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ﬁﬁ 6. Errors

same precision of measured value and error
e.0.1.5x0.5cm.
inconsistent: x=5+0.2 or x=1.07+0.1

ideally: measurement should be free of bias (Verfalschung), i.e., the
true value should be the mean of the measured values in the limit of
Infinite measurements (for a more precise definition, see Chap. 7)

=  for measurements with results which follow a known distribution,

the error is chosen as the corresponding standard deviation
(assuming the measurement value to be the expectation value)

= Examples

Poisson-distributed events: We measure 150 photons. The result is 150+V150=150+12

uniformly distributed processes: We measure the time with a digital clock which displays
seconds. The error is 1/V12 s = 0.3s.

binomial distribution: We detect N=45 from N,=60 particles which pass a detector. The
detection rate is N/N,=0.75.

The error of the rate is SN/N,=\[Ny*p*(1-p))/Ng=V[p*(1-p)/No]=V[0.75*0.25/60]=0.06
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Empirical derivation from a series of measurements

repeat measurement and derive error from fluctuations
for details, see Chap. 7 (parameter estimation)

justified if purely statistical errors, i.e., the results are independent of each other and
there are no (correlated) systematic errors (otherwise, see below)

N 2
X =X= szi remember CLT: E(X) = ,, Var(X) = %
i=1
with #, and o, the "true" parameters of the underlying distribution
o =5 Z(x —X)?  "empirical variance", denoted by s> to discriminate from o?

I

N
o2 =s2 =Var(X) :Var( Zx ] N7 — Y Var(x;) :%Var(xi) —
i=1 i=1
2

S 2 n . ar - mn
— =X empirical) variance of the mean
N N(N 1)2( (empirical)

for the result, quote x, £ o,, with individual errors o,

The (N-1)-term in the denominator of s2 will be derived in Chap. 7.

It is caused by the fact that we need to use the estimate for the mean, X,

instead of the true mean « (which is unknown).

Note that for N =1 measurements the variance remains unspecified, which makes sense.

If there would be an N in the denominator, we would find s2 =0 for N =1 (since X =X, )! 128
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Averaging weighted measurements

Important to combine the results of the individual measurements

In such a way as to find the highest precision
In the following, we assume independent measurements

Example: two measurements with results x,,x, and errors J,,d,. The variance of the
weighted sum (with w, +w, =1)
X =W,X;, + W,X, IS given by
Var(X) = 82 = w5, + w,25,%,
and we choose the weights in such a way as to minimize the variance. This is obtained
with (prove by yourself)

1/6}

W, = ————— such that izz
1/67 +116; )

1,1
5 57
The measurment with the smaller error obtains a higher weight!

For N measurements, we obtain the general expressions

D X168 1
X = and Var(xX) =6° = -
D16,

D18t

If all errors are identical, we obtain the previous expression for X and o, where the latter

is a factor of 1/\/W smaller than the individual errors.
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Error propagation

In the following, we identify the measurement error with the positive root of the

mean square deviation of the individual measurements, i.e., with the standard deviation.

Suppose that we measure the quantity x (in the remainder of this chapter, we don't make

a distinction between x and x) which follows a certain distribution with variance

Var(x) and "error" o, (because of the CLT, this distribution will be often a normal one).
We like to find now the corresponding error of f (x), where f is a function.

1. One variable, linear function
Letf =ax+b  with constants a and b. Then,

Var(f)=a%Var(x), i.e.,

o, =[a| o,

2. One variable, arbitrary function. Taylor expansion around the measured (mean)

value x, with individual variance Var(x) = E| (x-x,)* | = E(AX) = o7

(%)~ f(xm)+(x—xm)%

df
dx
Note that this approximation is valid for "small" errors, where "small" means that the

differential should not change much over a few o. 130

o)

X

df \’
Var(f):(d—j Var(x) and o=
X
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3. One function of two variables
a) linear function
f =ax+by+c = Var(f)=aVar(x)+b?ar(y)+2abcov(x,Y)

b) general function. Taylor expansion

of of
f(X, y) ~ f(xm’ ym) + (X_ Xm)&-i_ (y_ ym)@
f,=E [f(xy)]=f(x,,y,) tofirstorder, since E(Ax)=E(Ay)=0

2 2 2
ot cov(X, y)+la EVEJIF(X)+1(3 IVar(y),
oxoy 2 OX 2 oy

I.e., also the expectation value might be influenced. This is the generalization of E(xy) = E(X)E(y) + cov(x, y)

AX? (ﬂjz + Ay? (ﬂj + 2AxAy£ﬂj[@ﬂ =
OX oy ox )\ oy

IS B N - AT B
E(Ax )+(5j E(Ay )+2(&)(EJE(AXM) =

2 2
ol + a o+ Z(QJ
oy ) ’ OX

2 2
ol + Gl ol + Z(ﬂj
oy ) ’ OX

This reduces to the "standard" law of error-propagation (without the covariance term)
if and only if the covariance term vanishes, i.e., if the x and y are uncorrelated

But note: to 2nd order, E [ f (x,y)]= f (X, Y,) +

Var(f):E[(f(x,y)— fm)z}:E

2|

cov(x,y) =

2|

/O(X’ y)o-xo-y

2|
2R 2=
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Examples for error propagation

f =ax" Var(f)=a’(nx"*)’Var(x) o, :‘anx”‘l o, fo nZx
X
bx 2 bx \ 2 Oy
f =ae™ Var(f)=a’(be™)*Var(x) - =|b|o,

f =axtby Var(f)=a’Var(x)+b*ar(y)[£2abcov(x,Yy)]
\/a +b?c2[+2abcov(x, Y)]

f=axy Var(f)=a’(y*Var(x)+x*Var(y)[+2xycov(x,y)])

(o2 ? 2 o) ? o)
= GG
f X y X y
| note covariance: E(f) =a[E(x)-E(y)+cov(x,Y)] ]
Similar result for f = ax/y [but with —cov term]:

ERGNERGIRET)
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4. One function of several variables

With covariance matrix (“error matrix™) C,
E(AX})  E(AXAX,)) .. E(AXAX)

C = E[(x-x, Yx—x,)T]=| @) E(@) o E(axax)

E(AX,AX) E(AXAX,) .. E(AX)
Cij:PijO'iGj

we find from generalizing the previous results for two variables

Var(f)=0? = iiC or in vector notation

Arox ox;
Var(f)=c?=(Vf) -C.Vf

If the variables are uncorrelated, only the diagonal terms "survive", and
we obtain (again) the "standard" law of error propagation,

Var(f)= Gf = Zn:(%j O'i2

i=1 i
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5. Several functions of several variables

Last generalization. Suppose there are now m functions f, f,,..., f,, of n variables x, x,,...,X

2yreny A

In this case, there will be always a correlation of the f,, since they share the same variables x..

Taylor expansion of the individual functions gives

Var(f)=o0} = y i O —-£C;

or in vector notation
i 1ax OX;

Var(f,) =07 =(Vf, ) -C-Vf,  (as before),
whereas for the covariances between the functions we obtain

cov(f,, f,)=E(f f)—E(f)E(f)~

< E[0 %)% - m]{%}[%}+ 106 — %)%, - w%}%}

cov(f,, mi(%)[i ]COV(X., X;),

which includes the above expression for the variances in case of k =1.
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The most general law of error propagations

Note that even for uncorrelated variables, at least the term involving i = |,

e 5] L5 L

will always be present, i.e., the functions will be always correlated!

Denoting the matrix of partial derivatives (which is nothing else than the
transformation matrix, see Chap. 4) by

of, o, of,
of, o, of,
T= & (3_)(2 & e R™, Tki:%’
OX;
of  of of
ox, ox, | ox, -

we can write the most general law of error propagation as

C,=TCT'

with C, e R"™ and C, e R™". Both matrices are symmetric.

This expression contains everything one has to know about error propagation.
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Example

In a carthesian coordinate system a point (X, y) is measured, where the measurements
should be independent, and the error iny is three times larger than the one in x. E.g.,

10
C.= .
09

Let's calculate the errors in polar coordinates, r = «/xz +y? and go:atanz.
X
The transformation matrix (matrix of partial derivatives) is
X Y 1 1
2 . - =
T=| " T , and we consider the errorsat X, =| |. Then, T = V2 \/E,
A 1 11
1’ e, 2 2
and
11 1) (5 4
V2 2|1 0)V2 2 V2
CW:TCXTT: V2 2 =
1 109t 1114 5
2 2 2o2) 2 2

The errors in r and ¢ are the square root of the diagonal, J5 and /5/2, respectively,

and the covariance between (r,) is cov(r,p) =4/ J2.
Only if these terms are considered, the back-transformation gives the original results!
... and any function involving both (r,¢) needs this covariance term for the errors.
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Systematic errors

the effect of systematic errors does not decrease with the
number of measurements, since all measurements share the
same effect, and thus are not independent

sometimes, statistical errors and systematic ones are stated
separately, e.g.

X=5.0%£1.4+2.3

where the 2nd term is the systematic error.

since statistical errors and systematic ones are independent of
each other, they add quadratically (see below)

treatment: split errors in random and systematic ones, and
calculate covariance matrix
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Assume you measure two quantities x, and x,, which have
a common systematic error S and individual random errors o, o,.

Example:

you measure the length and the width of an rectangle, where the measuring
tape gives systematically too high values (the tape might be stretched).

In this case, both measurements are affected by an individual random error
(reading) and a common systematic one.

When calculating the area of the rectangle, the covariance term (resulting
from the systematic error) usually plays the dominating role.

Split up the individual measurements in two parts,

X1:X1R+X1S’ x2:x§+x25

with corresponding random (R) and systematic (S) errors. Then, x; and x; are
independent of each other and of X’ and x;, whereas x. and x; are identical.

