
Radiative processes, stellar atmospheres and winds

(WS 2017/2018)

LAST problem set 10

Problem 1 [4 points] Electrons in the solar photosphere

According to the Holweger-Müller model of the solar photosphere, at τ5000 = 0.04 (the
optical depth at 5,000 Å) there is a temperature of 5,000 K, and a gas pressure of 2.63·104

dyn/cm2.

Adopt LTE conditions, and calculate the corresponding electron-density ne, by assuming
that the photosphere consists of hydrogen and helium only (NHe/NH = 0.1), and that
Helium is completely neutral.

Compare your result with the corresponding electron pressure of 2.54 dyn/cm2 from the
Holweger-Müller model, and try to explain the discrepancy.

Problem 2 [2.5 points] Approximate rate equations

NOTE: The following nomenclature refers to the script, page 119/120.

Some definitions. To quantify NLTE-effects, one introduces the so-called NLTE depar-
ture coefficient,

bi =
ni
n∗i

(1)

where ni is the actual, NLTE population density of a level i (ion j), and n∗i the correspond-
ing LTE population, calculated from the Saha-Boltzmann equation but using the actual
NLTE ion- and electron densities, nk (ground-state of ion k = j+ 1) and ne, respectively:

n∗i = nk

(ni
nk

)∗
= nk neCI

gi
gk
T−3/2e exp(Eion,i/(kTe)) (2)

(cf. page 113, combining the Saha equation with Boltzmann excitation, and defining
Eion,i as the ionization energy from level i). When bi > 1, the level is ‘overpopulated’, and
‘underpopulated’ vice versa.

The radiative bound-free and free-bound rates (ionisation and recombination) are given
by

niRik = ni4π

∫ ∞
ν0

αν
hν
Jνdν (3)

with ionisation frequency (at ionisation threshold) ν0 and ionisation cross-section αν , and
by

nkRki = nk

(ni
nk

)∗
4π

∫ ∞
ν0

αν
hν

(2hν3

c2
+ Jν

)
exp(−hν/(kTe))dν = n∗i 4π

∫ ∞
ν0

(. . .)dν (4)
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a) Detailed balance in the resonance lines of a stellar wind

To estimate the occupation numbers (particularly, the ground-state) of an ion in the
supersonic part of an expanding hot-star atmosphere (wind), one might apply the following
approximations

(i) Because of the low densities, all collisional rates can be neglected.

(ii) The resonance lines (radiative transitions connected to the ground state) are opti-
cally thick throughout the wind, and the corresponding radiative bound-bound rates
(upwards and downwards) cancel each other, i.e., n1R1j = njRj1. In other words,
these rates do not appear in the rate equations.

Write down the corresponding approximate rate equations for an ion with four bound
levels, in the form

matrix · (n1, n2, n3, n4)
T = ~b,

assuming that the ground-state population of the next higher ion, nk, is known, and that
~b is a vector containing all rates proportional to nk.

Convince yourself that the ground-state population of the considered ion, n1, is exclusively
controlled by ground-state ionisation and recombination,

n1R1k = nkRk1 (5)

b) Nebular approximation

The situation in a Planetary Nebula or an Hii region illuminated by a hot star is similar
to the conditions from a), except that because of the much lower densities the radiative
bound-bound rates for the resonance lines do no longer cancel each other, and that gen-
erally (i.e., for all lines) only the spontaneous emission terms ‘survive’. With respect to
page 119/120, in this situation we then have

niRij → 0, and njRji → njAji, (6)

with Aji the Einstein coefficient for spontaneous decay. Moreover, the ionization rates,
niRik, can be neglected for all excited levels, because of the very small dilution factor
(sizes of order 0.1 to 1 pc for PNe, and 10 to 100 pc for Hii regions).

Formulate the corresponding approximate rate equations similar to problem 2a), and
compare the structure of both systems.

Problem 3 [5.5 points] Ground-state population in expanding atmospheres

By means of Eq. 5, the ground-state departure coefficient can be approximated by

b1 ≈
1

W

Te
Trad

exp
[
−hν0

k

( 1

Te
− 1

Trad

)]
, (7)

where b1,W and Te are depth dependent quantities. W is the dilution factor, and Trad
the radiation temperature at the ionisation threshold, such that Jν0 = WBν0(Trad) in the
wind.
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a) Convince yourself that hν0/(kT ) � 1 for typical hot star conditions, such that (i)
one can approximate

1

exp (hν0/(kT ))− 1
≈ exp (−hν0/(kT )),

and (ii) the term for stimulated emission in Eq. 4, ∝ Jν , can be neglected compared
to the term ∝ 2hν3/c2, so that the recombination rate can be approximated by

nkRki ≈ n∗i 4π

∫ ∞
ν0

αν
hν

2hν3

c2
exp(−hν/(kTe))dν

b) Prove Eq. 7 (using all related approximations outlined so far), by assuming that the
ionisation cross-section can be described by

αν = α0

(ν0
ν

)2
,

(which is true for most transitions), and that Trad does not vary close to the ionization
edge.

c) Show that deep in the atmosphere b1 → 1, i.e., that Eq. 7 recovers the appropriate
LTE limit.

d) By using Eq. 7 and the definition of the departure coefficient, calculate the approx-
imate NLTE ground-state occupation number, n1(r).

What is the basic difference between the run of the LTE occupation number, n∗1(r),
and the corresponding NLTE one, n1(r)? In particular, consider a region far away
from the stellar surface, r � R∗. Hint: Compare the ratios n∗1/nk and n1/nk.

Have fun, and much success!
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