
simulate on a grid with 2m spatial distance. Secondly, the wavepackets built up have
a total size of about six to eight cycles and their borders are typically disturbed by
other packets. Thus the error introduced by these imponderables could be consid-
erably larger than the pure measurement error displayed. Nevertheless we can be
more confident of the simulation’s results when turning to higher wavelengths until
at around p0 = 1.5, when the characteristic length scale becomes so large that we
again have a too high resolution.
Evaluating (2.23) at tmax yields a package width of about 2.3 · λmax which turns out
to be a quite good estimate for the observed widths of 2-4 cycles4. Looking closely
(2.24) gives a tmax of around a cycle until entering the nonlinear regime. This cannot
be true for causalities sake since an instability cannot develop faster in space than
the speed of light. Indeed, it does not, as simulation shows. There are about three
cycles until entering the nonlinear regime. This is as fast as causality allows.

4we emphasize the difference between the total size of a wavepacket and it’s width, which only
can be estimated fitting a Gaussian envelope
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Figure 2.4.: Cut through fully developed TSI-instability. Standing wavepackets of
different phases but same wavelength fill the whole space.
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2. Analysis of the two stream instability

p0 γ0 λp/m λmax/m λmax,measured/m
0.3 1.044 14.16 4.70 7.3± 0.8
0.4 1.077 14.83 6.36 9.0± 0.8
0.5 1.118 15.69 8.10 10.0± 0.8
0.6 1.166 16.71 9.93 11.5± 1.3
0.7 1.221 17.90 11.86 12.3± 0.8
0.8 1.281 19.23 13.88 15.8± 0.8
0.9 1.345 20.71 16.00 17.2± 1.
1 1.414 22.32 18.23 19.0± 0.8

1.1 1,49 24,05 20,56 22.25± 0.6
1.2 1.56 25.91 22.99 23.1± 0.6
1.3 1.64 27.87 25.52 24.8± 1.0
1.4 1.72 29.95 28.15 30.4± 0.6
1.6 1.89 34.39 33.69 30± 2 0
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Figure 2.5.: Simulation results as table and plot.

2.5. Concluding remarks on the analysis

As the analysis has shown, the TSI instability is a very strong instability leading to
nontrivial structures in an electron-positron beam. It dissipates beam energy into a
standing potential structure at a few plasma cycles’ time. Calculations as well as high
resolution simulations suggest that the instability cannot develop it’s characteristic
structure out of white noise. However if a suitable substructure in the beams is given,
the TSI may form coherent patterns. We’ve simulated exactly such a substructure
by shot noise on scales near the instability’s characteristic wavelength.
In general, the typical patterns formed by the TSI are coherent on small scale of a few
plasma wavelengths, but phase shifted at larger scales. This has high influence on
coherent emission processes. The built up regions of shifted phase tend to interfere
destructively if the possible emission process is phase coupled to the regions of the
TSI perpendicular to the beam.
Numerically we were able to reproduce the theoretical analysis up to the limits of
both physics and simulation. We could have merely worked with a distinct subpattern
already containing the characteristic wavelength. This was done before for example
by Jaroscheck([Jar05]). Instead we decided for a simple noise pattern yielding the
instability’s characteristic without seeding it. The code passed this test well enough
to proceed to a more advanced setting implementing a strong Ez-field.
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Figure 2.6.: Phasespace plots. Positron quasiparticles are depicted in red, electron
quasiparticles are plotted in green.
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2. Analysis of the two stream instability

2.6. The nonlinear regime - an outlook

Analysing the phasespace of a typical TSI instability (see simulation 440eb8b... in
sec. D,phasespace plots fig.2.6,some annotations about potential integration in sec.
B.3) one immediately notices that when the TSI is showing, the symmetric sinu-
soidal solutions derived have already developed asymmetries. This can be motivated
putting together the pieces of knowledge gained in linear analysis. The TSI is a fast
instability of the overall potential and thus a collective effect, but the potential itself
is generated by the particles. The particles themselves are slowed down or sped up by
the potential gradient, not the absolute value of the potential. Thus if the potential
would remain constant, in regions of high potential, the positrons are slow and the
electrons are fast. In regions of low potential, electrons are fast and positrons are
slow.
But since the potential is changing faster than electrons and positrons are passing
it,slow positrons on the height of the potential are lifted without energy loss and
flow away from the highest point without being kept there. Positrons right before
the potential maximum see a growing potential mountain before them and thus slow
down. Thus we expect a pileup of positrons before the maximum of potential energy
due to the growth of the potential. This will move the maximum potential further
to the left. For the electrons, the situation is vice versa leading to a shift of the
minimum to the right. This we can observe happening between plots 2 and 3.
Because of the potential speedily growing higher than the kinetic energy, we expect
some positrons and electrons not to have enough energy to pass the potential bumps.
They are reflected and enter the attractive flow of the opposite species, accelerated
by the steep gradient between the two potential extrema and being attracted by the
opposite species’ agglomeration. This can be seen in plot 4.
As every species’ constituents collect in low-speed areas, we expect an increasing
density there, leading to a domination of the potential by that species in this area.
In high speed but low density regions, the species does not contribute much to the
potential since the low charge density is simply not enough to put a considerable
weight in Poisson’s equation.
Thus if one species dominates the other, it will carry the potential in it’s own direc-
tion of movement, since the dispersion relation will become asymmetric. This can
be seen in picture 4 to 5. After that the bridge between the electron and positron
breaks down. The built up potential starts to oscillate since slabs of electrons and
positrons are periodically passing each other.
The TSI clearly provides a standing potential which could cause particles of higher
gamma factors than those involved in forming the TSI to radiate coherently. Before
turning to the question what kind of radiation could be produced by such a standing
potential grid, let us examine where exactly the instability could possibly take place
in a pulsar magnetosphere. The presented standing potential is a typical instance
of a dynamical equilibrium. Since a charge separation is very sensitive to an electric
field, we want to derive some estimate how such a field influences the flux balance
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vital to form a two stream instability.
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3. Damping the TSI

No matter how closely I study it
No matter how I take it apart
No matter how I break it down
It remains consistent.
I wish you were here to see it.
’Indiscipline’ by King Crimson

In the following we will discuss the interplay between a paraxial electric field and
the two stream instability. On one hand the field flattens arising density bumps
by pulling charge carriers apart, on the other hand it pumps energy into the beam,
constantly shifting the resonant wavelength. We will discuss both effects and their
interplay with the TSI. Then follows a numerical study to verify our findings. We will
close the chapter by applying the standard Goldreich-Julian model to our results and
estimating the minimal radius at which the TSI may develop in an idealized pulsar
magnetosphere.

3.1. Damping by stretching

One of the most basic features of a charged particle is the fact that it is accelerated
by electric fields. For an electron in a one dimensional space with electric potential
Φ(x) we may find by using the conservation of energy in the contraction of the
4-momentum, pµp

µ:

(E0 + eΦ(x))2 − (p(x)c)2 = (mec
2)2 (3.1)

where E0 > mec
2we solve this for p and get

p(x) =
1

c

√
(Eo + eΦ(x))2 − (mec2)2 (3.2)

From here on, let us normalize the momenta with mec where not otherwise stated.
We now consider two equally charged particles streaming through this potential
a small distance L apart from each other, small but big enough to neglect their
repulsive force. Since they are both moving in the same potential, equation (3.2)
tells us that they will do so at different momenta. We calculate their relative speed
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3. Damping the TSI

given their relative momentum p1 − p2 = p∆. For convenience we define p1 =: p+ ∆
and p2 =: p − ∆ such that p∆ = 2∆. We assume ∆ � p. Since p = γβ = β√

1−β2
,

β(p) =
√

p2

1+p2
and we can calculate the relative speed as seen from the rest frame:

∆β = β1 − β2 =

√
(p+ ∆)2

1 + (p+ ∆)2
−

√
(p−∆)2

1 + (p−∆)2
=

=

√
(p+ ∆)2(1 + (p−∆)2)−

√
(p−∆)2(1 + (p+ ∆)2)√

(1 + ∆2 + p2)2 − 4p2∆2
=

=
(p2 −∆2)(

√
1 + 1

(p−∆)2
−
√

1 + 1
(p+∆)2

)√
(1 + ∆2 + p2)2 − 4p2∆2

Since ∆ w.r.t. p is small, we can expand the roots of the numerator as
√

1 + 1
(p∓∆)2

≈√
1 + 1

p2
+ 1√

1+p2p2
(±∆) yielding

=
(p2 −∆2)2∆√

1 + p2p2
√

(1 + ∆2 + p2)2 − 4p2∆2
≈

≈ 2∆

(1 + p2)3/2
=
p∆

γ3
(3.3)

