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ABSTRACT

We examine the linear instability of low-density, line-driven stellar-winds to

runaway of the heavy minor ions when the drift speed of these ions relative to the

bulk, passive-plasma of hydrogen and helium approaches or exceeds the plasma

thermal speed. We first focus on the surprising results of recent steady-state,

two-component models, which indicate that the limited Coulomb coupling asso-

ciated with suprathermal ion drift leads not to an ion runaway, but instead to a

relatively sharp shift of both the ion and passive fluids to a much lower outward

acceleration. Drawing upon analogies with subsonic outflow in the solar wind, we

provide a physical discussion of how this lower acceleration is the natural conse-

quence of the weaker frictional coupling allowing the ion line-driving to maintain

its steady-state balance against collisional drag with a comparitively shallow ion

velocity gradient. However, we then carry out a time-dependent, linearized sta-

bility analysis of these two-component steady solutions, and thereby find that, as

the ion drift increases from sub- to suprathermal speeds, a wave mode character-

ized by separation between the ion vs. passive-plasma goes from being strongly

damped to being strongly amplified. Unlike the usual line-driven-flow instabil-

ity of high-density, strongly-coupled flows, this ion separation instability occurs

even in the long-wavelength, Sobolev limit, although with only modest spatial

growth rate. At shorter wavelengths, the onset of instability occurs for ion drift

speeds that are still somewhat below the plasma thermal speed, and moreover

generally has a very large spatial growth. For all wavelengths, however, the tem-

poral growth rate exceeds the already rapid growth of line-driven instability by a
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typical factor of ∼ 100, corresponding to the mass density ratio between the bulk

plasma and the driven minor ions. We further show that this ion-separation mode

has an inward propagation speed that is strongly enhanced (at its maximum by

a similar factor of ∼ 100) over the usual “Abbott-wave” speed of a fully coupled,

line-driven flow, implying that in the context of this separation mode, the entire

domain of any steady-state solution can be considered as ‘subcritical’. Finally

we note that, despite the extremely rapid linear growth rate, further analyses

and/or simulations will be needed to determine whether the nonlinear evolution

of this instabilty should lead to true ion runaway, or instead perhaps might be

limited by damping from two-stream plasma instabilities.

1. Introduction

The winds from hot, luminous, massive stars are understood to be driven by the scat-

tering of the star’s continuum radiation by an ensemble of spectral-line transitions of heavy,

minor ions (Lucy and Solomon 1970; Castor, Abbott, and Klein 1975, hereafter CAK; Ab-

bott 1980, 1982; Pauldrach, Puls, and Kudritzki 1985). From even the initial considerations

of this line-driving mechanism (McCrea 1935; Lucy and Solomon 1970; Lamers and Morton

1976; Castor, Abbott, and Klein 1976, hereafter CAK76), a key issue has been the degree

to which the radiative momentum imparted to these heavy, minor ions could be shared

through Coulomb collisions with the bulk mass of ionized hydrogen and helium, which have

only a few strong line-transitions and thus, apart from cases with a near-zero metallicity

(Kudritzki 2001; Bromm, Kudritzki and Loeb 2001), constitute a ‘passive plasma’ not much

driven directly by radiation. Subsequent extensions of these early analyses [e.g., Springmann

and Pauldrach 1992; Krticka and Kubat 2000, 2001 hereafter KK00 and KK01) generally

confirm that, for the relatively dense winds from luminous OB stars, the collisional exchange

is sufficient to keep the ions and bulk plasma tightly coupled, with the relative ion vs.

bulk-plasma drift speed remaining well below the characteristic plasma thermal speed.

