
Statistical methods – an introduction (SS 2016)

Problem set 6

Problem 1 [6 points] Detector efficiency

Solve the following problems using a binomial and a Poisson-distribution, and compare
the results!

a) A detector system is 98% efficient in registering the incidence of cosmic ray particles.
What is the probability that it will register all of 100 incident particules? (Hint:
What is the mean number of misses?)

b) How many particles must pass the detector to have a better than even (> 50%)
chance that one or more particles are missed?

c) How many particles must pass the detector to have a better than 90% chance that
two or more particles are missed?

Problem 2 [6 points] Cauchy distribution

Assume a gun in front of a long wall, at
unit distance. The gun shoots at the wall,
with angles θ randomly chosen from a
uniform distribution within [-π/2. . .π/2],
f(x) = 1

π for −π/2 ≤ x ≤ π/2 and
f(x) = 0 else.
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a) Determine the distribution (pdf) g(y) of the holes shot in the wall, by an appropriate
transformation of variables.

b) Confirm that the resulting standard Cauchy distribution is normalized within [−∞,∞].
(If you could not solve problem 1a), consult the literature for a definition of the
Cauchy distribution).

c) Show that the Cauchy distribution has undefined variance, by calculating this quan-
tity from the 2nd moment and the expectation value.

d) The so-called Lorentz distribution (sometimes also called Breit-Wigner distribution)
used to describe the profile functions of certain spectral lines is defined as
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with frequency ν, central=transition frequency ν0 and ‘damping parameter’ Γ.
Calculate the corresponding distribution function for the angular frequency ω = 2πν.
Show that the Cauchy distribution can be generated from a Lorentzian one (or vice
versa) if y = (ω − ω0)/(Γ/2).

Note (this is just a comment, nothing to do here): It is easy to show that the
damping parameter Γ describes the FWHM of the distribution w.r.t. ω.

e) Show that the characteristic function of a Cauchy distribution (according to problem
a)) is Φy(t) = exp(−|t|).
Use this result to prove that the arithmetic mean of Cauchy-distributed variates,
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is also Cauchy-distributed.

Note: At first glance, this result seems to contradict the Central Limit Theorem;
however, the CLT can be only applied for distributions with well-defined expectation
value and variance!!!

Have fun, and much success!
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