Consequently, the distance between the two particles increases like

∆L = ∆t∆βc = ∆tc
p∆

γ3

where we can approximate p∆ = dp
dx
L

= ∆t∆βc = ∆t(
∂p

∂dx

c

γ3
)L (3.4)

bringing L and ∆t to the left and taking the infinitesimal limit we get

∂L
∂t

L
=
∂p

∂x

c

γ3
=: Γacc (3.5)

Thus we expect the length scale of the distance of the two electrons to increase
exponentially with a growth rate determined by eq. (3.5). Inserting (3.2) into Γacc
yields:

Γacc =
1

γ3

E0 + eΦ√
(E0 + eΦ(x))2 − (mec2)2︸ ︷︷ ︸

inertial suppression

e

mec

∂Φ

∂x︸ ︷︷ ︸
field driven part

(3.6)
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3.2. Comparison of damping and amplification

We immediately grasp that Γacc factors into a part suppressed by the relativistic
movement of the electrons and another part which solely depends on the gradient of
the potential, the electric field.
If the potential is not dominated by our charge distribution but mainly by some ex-
ternal field, this result carries over to fluctuations in a charge distribution. Especially
for a periodic disturbance in an otherwise neutral current, the assumptions presented
are still valid. Contributions of the disturbance to the fields may be neglected since
the oscillating density averages out through Gauss’s law. Since charge is conserved,
disturbances in the charge density are not just shifted to higher wavelengths, also
their amplitude becomes smaller.

3.2. Comparison of damping and amplification

Before we examine the pumping of energy into the plasma, let us focus on the
interplay between stretching by damping and clumping by the instability. Since the
two processes are on first order of the same kind, one naively may compare the two
rates of the TSI and the damping. Later on we will see that simple comparison of
the rates is not sufficient to understand the dominance of a certain process. Bringing
the rates into an appropriate form one gets:

Γacc
(3.6)
=

1

γ2
√
γ2 − 1

e

mec

∂Φ

∂z

Γtsi
(2.18)
=

1

γ3/2

ωp
2

(3.7)

For large values of γ the damping diminishes as γ−3 while the TSI falls off as γ−
3
2 .

Thus, given an paraxial electric field, we first of all expect the TSI to be the dominant
process above a certain γmax dependent on the non relativistic plasma frequency and
the electric field. At beam energies below that γmax the TSI should be suppressed.
Above these energies we expect the TSI to limit further acceleration of the beam by
building up a strong potential field and slowing down the constituents of the beam
if no other constraints have to be considered1. For Γacc

ΓTSI
= 1 we derive

√
γmax(γ2

max − 1) :=
e

mec

∂Φ

∂z

2

ωp
(3.8)

1Indeed energy gain is such a constraint which we will examine in the next section
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and can give the following two approximations for convenience:

γmax =

(
e

mec

∂Φ

∂z

2

ωp

)2/3

for γmax � 1

γmax = 1 +
e

mec

∂Φ

∂z

√
2

ωp
for γmax ≈ 1 (3.9)

The l.h.s of (3.8) as well as γmax are frequently arising terms in the following analysis
and may serve as a translator between field energy and various other variables.

3.3. Detuning by energy gain

Up to now we’ve neglected the primary effect of an electric field, namely raising beam
energy. For a current that is not strong enough to deplete the electric field, we may
find the rise of γ as

dp

dt
= mec

d
√
γ2 − 1

dt
=
∂Φ

∂z
e√

γ(t)2 − 1−
√
γ2

0 − 1 =
∂Φ
∂z
e

mec
t (3.10)

γ(t) =

√√√√1 +

(
∂Φ
∂z
e

mec
t+
√
γ2

0 − 1

)
(3.11)

Since the TSI consists of a standing density wave solution, it is vital that the resonant
wavelength does not change much over the development timescale. Consequently, the
relative shift in γ due to the electric field pumping energy into the system should
stay smaller than one during the typical timescale Ttsi = 2

ωp,rel
. For our analysis is

convenient to express the electric field strength in terms of γmax as defined in (3.8).
The right hand side of (3.10) then becomes

∂Φ
∂z
e

mec
Ttsi =

√
γmax(γ2

max − 1)γ
3/2
0

Now we can easily evaluate the relative change of γ using (3.11).

γ(ttsi)− γ0

γ0

=

√√√√ 1

γ2
0

+

(√
γmax(γ2

max − 1)
√
γ0 +

√
1− 1

γ2
0

)2

− 1 (3.12)
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Figure 3.1.: The electric
field pumping energy into
the beam sets quite low
limits on the TSI instabil-
ity. The TSI instability can
only grow efficiently where
the relative energy gain
is considerably lower than
one.

The condition that (3.12) should be small compared to one leads to the following
inequality: √

γmax(γ2
max − 1) <

√
4− 1

γ2
−
√

1− 1
γ2

√
γ

(3.13)

Looking at the plot of the relative energy gain in fig. 3.1 one can see that this con-
dition leads to low γmax factors. Nevertheless these factors still amount to relatively
high fields, a rule of thumb for a typical plasma density would give the electric field
as E =

√
γmax(γ2

max − 1) · 105 V
m

.

3.4. Discussion and numerical verification of the
criteria

Putting damping by stretching and too high energy gain together we get the exclu-
sion area for the TSI. As one can see in the plot (fig. 3.2) a high electric field is
an effective way to damp the instability. The ascending slope in the left part shows
up due to the damping by acceleration. Partially it reflects the definition of γmax,
namely that the strength of damping and instability should be equal. Here of course
one is also able to see how steep the balance of powers arises. The right side of the
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Combined TSI suppression
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Figure 3.2.: This plot shows
the combination of both the
energy gain criterion and
the damping by accelera-
tion. Since γmax is just de-
fined to be the border be-
tween the domination of the
damping by acceleration the
upper diagonal part of the
graph does not allow for
the TSI to develop. The
white arrows show the pa-
rameters’ path of the simu-
lations conducted to exper-
imentally verify the borders
of validity.

graph is dominated by the energy gain condition. Since both formulae are more or
less approximative, we conclude that there is an area around γ = 2 that allows the
two stream instability for the highest values of the electric field. We tested (see sim-
ulations 2f0c4f1..,11181c9.. in table D,setup description in section B.2.3)the derived
behaviour for the white path within the figure. We expect the TSI to show up at the
lower values of the vertical path. Then, proceeding to the left, we expect the TSI to
saturate at some wavelength where enough energy has been pumped into the beam
to reach γmax from the starting value of γ. Whereas the descent to low γmax yielded
no growth of the instability, slices through the xy-plane of the horizontal path exhibit
the desired behaviour, see figure 3.3. The following table shows a summary of the
observations gained.

γ γmax observation
1.28 1.1 no TSI
1.28 1.02 no TSI
1.28 1.01 no TSI but constant noise
1.28 1.001 TSI, even though not strong
1.1 1.001 strong TSI with good transversal phase synchronisation
1.01 1.001 TSI at lower wavelength
1.001 1.001 TSI converges at lower wavelength
1.0001 1.001 nearly the same as the simulation before

We conclude that we find fair agreement between theory and simulations. The be-
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3.4. Discussion and numerical verification of the criteria

γ = 1.0001 1.001 1.01 1.1 1.28

Figure 3.3.: xz-plane slices through the electron density of simulations with γmax =
1.001. the similar positions of the waves is due to same random initialization. (sim-
ulations: 2f0c4f1..,11181c9.., see section D)

ginning of suppression of the TSI at γmax = 1.001, γ = 1.28 might at first sight come
as a surprise since the relative energy gain at that point amounts only to about
10%. However, if one calculates the shift in resonant wavelength, one yields a shift
of about 40% during the typical TSI’s period. It becomes clear that the TSI is still
quite suppressed because of the potential differences in configuration space get out
of resonance quickly.
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3. Damping the TSI

3.5. Application to pulsar model

Growth areas of the TSI for a constant density
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Figure 3.4.: This plot shows the region where the TSI can grow in white. The light
blue extension is where only the strength criterion(3.8) is met, whereas the dark blue
area marks the fulfilment of only the energy gain criterion (3.13). The green area
misses both criteria