Var(x,) = E(x) - E(x)-E() =E[ (¢ + )* |- E*( + x}) =
=E[(4")" |- E*(x) + E[ ()" |- E*(x)) =07 + 57,

since E(x" -x’) = E(x])-E(x}) because they are independent (Chap. 4).
The above equation proves that systematic and random errors add quadratically.
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Simil

arily,

Var(x,) =o; +S? and

cov(x,X,) = E(xX,) — E(x)E(X,) =

= E[(7 + )0 + 3 |- E(X + 6)EC + %) =
=E[x% |- E($)E(S) =

= cov(x/,x;) =Var(x}) =Var(x;) = §°

since all products involving x" cancel, because they are independent of anything else.

Thus, the complete covariance matrix reads

g

Often, the systematic error is proportional to the measurement,

S=¢

(e.g., in case of the measurement tape, if the tape is stretched). In this case, the error matrix is

g

o} +S?
SZ

X

oF + &%

XX,

SZ
o +5° ]

XX,

2 2,2
o, +E°X,

|
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Examples

Example 1

By means of the well-known linear regression (Chap. 8), one can, e.g., fita

straight line y = mx + b to a certain data-set. Fit-parameters are the offset b

and the slope m, with errors o, and o, respectively. As we will show, there

Is (almost) always a correlation between both quantities, which

a) Is negative when the "sample" mean of the abscissae, X = (i X‘j/ N, is positive,
i=1

b) or positive, when the sample mean is negative.

¢) for X =0, the correlation vanishes.

If one wants, e.g., to use the derived relation for extra- or interpolation, the

accuracy of the extra-/interpolated value depends on this correlation.

Assume that we want to derive the y-value for the abscissa x,, and that X > 0.

y, =mx, +b; then

o, =X'0p+0, +2x cov(m,b)

which is smaller (larger) for positive (negative) x, than if neglecting (forgetting!)
the correlation.
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Example 2
A current | is determined by measuring the voltage U, using a meter of resolution o,
across a resistance R = o,. The error on | =U /R results as

2 2 2
ﬂ _ J_U + ﬁ ’ |e, O_IZZO-LZJ'F!ZO'Ii.
I U R R

If two currents, I, and |,, are measured using the same resistance, there will be a systematic

error, and both currents become correlated. The covariance can be calculated from our
general formula of error propagation,

a, al, U U I
oVl 12) = R O :(_R_;j(_R_gjgé =27 Tk

The errors on I, and I, are not influenced by this covariance, of course. However, if one
calculates functions of I, and 1,, the corresponding error is affected. E.g., the variance of
(1, = 1,) is given by (again using our general formula)

2 2 __2 2 2 __2 2
2 2 » 2 _O'U+|1(7R+O'U+|20R—2|1|20R_
Var(l, - 1,)=1"c; +(-1)°o, —2cov(l,l,)= ~ =

— ZO-LZJ + (Il — |2)20er

= ~
which can be significantly smaller than if forgetting the correlation
[(1,=1,) 08 vs. (17 +1,%)o7 |
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Example 3

Given are the sides of a rectangle, a,b, with reading error &, and scaling error &,

(stretched tape). Calculate the error on the area F. The error matrix is

co o; +ora’ srab
S5%ab 52 + 522

F =ab. From our generalized law of error propagation, we find
(6F)" =b?(sa)” +a*(sb)’ + 2abcov(a,b)

2 2 2 2 2 2
(5—Fj =(@j +(5—bj +2COV(a'b): 5—12+522 + 5—12+522 +252_ab:
F a b ab a b ab

Due to the covariance, the relative error on the area becomes larger by 25
compared to the case of neglecting (forgetting) the correlation. Note that
also the area itself is affected by the correlation,

E(F)=ab +cov(ab) = F(1L+ 57)

o

1

4 —

a

2

1
b2

j+ 267 + 257
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7. Estimation

Random sampling -- a few definitions

Distribution functions give probabilities for x < x < x+ dx, which moreover depend on
certain parameters A which are usually unknown. To "measure" the pdf and A, one has
to approximate it by a frequency distribution obtained experimentally.

The number of experiments performed, called a sample, is necessarily finite. Each sample

Is obtained from a set of elements which is usually of infinite size (composed of all conceivable
events), which is called the (parent) population. If a sample of N elements is drawn, the sample
has size N. The sample can be described by a N —dimensional random variable

X = (X, Xy, Xy)

The sample random variable x follows a pdf
9(X) = 9 (X, Xy, Xy ),

and has to fulfill two conditions in order to describe the process of random sampling.

a) the x; have to be independent, i.e., g(x) = 9,(X)9,(X,)...g (Xy ),

b) the individual distributions have to be equal and identical to the pdf of the parent
population f (x), i.e., g;(x.) = f(x) Vi

A function of a sample x, which itself is ar.v., is called a statistic. A well known example

N
Is the sample mean defined as the arithmetic mean of the x;, X = ini.
i=1
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= A typical problem of data analysis is the following
The general pdf of the parent population is known. The numerical value
of one or several parameters shall be obtained from a sample. Thus, we
are dealing with the estimation of parameters. Since the estimated value
IS obtained by means of sampling, it is a statistic, called an estimator.

= an estimator is a statistic,
S=S(X1, X5,..,Xn)

l.e., a procedure (function) applied to the data sample which gives a
(numerlcal) property of the parent population or a property or parameter
of the parent distribution function.

= for a given sample, there might be different estimators.

= the quality of an estimator can be described in three terms,
consistency, bias and efficiency

a ‘good’ estimator has to be consistent, unbiased and efficient.
to compare two estimators which are consistent and unbiased, the better one has to be more efficient .
a ‘bad’ estimator is inconsistent, biased and inefficient.

estimators should be at least consistent. Some estimators are inevitably biased.
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Bias, consistency and efficiency

An estimator is unbiased if for any size of the sample its expectation value is equal to
the parameter to be estimated,

E(S(X,,X,,.... X)) =4 forany N

If a bias is found, it is often easy to correct for. If , .., E(S(X;,X,,....Xy)) =4 +D,
then S(x,,X,,...,Xy) —b is an unbiased estimator.

An estimator is consistent if the result becomes increasingly accurate for increasing sample size,
imo(S)=0 and IlimS=A

N —o N—o0

If an estimator is consistent, its bias (if any) vanishes for N — oo : consistent = asympt. unbiased

To compare the relative efficiency of two estimators, one can use the quotient
_o(S)
5*(S,)
Often, the efficiency can be quantified in terms of a lower limit, the so-called minimum
variance bound (MVB, see "maximum likelihood"). If Var(S) = MVB, the estimator is
called efficient.

Example for bias
The Malmquist bias is a selection effect in observational astronomy. Specifically, if a sample of objects
(galaxies, quasars, stars, etc.) is flux (“magnitude”)-limited, then the observer will see an increase in
average luminosity with distance. This is, of course, because the less luminous sources at large distances
will not be detected. The solution is then to use a sample that is not magnitude limited (for example, one
that is volume limited.)
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MU 4 Basic estimators: sample mean and variance
USM

As already shown, the expectation value of the sample (arithmetic) mean of ar.v. x
IS its expectation value,

B =BG D) = (B0) + E() 4+ E(xy ) =

Since this is true for any sample size, the sample mean is an unbiased estimator for the
expectation value of x in the parent population, the population mean.

The variance of the sample mean is

o0-efc-eo0f] - (3 £ () |- o0

1 o’(X)
N

=T E{0 =) e (X = )] =

E {(xi — )X — yx)}, I.e., the covariances, vanish (independent r.v.).

, since all mixed terms of the type

Thus, the sample mean is a consistent estimator for z,, I|m o(x) = lim—=-=

Now, let's estimate the variance of the population (see also Chap. 6). At first we assume that
4, 1s known. An obvious estimator for the variance is

N
S(var) = %Z(xi — ) =s; which is consistent (prove yourself) and unbiased, since

N NE - 2
E{%Z(Xi —ux)2}= {(XN A ar(
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Usually, however, the "true" population mean is not kown. An obvious remedy is to
replace it by the sample mean. Let's call the corresponding estimator s',

[l
2|+
Mz

% 13
= — 2X 12— 4+ =
NZ‘ N N

with expectation value

E(s?) = E{%i(xf —xz)} _ % NE(X?) — E(X?) = E(x?) — E(X?) =

=E(x*) —(E(X))" +(E(x))’ —E(X?).

As we have shown above, E(x) = E(X), and thus

E(s?) = E(x?)—(E(x))’ —[E(YZ) ~( E(X))Z} —Var(x) —Var(x) = [1— %)Var(x).

Thus, s'is biased, where the bias vanishes for N — oo! The reason for this bias is that we
have not used the true but the sample mean. Since the sample mean, by construction, lies
somewhat closer to the data than the true mean, the corresponding variance is smaller.
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The bias can be corrected for by applying "Bessel's correction”, namely

2 1 _N-1 - N pery—g N g2
E(s“)= (1—N)Var(x) N Var(x) = Var(x) N lE( )= E( 1s)

by multiplying with N /(N —1).

Thus, a bias free estimator for the variance of a sample, s, is given by

1 N —\2
Zm;(xi —X)

The denominator can be also understood as follows: Some information about the sample
has been used for calculating the sample mean, which is lost when calculating the
sample variance. The effective number of the sample elements is thus reduced.

For large N, the variance of these estimators can be calculated (with some effort) via

Var(s?) z%[E{(X—,ux)“'}—(E{(X—,ux)z})z}, Var(s?) :[%} Var(s”?)

which vanishes for N — oo. Thus, both estimators are consistent. For a Gaussian distribution
(conventional measurement errors), this reduces to (cf. Chap. 5)

4 _ 4 4
Var(s?, large N) = S0 v o _ ZIZ [for arbitrary N, Var(s?) =

20" (N 1)]

4

Var(s®) = Iia 1 (arbitrary N) (Eq. 7.1)
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Estimating o

So far, we have calculated various estimators for the variance, s?, s and s°.

