Statistical methods - an introduction (SS 2016)

Problem set 8

1. In this problem set, the (measurement) error Δx of a quantity x is, as usual, an abbreviation for σ_x , i.e., if the actual measurement is $x = x_m + \delta x$, then $E(x) = x_m$, and $\Delta x = \sqrt{Var(x)} = \sqrt{E\{(\delta x)^2\}}$.

2. For calculating variances and covariances, use the calculation rules provided in Sect. 6 resulting from a linearization. In particular, remember the last equation on page 134.

Problem 1 [3 points] Wind-momentum and luminosity

[Note: In the following, 'logarithmic' refers to the logarithm with base 10.]

The theory of radiation driven winds predicts a linear relation between the logarithmic luminosity, $\log L'$, and the logarithmic 'modified' wind-momentum rate, $\log D'$, of a hot star ($T_{\rm eff} > 10,000$ K), where

$$\begin{array}{rcl} L' &=& T_{\rm eff}'^4 R_*'^2 \\ D' &=& \dot{M}' v_{\infty}' R_*'^{0.5}, \end{array}$$

and the primes indicate convenient normalizations (such that all quantities are dimensionless). T_{eff} and R_* are stellar effective temperature and radius, and \dot{M} and v_{∞} are the mass-loss rate and the terminal velocity of the corresponding wind, respectively. Unfortunately, typical diagnostics does not directly yield the mass-loss rate, but a related quantity,

$$Q' = \frac{\dot{M}'}{R_*'^{3/2}}.$$

Note: $Q', T'_{\text{eff}}, R'_*, v'_{\infty}$ are independent quantities!

- a) Which normalization quantities would be useful for the first of the above equations $(L' = \ldots)$?
- b) In order to check the theoretical predictions or to use the observed relation, one has to plot $\log D'$ vs. $\log L'$, and to perform a linear regression. To obtain meaningful results and errors, the covariance between both quantities needs to be accounted for! Calculate the covariance matrix for $(\log L', \log D')$ in terms of $Var(\log T'_{\text{eff}})$, $Var(\log R'_{*}), Var(\log Q')$ and $Var(\log v'_{\infty})$.
- c) In the above considerations, $Var(\log x)$ corresponds to

$$Var(\log x) = \sigma^2(\log x) \approx \left(\Delta \log(x)\right)^2 = \left(\log(x + \Delta x) - \log(x)\right)^2.$$

Show that for $\Delta x/x \ll 1$, $Var(\log x)$ can be approximated by

$$Var(\log x) \approx \left(0.43 \frac{\Delta x}{x}\right)^2$$

Convince yourself about the validity of this approximation, by using appropriate examples (numbers).

quantity	value	error
\overline{V}	8.69	0.02
B	9.10	0.04
$(B-V)_0$	-0.28	0.03
R	3.1	0.2
$d(\mathrm{pc})$	2290	200

Table 1: Parameters of HD 16 691 required to calculate M_V and error.

Problem 2 [5 points] Absolute magnitude of a star – error propagation

a) Suppose a function

$$f(x,y) = x + y,$$

where x and y are not independent. What is the corresponding squared error, $(\Delta f)^2$? Now, let y = g(x) and re-calculate $(\Delta f)^2$ as a function of $(\Delta x)^2$ by determining cov(x, g(x)).

Show that the result is identical with the squared error $(\Delta f)^2$ when *directly* calculating this quantity for the expression

$$f(x) = x + g(x).$$

b) The absolute visual magnitude of an object, M_V , can be calculated via

$$M_V = V + 5(1 - \log_{10} d) - A_V,$$

with apparent visual magnitude, V, distance d (in pc) and visual reddening (extinction) A_V . Calculate $(\Delta M_V)^2$ as a function of ΔV , Δd and ΔA_V . Assume that all variables are independent.

c) The reddening parameter, A_V , can be obtained from the so-called color excess, E_{B-V} , and the extinction ratio, R (under most conditions, $R \approx 3.1$), via

$$A_V = R E_{B-V} = R \left((B - V) - (B - V)_0 \right)$$

with V and B the apparent magnitudes in the visual (see above) and in the blue, respectively, and $(B - V)_0$ the *intrinsic* (i.e., actual) color of the object (from calibrations or from theory). Determine the squared error, $(\Delta A_V)^2$, as a function of ΔV , ΔB , $\Delta (B - V)_0$ and ΔR . Assume that all variables are independent.

d) Since both M_V and A_V depend on V, the error ΔM_V needs to be augmented by the corresponding covariance.

Re-calculate $(\Delta M_V)^2$ accounting for this fact, and express the latter quantity in terms of *all* potential errors. Use your knowledge from problem 1a), i.e., do *not* calculate ΔM_V from the complete expression, but use the individual errors from 1b) and 1c) + the covariance term! (Now, $V, B, d, R, (B - V)_0$ are independent variables).

e) Calculate M_V and ΔM_V for the O4If star HD 16 691 (in the PerOB1 association), for the values as quoted in Table. 1. Compare with the ΔM_V you would have obtained when forgetting about the correlation!

What would be the error on M_V if you would only account for the uncertainty in distance?

Problem 3 [4 points] Covariance matrix

Assume that you can independently measure the mass, m, and velocity, v, of a particle, and that there are no systematic errors. The relative measurement errors shall be known and constant, i.e., loosely speaking, $\Delta m/m = a$ and $\Delta v/v = b$. More precisely, we assume $\sigma_m/m_m = a$ and $\sigma_v/v_m = b$ (see top of this problem set).

- a) Write down the covariance matrix for m and v.
- b) Calculate the corresponding (transformed) covariance matrix for the momentum p and kinetic energy E of the particle, and express the matrix elements in terms of p_m, E_m, a and b, where p_m and E_m are the 'true' values of p and E
- c) Determine the (linear) correlation coefficient, $\rho(p, E)$, in dependence of a, b, and derive its value for the three cases a = b, a = 0, and b = 0, respectively. What do you conclude, particularly from the results for a = 0 and b = 0?

Have fun, and much success!