Let us briefly recall the features of the Goldreich-Julian model introduced in the
introduction(sec.1.3). While it is still unknown to what extent the model is valid
it is nevertheless a solid point to start for several reasons. Leaving aside the open
field lines it should provide an acceptable approximation of the charge difference
on closed field lines. Closed field lines are expected to dominate the pulsar’s inner
magnetosphere. Since they trap charges effectively the assumption of a static mag-
netosphere of Goldreich and Julian is a way to derive a reasonable net charge of
the field configuration. Thus we expect the falloff of the field to be somewhere near
the GJ approach. Reminding ourselves about the possible space charge effects and
suchlike phenomena, we can take the Goldreich-Julian density to be a hint. That is
why we decided for two plots (fig 3.4) of the TSI-exclusion regions found in (3.8) &
(3.13). Both graphics are calculated for a pulsar of radius 10km, a period of 0.5s
and a B0 of 1012G. The first plot shows the exclusion region for a GJ-like parallel
electric field while leaving the charge density constant to the value it has at rNS.
The second one is calculated with a varying density profile after Goldreich-Julian.
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3.5. Application to pulsar model

For the sake of completeness we state here the relevant parameters of evaluation:

E(r) =
(rNS
r

)4

1.26 · 1012 V

m

nGJ(r) =
(rNS
r

)3

1.39 · 1011 1

cm3
(3.14)

Since the non relativistic plasma frequency enters the formulae at the same place
like the electric field, one sees immediately that the form of the density only remaps
the radius axis. Thus, for a higher multiplicity ζ the minimal radius of the TSI is
again decreasing. it is easy to see that rmin scales with multiplicity as

rmin ∝ ζ1/(β−2α) (3.15)

where α is the exponent of the electric field and β the exponent of the density
in (3.14). For the GJ model, α = 4, β = 3 thus the minimal radius scales as

rmin ∝ 5

√
1
ζ

with multiplicity. We conclude that multiplicity has a low influence

on the considerations taken, but shifts the minimal TSI radius inwards for higher
values.
To estimate the TSI’s minimal radii for a whole population of pulsars, we estimate
a maximum field strength at which the TSI is still strong enough to develop. This is
done by fulfilling (3.13) with a γ ≈ 1 on the r.h.s. . This leads to γmax ≈ 1.67 which
is way too high in sense of observed TSI dependence. However, shielding some part
of the field the core of the current might be subject to a fairly lower electric field and
undergo TSI. We may now insert γmax as well as the field and density dependence of
the GJ-model(see sec. 1.3 for calculations into (3.8) and solve this for rmin/rNS to
yield:

rmin
rNS

≈
(

2e

3mc3

BoΩr
2
NS

ζ

) 1
5

(3.16)

This amounts to a maximum resonant wavelength of

λmax =

√
2πm

3e2n
c︸ ︷︷ ︸

λscale

√
γ(γ2 − 1) (3.17)

λscale =

√
8π2c

3e

(
2

3mc3
γ3r2

NS

) 3
10

c·

· (ΩBo)
− 1

5 ζ−
3
10 (3.18)

where the γ expression λscale typically takes values of 10−2 to 10−1. Plotting both
parameters and overlaying a pulsar population as seen in fig. 3.5 shows: We expect
a very narrow range of about one magnitude of minimal radii even though the input
parameters, period and magnetic field, both vary over a few magnitudes. Also the
scaling wavelength exhibits a scaling of roughly a magnitude over the whole popula-
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Minimal radius for TSI in rNS
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Figure 3.5.: Estimation of minimal TSI radius and characteristic scale at that point.
The white area at the upper left is the light cylinder limit, see text.The contour lines
of the second plot are drawn at 100m and 500m. The pulsar sample is taken from
the ATNF database[Fac12].

tion. Considering the absolute value of the scaling wavelength and reminding us of
the two orders of magnitude we loose to the γ-dependent term, we arrive at scales
in the desired MHz range one observes the radio emissions with a radio telescope.
Even though these calculations should be taken with care regarding the absolute
values obtained, they show promising scaling and astonishing agreement with the
observed radio output. However, the model presented does not explain the short
period pulsars’ behaviour, since the minimal radius for the TSI to happen exceeds
the light cylinder radius. Many radiation processes suffer from not being able to
explain this limit of short light cylinder. In this case we account this to a too con-
servative estimation of γmax since in reality the shielding of the parallel E-field by
the current could be much bigger than silently assumed here by ad hoc arguments.
Further studies should examine this point rigorously.
We will in the following motivate why the TSI might drive a radiating process and
give at least an estimation of the brightness achieved.
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4. Two processes of radio radiation

Oh, my something in my eye eye
Something in the sky sky
Waiting there for me
’Let there be more light’
by Pink Floyd

Even though we’ve shown a lot up to now, there would nothing to be seen with a
radio telescope. Up to now we have motivated the existence of a mechanism which
itself (in the linear regime) just builds up potential energy, and does not radiate.
Let us now examine whether some available background density of high γ or its
constituents radiate and estimate the power output of these two processes.

4.1. Radiation by high-gamma background

As we’ve concluded in chapter 3, the two stream instability in an electric field can only
happen at fairly low γ-factors smaller than about 1.1. This makes it quite plausible
that there will be some population of higher γ factors. This density does not drive
a TSI because of the aforementioned arguments; because of the γ−3/2 dependency
of the growth rate, the detuning of resonance by gain of energy renders the TSI
mechanism useless. Nevertheless it may radiate coherently while striving over the
potential ripples of the low-γ TSI building up. It is common sense in electrodynamics
that one may estimate coherent power output by calculating a single contribution
and concluding that

〈Pcoh〉 = 〈Psingle〉 ·N2 (4.1)

since all electric fields of single particles may be added neglecting interactions between
the particles. Thus the electric field is proportional to N , leading to a N2 dependence
of power output. Both factors N2 and < Psingle > can be estimated using the results
of the preceding sections.
Let us start with the TSI’s geometry to estimate the number of coherently radiating
particles.

N = nrad · Vtsi (4.2)

where the volume of the emission region, Vtsi is estimated to be about the size of a
cylinder of length 2∆xmax and radius c · tmax. The propagation with light speed can
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4. Two processes of radio radiation

be assumed since propagation transversal to the beam is supplied by continuity of
fields. The given dimensions on one hand slightly overestimate the geometry since
the instability developed out of a located density bump cannot go faster than light
(which would be the case on the diagonal), on the other hand it underestimates the
size of the region since a damped instability may develop more slowly leading to a
greater region of coherence, as shown in the simulations. Inserting (2.24) and (2.25)
we find

N = nradπ(ctmax)22∆xmax =

= nradπ(
2

ωp,rel

)3(ln
no
δno

)5/22
√

6c2vo =

= nradπ(
2

ωp,rel

)3(ln
no
δno

)5/22
√

6c3

√
γ2 − 1

γ
(4.3)

where the γ factor, no, δno and plasma frequency is that of the TSI population, not
the radiating one.
Estimating the power output of a single particle takes a bit of work. The generaliza-
tion of Larmor’s formula for the power of radiation of an accelerated particle along
the field lines can be found e.g. in [Mel78b], eq. (20). For a relativistic particle one
may take the average over space, not time, since the particle spends nearly the same
time in every potential region. Notice that in this case, the expression is independent
of the γ-factor of the radiating particle distribution. We’ve settled that matter by
rederiving the formula from the relativistic generalization of Larmor’s formula in the
appendix A.2.

〈Psingle〉 =
1

T

∫ T

0

dt
2e2

3m2c3

∣∣∣∣dΦ

dx
|x=x(t)

∣∣∣∣2 =
2e2

3m2c3
〈
(

dΦ

dx

)2

〉 (4.4)

The potential concerned consists of different parts we add independently, namely the
particle’s initial energy, the pulsar’s potential and the disturbance introduced by the
TSI generated by the non radiating population.