The obvious way to estimate the standard deviation is to take the square root of these

estimates, i.e.
S1
S(o) =./S(Var) =1s'
S

Though the law of large numbers guarantees consistency, the square root of an

unbiased quantity (s?, s°) not necessarily needs to be unbiased itself. Fortunately, in all
calculations of error propagation or significance the standard deviation appears as o*.

The variance of S(o) can be calculated from the law of error propagation,

2

Var(S(c?)) = ( O(';

j Var(S(o)) = 4c*Var(S(o)).

Thus, for large N and a Gaussian distribution, we obtain

Var(s')~o-—2 Var(s) = o o o.x—2_ o=z
2N’ 2(N -1) 2N T J2(N-))

If the population variance is not known or cannot be guessed, then o needs to be
replaced by the corresponding estimators from above.

(Eq. 7.2)
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Estimating the correlation coefficient

A simple estimator for the correlation coefficient within a sample can be constructed
via

> (6 =Ry, -7) 2 =X =)
S(p)=r=-+ (N Ds.s —= -
5 Buwbo-w

(independent of N vs. N —1), and with corresponding error for large N (>500)
2

(Pearson's r)

1-—
O'p ~ P .
N -1
For moderate N, it is better to transform to a variable z (Fisher's z-transformation),
%In L+r not to be confused with Fischer-Z
1-r

which has a standard deviation o, =1//(N - 3).

Example: 13 physics students were given an essay to write. The correlation between the essay
mark and their end-of-the-semester average physics mark was found to be S(p) = -0.16. If this
correlation were really negative, this would imply that literate students are bad at physics and
vice versa. Is there any support for this?
Transforming from r = S(p) to z, we obtain

1-0.16

1+0.16

z=0.5In =-0.1613.

The error o, =1/+/10 = 0.316. The deviation from zero correlation is only half a standard
deviation, so not significant.
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ﬁ Summary on basic estimators

= all estimators discussed so far
e are consistent and

» do not depend on the distribution of the parent population

(except for expressions Eq. 7.1/7.2 that assume a normal distribution)

= furthermore, the basic estimators for the mean and
the variance (“sample mean, sample variance”) are
unbiased estimators of the mean and the variance of
the parent population
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Parameter estimation: an example

Estimate the parameters of a correlated binormal distribution from random sampling
(and compare with the parameters from the parent population)

Create correlated sample from uncorrelated random numbers:
calculate 2N independent, normally distributed random numbers (either from intrinsic
generator if present or from uniformly distributed numbers and Box-Muller algorithm);
Xi —H

(o}
scale with individual o,,c, (for each of the N r.v. pairs in direction 1,2);

rotate coordinate system to obtain correlated X,y pairs; add means z,, 1,

the generated numbers are reduced r.v.: u, =

= X,=0U;, +u.

Here, we use the example from Chap. 5 with p=(2,2)",5, =0.6252 and o, =1.6152:

For a rotation angle of 8 =-31.6°, we should obtain
p=0.7, 0, =10, o, =1.4142 and z =0.8673

u=randomn(seed, N)*o,

v=randomn(seed, N)*o, 2 times N independent, normally distr. r.v. with o,
X;) _(cos@ —sind ) u note that the rotation matrix has been inverted
Y, ~\sing  coso vV, (= transposed because of its orthogonality)

X, =X+ p, Vi =Y+ 4, add mean (shift center) 152
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Calculate estimates and corresponding errors
(by using the estimates instead of the actual, but unknown quantities)

S(uy)=v=%2yi

S(ﬂx)zizﬁzxi

S(O-X):Sx = M
' N-1

% T RN

2 (% =X)(y, — )

S(p)= (N -1)s;s,

- l|n1+ S(p)

2 1-S(p)

all sums extend fromi=1N

NOTE again: All errors scale with

S(o,)=

s — Z(yi_y)z
! \/ N-1

o, =1/ J(N-3)

1
VN =k

, k €[0,3], i.e., all estimators are consistent
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binormal distribution
with correlation, for
parameters as
described before
(N=1000 x,y-pairs)

Compare with the
covariance ellipses

from Chap. 5

0
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Results for the sample estimates for different N

N=10
mu_ X:
mu y:
sig x:
sig y:
rho:
Z:

N=100
mu x:
mu y:
sig x:
sig y:
rho:

N=1000
mu x:
mu y:
sig x:
sig y:
rho:

oo r o

OO R P PR

O O ODNDN

. 74463
.69044
.95317
.07756
.649858
. 775052

.81596
.80564
.00339
.45755
.631415
. 743767

.00010
.05395
.969200
.32664
.682793
.834329

+/-
+/=
+/=
+/=
+/=
+/=

+/=
+/=
+/=
+/=
+/=
+/-

+/=
+/=
+/=
+/-=
+/-
+/-

O O O O O O O O O O o o

O O O O O O

.301419
.340753
.224664
.253982
.192562
.377964

.100339
.145755
.0713076
.103584
.0604344
.101535

.0306488
.0419521
.0216828
.0296795
.0168885
.0316703

N=10000:

mu_ x: 2.00184 +/- 0.00989791
mu_y: 2.00837 +/- 0.0140576

sig x: 0.989791 +/- 0.00699923
sig y: 1.40576 +/- 0.00994069
rho: 0.700583 +/- 0.00509210
z: 0.868444 +/- 0.0100015

to be compared with the population
parameters

mu x: 2.0
mu_ y: 2.0
sig x: 1.0
sig y: 1.4142
rho: 0.7
Z: 0.8673

note that all errors decrease with = N>,
Even for N=10, there is a significant indi-

cation that the (x,y) data are correlated!
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Stratified sampling (‘beating’ 1/vN)

suppose you want to estimate a certain quantity of a parent population
based on a smaller sample, e.g., the average weight of students at your
university.

the most simple method is to make N measurements from a random
sample, and to quote your results as

X 5, /+/N, with sample mean X and sample standard dev. s,

but, you can do better, exploiting the fact that male and female students
have different average weights, and if you know the relative proportions of
male and female students at your university (consult the corresponding
records!)

If you perform the simple estimate from above, the ratio of male to female
students in your sample will scatter about the actual ratio

(e.qg., if you have bad luck, your sample contains much more male than
female students), and this scatter adds to the scatter in the average weight.

This can be avoided by measuring the average weights in a male and
female subsample, and adding up the results accounting for the specified
ratio. In this way, the error on the total average can be significantly reduced!

This method is called stratified (or partitioned) sampling (‘geschichtetes
Stichprobenverfahren’)
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Let's consider the more general case that the parent population T can be divided into
k (exhaustive!) subpopulations T,...T, .
The quantity x shall be described by correponding pdf's f,(x)... f, (X), with distribution function

F.(x)= j f.(x)dx=P(x<x|xeT)

that is a conditional probability (x has to be part of a certain subpopulation).

We now use the rule of total probability (Chap. 2) to obtain the distribution function
for the total population T,

F(x)= P(x<x|x6T):Zk:P(x<x|x6Ti)P(x eT.)

i=1

Denoting P(x € T.) = p,, we find

F(x)= Zk: p.F. (x) , and likewise f (x) = Zk: p; f.(x)

Thus, the population mean can be expressed by

[ee}

X=E(X)= T xf (x)dx = j Zk:xpi f.(x) dx = Zk: p; T xf. (x)dx :Zk: p. X, (Eq.7.3)

)

The mean of the total population is the mean of the subpopulations, weighted by their probabilities
of occurring.
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The variance of the population can be calculated from its definition

Var(x) =o’(X) = T (x = %)% f (x)dx = T (X — R)Z_Zk: p, f.(X) dx =

k 0

=200 [ L= R)+ (% = DT f,(x)dx

—00

Since the x; are independent, all mixed terms (covariances) vanish, and we obtain

)= 2P| [ (x— %) 1,090k + (5 ~ %) [ 1,000 |

o' () =2 p | o7 +(% =%’ ] (Eq. 7.4)

The variance of the total population is the weighted variance of the subpopulations,
plus the weighted variance of the subpopulation mean about the population mean
(The latter term corresponds to the ‘additional’ scatter mentioned earlier)

For k = 2 (corresponding to the previous example), we can express this alternatively as
2

o’ (x) = Z P [Giz +(X — )A()Z:' =Py + P05 + PP, (R~ %,)°
i=1

accounting for p, = (1— p,) in this case (prove yourself ).

Thus, if we draw a random sample from the total population of size N, the variance
of the corresponding sample mean, X, will be
2 k
Var(R) =?(0) = 20 = L3 p o7 4 (%, - 27 (Eq. 7.5)
i=1
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Alternatively, we can perform a stratified sampling. In this case, we estimate
the total population mean from the estimates of the subpopulation means,

S(%)=%=YpX (Eq. 7.6

(Remember that the p.'s need to be known from external resources or from preliminary
sampling). This is an unbiased estimator, since (cf. Eq. 7.3)

E(Y):ZpiE(Yi):Zpi)zi =X

k
So far, the subsample sizes n., Wichni =N, did not play any role (though they

i=1
should be large enough to ensure low errors on X,). Let's assume now that the
n,'s are arbitrary, and that we want to calculate X from the arithmetic mean of the

total partitioned sample, without using the p;'s. In this case,

k

K:_ZZXU Znixi’

i=1 j=1 i=1

K
: : n, : :

with expectation value E(X) = Zﬁ' Comparison with Eqg. (7.6) shows that only for
n.
W = p, the correct result is obtained, whereas otherwise the arithmetic mean cannot

be used as an estimator for X.
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The variance of the estimator for the population mean (Eq. 7.6) can be calculated

from the usual calculation rules,
2

S(X)=X= Zk: pX = Var(S(X))=Var(x)=c’(X)= Zk: p2Var(X) = Zk: p? C;_i,

1) If we would sample according to the ratios, n. = Np., this would result in

o*(®) =D Pt (Eq. 7.7)

which indeed is lower than the variance resulting from a 'simple' sampling from the
total population, Eq. (7.5).