However, in the relatively low-density winds arising from lower-luminosity stars, e.g.

main sequence B-type stars, the lower collision rate between the ions and passive plasma

leads to a larger ion drift speed, in principle approaching or exceeding the plasma thermal

speed. Because the cross-section for Coulomb collisions scales as the inverse fourth power of

the microscopic relative velocity of the colliding particles, such a suprathermal drift has long

been assumed to lead to an effective decoupling of the ions from the bulk plasma, a so-called

“ion runaway” (Springmann and Pauldrach 1992; Babel 1995; Porter and Drew 1995).
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Understanding the specifics of how this runaway should actually occur has proven, how-

ever, to be quite complicated. Springmann and Pauldrach (1992) showed that the friction

associated with ion drift near the thermal speed could substantially heat the plasma; the as-

sociated rise in temperature and hence in thermal speed then also implies reduced collisional

coupling, leading again to conditions for an expected ion runaway. If true runaway does

occur, then the frictional heating is reduced, and so its net effect seems likely to be limited,

causing only a moderately enhanced temperature for the bulk plasma, no more than a factor

two or so above the stellar effective temperature. But if two-stream plasma instabililties

were to damp the runaway and so effectively keep the ion drift within a few thermal speeds,

then frictional heating could persist, leading to much higher temperatures, perhaps even

high enough to be relevant for explaining the observed X-ray emission of many such B-type

stars.

Again though, if true runaway does occur, it too could have varied consequences. For

example, the much steeper ion velocity gradient implies that associated ion spectral-lines

should become optically thin, thus limiting the maximum velocity inferred from wind-line

absorption. Moreover, the rapid ion acceleration might even provide a source of moderately

energetic particles into the interstellar medium. Finally, if the wind decoupling occurs before

the passive-plasma outflow has reached escape speed, then this material could fall back onto

the stellar surface (Porter and Skouza 1999).

Even setting aside questions of possible limitation of runaway by two-stream plasma in-

stabilities, recent work raises questions whether ion runaway is indeed the expected outcome

of even a simple multi-component model. Specifically, in a quite thought-provoking paper,

KK00 derived, for the first time, quantitative velocity solutions for both the ions and passive

plasma through a two-component extension of the usual single-fluid, CAK formalism for

steady-state line-driven winds. For high-density winds they confirmed the standard CAK96

results of a strong, essentially single-fluid coupling between the minor ions and bulk plasma.

But, quite surprisingly, for their case of a wind with moderately low density, they did not

obtain solutions with ion runaway. Instead, as the collisional coupling becomes limited for

suprathermal ion drift speeds, they found that both the ions and passive plasma simply shift

to a lower-acceleration solution, with a relative ion flow speed that remains typically within

a few thermal speeds of that for the bulk plasma.

This quite unexpected, seemingly unintuitive result raises several basic questions. First,

what is the physical explanation for this turnover of both the ions and bulk plasma to a lower

acceleration? Second, given the nonlinear nature of the fluid equations, might there be other

solutions not uncovered in the KK00 analysis, including perhaps some characterized by ion

runaway? Finally, and perhaps most importantly in the present context, what is the stability
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of these slow-acceleration, steady-state solutions against time-dependent perturbations?

The goal of the present paper is to address these various questions, with particular focus

on this issue of a possible fluid-type instability for ion runaway. Specifically, we provide a

multi-component extension of the linear instability analyses carried out previously for single-

fluid models of line-driven outflows (see, e.g., Owocki and Rybicki 1984, 1985 and references

therein). These previous analyses show that such line-driven flows are generally highly

unstable to small-scale perturbations with wavelength near or below the Sobolev length

(over which the mean flow accelerates by an ion thermal speed). But in the long-wavelength,

Sobolev limit, they yield marginally stable, radiative-acoustic wave modes that propagate

inward relative to the flow at a fast characteristic speed, nowadays called the Abbott speed

(Abbott 1980).

A key result of the analysis here is that, when the ion-drift speed exceeds the plasma

thermal speed, even such long-wavelength, Sobolev-limit perturbations become unstable to a

mode characterized by separation between the ions and bulk plasma. Moreover, compared to

the single-fluid values, both the characteristic growth rate and the wave-propagation speed

of this ion-separation mode are magnified by a large factor, of order 100, set by the mass-

density ratio of the bulk plasma to minor ions. For long-wavelength perturbations, the fast

propagation of the wave mode leads to only a modest spatial growth. But for short-scale

perturbations, both the temporal and spatial growth can be very strong, with moreover an

onset at moderately subthermal drift speeds. This suggests that, at least in the context

of a linear perturbation analysis of multi-component model without yet accounting for any

collective plasma effects, the KK00 steady-state solutions with slow ion acceleration should

rapidly become disrupted by unstable wave modes leading to ion separation.