Φ = Eo + ΦNS(r) + ΦTSI(r) (4.5)

Eo vanishes when deriving w.r.t. the spatial coordinate and ΦNS’s characteristic
length is fairly longer than the volume we are facing. Thus we only take our term,
ΦTSI into consideration, renaming the spatial coordinate to x. By doing so we
omit cross terms and focus on radiation we expect to be around λmax. Idealizing the
situation, we calculate the electric field of a sinusoidal potential disturbance depleting
completely our initial density no to a density of zero. Once again integrating Poisson’s
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4.2. Self-radiation in nonlinear phase

law in one dimension leads to

ΦTSI(x) = −2πnoe dz(cos(kmaxx)− cos(kmaxx− π)) =

= −4πnoe dz cos(kmaxx)

=
4πn0e

k2
max

cos(kmaxx) (4.6)

Thus deriving w.r.t. x leads to a force we may insert into 4.4 and conclude
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2e4

3m2c3

(
4πno
kmax

)2

〈sin2(kmaxx)〉 =

=
e4

3m2c3

(
4πno
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)2

(4.7)

Inserting (4.7) and (4.3) into (4.1) and simplifying yields:
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√
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= ... =
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128m2c5
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)5(γ4(γ2 − 1))2 = (4.8)

=
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1.62 · 1037Erg

s

)(
nrad

no

)2

(ln
n0

δno
)5(γ4(γ2 − 1))2 (4.9)

The last two factors account to a loss of about three to four orders of magnitude. We
know that the TSI breaks down relatively fast and might take long times to recover
such that the pulsar does only radiate a certain fraction of time. This way we could
lose another two orders of magnitude or more concerning total radio output of a
pulsar as well as by opacity of the magnetosphere and effectiveness of the mechanism
as a whole. Multiplying these losses we arrive at plausible total radio powers of
perhaps 1028Erg/s to 1032Erg/s.

4.2. Self-radiation in nonlinear phase

We’ve see in simulations that the electrons and positrons of the TSI naturally bunch
when entering the nonlinear phase decoupling from the mechanism driving the TSI.
In this phase, slabs of electrons and positrons just cross each other collisionless.
This causes autopolarisation. Unlike the continuous polarisation idealized from a
homogeneous plasma the same happens here but in discrete steps. The force assigned
to the displacement of charge carriers does not follow a linear dependency but a
step function since every time the slabs cross, we encounter the whole surface charge
density while in between, the gradient of the field remains unchanged. Reconsidering

41



4. Two processes of radio radiation

-1

0

1

2

3

4

5

6

0 1 2 3 4 5

E
or
E

2
in

a.
u
.

displacement in λmax

Etot = ENS + ETSI
ENS
ETSI

10E2
TSI

Figure 4.1.: The array of
slabs crossing each other
generates a step-like E-field
on it’s constituents

Larmor’s formula(4.4) we may split the potential gradient as the sum of a high
frequency part and a low frequency part:

Etot = ENS + ETSI (4.10)

While we expect the low frequency part to couple with the overall electric field in
the magnetosphere, the high frequency part again is the cause of radio radiation.
Fortunately we may again split the averaging in Larmor’s formula in two parts and
omit the long-range contribution. This is justified by yielding a cross term in the
averaging procedure which vanishes (since it is an integral over a piecewise point
symmetric sawtooth times a quasi-constant overall electric field). Again, we calculate
one such step by integrating over one charge slab and conclude that ∆E = 4πnoe

2π
kmax

.
As can be seen in figure 4.2, we now need to average over the square of an electric
field which drops linearly from +1

2
∆E to −1

2
∆E. The average should happen over

time, which would in principle force us to reconsider the whole electric field and
derive equations of motion. Since the squared ETSI is piecewise symmetric a slight
preference of the last part to the first is negligible for a crude estimation. Hence we
leave this peculiarity aside and conclude that:

〈E2
TSI〉 =

1

1− (−1)

∫ 1

−1

dx(
1

2
∆E(−x))2 =

∆E2

12
=

16π4n2
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2

3k2
max

(4.11)

〈Psingle〉 =
32e4π4n2

o

9m2c3k2
max

(4.12)
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4.3. Coupling of different processes and real radiative output

Inserting this together with 4.3 (nrad now equals no) into 4.1 we arrive at the maxi-
mum expected total energy output:

〈Pcoh,II〉 =
256π2m2c5

9e4
(ln

n0

δno
)5(γ4(γ2 − 1))2 = (4.13)

=

(
1.1 · 1038Erg

s

)
(ln

n0

δno
)5(γ4(γ2 − 1))2 (4.14)

4.3. Coupling of different processes and real radiative
output

nrad = 0%no nrad = 10%no nrad = 100%no

Figure 4.2.: Different radiating background densities lead to different types of pat-
terns. Electron density of simulations like (3ad9664..., see tab. D)

The presented rough calculations mainly show the available power ready for conver-
sion and should be understood as a rule of thumb. Since they do not proof explicitly
that a coherent process is actually happening, there is yet more to understand in sense
of coupling of both processes and inter-area coupling of every process itself. Simula-
tions as depicted in fig.4.2 motivate the possibility of radiation triggered maser-like
activity which then would have a radiative output on the scales of our estimation,
(4.9),(4.14). A cone like structure similar to that of the simulation of nrad = no is
much more likely to amplify radiation coherently. Furthermore to determine real
radiative output of such patterns one would need to model the field configuration
in much more detail and investigate the propagation of this radiation through the
magnetosphere.
The exact mechanism that irradiates this immense power is yet to be determined, but
we’ve succeeded in showing that the two stream instability is a viable framework to
provide structured patterns of size, strength and free energy to drive coherent radio
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4. Two processes of radio radiation

emission on the scales we observe with radio telescopes. First steps towards an exam-
ination of the output mechanism already show a promising Fourier transformation,
done for the Ez field outside the active current’s area (see fig. 4.3) especially when
compared to typical observed nanostructure frequency dependencies (see section 1.4
and fig. 1.4) and thus should motivate further investigation.
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5. Results

Summoning his cosmic powers
And glowing slightly from his toes
His psychic emanations fly
’Let there be more light’ by Pink Floyd

5.1. What has been done

Introducing the reader to the observational data gained from pulsars we motivated
main criteria on possible radio emission processes (see sec. 1.6) and explained the
structure of the thesis.
Proceeding, we have focussed our analysis on the relativistic two stream instability
and derived the proper dispersion relation for equally dense positron and electron
beams counterstreaming with velocity vo and γo for every species. The derived re-
lation(2.10) was found to be in accordance with transformed versions common in
literature. We studied the relation in numerical simulations for cross validation of
both theory and code (fig 2.5). The appearance of white noise for a higher resolution
drew our attention to what first looked like a numerical instability. Detailed anal-
ysis however revealed that the TSI cannot develop a characteristic scale when it is
not properly excited or damped because it’s fast development as an instability of the
potential renders such an evolution impossible. We found good agreement of develop-
ment with the carefully applied linear analysis (understanding the limits of linearity)
and could reproduce the time and spatial lengthscales derived from theory. The TSI
turns out to develop over only a few plasma cycles and wavelengths. Numerically
we studied the beginning of the nonlinear phase (sec. 2.6) and gained knowledge on
how possible radiation processes could come about. By the phasespace analysis it
came clear that the TSI’s late phase consists of bunched slabs crossing each other
rather independently and that in this phase, the common plasma approximations
break down. The plasma is highly structured in configuration space on the scale of
the instability leading to a maximum of possible polarization on the characteristic
wavelength. This concludes the main evidence why the plasma instability could drive
or be (in late stage) a process obeying criteria one to three (see sec. 1.6), namely co-
herence, small accommodation and (secondary) strong bursts on short scale. As the
TSI was found to be quite strong and an electron positron counterflow in an electric
field seems natural. Thus constraint six, ubiquity, seemed also to be fulfilled at that
time. Since the big variance of plasma frequency would even lead to ubiquity of the
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TSI everywhere in a single atmosphere, we examined the influence of an electric field
on the instability to understand whether the growth is possible everywhere. Two
main influences of an electric field were discussed. On one hand, the stretching of
density configurations by an electric field prohibited the instability for momenta and
γ-factors of the input lower than a certain γmax as a function of the electric field. On
the other hand, we found that a gain of inertia due to gain of energy by passing the
electric field leads to a shift of the resonant wavelength and will, if it happens to fast,
inhibit the growth of the TSI. Leaving aside possible resonances, both requirements
impose strong restrictions on the occurrence in a pulsar magnetosphere, as described
in section 3.5. Deriving approximations on the minimal radii at which the TSI may
happen in an individual pulsars magnetosphere, we find astonishing agreements with
common observational data, suggesting the radio output to appear in the hundred
MHz to GHz region (from a length scale on the order of cm to m). However the
model partly may fail for millisecond pulsars since the derived radius is bigger than
the light cylinder for this population. Since the model only fails by one magnitude1

this could be accounted to a possibly better shielding of the closed field lines’ electric
field by the plasma current of the open field lines. Also simulations have shown(see
fig. 4.2) that the instability may develop with outer electric fields way stronger than
γmax suggests.
An estimation of the possible coherent radiation output suggests that the TSI may,
if the final radiation process will have enough free energy, account for the radio lu-
minosities observed. Furthermore, interesting frequency structures arose also seen in
some papers about the nanosecond shots.
Having dealt with the analytic calculations and numerical simulations, the two
stream instability turns out not only to be an ubiquitous but also a fast and strong
configuration space structuring process. Its length and timescales fit those of the
radiation observed up to a magnitude and less. The presented arguments on a very
general level together with the carried out numerical studies thus show strong evi-
dence of the instability happening in a real pulsar magnetosphere.