Only if the indiviual means X. differ largely from the total mean X, however, the
difference is significant, and stratified sampling is worth doing. Otherwise, much
time (for defining the p, and estimating the individual X.) is spent for almost nothing.

i) Interestingly, we can reduce Var(X) even further, by choosing optimum n.'s.
To this end, we minimize

k k 2
Var(x) =} piVar(x) = p -
i=1 i=1 i
k
with respect to n, and the condition Zni = N by means of the method of
i=1
Langrangian multipliers.
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We define the function to be minimized as

L =Var(x) + ;{(Zk:nij— N ]

i=1

and solve for a =0 and a =0 in parallel.

on. ou
2 2
GL——pi(Zji +u=0 = ni:m
anl r-]i /u
oL K K X p.o 1 &
_:(z J N=0 = Sn=YP%_N o -ivps o
Op i=1 i=1 i=1 \J U N =

Thus, the optimum n. and o(X) depend on the p, AND on the variance of the
individual subsamples. If all o, are identical, then n. — Np,, and we recover Eq. (7.7).

For significantly different o;, on the other hand, stratified sampling with n.
according to Eq. (7.8) reduces the fluctuations of X considerably.

Note: The individual o, within the subpopulations need to be known or have to

be estimated in parallel with the estimates X..
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Example for stratified sampling

The parent population shall consist of two Gaussian subpopulations, with
p,=08 X =1 o,=05
p,=0.2, X,=10, 0,=4.0

According to Eq. (7.3), x=0.8-1+0.2-10=2.8,
and the variance of the total sample is (Eq. 7.4 and below)

Var(x)=0.8-(0.5" + (1- 2.8) ) + 0.2+ (4.0° + (10— 2.8)* ) =16.36 or
Var(x)=0.8-0.52 +0.2-4.0° +0.8-0.2- (10 —1)? =16.36

NOTE: Variance dominated by the fluctuations of the individual means about
the total mean

For stratified sampling, the optimum n. are

S po,=08-054+02-4=12 = n=N2202 N 024 _2N
12 3 12 3
i.e.,&:1
n, 2

Let's simulate this now, by sampling from a population of Gaussian random numbers.

For a parent sample size of 800000 + 200000 numbers, we obtain X, = 2.7998 and
Var(x,) =16.3245, very close to the theoretical values.
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From simple sampling of the parent population with N =300, we estimate
X, =3.20+0.25, i.e., the estimated variance of the parent population

Var(x,) ~ NO'Z(Yp) =300-0.25* =18.75, to be compared with 16.36 (not too bad)

From stratified sampling with n, =100 and n, =200, on the other hand, we find
x, =0.976, s(x,) =0.456
X, =9.960, s(x,) =4.305
and thus

X, ~0.8-:0.976+0.2-9.96 =2.77

} in agreement with the parameters for the subpopulations

(0.8-0.456)° (0.2-4.305)° "(0.8-0.456 +0.2-4.305)°

100 200 300
X, =2.77+0.07 (Note: Equality in the two expressions above is only achieved if s = o)

Oy (X)) = =0.005, resulting in

 Other subsample sizes gave the following results
n:n, =1 ie,n =150 andn, =150: X, =2.85+0.08
n:n,=4,ie,n=240andn, =60: X =2.78+0.12

but still better compared to simple sampling

}Iarger error than for n, :n,=0.5,

Obviously, the result from stratified sampling has a much better quality than from
simple sampling, though the total sample size is identical.

For comparison, the results for N = 3000 (n, =1000 and n, = 2000) are
simple sampling: X, =2.876+0.076

L ) (1/\/N scaling of error in both cases)
stratified sampling: X, =2.807 +£0.023
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IMU 4 Sampling from finite populations without replacement

= finite (i.e., also discrete) population: independence of consecutive
drawings is lost when individual elements are not replaced

= thus, no genuine random sampling

« should be no problem when number of elements, N, is very large compared to

sample size n

Let the population be composed of N elements, y; ...y, . At first, we need to define the population
mean ¥ and the variance o (Yy). Since each element has the same probability to be drawn,

o1
y=y= 2V

Thus, ¥ is just the arithmetic mean of the population elements.

Here (but see also Chap. 1), we define the population variance as

(Y)_m _l(y. _Y)

since the number of degrees of freedom (— Chap. 8) of the sum of squares is (N —1).
In the above sum, the first term can take any value, the 2nd one as well and so on until the

N
(N -1Dth term. The Nth term, however, is completely determined, due to the restriction y = %Z Yi .
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Now, we draw a sample x,...x, from the population y,...y,,, withn<N,

. o 13 .
and determine sample mean, X = —in , and sample variance,
i=1

s2=—(x -x).
n-143
Without proof (see Brandt, Chap. 6.4), we quote the following properties
(remember: finite parent population, no replacement)
) E(X)=Y
The sample mean is an unbiased estimator of the population mean.
i) E(s})=0"(y)
The sample variance is an unbiased estimator of the population variance.
iii) Var(x) = m(l— ﬂj
n N
For n < N, similar to the case of an infinite population.
For n< N, smaller than for the case of an infinite population.
For n=N, the variance of the mean becomes zero, since sample and population mean
are identical.

SUMMARY: mean and variance for a sample drawn from a finite population without
replacement have similar properties as if drawn from an infinite population.
— mean of 'Lotto’' numbers, 'Feynman's restaurant problem'
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= What has been discussed so far, can be generalized

as follows

Given a sample of observations/measurements, we like to find the

appropriate theoretical description of the properties of the underlying

Likelihood

population.
Examples
casel | given: N alternative hypotheses H;
wanted: relative probabilities for the validity of the H,
case 2 | given: one hypothesis H,
wanted: a statement about the validity of H, — (Chap. 10)
case 3 | given: a valid hypothesis H(A),
where A is a set of unknown, continuous parameters
wanted: “best” value for A and error
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The Bayes theorem revisited

= discrete hypotheses

Bayes theorem (see Chap. 2)
P(A-B)=P(A|B)P(B)=P(B| A)P(A)
apply to an observed value kM and hypotheses H;. Here and in the following, variables with
superscripts denote observed/measured quantities, and the “1” denotes that it is the first (and only)
measurement of the r.v. k. (from here on, we don’t distinguish k@ from k).
Let’s assume that there is a restricted number of hypotheses which can explain the observation, and
that we know the probability distribution P(k| H;) for the r.v. k. The probability for the validity of H;
given k is
P(k[H)P(H,))

P(k)
and for the specific observation k()

P(H; k)=

PK® [H)P(H)  P(K“[H,)P(H,)
PK®) D PK?YIH,)P(H))

P(H,|k=kW)=

The 2nd equality follows from the rule of total probability, or (if the H, are not exhaustive
and not mutually exclusive), from normalizing P(H, |k®) in such a way that the probability

for the validity of any of the hypothesis is equal to unity, i.e., > P(H, |k®)=1

P(H,| k@) is the a posteriori probability (briefly called posterior) for the validity of the hypothesis i
after the event kM has occurred, and is the quantity we are interested in.

What can be easily calculated is the probability P(k® |H.), since the hypothesis (theory) is known.
P(H,) is the probability for the validity of the hypothesis i before the observation, the prior. Generally,
this is the cumbersome quantity.
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The relative probabilities for two hypotheses i and j for a specific measurement k) is
given by

P(H,1k®) _ Pk™[H,)P(H)

P(H,1k®) ~ PP H,)P(H))

Note: this ratio does not depend on P(k®) [which can be also very cumbersome, even
if all priors were known, due to a large number of potential hypotheses or parameters]

In MCMC (Markov Chains Monte Carlo, see Sect. 9), this ratio plays a crucial role.

example:

The decay probabilities, «, of pions and kaons into myons in a detector are
P(u|7)=0.02 and P(u| K) =0.10, respectively. The relative abundances of
pions and kaons are 3:1.

A myon has been detected. Does it originate from a pion or a kaon?

