Statistical methods – an introduction (SS 2016)

LAST problem set (10)

Problem 1 [2 points] Exponential distribution: ML-estimator

Calculate the ML-estimator for the life time τ of an exponential distribution, $f(t) = (1/\tau) \exp(-t/\tau)$, given a set of N observed life times t_i .

Problem 2 [2 points] Lorentzian distribution

As already discussed in problem set 6/2, a Lorentzian distribution (sometimes also called Breit-Wigner distribution) can be used, e.g., to describe the profile function of certain spectral lines. With respect to angular frequency ω , it is defined as

$$\Phi(\omega)d\omega = \frac{\Gamma}{2\pi} \frac{1}{(\omega - \omega_0)^2 + \left(\frac{\Gamma}{2}\right)^2} d\omega,$$

where ω_0 is the central=transition frequency and Γ the so-called 'damping parameter'.

Construct the ML-estimator for the damping parameter, Γ , given a sample of N angular frequencies, $\Delta \omega_i = \omega_i - \omega_0$, drawn from this distribution. Derive only the (non-linear) equation that defines $\tilde{\Gamma}$, since there is no analytic solution.

Problem 3 [4 points] Information and other expectation values

- a) From some general arguments, it can be shown that E(d ln L/dλ) = 0 (see script, Eq. 7.10). Convince yourself about the validity of this relation, by *explicitely* calculating (i) E(d ln L/dμ) and (ii) E(d ln L/dσ), for the case of a normal distribution with expectation value μ and standard deviation σ.
- b) Calculate the information $I(\sigma)$, using (see script p. 186)

$$I(\sigma) = -E\Big(\frac{d^2\ln L}{d\sigma^2}\Big),$$

for a normal distribution with standard deviation σ .

Problem 4 [4 points] *Minimum variance bound*

Calculate the MVB for the estimator $S(\sigma^2) = s'^2 = \frac{1}{N} \sum (x_i - \bar{x})^2$ given a Gaussian distribution. Show that this MVB is in agreement with the fact that $Var(s'^2) = 0$ for N = 1.

Note: In problem 3b), you should have calculated $I(\sigma)$. Here, however, we are dealing with an estimator for σ^2 !

Have fun, and much success!