5.2. What should be done

However the author suggest that a lot of details in this concept study need further
investigation. The common critique[MG99] that instability driven amplification of
e.g. Langmuirwaves is not strong enough may be opposed by shifting the understand-
ing of instabilities not as the amplifier of radiation but the very driver on a local
short scale. A kmax (2.18) could at low γ-factors perhaps even exceed the plasma
frequency leading to light mode propagation. Cyclotron resonance and various prop-
agation effects could perhaps change this picture. One should therefore exactly study

1The magnitude of the longer period pulsars radii also seem to miss observations by about a
magnitude
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the possible radiation processes being driven and, as a second issue, see how they
couple with the pulsar magnetosphere. In principle, this investigation could lead to
an acceptable pulse shape model when combined with a regeneration time analysis
for the instability and the origin of the emission region determined by deepening of
the methods introduced in this thesis. To that extent, one should further investigate
the potential gradients tolerated by the instability and the possibly induced electric
resistance. Overall pulsar simulations like those carried out by Kalapotharakos et
al.[KKHC12] on one hand could greatly benefit from induced resistance and flow
studies, on the other their data will be helpful in determining realistic assumptions
on the E-field gradient beyond the Goldreich-Julian model. Putting both these as-
pects together will perhaps finally lead to a decision whether or not the TSI is the
cause or one of the causes for radio radiation.
Furthermore, another limit on growth of the TSI could possibly also be calculated:
When the electric field becomes too weak, the instability is not any more damped
enough to show its characteristic frequency, just as seen in the high resolution limit
of the simulations lacking an electric field. This would amount to a rmax for radio ra-
diation output. Surely one should give concept studies on the appearance in certain
well examined pulsars bigger weight, but we merely want to state here that there is
also another lower limit to the instability further restricting the emission region.

5.3. What remains to be said

Today’s available computing power may give many hints beyond analytics alone and
their results can be seen as guiding the analytical framework into the right directions.
The argumentation featured here greatly profited from the interplay between both
methods. Computational methods and power may have at some time in the near
future reached a level where the problem of radio radiation may be solved in that way.

The simulations presented show that, against common opinion, the two stream insta-
bility may exist and be powerful in magnetospheres. However, like all other proposed
emission processes, it would have to pass the barrier of the magnetosphere. If future
investigation of the power output and magnetosphere propagation would show that
its flux is strong enough, the two stream instability will probably provide a frame-
work with few free parameters and physics only dictating the length scale.
These steps shown, the TSI would naturally and in a simple way fulfil the constraints
on a pulsar radio emission process.

It is this light in the distance, which urges us to continue research on the topic.
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A. Derivations

A.1. Brightness temperature approximation

The radiated power per area by a black body is calculated by integrating Planck’s
formula for the radiation density:

Pν(T ) =

∫
dν

2hν3

c2(exp[ hν
kBT

]− 1)
(A.1)

For a small frequency band we may approximate the integration by multiplication
with the bandwidth. We set this equal to the observed power output in the band
divided by the radiating surface.

Pν(T ) ≈ 2hν3

c2(exp[ hν
kBT

]− 1)
∆ν ≈ Lν

A
(A.2)

solving this for hν/(kBT ) and approximating for hν � kBT yields:

hν

kBT
= ln

[
2hν3∆νA

c2Lν
+ 1

]
≈ 2hν3∆νA

c2Lν
(A.3)

finally we arrive at the desired formula

Tbb ≈
Lνc

2

2A∆νν2kB
(A.4)

A.2. Larmor’s formula in terms of an external
potential

The relativistic generalization to Larmor’s formula can be found if not derived di-
rectly e.g. in [RK10].

〈Psingle〉 =
1

T

∫ T

0

dt
2e2

3m2c3

∣∣∣∣dpµdτ

∣∣∣∣2 (A.5)
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A. Derivations

We again may derive relativistic equations of motions for a single particle by con-
tracting the four momentum vector and setting it to the invariant rest mass of the
particle.

pµ =

(
1
c
Φ(x)

~p

)
=

( 1
c
Φ(x)√

1
c2

Φ2(x)− (mc)2

)
(A.6)

Deriving this with respect to the eigenzeit we find:

dpµ

dτ
=

 1
c
∂Φ(x)

∂x

∂x

∂t

∂t

∂τ
,

1
c
Φ(x)

∂ 1
c
Φ(x)

∂x
∂x
∂t

∂t
∂τ√

1
c2

Φ2(x)− (mc)2

 (A.7)

where we’ve reduced the solution to 1 spatial dimension as it is the case in our
problem. Contracting this expression with itself leads to

ṗµṗµ =

( 1
c
∂Φ(x)

∂x

∂x

∂t

∂t

∂τ

)2( 1
c2

Φ2 − (mc)2 − 1
c2

Φ2

1
c2

Φ2 − (mc)2

)
=

=

 1
c
∂Φ(x)

∂x

∂x

∂t

∂t

∂τ︸ ︷︷ ︸
voγ


2

1

1−
1
c2

Φ2

(mc)2︸ ︷︷ ︸
γ2

=

=

( 1
c
∂Φ(x)

∂x

)2
v2

0γ
2

1− γ2
=

(
∂Φ(x)

∂x

)2

(A.8)

where we’ve used that vo =
√

(1− γ2)/γ2c. Thus we can write

〈Psingle〉 =
1

T

∫ T

0

dt
2e2

3m2c3

(
∂Φ(x)

∂x

)2

=
2e2

3m2c3
〈
(
∂Φ(x)

∂x

)2

〉 (A.9)

For relativistic particles, the average may be taken over space since β ≈ 1 over
the whole interval. Thus, in the limit of high γ, the form of the potential alone
determines the energy loss.
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B. Numerical Methods

B.1. The Plasma Simulation Code

We used the Plasma Simulation Code, in the following abbreviated by PSC exten-
sively for the simulations contained in this thesis. The PSC is a relativistic particle
in cell(=PIC) code. It’s original code base was written by Hartmut Ruhl in For-
tran and is now integrated and ported into a bigger framework written in C by H.
Ruhl and his chair along with Kai Germanschewski of the University of New Hamp-
shire. The complete list of contributors may be retrieved via the git version control
system. The Code itself is designed to scale well on large cluster systems and the
framework is written modular to be easily extendible. The code undergoes heavy
development at the time of writing this thesis. For example the UPML boundary
conditions(explained in section B.2.1) are considered to be stable now at the end of
the thesis but had issues during the making of the simulations, so we dropped use
of them for this thesis. The code will in near future be able to do adaptive mesh
refinement, adaptive particle refinement and QED-reactions, all techniques required
for realistic larger scale simulations of a pulsar magnetosphere. There’s a plethora
of features like Cuda1 support already implemented or coming up soon. By now the
framework’s API itself is documented via sample case setups and a DoxyGen docu-
mentation coming along with the code. We will refrain from giving an introduction
to the code. Instead we will summarize the most important theoretical concepts in
the next section. The subsequent sections will give insights to our specific case’s
setup and explain what has been done to elaborate the specific code for setting up
the simulations presented.
There are already excellent introdutions to the theoretical workings of the code
around, e.g. [Mos11, Ruh] the following considerations are based on. Thus we will
focus our attention on only two aspects of the code, namely the Yee-algorithm for
solving Maxwell’s equations and discretization of the Vlasov equations for particle
dynamics. Understanding both at least on a basic level is vital to interpreting our
simulation outcome.