P(z|p) _ P(u|r)P(r) _0.02 - 3=0 5
P(K|x) P(u|K)P(K) 010-1

A decay from a pion is 60% as probable as a decay from a kaon.
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= Continuous parameters

Now, we investigate the case that a parameter A of a hypothesis is looked for.
In this case, we deal with probability densities, and for two r.v., the Bayes theorem
reads (see Chap. 4)
f(x,4) = (x| D)h(A) = f(A]x)9(x)
where h and g are the marginal distributions of f [h(ﬂ) :_[ f(x,A)dx; g(x) :jf(x,ﬂ)d/l].
If the observation gives the result xM and the parameter of the hypothesis (theory!) is A
the corresponding probability density reads
f (x| )h(A)
g(x?)
Thus, the probability density for the parameter A given a measurement x® (wanted) depends

f(1]xP)=

on the probability density for the measurement of x® given the parameter A (calculatable)
times the prior h(4) (cumbersome), divided by a normalization factor (the evidence)

f(x® | A)h(2)

f(a]x®)=—
j f(x® | )h(A)d A

—0

see also “conjugate priors”
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Example:
We measure the time t) when a particle has decayed. The measurement error should be
Gaussian, with resolution s. Thus, the probability to measure an arbitrary t for an actual

2
decay time T isf(t|T) exp(— (t-T) j The pdf for the decay time before the measurement

252

exp(-T/7)

(the prior) follows from the decay law, h(T) =
T

Because of the normalization, constant factors can be neglected. The probability density that

the actual decay time is T when we measure t is thus given by

[ am—Tf] ( Tj
F(T )=+

jexp[—(tm_;r)z)exp(—-r)dT
0 2s T
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LMU 4 Example evaluated with Mathematica

= £[T , tl ] :=Exp[-(tl-T) "2/2/8"2] »Exp[-T/tau] nominator

2= gltl ] :=Integrate[f[T, tl], {T, 0, Infinity}, Assumptions - Re[sz] > 0] denominator

3= g[tl]

s2_2t1 tan 2 .
o€ e |Zos | 1e | = sumte [T ]| = [ f(tY|T)h(T)dT
2 s /2 stau 0

4= D[E[T, t1] /g[tl], T] derivative of f (T |t™) with respectto T

[ -T+tl) 2 T s2_-2tltau
- - - 2 -T+tl 1
e 282 tau 2 tau? — —_— —
T g? tau

Qud]=
s |-1+ \/12 s + Erfc {752{1 tau ]
s \/; s tau

5= Solve [D[£[T, t1] /g (t1), T] == 0, T] determine maximum of f (T |t®) by solving for

df (T 1t _,
ar |,
2

-s? +tl tau o S
Ou[5= {{T = }} Tmost prob. — -,
tau T
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tau=1. Given an observed decay time t, the highest probability density for the actual decay
s=1. time is located at earlier times, due to the exponential prior. E.g., if s=1, =1, then
X = Re [g[ l.'.1] ] most prob. '

aiel= 1.

o= 1.

aufgl= 2.

auig)= 0.470568

ima= Plot[£[T, t1]/x, {T, 0., 4.}]

f(T|t®=2)[

04 -

Observed time tH=2

largest
i pdfat T=1

03

ouf1g=

0l |-

[ T —————

172



LMU

<

Likelihood quotient and function

usually, the probability (density) for the prior is unknown.

What are the prior probabilities for two alternative hypothesis?

What is the pdf for a certain parameter? (As outlined in Chap. 2, this is often assumed
as being uniform, but then, e.g., f(m) and f(m?) give different results for f(m|x). )

Thus, for alternative hypotheses i,j or distinct parameters A;, A, one usually quotes the
“likelihood ratio”

_ P IH)
Pk®|H))

_1(@]4)

? T x14)

r Q

which contains the full information of the observation. Neyman (1937, “Outline of a
Theory of Statistical Estimation Based on the Classical Theory of Probability”, Phil.
Trans. A236, 333) has shown that to discriminate between two alternative hypotheses
there is no other parameter which is more effective.

The result of the measurement can be (very loosely) expressed by saying that the
hypothesis/parameter i is Q times more probable than the hypothesis/parameter |
(strictly speaking, such a statement of absolute probabilities assumes equal priors).

Better to quote “only” the likelihood ratio, i.e., by saying that the likelihood of
hypothesis/parameter i is Q times larger than the likelihood of hypothesis/parameter j.
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definition: likelihood
(in German: “Wahrscheinlichkeit”, same word as for “probability”. Thus,
also in German called “likelihood”, to allow for a discrimination)

The likelihood L, for a hypothesis H, with pdf f.(x) or a discrete probability
distribution P (k) and observations x® or k™, respectively, is given by

Le®)=f(x®)  or  LK®)=RK®)

For probability densities f (x| A1) or probabilities P(k | 1) and observations x®
or k¥, the likelihood is given by
LX) =f(x®12)  orL(A|kD) =Pk |2).

The likelihood quantifies the validity of a hypothesis for a given observation,
whereas the pdf relates the r.v. with the hypothesis. The consideration of a
likelihood makes only sense if more than one hypothesis is given, or if the
hypothesis depends on parameters. If the likelihood depends on parameters, it
Is called a likelihood function.
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= The likelihood is an a posteriori probability, in contrast

to “normal” a priori probability, and must not be
confused with a conventional pdf.

The likelihood is large when the occurrence of a
specific observation for a given hypothesis is likely.
The likelihood quantifies in how much a hypothesis is
supported by the data.

If a specific observation is extremely unlikely (i.e., L is
very small), the validity of the hypothesis is more than
doubtful, but only if other hypotheses with larger L are
available:

— for parameter estimation, maximize L(A)
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Likelihood for a sample

Usually, an experiment results in a sample of N independent values
x0),j=1,N, which are independently, identically distributed (i.i.d.),
following the pdf f(x).

The combined pdf is then the product of the individual pdfs,

N
9%, Xy ) =] ] (%) (here, the x; are still r.v.)
j=1

whereas g evaluated for the observed sample is the sample likelihood,
N ) N )

Lx® o xX™) =TTLx ) =TT £ (xP)
j=1 j=1

For discrete variables, we have

N N
L(k(l),..., k(N)) — H L(k(j)) — H p(k(j) | H )’
j=1 j=1

and for pdf's which depend on a parameter A (or parameter-set )
N N
L[ XY, oxX ™)y =TT xP) =T f (x| 4),
11 11
N N
L(A | k®,...,.k™N) =] | L] k) = “P(k“) | )

= =1
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log-likelihood

In the following, we will concentrate on the last case, i.e.,
probabilities/probability densities which depend on a parameter

Since for many reasons (e.g., to find the maximum of the likelihood) one has
to calculate the derivative of L, it is convenient to consider the log-likelihood,

In L(ﬁ)zZN:In[f(x”) |/1)]
j=1
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log-likelihood — example

In two equidistant time-intervals, we detect 5 and 10 X-ray photons from an X-ray
source. Two competing theories predict a mean number of either 2 or 12 photons
per interval. Which theory is "more likely"?

lke-l_ 2
Pk, A) == In L(/’t|k(1),k(2)):lnL(/’t):—2/’t+;(kj InA-Ink,")

INL(2) =—4+[(5IN2-In5!)+(10In2-In10!) | =-13.49; In L(12) =—6.82

The log-likelihood for 4=12 is much larger than the one for 1=2, with a likelihood
ratio of

L@ =exp(-13.49 + 6.82) = 0.001.

L(12)

The observed sample indicates that hypothesis 1 might be excluded. (The significance
of such results will be discussed in Chap. 10).

Remember that to obtain actual probability (density) ratios, one would have to multiply
with the prior ratios. If both hypotheses were equally probable, then one could say that

hypothesis/theory 1 is a factor of 0.001 less probable than hypothesis/theory 2. -
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Maximum likelihood

Generalizing the foregoing concept, a variation of the (set of)
parameter(s) in the likelihood function allows for infinite hypotheses.

Highest confidence should be in that set A which has the maximum
likelihood, which is then the best estimate of A (“most likely value
of A, but actually the value of A which makes the data most likely).

The error of A can be derived from the distribution of L about A .
for many parameters, maximum needs to be derived numerically
If more than one maximum, prefer the one with the largest L

caution if several maxima with almost equal L are present

179



LMU

U

Let's first consider the case with a single parameter, A. Since the maxima of L and In L occur at the same A,

the "most likely value of 2™ can be calculated by solving the likelihood equation

N N (3 N '
_ d G A F ) )da IX
~0=2 gz A =S

= = f

[Here and in the following, we write for brevity f (x'V; 1) = f (x| 1), where this (conditional) pdf
is normalized with respect to all x' (see Chap. 4), i.e.
If(x‘l),x(z’,...x‘”’;ﬂ)dx‘”dx(z)...dx““) =1]

In the general case of p parameters, the likelihood equation is replaced by a system of p equations which
have to be solved simultaneously

olnL
oA

(Y

=0, i=1p [evaluated at the parameter set & = (4,,...4,), see below]

continue with last example:
Consider now the same measurements, but without a given hypothesis for the mean value. Instead, derive
the "most likely value of A" given the data.

N ) ) dinL N k(j) N 1q
INL(A)=-NA+> (kP InA-InkP1) = =0=-N+> — = A==>kW

i1 di |; i A N 3
The maximum likelihood value for the mean is the sample mean (which was to be expected)

For the actual example, we find 4 = >t 210 =7.5. For this value, InL(7.5) =—4.66
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1 log-likelihood function In L(A) for the previous
/ B 1 example (Poisson-dist, observed values k=(5,10)).
i / \ | The maximum of the function is located at X'=7.5
.«/ ]
8 ,/ -

Another example
Assume that a quantity is measured repeatedly, but with Gaussian errors of different variance, where the
mean is unknown. The likelihood function for measurement x” is thus

- - 1 (P — )’
L(pe | xP) = £ (x5 ) = exp| ———— |-
V27, 2(7,-2
The combined likelihood for N measurements is the product of the individual likelihoods, and the

log-likelihood function becomes

InL(z) = —%iw w0, L) Withf(o, ) =—Yin(27) —ZN_;m(a,.)

j=1 O'J- 2
Ny (i)
. - . dInL .. = O'jz
The solution of the likelihood equation, r =0, results in 2 = — 1
Kol 1
20

which is just the "addition theorem™ for calculating means from weighted measurements (see Chap. 6).
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Remember (once more) Bayes theorem:

p(datalA, model) p(1)

p(A | data,model) =
p(datajmodel)

, Where data are the measured quantities and

p(datal 4, model) = L(A | data, model) is the likelihood function

For conjugate priors (conjugate to the specific likelihood function), the posterior follows the same distribution
as the prior.

Conjugate priors play an important role for analytic solutions, parameter studies and test cases
(e.g., for MCMC simulations, see Sect. 9).