The organization of the remainder of this paper is as follows. We first lay the basis for

our analysis by discussing how the general, time-dependent, two-component fluid equations

(§2.1) reduce in the high-density, steady-state limit (§2.2) to the standard single-fluid CAK

formalism, focussing in particular (§2.3) on the possibility of alternate, slow-acceleration

solutions in the CAK model. We next (§2.4) derive a scaling analysis for the general con-

ditions (e.g., wind mass loss rate, stellar gravity) under which the ion drift speed can be

expected to approach the plasma thermal speed. We then (§2.5) discuss the KK00 model for

steady-state outflow of a two-component flow, focussing on the physical reasons for the shift

to slow-acceleration under conditions of suprathermal ion drift. With this basis, we finally

present (§3.1) our linear perturbation analysis, showing that solutions with suprathermal

drift are unstable to even long-wavelength perturbations (§3.2), and that short-wavelength

perturbations have strong spatial growth even for mildly subthermal ion drift (§3.3). We

conclude (§4) with a brief summary and outlook for future work.
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2. Two-Component, Line-Driven Stellar Wind

2.1. Time-Dependent Equations of Motion

Let us begin with the general, time-dependent forms of the relevant equations of motion

for a line-driven flow. Under the standard assumption of a 1D, radial (e.g., spherically

symmetric) outflow, consider a two-component wind consisting of line-driven minor ions (i)

that interact via Coulomb collisions with a passive plasma (p) consisting of the hydrogen

and helium that represent the bulk of the plasma mass. The time-dependent equations of

motion for each component are of the form

∂vp

∂t
+ vp

∂vp

∂r
= −g +

1

ρp
Rpi (1)

and
∂vi

∂t
+ vi

∂vi

∂r
= −g − 1

ρi
Rpi + gi, (2)

where t is the time, r is the radius, g is the effective gravitational acceleration (corrected for

Thomson scattering by free electrons), gi is the radiative line-acceleration on the ions, and

the vp,i and ρp,i are the velocities and densities of the passive plasma and ions, with typically

ρp ≈ 100ρi for solar abundances.

Note that we have ignored the gas pressure of both components, as this plays little

direct role in the acceleration of such a line-driven stellar wind. Moreover, for simplicity,

and in conjunction with the initial KK00 analysis, we also avoid here an explicit treatment

of the respective plasma energy equations, and assume instead that both the ion and bulk

plasma remain at a common, constant temperature, corresponding roughly to the stellar

effective temperature. We thus defer to future work consideration of the frictional heating

that was described originally by Springmann and Pauldrach (1992), and analyzed further in

the recent follow-up paper by KK01.

The force-per-unit-volume for the collisional coupling between the ions and passive

plasma is of the form (Springmann and Pauldrach 1992; KK00),

Rpi = npnikpiG(xpi), (3)

where np,i are the corresponding number densities of each component, and

kpi =
4π ln ΛZ2

pZ
2
i e

4

kT

vi − vp

|vi − vp|
(4)

with k Boltzmann’s constant, Zp,i the mean atomic charges for each component in units

of the electronic charge e, and, as noted above, we have assumed, for simplicity, a fixed,
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common temperature T for both components. The Coulomb logarithm is given by (Lang

1974)

ln Λ = ln

[

24π√
n

(

kT

4πe2

)3/2
]

, (5)

where n = np + ni + ne is the total number density of free particles.

The collisional coupling depends on the ion-separation drift-speed relative to the passive

plasma, measured here in units of a mass-weighted thermal speed,

xpi ≡
|vi − vp|

vth

√

1 + Ai/Ap

, (6)

where vth =
√

2kT/Aima is the ion thermal speed, ma is the atomic mass unit, and Ap

and Ai are the mean atomic mass numbers for passive plasma and ions. When integrated

over the thermal distributions, the collisional dependence on ion drift enters through the

“Chandrasekhar function”, which is plotted in figure 1 and is defined by

G(xpi) ≡
Φ(xpi)