1API for doing calculations on the GPU of a computer’s graphics card
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B. Numerical Methods

B.1.1. The Yee algorithm

The Yee algorithm[Yee66] is an algorithm to solve Maxwell’s equations by imposing
a finite difference time domain (FDTD) scheme on a staggered grid discretization of
the electromagnetic field. A straight forward discretization of Maxwell’s equations
replaces the continuous fields by values on a grid, and derivatives are approximated
after the classical second order scheme:

~F (~x, t)→ F t
x,y,z (B.1)

∇F (x, t)→
F t
x+ 1

2
,y,z
− F t

x− 1
2
,y,z

∆x
(B.2)

dF

dt
→ F

t+ 1
2

x,y,z − F
t− 1

2
x,y,z

∆t
(B.3)

Where t, x, y, and z are now of discrete nature. Applying this kind of discretization
to Maxwell’s equations in dimensionless form leads to discrete equations with two
shifted forms of the differential operator:

∂t ~E = ~∇× ~B −~j →
~E
n+ 1

2
jkl − ~E

n− 1
2

jkl

∆t
= ~∇− × ~Bn

jkl −~jnjkl (B.4)

∂t ~B = −~∇× ~E →
~Bn+1
jkl − ~Bn

jkl

∆t
= −~∇+ × ~E

n+ 1
2

jkl (B.5)

∂tρ = −~∇~j →
ρ
n+ 3

2
jkl − ~ρ

n+ 1
2

jkl

∆t
= ~∇− ·~jn+1

jkl (B.6)

where ~E denotes the electric, ~B the magnetic field, ~j is the current and ρ the
charge density. All quantities shown are normalized as indicated in appendix C.
The left/right weighted operations of the differential operator are:

~∇−F n
jkl =

(
F n
jkl − F n

j−1kl

∆x
,
F n
jkl − F n

jk−1l

∆x
,
F n
jkl − F n

jkl−1

∆x

)
~∇+F

n
jkl =

(
F n
j+1kl − F n

jkl

∆x
,
F n
jk+1l − F n

jkl

∆x
,
F n
jkl+1 − F n

jkl

∆x

)
(B.7)

The resulting derivation infinitesimally equals the Maxwell’s equation. One could
have obtained it from considering electromagnetism in terms of differential forms.
In the framework of forms it comes obvious that we basically apply Stoke’s theorem
to the field values around an elementary cell(See also [MTW73],chapter 4). These
considerations naturally lead to the so called staggered grid the PSC is set up with.
Electric and magnetic fields are neither defined at the same time nor their components
at the same space point. They are shifted to the exact positions determined by
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B.1. The Plasma Simulation Code

Stoke’s theorem on a cube and considerations about the temporal integrations.

~E
n+ 1

2
jkl =

(
(Ex)

n+ 1
2

j+ 1
2
kl
, (Ey)

n+ 1
2

jk+ 1
2
l
, (Ez)

n+ 1
2

jkl+ 1
2

)
(B.8)

~En
jkl =

(
(Bx)

n
jk+ 1

2
l+ 1

2
, (By)

n
j+ 1

2
kl+ 1

2
, (Bz)

n
j+ 1

2
k+ 1

2
l

)
(B.9)

~jn+1
jkl =

(
(jx)

n+1
j+ 1

2
kl
, (jy)

n+1
jk+ 1

2
l
, (jz)

n+1
jkl+ 1

2

)
(B.10)

Since it only infinitesimally equals Maxwell’s equation our second order approxima-
tion naturally produces errors. But also the exact solutions to this equations change.
Where we have a dispersion relation in vacuo of ω = ck these is not true for our
discrete grid. When setting up elementary amplitudes the form of an exponential
with phase of ωt− ~k~x we do find a dispersion relation preferring the axis directions
and with group velocity slower than c for high frequencies. Considering the one
dimensional case, if ∆t

∆x
· < 1 (in dimensional quantities) is violated we find exponen-

tially growing wave solutions and our algorithm becomes unstable. Thus a certain
3d-type of this so called CFL-Condition (named after Courant, Friedrichs and Lewy,
[CFL28]) has to be fulfilled2. The factor on the lhs of the condition in fact should
be considerably smaller than one since the dispersion relation only approximates the
continuum solution and the approximation gets better for a smaller factor. Since
dispersion relations do not match, discrete waves of high frequency have a lower
speed of light. Thus a seemingly faster than light particle evokes Cherenkow radia-
tion. This means, that when doing relativistic particle simulations, one is obliged to
keep this coefficient low enough to prevent superluminosity, resulting in the compu-
tational cost of more timesteps. However, vacuum Cherenkow radiation arises only
in situations where the integrated current of a plasma has profile structures near the
spatial scale of the grid that propagate faster than light. This is typically not the
situation in our case, especially not in the linear phase of the TSI.
In this discrete version of Maxwell’s equation, we only update the electromagnetic
field according to the current. Thus, we have to take care of setting up a physically
correct electric and magnetic field also fulfilling div ~B = 0 and Poisson’s equation as
an initial condition. Correct electro- and magnetostatics come by initial condition,
and are not enforced by the code itself.

B.1.2. Vlasov equation and the quasiparticle approach

The discretized version of Maxwell’s equation now is coupled to a plasma of particles.
The Vlasov-Maxwell system of equations provide a way to implement this coupling.
Discretization of both particles and fields is not straightforward since solving an
N-particle problem naively means solving the 6N coupled equations of motion for
positions and momenta. For typical particle numbers of lots of trillions, solving the

2The Code ensures this to be fulfilled throughout the simulation
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system directly will certainly not become computationally feasible. This classical
problem is tackled by noticing that we are generally interested in statistical answers
since typically N is very large. As such, we may relax our requirement to describe all
N particles by using a statistical approach upon which we try to model the behaviour
of the system. Rather than setting up a 6N-dimensional phasespace vector we define
a distribution function f(~x, ~p, t) for every kind of particle which states the proba-
bility to find such a particle in an infinitesimal phasespace volume element. Since
description of initial conditions in plasma physics follows this ansatz (e.g. “Let us
take a plasma of density n and temperature T ) we automatically adapt a framework
in which the questions asked may be deduced from our arising distributions and
possibly their correlations. We’re not interested in a single outcome but a typical
behaviour of the system3 and can extract that behaviour easily from the dynamics
of the distribution function(s).
Arriving at such a formalism leads from the n-particle equations of motion over Li-
ouville’s equation to the BBGKY-Hierarchy. A thorough analysis can be found e.g.
in Cergignani,[Cer69]. Let us review the main results therein:
Collective phenomena can be described by assuming independence of single phase-
space element w.r.t. then effectively external forces. However, local interactions such
as collisions typically need correlated distribution functions like the two particle func-
tion f2(~x1, ~p1, ~x2, ~p2, t) being proportional to the probability of finding two particles
in two certain phasespace volumes. This is to regard the fact that there ought to
be two particles in certain distinct phasespace volumes for a certain type of colli-
sion to happen. In general transforming the Liouville equation leads to a hierarchy
of equations coupling N-particle distribution functions to N+1-particle distribution
functions, namely the BBGKY-hierarchy. If the given higher distribution functions
are mostly zero, we may separate these correlation terms and treat them separately
as collision operators. Furthermore we may under certain conditions break the hi-
erarchy and for large N approximate e.g. f2(~x1, ~x2, ~p1, ~p2) ≈ f1(~x1, ~p1, t)f1(~x2, ~p2, t).
One may motivate that if collision terms only play a role for very short periods of
time and are generally symmetric w.r.t. particle exchange. Thus they will yield in-
dependent outcomes for each collision since the particle propagation on larger scales
mixes initial conditions to a single collision quasi independently. This behaviour is
in general not trivial to show.
Luckily the short range interaction between two particles can be separated in the
so called Boltzmann Collision Operator, which at our densities does not even play
a role for physics. We’re left with a Boltzmann-Vlasov type of equation for the sin-
gle particle distribution function, where only the collective field of all the particles
contributes. The coupled 6N equations (for particles alone) essentially decouple into
Maxwell’s equations for the fields and a distribution function equation for particle
behaviour. We may integrate them interleaved under the assumption that both do
not change rapidly in time.
The PSC’s representation of the one particle distribution function is a sum over quasi-

3And that is what we’ll always yield at such particle numbers

54
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particles that are δ-distributed in momentum space and have a diamond shaped form
factor in position space.

fk(~x, ~p, t) =
α2M3

ηm3
kNc

Nk∑
i=0

Φ(~x, ~xki (t))δ
3(~p− ~pki (t)) (B.11)

Φ(~x, ~xki (t)) =
3∏
j=1

Sj(xj, x
k
ij(t)) (B.12)

Sj(xj, x
k
ij(t)) =

{
1−

∣∣∣xj−xkij∆xj

∣∣∣ for xkij −∆xj < xj < ∆xj + xkij

0 elsewhere
(B.13)