Example 1: the prior from page 170 is NOT conjugate.
Example 2 for aconjugate prior :

normal likelihood with known o + normal prior for 2 — normally distributed posterior, («|data, o)

2
i=1 20

2
n X, —
In particular: likelihood for a dataset distributed according to N( x, o) ,i.e., L« Hexp {—MJ

o . (u=M)’
normal prior with M and S, i.e., p(u) <exp| ——*—

2S°
1 n o
. B . g2 o’ o 2 n 2
= posterior p(u|x,0)=N(.,,0) With g, = T r M + T 5 X and o, = =S
— S* + —
s* o’ s* o’ n 182
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M

posterior p(u|X,0) = N (/. G) WIth f1 =

Note:
the mean is a weighted average of the prior mean M and the data mean X.
The weight on the prior mean is inversely proportional to the variance of the prior
mean (x 1/S?%), and the weight on the data mean is inversely proportion to the

variance of the data mean (x n/g?).

if the prior mean is very precise relative to the data mean (low n), then it is highly
weighted. Alternatively, if the data mean is more precise (large n), then it is
assigned a larger weight. Thus, y,, varies from M to X for increasing n.

the variance of p|x,o0 is smaller than the variance of the prior mean (S?) and
smaller than the variance of the data mean (g?/n), but varying between both limits
fn=0—
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Example on the left: Posterior distribution for the following scenario:
data sampled from a normal distribution with a mean of 80 and a
standard deviation of 0=10. The sample size n varies from 0 to 128.
The prior distribution is assumed to be normal, with a mean M = 50,
and a standard deviation, S 25. Obviously, the posterior
distribution for y varies from the prior one (n=0) over some
“‘compromise” solution for small n, to the distribution estimated from
the sample, with mean X, and variance of the mean o?/n. Note that
the pdfs have been renormalized to a max. of unity.

Example taken from Robert Jacobs, lecture notes on Bayesian Statistics:

Normal-Normal Model, based on Lynch, S. M. (2007), Introduction to Applied
Bayesian Statistics and Estimation for Social Scientists. New York: Springer



http://www2.bcs.rochester.edu/sites/jacobslab/cheat_sheet/bayes_Normal_Normal.pdf
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Information inequality and minimum variance bound
(Schranke minimaler Varianz)

Having defined the concept of likelihoods, we reconsider the problem of constructing
estimators S with desirable properties. A "good" estimator for the parameter A should
be unbiased,

B(1)=E(S)-4=0,
and should have a variance o*(S) as small as possible.
We will now show that there exists a relation between both quantities, the so-called

information inequality, such that frequently a compromise between the requirement of
minimum bias and variance has to be found.

(E.g., an estimator with &*(S) =0 can be always constructed, by choosing S = const,
but this estimator will be strongly biased).

We consider an estimator S(x® x@,...x™), with a joint pdf for the sample
f(x®,x@, o xM ) = F(xP; ) F(xP:A) - F(xM: ).

Then,

E(S) :_[S(x(l),x(z),...,x(“')) f(x®;2) F(x@52) - £ (x™; 2)dxPdx@ - dx™ = B(2) + 4.
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E(S) :IS(X(D,X(Z) ..... MY (x®52) £ (xP52) -+ £ (xXN; 2)dxPdx® - dx™M =B(2) + 4. (Eq. 7.9)

We now assume that we can differentiate under the integral w.r.t. A (S is independent of 1),

and obtain

1+ B'(/i):JS(ZN:

N 1y ().
1+B'(1) = E{S(Z%]} =

f '(X(j);
f(x(i);

A)
A)

The normalization of f (x®,x®...,x™: 1) reads

!

J f(xP ) F(x®;2) - £ (x™M; D)dx@dx@ - dx™)

- {Sd InL(A)
dA

j f(xP; ) F(x2;2) - £ (xMN; D)dxPdx@ ... dx™) =1, and the derivative with respect to A

N fr(y().
j(z—f X ’”j FOE;A)F (52) - £ (X 2)axVdx® - =0 = E{

= f(X(j);/?,)

dInL()

Multiplying Eq. (7.10) with E(S) (still =0) and subtracting from Eq. (7.9), we obtain

1+ B'(i):E{S

dInL(2)

e

dInL(2)
dA

|

}. (Eq. 7.10)
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o e fedinL(d)] dinL(2))] B dInL(A)
1+B(/1)_E{S - } E(S)E{ - }_E{[S E@S)] - } (Eq. 7.11)

which is of the type E(xy).

To proceed further, we invoke the Schwarz inequality, (E(xy))2 <E(X*)E(Y®) (Eq. 7.12)

" Proof:

E {(ax + y)z} =a’E(x?) + 2aE(xy) + E(y*) >0 is a non-negative number for all values of a e R
To fullfil this condition, the discriminant (regarding the solution a,, of E{(ax +y)’}= 0),
D =(2E(xy))" —4E(x*)E(y?),

(i) must be either D =0 (unique solution, since only for ax + y =0 we have E {(ax + y)Z}

0,
(i1) or D <0 (no real solution for E {(ax + y)2} =0)
= together: D <0, i.e.,

_4(E(xy))2 —4E(Xx?)E(y?) < 0, which proves the inequality.
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(1+B'(1)) = ( {[s E(S)]dln;(ﬂ)}j <

= E{[S— E(S)]z}:Var(S)z

(1+B

Schwarz
2 inequality

)

E{(dinL(2)/dAY|

E{[s- E(S)]Z}E{(

dInL(A)

dA

I}

The quantity in the denominator is called the information of the sample w.r.t. A, which is
a non-negative number that vanishes if the likelihood-function does not depend on A,
and the inequality is called the Cramer-Rao- or Frechet- or information inequality.

dX(N))

dinL
dA

LdX =0

The r.h.s. is called the minimum variance bound, MVB.
Since
N £ oy (i)
E{—d In L(ﬂ)}:j Z—f (X. 4) f (X (x2;2) - F(x™W;0)dxPdx® .. dx™N) =0,
dA = £ (x;2)
further differentiation w.r.t. A yields (in obvious notation: dX =dx®dx® - ..
d (& (x:2) d
— — 2 (XD ) F(x@:2) - F (X ) dxPdx @ - dx (N = —
dﬂj(; T | XA TTA) - T d/l'[
2
:>J~ d InzL +dInLdL X —0- J~ d? InzL dinL dL LdX
dA di dA dA dA LdA
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2
,[ d InzLL+dInLdL X —0= ,[ d? In2L dinL dL LdX
dA dA dA dA dA LdA

d’InL dinLY . . .
=E i [ —-E 17 , S0 that an alternative formulation for the MVB is

given by
(1+B'1)  (1+B'(W) (s B'(2))’

Var(S) > =
e 1(4) E{(dInL(/l)/dﬁ)z} E{d*InL(2)/dA%}

(Eq. 7.13)

The larger the information in the sample, the smaller the variance of the estimate!
Note: the nominator of the above equation depends on S,
whilst the denominator depends on the pdf and N

. . dinLY’ d2InL L
The information I (1) =E 17 =-E r can be also written in terms of the

/12

individual, independent probabilities
B fA)) | fi(x,2))
1 (1) = NE{( f(x,/i)] }_ NE{( f(x’ﬂ)j}, (Eq. 7.13a)

If the expectation value is defined in analogy, E(Xx) = _[ xf (x, A)dx.
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Example

Efficiency of the sample mean for a Gaussian distribution
For a sample resulting from a normal distribution (identical mean and variance), the individual likelihoods are
| | 1 (D - )’
L | xP) = f(xP; p) = —exp| -~—F|,
\N2ro 20°

and the combined log-likelihood for a sample of size N becomes
N (x(D _ )2

InL(x) = -z(xz—j‘) ~Nin(ov27)
j=1 o

2 _ ' 2 2
_dinL o N —A+BW) o

e Ny (B ) with B() = ES) -

On the other side (from previous considerations), we also know that the variance of the sample mean is
2

o
Var(X) =—
(x) ="
which shows that this estimator has a variance according to the MVB (remember that the sample mean
is an unbiased estimator, B(X) =0).

Such estimators with Var(S)=MVB are called efficient, otherwise their efficiency is given by the ratio
_ MVB
7 Var(S)

We might now ask under which general conditions an estimator is efficient,
I.e., when do we find the equal sign in the information inequality?
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To obtain equality in the Schwarzschild inequality Eq. (7.12) , we must have
ax + y =0, because only then E {(ax+ y)*} = 0.

This implies that (cf. Eq. 7.11)

dinL
a(S—E(S)) + 17

=0, or generally

dinL
di
where A must not depend on the sample x,...,x™, though it might depend on A.

- A()(S—E(9)), (Eq. 7.14)

By integration (between 4., and 1) and noting that E(S) = B(1) + 4 = f (1),
InL(A) = j [A(4)S — A(2) f (2)]d A =C(4)S + D(A) + const

L(2) =dexp{C(1)S+ D(1)}, (Eq. 7.15)

where d does not depend on A. Estimators accompanied with likelihood functions of
this type attain the MVB, and are called minimum variance estimators. In case of
unbiased minimum estimators, B(4) =0, we then have
1 _ 1 1 1
- 2) A2 2\ A2 21 A2 =
1(2) E{(d InL(2)/dA) } A(DE{S-EE)?} A'ME{(S-2)?} A (A)Var(S)

Var(S) =

1
var(S)=——
ars) A(4) 190
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Sufficient estimators

If instead of L =d exp{C(4)S+ D(4)} only the weaker condition

L=g(S,A)-c(x?,...,.x") (Eq. 7.16)

holds, the estimator (statistic) is called sufficient. It can be shown that no other
estimator can contribute knowledge to A that is not already contained in S if this
condition is fulfilled.
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Example

For a sample drawn from a Poisson distribution, we had

N
INL(A)=-NA+> (kP InA-Ink?1), e,

i1

N () _ _
d'”L:—N+Zk—:—N+N—k=ﬂ(k—z),whichisoftheform
. 2 PR
dinL

=A(1)(S-E(S
17 (A)(S-E(S))
when the estimator for the mean is the sample (=arithmetic) mean. Thus, the sample

mean k for a Poisson distributed sample is a minimum variance estimator, and, since
it is unbiased, its variance is given by

var(k) = ﬁ =

Z|~

which we have already derived previously.
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Bias for ML estimators

Example: ML estimators for the mean and the standard deviation of a normally
distributed sample.