2x2
pi

− e−x2

pi

2
√

π
, (7)

where Φ is the error function (Dreicer 1959). At small ion-drift-speeds, the collisional cou-

pling increases linearly with ion drift, with the Chandrasekhar function approximated by

G(xpi) ≈
2 xpi

3
√

π
; xpi � 1 . (8)

However, at suprathermal ion-drift-speeds xpi > 1, the decline of the Coulomb cross-section

at large relative collision speeds leads to a net decrease in the overall coupling, with the

Chandraskhar function taking on the asymptotic form,

G(xpi) ≈
1

2x2
pi

; xpi � 1 . (9)

The maximum value Gmax = 0.214 occurs at the scaled drift speed xpi = 0.968, that is, near,

but not exactly at, a thermal-speed ion-drift, xpi = 1 (figure 1).

2.2. Steady-State Form

Let us first consider wind solutions for the case of a steady, time-independent flow, for

which the eqns. (1) and (2) become

vp
∂vp

∂r
+ g =

1

ρp

Rpi (10)
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Fig. 1.— The Chandrasekhar function, G(xpi) (top), and its logarithmic derivative, G′(xpi)/G(xpi) (bot-

tom), plotted vs. the thermally scaled ion-drift speed xpi [defined in eqn. (6)].



– 8 –

and

vi
∂vi

∂r
+ g +

1

ρi
Rpi = gi. (11)

Here we’ve separated onto the left and right sides the terms that tend to retard or promote

a positive, outward acceleration for each component. Since the only external source of

momentum to propel such an outward acceleration is the radiative line-force imparted to

the ions, these ions clearly must drift faster than the passive component. Thus the frictional

coupling is a retarding term for the ions, but is the essential accelerating term for the passive

plasma.

A further key distinction stems from the generally much larger mass-density of the

passive plasma, with typical ratio ρp/ρi ∼ 100. This implies a similar difference factor in

the accelerations for the collisional drag on the ions versus collisional push on the passive

plasma. As such, apart from a fully developed ion runaway, both the ion inertia and gravity

term should be ignorable in comparison to the frictional drag on the ions, thus implying that

the principal momentum balance for the ions is between this drag and the line-force,

Rpi ≈ ρigi. (12)

Applying this in equation (10) we obtain

vp
∂vp

∂r
+ g =

ρi

ρp
gi. (13)

2.3. The CAK Model for Single-Fluid Outflow

Within the CAK formalism for line-driving, the ion line-force depends itself on the ion

acceleration, i.e. gi ∼ (vi dvi/dr)α, where α is the usual CAK power-index for the line-opacity

distribution. To recover the standard CAK equation of motion, one thus must further assume

a close coupling between the ion and passive-plasma flow speeds, i.e. vi ≈ vp, which thus

also implies a closely coupled acceleration, vi dvi/dr ≈ vp dvp/dr ≡ v dv/dr. Under these

conditions, the right side of eqn. (13) becomes the CAK line-force,

ρi

ρp

gi = gcak ∼ 1

r2

(

1

ρ

dv

dr

)α

. (14)

This expression thus now makes quite explicit that the uncoupled ion driving is a factor

gi/gcak = ρp/ρi ≈ 100 stronger than the usual CAK line-force.

Using the equation of mass continuity to solve for the plasma density ρ = Ṁ/4πvr2 in

terms of the mass loss rate Ṁ , we find we can write the CAK equation of motion in the
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scaled, dimensionless form

w + 1 = fCwα, (15)

where w ≡ v(dv/dr)/g is the flow acceleration in units of the local gravity, and the flow

constant C ∼ kcakL∗/(ṀαM1−α
eff ) depends on the stellar luminosity L∗, the CAK line-driving

normalization parameter kcak, the mass loss rate Ṁ , and the effective stellar mass Meff

(corrected for Thomson acceleration).

2.3.1. The role of the finite-disk correction factor in steep wind acceleration

The factor f corrects the original CAK ‘point-star’ approximation to take account of

the finite angular extent of the stellar core (Friend and Abbott 1986; Pauldrach, Puls, and

Kudritzki 1986). In general, this factor depends itself in a rather complex way on the velocity

and its gradient. It typically begins at a value f∗ ≈ 1/(1+α) near the stellar surface, and then

increases outward, past unity at the point where the wind has a locally isotropic expansion

(with dv/dr = v/r), then eventually falling back to unity at large radii, where the star is

indeed well approximated by a point-source.