The normalization factors introduced here are described in section C. In general,
a single quasiparticle stands for a typical distribution of lots of real particles. We
emphasize that it is a distribution function which essentially behaves like a particle
density, but is conceptually different from a swarm of particles since it is part of a
distribution. There is no straightforward equivalent of a test-particle in the PSC.
Automatically arising with this formalism is the interpolation of field values, since a
quasiparticle has an extent of two grid units in every dimension and thus extents to
several cells. Inserting these phasespace quasiparticles into the Vlasov equation(2.2)

∂t

∫
d3v~vfk + ∂xl

∫
d3vvl~vfk −

∫
d3v∂vl

( q
m

[
~E + ~v × ~B

]
l
~v
)
fk = 0

(B.14)

Nk∑
i=0

(
~̇xi · ∂~xiΦ(~x, ~xi) + ~vi · Φ(~x, ~xi)

)
· ~vi +

Nk∑
i=0

(
~̇vi −

q

m

[
~E + ~v × ~B

]
︸ ︷︷ ︸

=:~F (~x,t)

)
Φ(~x, ~xi) = 0

(B.15)

and integrating over momentum and a single cell volume yields effective equations
of motion for every quasiparticle’s coordinates:

d~xi
dt

= ~vi (B.16)

d~vi
dt

=
1∏3

l=1 ∆xl

∫
d3xΦ (~x− ~xi) ~F (~x, t) (B.17)

That is why the method is called PIC, particle in cell. It should not come as a
surprise that we find Newtonian equations of motion for every quasiparticles position
and momentum as an approximation (see [Ruh] p. 25). However let us stress again
that nevertheless the concept and meaning of a quasiparticle is different from a real
particle.
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Quasiparticles in general have very convenient properties. As they are stretched in
position space, they may not pick up high frequencies in force terms and naturally
provide a smooth current to use on the grid. Furthermore the diamond sized shape
is ideal to model constant initial densities by setting them up on distances according
to their half extension. The relativistic version of this is obtained straightforward
and implemented in the PSC code.

B.2. Simbox setup

Whilst the used PSC-code already comes self consistent, setting up correct physical
initial conditions is an equally important ingredient to a confident simulation. This
turns out to be more cumbersome than at the first glimpse for several reasons.
First of all, any analytical solution on continuous space has to be discretized. The
solution in continuous reality does not exactly match the one on a discretized grid.
However choosing appropriate continuous initial conditions and discretizing this so-
lution carefully using techniques like those described below reduces the numerical
errors of the initial setup to an acceptable degree.
But we have to deal not only with the finite resolution of our grid but also with the fi-
nite domain our simulation takes place in. Choosing appropiate boundary conditions
at the borders of our simbox is also a tedious task. Since excess space is expensive
in calculations, we need to limit it to a minimum. Consequently the boundary is
somewhere near the area of interest and might influence the events we want to ob-
serve. E.g. choosing a conducting boundary means we will have to fulfil appropriate
boundary conditions. This, owing to continuity and smoothness leads to different
fields inside the simbox. Thus some desired field geometry in space might not be
compatible with every boundary condition or is subject to bigger modifications to
cope with the choice of boundary conditions.
In general we have an exact notion of what we want to simulate or measure in mind.
Just like an experimentalist we now have to come up with a modified setup of what
would be the scenario in theory and make the right choices regarding the initial
setup. We have to be aware that most of these choices also modify the outcome of
the simulations and gain an understanding of the influence they take to interpret our
results correctly.

B.2.1. Choosing geometry and boundary conditions

All of the simulations presented investigate two stream instabilities with a coun-
terstreaming electron and positron flow. While it is a neutral current yielding no
electrical field, we yield a net current. But with a net current comes a magnetic field
which already would extend to the boundaries. The main four boundary types and
their advantages and drawbacks are:
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• Open Boundaries: The boundary essentially behaves like a perfect conductor.
Thus, the parallel E-fields always yield zero. Since we later on want to simulate
the current being influenced by an paraxial electric field, this type of boundary
causes problems

• Conducting boundaries: The boundary is a conductor with a resistance and
susceptibility. Our electric field would also be diminished, which is not feasible.

• UPMLS, uni-axial perfectly matched layers: The boundaries absorb emitted
radiation up to a very small, reflected part. This boundary conditions are
useful for measuring radiation outflow and have been taken into consideration.
However their workings are complex and interspersing them with constant fields
like the guiding background field of our simulations would have needed further
investigations to ensure proper functionality. Further technical difficulties lead
to the initial design choice of implementing the fourth basic type, periodic
boundaries. An additional drawback might be that these boundaries are thick
meaning they occupy a few grid cells at each boarder and need additional
calculations to be made.

• Periodic boundaries: Space is wrapped up like a torus embedded in four di-
mensions. While we can consider this setup to be globally unphysical, locally
it is as one would have no boundary at all since all waves and particles pass the
boundary and enter the simbox again on the opposite site. Periodic boundaries
demand the initial field values to be also periodic and continuous. Furthermore
they have a discrete eigenmode spectrum leading to filtering effects in long-time
(timesteps > gridlengths) simulations. Once having fulfilled the initial condi-
tions they are a fast and good choice since their effect is clear and they do not
modify small scale field structure.

As an initial setup we decided for the periodic boundaries. The only problem we have
to solve to implement our theoretical setup, a neutral current, is its non vanishing
magnetic field. Since rot ~B ∝ ~j we yield for a current simply moving in z-direction
~B ∝ (−x, y, 0). Thus the B-field is periodic, but not continuous at the borders.
To fix we shield the current’s magnetic field by an artificial static current hull. To
simplify calculations, we choose a round geometry as depicted in fig.B.1. We set up
a cylindric current surrounded by a pseudocurrent shielding the magnetic field. In
this configuration, one is able to fulfil the requirements. But let us first start with
deriving the analytical solution of this rather simple setup.
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B.2.2. Determining and setting initial field and currents
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Figure B.1.: Concept of case setup, cut through x-y-plane of simbox. Depicted in
light blue is the current due to the real quasiparticles. The instability can only
happen in the central region. The magnetic field created by the current is shielded
by a pseudocurrent hull, depicted in green. This is an artificial, static current as if
it was created by charged particles not subject to the Lorentz force. The overlayed
plot displays values of currents and magnetic fields along the x axis. The decay line
of the magnetic field in the shielding current region is nonlinear, see text.

The current density in the middle of the cylinder, j0 is a function of the quasiparticle
density n0 and the initial velocity, v0 and constant in the interior and hull, respec-
tively. We demand the Magnetic field’s rotation to vanish outside our cylinder. By
the law of induction and using Stokes’ theorem, we conclude that the net current
enclosed in the cylinder has to vanish. This leads to the condition that

−R2
oπjo = (R2

1 −R2
0)πj1 (B.18)
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where j1 is the current density of the hull. Let us define the hull to be 1
d
R0 thick,

thus R1 = (1 + 1
d
)R0 and we yield

−R2
oπjo = ((1 +

1

d
)2 − 1)R2

oπj1

j1 = − d2

1 + 2d
j0 (B.19)

Leaving aside the constant B-field background in z-direction, we now want to cal-
culate the B-field in the x-y-plane. The problem is symmetric in z-direction and
circular symmetric around the z-axis. Thus we expect the current to have a B-field
dependent on r in eφ direction. Using Stokes’ theorem with circles centred at the
origin we find

∫
dφBφ(r) =


4π
c

∫
A:={x2+y2<r} j0dA for r ≤ R0

4π
c

(joπR
2
0 +

∫
A:={R0<x2+y2<r} j1dA) for R0 < r < R1

0 elsewhere

(B.20)

2πrBφ(r) =
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4π2

c
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0j0 + (r2 −R2
0) j1) for R0 < r < R1

0 elsewhere

Bφ(r) =


2π
c
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r

(
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(
r2

R2
0
− 1
)
j1

)
for R0 < r < R1

0 elsewhere

(B.21)