For a normally distributed sample, the likelihood equations for the ML estimators

olnL N
- - -0 > (X(J) _,[l) =0
Ot |z ,Z;

L (x-)*) N
25 |0 :’(ZT ~5 ="
0,6 =1

: : I
result in the well known ML estimates for z = —Z xV the sample mean, and
j=1

~ 1< (D) _ 72 _ o
6= |=> (xV-@)?=s
N <

From our previous considerations, we know that the latter estimator is biased, by a factor
of J(N-1)/N.

Now, calculate the ML estimator for the variance, S(c?) = 2nd ML equation

N () _ ;)2 N -
omL| _, Z(X AN _4 02=—1Z(X(”‘ﬁ)2:52!”
2 2
00" |02 =t 2(0/2)2\ 20 N3
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ML: consistency, bias and invariance

ML estimators are usually consistent (see below)
but ML estimators are also biased (in most cases)
bias becomes small for large samples (see below)

bias is the price one has to pay for an advantageous property of
ML estimators, namely that they are invariant under parameter
transformations (see example above,

ML estimator for o2 = (ML estimator for g)?

: : ~ dL
If the maximum of L occurs at some particular value A, a1l 0,
then the maximum of L w.r.t an alternative parameter « = f (1)

occurs at & = f (1), since dc =0 because of 0= dL = dL da
da a(d) dﬁ i da dﬁ i

Thus, we have generally,
Sw(f\)= f=f(A)

Note: other, non-ML estimators preserve the difference
Invariance under transformation is incompatible with lack of bias
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Asymptotic properties of L and ML estimators

In the following, we investigate important properties for L and ML-estimators in the case
of big samples, i.e., N — oo. The estimator 4 was found from the solution of the likelihood
equation(s),

dinL] < d (. R RSN
= _;Mln[f(x ,/I)L_; rum) i_o.

yl

Let's develop the derivative of the likelihood function into a Taylor series about A,

2 2
dinl _dinL +(/1—ﬂ,)d In2L +...:(/I—/1)d In2L +... (first term vanishes, see above)
dA di |; dA” |; dA” |,
2 N /£y 7YY
d InzL = M , which has the form of a sample mean (times N).
da* |, S\ (x50 ).

For large N, sample means can be replaced by the expectation value (since their variance
decreases with 1/ N), and sums of random variables can be replaced by their expectation value,

since their relative uncertainty, o(2t.)/ E(Zt.), decreases with 1/ JN o(t)/E(t)

. >E{olsz }__E{(dlnL j}__l(i)_:_a
4 . da |;

dA?

d?InL
dA?
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2 2 i

d |n2L N —w )E{d InZL }:—E (dInL J :—l(j)::—a
a7 |, da* |, da ;

NOTE

1. To be consistent with the fact that the likelihood (the sum) is evaluated at A, also its expectation value
needs to account for a distribution with 1,

E{g(x(l)...x(N);/T)} :jg(x(l)...x(N);i)f (x®; 2) £ (x@: 1) f (xX™; D)dxPdx@ - dx™ = E{g(x(l)...x(’“’;/i)}
2 2 2
_E d InZL and E dinL _E (dlnLj
) a2z |, di |; iz ) [
A

2
2. When calculating E{( d@'&" ] } the argument is NOT generally zero
i

A

/12

2
I.e., E{d InL
d

) dinL
since

=0 results from the specific, "observed" sample-values x®,x® .- .x™") and the corresponding

i
estimator derived from these values,

whereas for the expectation value we need to integrate over all possible variates, x®,x,...x",
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In other words, we have replaced the 2nd derivative of the likelihood function (which depends
on the specific x®...x™"?) by a (negative) number —a (I (1) >0), which depends "only" on
the pdf f and the estimator A. (Note that only here we require the asymptotic limit N — ).

L =-a(A—1), which by integration results in

To first order, we thus have for the Taylor expansion
InL= —%(/1 ~J)? +const = L(A)= kexp{— %(,1 - 1)2} [with constant k]

Thus, for large N the likelihood function L(A1) has the form of a normal distribution, with

mean A and variance 1/a (standard deviation /1/a).

Now, since 1 =S, we can rewrite the above equation as d ZL =a(S—A). With E(dInL/dA) =0 generally,

E(dOI&LJ —a(E(S)-1)=0 = E(S)=E(1)=4, the estimator is asymptotically unbiased, and

dinL
=a(S-4)=a(S-E(S
) (S-4)=a(S-E(S))
Comparing further with the expression (7.14)
dollry‘ = A(A4)(S— E(S)) valid for minimum variance estimators,

S =/ is a minimum variance estimator for large N, and, since it is asymptotically unbiased,

Var(S) =Var(1) —» i 197
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Thus, we conclude that the ML estimator A has the following properties

i) it is asymptotically unbiased, E(S) = E(1) — A.
i) it is aymptotically efficient (i.e., a minimum variance estimator), with
Var(1) - 1.1
a (1)

v 1 _ L - L (Eq717)

d?InL dinL Y’ F(x,A) ) f'(x,4)
E 2
{Mz }i E{( d ]} NE{(f(x,m]h NE{Lf(m)j j

Note: The asymptotic variance corresponds to the MVB (Eq. 7.13), evaluated at A = 4 and with B'=0!

iii) since Var(1) — 0 for N — o0 and A is asymptotically unbiased, A is also consistent.
Iv) the likelihood function is asymptotically normal, and the log-likelihood is a parabola.

Remember: The expression for Var(1),
1

2
£ d In2L
di” J;
is not only (generally) valid for large N, but also in those cases where we know

(from explicit calculation) that the ML estimator is unbiased and efficient, e.g., for the
sample mean from a Poisson distribution (see previous example).

Var(1) =—
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As we have argued at the begin of this section, the likelihood function
L(A|x®..x™)

can be transformed into a conventional pdf for A, if the prior h(1) [corresponding to the

marginal distribution J' f (x,4)dx] is known and the distribution can be normalized,

FxX DAY L(AxD)h(2)

() — _
FAD) jf(x(”M)h(/l)di jL(Mx(”)h(z)dz'

Though the prior is usually unknown, the (normalized) likelihood function corresponds
directly to a pdf for A if the prior is constant (all parameter values equally probable),

L(/l) constant prior, L normalized N f (/1)
which is assumed (and justified) in most cases.

From the previous considerations, we know the the likelihood function is asymptotically
normal, with mean A [the ML estimator obtained from the solution of the likelihood
equation(s)] and variance 1/ 1 (1) [the information of the sample w.r.t. A].
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Thus, the standard approach to define the errors of the estimated parameter
A=A+ A=A+ o(])
refers to the usual confidence intervals for a Gaussian:

in the 1-o interval, the probability has decreased by e*? = In L has decreased by 0.5
in the 2-o interval, the probability has decreased by e*? = In L has decreased by 2.0
in the 3-o interval, the probability has decreased by e®? = In L has decreased by 4.5

with respect to the maximum, i.e, L(1) or InL(Z), respectively (independent of the dimension of 1)

When the large N limit has not been reached, L will not be a Gaussian, and In L not a parabola.
Presumably, however, there will be an alternative parameter ' which transforms the shape to a
parabola. For this parameter then, the corresponding 1-o limits can be derived from the values of

A" where InL(A") has decreased by 0.5 below its maximum, and one can calculate the corresponding
limits w.r.t. 4. These, by the invariance property of the likelihood, are just those values of 4 where
InL(A) has decreased by 0.5. Thus, we can completely skip the transformation to A' and read off the
n-o limits from InL(A), both for finite as well as for large N.

For finite N, the L-distribution is asymmetric about 4, such that asymmtric errors have to be quoted,

+0.27
-0.15 *

in the form of, e.g., A=1.5

Note: for asymmetric distributions, the 2-o limits are not the double of the 1-o limits!
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Examples

Log-likelihood functions InL(\) - 1 ] ' | | | B
for the mean A, calculated for 3 _.f e ] == i ]
different samples with sizes N=5 | P e -2 — :
(top),15 (middle) and 50 2 b / o o ]
(bottom), drawn from a Poisson % i / i
distribution with A=10 (dashed). - / o/ | | =
The 1-,2- and 3-o limits of the | SV . b, i A . . L i
ML-estimator (corresponding to w0 ’ o w0
In L values which are 0.5, 2.0 :. . ; . . . , . . . , . —
and 4.5 smaller than the o 1 =t a |
maximum) are indicated in red, b VAN LI ) = AT ]
green and blue. L/ / ; - \ ]
The corresponding estimate for - \ 1 -/ \ :
the mean (including error), as £ : N\ 1 : N\ i : ]
calculated from the sample \ ] - ]
mean, is indicated by the B T s I = T T T
horizontal black line. . " .
Note that the shape of In L -raef __ 1 .t f__ . ,/_-_" ]
becomes more and more ot A 1 l ) \
symmetric (and convergestoa | | 1 B ]
parabola) when N increases, in <" [ 1 -t ] i3 - ]
parallel with decreasing errors 1 b b ]
on the estimated parameter. b ] ; | i )
] 1 12 14 0 14 a 10 i £
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Iso-contours of the log-likelihood
In L(y,0) for the mean and

standard deviation of 3 different E ' ' N A ‘E ' ' '
samples with sizes N=10 (top), ] ] i N

20 (middle) and 100 (bottom),

drawn from a normal distribution £ ¢ Ve £ n ] ELE —’er
with y=-3 and 0=2 (red plus). : 4 L R e
The iso-contours denote the 1-,

2- and 3-aconfidence regions of P — S e D

the ML-estimators (corres- mu i mu
ponding to In L values which are

0.5, 2.0 and 4.5 smaller that the N | N ! 1
maximum), indicated in red, b | I b T T £/

green and blue. i 4’— ) o -
The corresponding estimates for I PN
the mean and standard g 3 't ] '

deviation (including errors), as . . . . . . . . A . .
calculated from the sample -5 - -3 -2 —1 -5 - -3 -2 — -5 -4 -3
mean and variance, are o " "
indicated by the black crosses. ] : : : ; . . . I ; .

