
Radiative processes, stellar atmospheres and winds

(WS 2017/2018)

Problem set 9

Problem 1 [3.5 points] Lorentz profile

In an excited atom, energy is radiated away by an electromagnetic wave (spontaneous
decay). In a classical picture, one can describe the excited electron by a damped harmonic
oscillator with eigenfrequency ω0, where a damping force is exerted on the electron by its
own electromagnetic field, Fdamp = −mΓv, with damping constant Γ and velocity v = ẋ.
The corresponding equation of motion is then given by

ẍ+ Γẋ+ ω2
0x = 0.

With the Ansatz x = Re(xo exp (iωt)) and noting that Γ � ωo (see problem 2), the
solution can be approximated by

x(t) ≈ x0 exp(−(Γ/2)t) cos(ω0t).

a) Because of the decaying amplitude, the frequency of the radiated wave is no longer
monochromatic as for an infinite oscillation. Calculate the frequency spectrum H(ω)
from a Fourier transform of the oscillation, assuming that the decay begins at t = 0,

H(ω) =
1√
2π

∫ ∞
0

x(t) exp(−iωt)dt

Your solution should involve two terms, one dependent on (ω−ω0) and another one
dependent on (ω + ω0). In the following, we will study the behaviour close to the
resonance frequency, i.e., for (ω− ω0)� ω0. In this case, the second term involving
(ω + ω0) can be neglected, and you should have obtained

H(ω) ≈ x0√
8π

1

Γ/2 + i(ω − ω0)

b) The radiated spectral power, P (ω), results from a multiplication with the complex
conjugate of H(ω),

P (ω) = H(ω)H∗(ω),

and P (ω) is proportional to the line profile. Convert ω and ω0 to ν and ν0, and show
by normalizing ∫ ∞

0

constP (ν)dν = 1

that the line profile due to radiation damping (natural line-broadening) is given by
the Lorentz profile quoted in the script (page 103). Summarize the assumptions
regarding the validity of this expression.
Hint: At some point in your calculation, you might approximate −ν0 by −∞.
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Problem 2 [4 points] Natural line width

One can show (e.g., by using the equation of motion), that the radiated power from an
excited atom decays with exp(−Γt).

a) Interpret this as a probability distribution function, p(t) ∝ exp(−Γt), perform the
missing normalization (

∫
p(t)dt = 1), and show that the mean life time of an excited

atom, τ = < t > =
∫
tp(t)dt = 1/Γ.

b) Convince yourself that Γ� ω0 under typical conditions (see Problem 1).

c) Assume a transition between two excited states with energies Ei and Ef , and mean
life times τi and τf . Calculate the corresponding line-width (with respect to fre-
quency and wavelength) from the uncertainty principle.

d) Compare the result from 2c) with the full-width at half maximum from a corre-
sponding Lorentz profile.

e) Calculate the natural line-width (see 2c/d) for the Balmer-α transition of hydrogen
in units of Å, assuming τn=2 = τn=3 = 10−8s.

Problem 3 [4.5 points] Doppler broadening

For the following problem and nomenclature, see script page 104.

In order to account for the thermal velocities of the radiating atoms, we have to convolve
the ‘atomic’ profile function with the corresponding velocity distribution, P (vx, vy, vz)
(Dopplershifts!). Thus, if the emission is isotropic, we need to evaluate

Φ(ν) =

∫ ∫ ∫
P (vx, vy, vz)φ(ν ′ − ν0)dvx, dvy, dvz.

Φ(ν) is the resulting profile function at observer’s (rest) frequency ν, and φ is the intrinsic
(‘atomic’) profile in dependence of (ν ′ − ν0), with ν ′ = ν ′(ν, ~n · ~v) the frequency in the
atomic frame and ν0 the transition frequency.

a) Derive the equation for Φ(ν) as quoted on page 104.

Hint: Assume (without loss of generality) that the x-axis of the ~v coordinate system
is aligned with ~n (direction from atom towards observer), and that in this geometry
only the vx components contribute to the Dopplershifts (no transversal Dopplershift,
because v � c).

b) Assume that the intrinsic profile, φ(ν ′ − ν0), is a delta function, and derive the
Doppler-profile quoted on page 105.

c) Assume now that the intrinsic profile, φ(ν ′ − ν0), is a Lorentzian, and derive the
Voigt-profile quoted on page 105.
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d) Compare the natural line-width from problem 2e) (actually, half of this width) with
the corresponding thermal Dopplerwidth, ∆λD (also in Å), assuming a thermal speed
of 10 km/s. In view of this result, interpret the parameter a appearing in the Voigt-
profile.

Have fun, and much success!

3