Note that while the B-field values rise linearly in the real current region, the shielding
pseudocurrent not subject to Lorentz’s force decays nonlinear with radius. Typically,
we want our simbox to be a few hundred cells in height and width containing a rather
large active current area in the middle and a small pseudocurrent hull. Since the
continuous formulae of currents(B.19) and magnetic fields(B.21) are used to initialize
a finite grid, a common sampling error occurs named aliasing. These errors are the
natural consequence of using conditions with greater or equal signs or Θ-functions.
A circle, to give an example, is badly represented by the condition “mark every spot
(x, y);x, y ∈ N that fulfils x2 + y2 ≤ R2 ”. This gives a bad sampling for values of x
and y that nearly fulfil the condition, see figure B.2. An easy and appropriate fix in
our situation is to interpolate the function’s values linearly over one grid cell around
the radii. The computational error introduced by that is way smaller than the error
introduced by aliasing.
Furthermore we have to deal with the code being executed on a staggered grid.
This means that the analytical solution to the Maxwell’s equation are subject to
an in general tiny correction. This correction has been made experimentally in the
following way: One can set up the initial conditions on a grid with small z-length.
On such a grid, lateral instabilities of the beam cannot develop. The simulation
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B. Numerical Methods
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Figure B.2.: When dis-
cretising continuous formu-
lae, Θ-functions have to be
interpolated to avoid alias-
ing. E.g. simply checking
if r < R0 holds gives large
numerical errors leading to
a non accurate setup.

should not build up an Ez field after a few steps of computation unless one sets the
currents wrong. However one always introduces an error. Two criteria are to be met
before proceeding with a full simulation:

1. The error building up Ez should remain small compared to the field that would
be built up if no B-field was present

2. The artefacts at the hull’s borders should be small compared to the field that
would be built up if no B-field was present

We met criterion one at about 10−4, criterion two at about 10−1. It is only then the
instabilities can develop as derived.

B.2.3. Modifying the setup to maintain a quasi constant Ez field

To test the workings of the TSI in an electric field, one wants to modify the above
setup to include a constant Ez field. This would mean to solve Maxwell’s equations

for ∂tE
!

= 0 leading to some Bessel functions4 forming a smooth dip of the field in the
middle and according bumps at the quasicurrent’s site. We omit that peculiarity since
it anyway sets our field configuration nonconstant along the transversal axis. Instead

4Bessel functions arise because the Laplace operator on the l.h.s. of Maxwell’s equations has to
be solved for a j on the r.h.s. dependent on E
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B.3. Integrating Ez to gain a notion of potential

we just compensate for the additional charge flux of the real current by putting a
uniform growing pseudocurrent in the middle cylinder. This is done without much
care by solving

·
p =

Ee

mc

p =
Ee

mc
∆t+ p0 (B.22)

and adjusting the pseudocurrent’s strength after this formula. In reality the fields
could be dominated by the closed field lines’ charged cargo and the field drop could
form a broader valley of nearly constant Ez in the middle. However simulation
limitations in both size and density currently restrict us to the regime where we
have to suppress the development of a transversal electric field gradient. Strictly
speaking we break self consistency in transversal direction to the benefit of easier
analysis of the outcome. The newly added pseudocurrent keeps Ez constant along the
transversal axes and inhibits the growth of the magnetic field rot ~B ∝ ~jz. Meanwhile
it leaves the important properties of the system, namely momenta, difference fields
and positions intact.
One caveat is that we’re by now actively pumping energy into the system. This has
to be taken into consideration when measuring anything related to energy.

B.3. Integrating Ez to gain a notion of potential

For the potential plot in fig. 2.6 one needs to define what a potential is. In our case
we reduce the problem to one dimension, meaning we omit the arising rotation in
the x and y components of the E-field and average the Ez component over x-y-slices.
Then, the average Ez-field is collected and integrated to gain the potential. This
potential is then linearly transformed to get rid of eventually built up net electric
fields and to remove bias. Thus the local potential differences the instability consists
of remain. We expect the potential to be symmetric under point reflection since the
whole setup itself is point symmetric under charge transformation.
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C. Normalization

We use Gaussian CGS-units and formula where not otherwise stated. However some
numerical values are given in SI units where appropriate.
The PSC partly lets you choose your favourite system of units in terms of the nu-
merical value of nature’s constants c, e, ε0 and so on. However, since it is also meant
to be a code capable of high intense laser plasma physics, quantities are typically
normalized w.r.t. laser physics, namely the laser frequency ω. The choice of ω does
not change our simulation physically but specifies ’natural units’ the output is nor-
malized to. Along with ω we define time and spatial units (these considerations are
cited in slightly modified form and order from [Ruh]):

t← ωt, ~λD ←
~c

ω
~x← ~x

λD
, ~p← ~pk

mkc
, (C.1)

Where k is a sort/species index. The fields, currents and charge densities are nor-
malized to E0, B0, j0, ρ0 defined as follows to consistently reproduce the dimensional
Maxwell equations:

B0 =
E0

c
, joε0ωE0, ρ0 = ε0ωB0 (C.2)

Where E0 is a free parameter. The distribution functions fk appearing in the Vlasov-
Boltzmann description demand the following normalizations:

ρk =
qkmk3

QM3

∫
d3pfk, ~jk =

qkmk3

QM3

∫
d3p, f0 =

η

α2

n0

M3c3
(C.3)

η =
vos
c
, vos =

QE0

Mω
, α =

ωp
ω

(C.4)

Where Q and M are free parameters. A convenient choice for Q is the electron charge
and for M the electron mass. The “laser” frequency was sometimes set to ωTSI in
our case. This however does not hold for all simulations. In general, we converted all
important output values from the simulation to SI / CGS units where appropriate.
Momentum in the phasespace diagrams was normalized to mec.
To avoid unnecessary confusion we’ve only stated normalizations relevant to under-
stand the proceedings of this thesis and remain in commonly used units, that is, for
astrophysical formulae CGS, for some results SI.
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D. Table of simulations

git commit
(version control) scenario simulation

1c5ab01... e+ onto e−

p = 2
n0 = 6.3 · 106 1

cm3

20m · 20m · 500m

grid 20 · 20 · 500
N# = 20
boundaries periodic

d4643aa... e+ onto e−

p = 2
n0 = 6.3 · 106 1

cm3

20m · 20m · 500m

grid 60 · 60 · 1500
N# = 20
boundaries periodic

6d73ddb... e+ onto e−

p ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
n0 = 6.3 · 106 1

cm3

200m · 200m · 500m

grid 100 · 100 · 250
N# = 5
boundaries periodic, setting as de-
scribed in section B.2

2f0c4f1... e+ onto e−

p = 0.8
γmax ∈ {1.2, 1.1, 1.01, 1.001}
n0 = 6.3 · 106 1

cm3

300m · 300m · 600m

grid 100 · 100 · 200
N# = 5
boundaries periodic, maintaining con-
stant Ez field as described in section
B.2.3

11181c9... e+ onto e−

p =∈ {0.8, 0.458, 0.142, 0.045, 0.014}
γmax = 1.001
n0 = 6.3 · 106 1

cm3

300m · 300m · 600m

grid 100 · 100 · 200
N# = 5
boundaries periodic, maintaining con-
stant Ez field as described in section
B.2.3

440eb8b... e+ onto e−

p = 1.0
n0 = 6.3 · 106 1

cm3

20m · 20m · 100m

grid 20 · 20 · 100
N# = 2
boundaries periodic

3ad9664... e+ onto e−

p = 1.0
n0 = 6.3 · 106 1

cm3

some different area shapes
radiating electron background of γ = 20
and density of 10% or 100%no

grid appropriate to areas
N# = 5
boundaries periodic
Initial Ez field turned on
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E. Used tools

In the making of this text we used the LATEXtypesetting architecture enhanced with
the pdftk toolset and TikZ graphics. For image editing we used GIMP, the GNU
Image programm and Inkscape. Visualization and data analysis was done with Gnu-
plot and Paraview. The Fourier transforms were taken using libFFTW.
The PSC-Code as well as this document and all generating scripts were version con-
trolled with GIT.
Development on the code was done using the GNU Compiler set and kdevelop as an
IDE.
The PSC itself makes use of numerous libraries, tools and extensions including but
not limited to OpenMPI, HDF5, libPAPI, SSE1/2 and Cuda, enabling parallel com-
puting on GPUs.
The chair’s cluster at the LRZ in Garching uses SUSE Linux Enterprise 11. Most of
the simulations were run on behalf of this hardware. The development was done on
machines running Fedora (16), a GNU/Linux distribution.
For presentational needs (the TMP program’s final exam basically is a defence in form
of a presentation of the master thesis) I furthermore used blender, the LATEXbeamer
architecture and mencoder.
This research has made use of NASA’s Astrophysics Data System Bibliographic Ser-
vices and the ATNF pulsar catalogue (see also [MHTH05]).
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