The small difference between

ML- and sample estimates is 3 - 3 3

related to the bias in the ML- = + . L

values. 57F S ; = (D) ; "
Note that the shape of the In L 3 ] it ]

iIso-contours becomes more 0 . . . 0 . . . of . .

and more symmetric (and S I o -

converges to an error ellipse)
when N increases.
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Several parameters - covariances

To obtain a set of parameters 4, i =1,M, the set of likelihood equations has to be solved
simultaneously. In the large N limit, the likelihood function becomes a Gaussian, and the
variances of the ML-estimators are

1

2
E{aliL}
az,%_

From a Taylor expansion of the likelihood function, one then obtains the covariance matrix
regarding the estimators

2 2
E 0 InZL E o InL
oA, 04,04,

E o*InL E o*InL E o*InL
C=B*',B= 02,04, oA," 04,04,

2 2 2
_E{a InL} _E{a InL} _E{a InZL}
0y, O, 0, 04, o’ | ).

e, C, =(B), , with Var(%) =o*(4) =C, and cov(4,4) =C,

Fisher-matrix
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Example

Calculate the variances and covariance of the mean and o estimates for a Gaussian

InL(g o) = Z(Xm_’“‘) Nln(aJ_)

=X, 6= \/(x mE _\/x — ii* (=s', see previous example)

Var(it) _W Var(6) = N and cov(i,6) =0.

Estimates of mean and standard deviation are uncorrelated, which is also obvious

from the position of the covariance ellipse in the previous figure.
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Final comments on ML estimators

For large samples, A is a consistent, unbiased and efficient
estimator, so the best thing one can obtain

for smaller samples, however, this is not true: in these cases, ML
estimators are (often) biased

advantages of ML.:
easy to calculate estimators and corresponding errors
« invariance under parameter transformation
« very suitable if several parameters to be estimated in parallel
major disadvantage:

« one has to know the parent distribution. If the assumption on f(x;A) is wrong, there is no way of
telling this from the results, since there is no quality factor or goodness of fit number

minor problem:

« tointerpret L(A\) as a pdf (which is required to estimate the errors of the estimates), one has to
assume a uniform (constant) prior for the distribution of A.

« for non-uniform priors, one can use the MCMC method (Sect. 9) to obtain the (distribution of the)
posteriors and thus the errors on the parameters

Besides the basic estimators (sample mean and sample variance)
and the ML estimators, there are other estimators as well, e.g., the
method of moments (see literature) and the chi-squared
minimization (next section).
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8. Least squares

Suppose a data sample of pairs (x, y1), where the x are precisely known and the y)
have been measured, with individual errors o ;. A theory predicts that y should be a function

o(x, 1), where the parameter(s) A need to be estimated. The "ideal" y — values are assumed to be
smeared out by measurement errors alone, and we further assume these errors to be normally

distributed (invoking the CLT). Thus, the pdf to measure a certain y” for a given x¥’ is given by

f(yV14)=

The combined log likelihood function is then

(J) (N
InL(ﬂ,):—%Z( i(x A)J ZIn( Jor )

= i

and in order to maximize InL(A) one has to minimize the quantity

2
N (_ X(j),ﬂ
zZ—Z[y o )J |
i=1 O

]

i.e., one has to minimize the ¥* (=x* — minimization) or, in other words,
the (weighted) sum of the squared differences (= least squares minimization).
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= Though the method of least squares can be ‘derived’ from the ML principle, many
people regard this method (and the corresponding estimator) to exist in its own
rights, being obviously sensible and empirically tested.

= The predicted values are adjusted in such a way as to be close to the _
measurements; by squaring the differences, larger effort is spent on removing
the larger deviations.

= Firstly published by Legendre in 1805 and by Gauss in 1809.The term “least
squares” is from Legendre’s term, “moindres carrés”. However, Gauss claimed
that he had known the method since 1795. Legendre and Gauss both applied the
method to the problem of determining, from astronomical observations, the orbits
of bodies about the Sun.

= The minimization problem can be condensed in the form

N (i) |
=0 :[Z 12 d(D(;(ﬁ ;l)[yj —¢(X(J);/1):|]

i=1 O

d;{2
dA

A

yl

= Since the estimator A is a function of the y,, and the corresponding errors are
known, the laws of error propagation can be used to calculate the error of the
estimator (if we consider the least square method as being independent of the
ML principle, we don’t have to worry about uniform priors here)

= |f there are M parameter to estimate, a set of M simultaneous equations has to
be solved. 207
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Fitting to a straight line

most common application of least square fitting

y=@(x;m,b)=mx+b
with slope m and intercept (offset) b =¢@(x=0)

often denoted by “linear regression”

but note the difference between a straight line fit and regression:

regression is a statistical term related to “non perfect” laws, resulting in the
formulation of a “trend” or correlation

firstly introduced by Francis Galton (1885), a cousin of Charles Darwin, to
describe the biological phenomenon that the heights of descendants of tall
ancestors tend to “regress down” towards a normal average

in the context considered here, we deal with the problem of parameter
estimation, since we assume the law to be perfect (i.e., better measurements
should lead to data very close or indistinguishable from a straight line)
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Let's first assume that all measurement errors can be described by the same o,
c=0, j=LN
(which is frequently done, particularly if the errors are unknown). In this case, the “original”
least squares problem needs to be solved, namely the sum
N
2y, —mx; - b)2
j=1

is to be minimized w.r.t. m and b. (Here and in the following, we abbreviate y” by y; etc.).

Differentiating w.r.t. m and setting to zero yields

ZN:—ZXJ. (yj — X —5):0,

=

p=4

or, dividing by N and in terms of sample means X =

.&
>
<
Il
Z|+
M=
=<
<
Il
|
g
_><
=<
D
&

1
N4

Xy — Mx? —bx =0

Likewise, differentiating w.r.t. to b,
N

> -2(y;—1x;—b)=0

j=1
y—mx-b=0.
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Combining both equations, we obtain

Xy — Xy
2

X|

M= , b=y-Mx=

X, |
X|

The first expression for b shows that the line goes through the center of gravity, (X,y), since
y(X) =mxX+b =Y.
The errors on the parameters follow from the law of error propagation. Writing the expression

for m in the alternative way

Xy —Xy Xj—X

m:_ = - /— \Jij
X —X° Zj:N(xz—iz)yj
we immediately find (for identical errors iny;)
2
—X 2

Var()= 3| | o =T T3 (x -%) =

j (xz_XZ) N(XZ—YZ) N 5

x2—x2

Var(rﬁ)——a2

N(x* -x?)

In case we have no info on o®, we approximate this quantity from the resulting »° (see below)
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Likewise
2

var(6) =Y )Ex_—i();) O-ZZN(%X_Z)zx_ZVar(rﬁ).

j
The general law of error propagation was

i,j=1

Application to our case of independent y; (i.e., cov(y,,y;) = 5”02), we obtain

b , (xj—i)(g—ixj) . —Xor
cov(m,b) = Z(@,j{@,-ja _Zj: NZ(P_XZ)Z o _N(P_iz)_—xVar(m).

Before we give further comments on the error of the fit parameters, let's calculate the
resulting (minimized) z*, which we will need later on to assess the fit quality.

N (Y, —mX; —Db
22 = Z( : 02’ ) =N \/‘Zr—gy)(l—pf’y) if we use the abbreviations
j=1

—
Var(y)=y: -* and p?, - 5 (_X;;(Xy_yz)_yz)-

Note that as long as the scatter in the y; — values is on the order of o, zZ;, is O(N).
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Variances and correlation

Summarizing the previous results, the error matrix for (f,b) is given by

C—{ Var(mf Cov(mlb)j—Var(m){ ' __XJ with Var(m) =_0—2
cov(,b)  Var(b) ?

Xl
x

and the correlation coefficient is

cov(mb) X

Frs = JVar(miVar (b) B Jx2

Obviously, the errors on the parameters and their correlation depend exclusively on the
abscissae of the measurements. The larger the spread of these values, the smaller the
variances and the correlation. This is reasonable, since measurements which cluster around
a certain x-value allow for a lot of freedom in slope and intercept.

Interestingly, however, the covariance and the correlation is proportional to the sample mean
of the x;-values, and p_; <0, >0and=0 forx>0, <Oand =0 (see the example in Chap. 6).

In so far, the correlation can be simply avoided if one uses shifted x-coordinates X = x — X, and fits
y=m(x—-X)+b=mX+b instead of y=mx-+Dh.

With these new coordinates, Var () = o? /(NX?), Var(b)=oc?/N, and Prp =0.
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Inter-/Extrapolation — individual o;

If one inter-/extrapolates a value of Y for a given value X, in the conventional coordinates we
find
Y(X)=mX +b,  Var(Y)=X?Var(f) +Var(b) + 2X cov(ii,b)  (see Chap. 6)

whereas in the new coordinates X =x—X (with X =0 and cov =0) we obtain, after inserting

the corresponding values for Var(ii) and Var (b),

Var(Y)=(X -x)’ o +0—2:"—2[1+M]="—2(1+@J

Nx2 N N 2
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