Following broadly the insightful analysis given by Gayley (2000), let us seek a conceptual

understanding of the CAK solution that will also prove helpful in interpreting the two-

component results of KK00. In particular, let us ignore the complex velocity dependence of

this finite-disk factor and consider simply the nature of solutions to eqn. (15) assuming a

prescribed, fixed stratification of f . Figure 2 shows a graphical solution for various values of

the constant C, corresponding to various choices of the mass loss rate Ṁ . For high Ṁ , there

are no solutions, while for low Ṁ , there are two solutions. The two limits are separated by

a critical case with one solution – corresponding to the maximal mass loss rate – for which

the function fCwα intersects the line 1+w at a tangent. For this critical case, the tangency

requirement implies αfcCcw
α−1
c = 1, which together with the original equation (15) yields the

critical value Cc = 1/ [fcα
α(1 − α)1−α]. Moreover, since inclusion of the finite-disk-correction

factor results in a rather low-lying critical point (Friend and Abbott 1986; Pauldrach et al.

1986), the severest constraint on maintaning this mass loss rate occurs near the stellar surface,

where the finite disk correction factor has its minimum value fc = f∗ = 1/(1 + α). This

then fixes the critical value of Cc = (1 + α)/ [αα(1 − α)1−α] (which through the dependence

C ∼ Ṁ−α thereby fixes the finite-disk-modified, CAK mass-loss-rate).

For such critical solutions, the CAK equation of motion (15) at other locations generally

away from the critical point becomes

w + 1 =

[

(1 + α)

αα(1 − α)1−α

]

f wα. (16)
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Fig. 2.— Graphical solution of the CAK equation of motion, showing cases with 0, 1, or 2 solutions

depending of the value of fC, where f is the finite disk correction factor, and C ∼ 1/Ṁα. Specifically the

plot here assumes α = 1/2, and curves with 2 and 0 solutions have fC values that are a factor 1.5 above

and below the critical, single-solution case with fcCc = (1 + α)/
[

αα (1 − α)1−α
]

.
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As a specific example, let us examine the case α = 1/2, for which the term in square brackets

is 3, and eqn. (16) reduces to a simple quadratic equation in
√

w, with solutions

√
w± =

3

2
f

(

1 ±
√

1 − 4/9f 2
)

. (17)

The critical acceleration in this case occurs when f = 2/3, for which wc = w+ = w− = 1.

Note, however, that as f increases from this initial, critical value, there develop two quite

distinct solutions for the acceleration w; these are plotted in figure 3 on a semi-log scale over

the range 2/3 < f < 1.2. Beyond the critical point, the standard, single-fluid CAK model

typically follows the w+ branch.1

Thus, as f increases outward from its critical value near the stellar surface, we see from

figure 3 that this steeper solution can lead to a substantially stronger acceleration in the

outer wind. For example, at the point of isotropic wind expansion, where dv/dr = v/r and

so f = 1, we find w+ = ((3 +
√

5)/2)2 ≈ 6.9, implying that the outward wind acceleration

at this point is this substantial factor larger than the local, inward acceleration of gravity.

As discussed by Gayley (2000), it is this ‘leveraging’ of the finite-disk correction factor that

leads to terminal wind speeds of such corrected CAK models being a factor of ∼ 3 times

the surface escape speed; in contrast, the point-star CAK model in this case would predict

v∞/vesc =
√

α/(1 − α) = 1. This factor 3 above the escape speed thus implies that the work

done by the line-force against inertia is a factor ∼ 9 times that done against gravity, leading

to what Gayley (2000) calls the ‘weak-gravity’ perspective for understanding hot-star winds.

This ‘leveraging’ of the finite-disk factor f is even stronger when comparing the ratio

of the steep vs. shallow flow solutions; for example, w+/w− =
[

3 +
√

5)/4
]4 ≈ 47 for f = 1,

and for only slightly larger values of f , we see from figure 3 that these two solutions can

differ by more than two orders of magnitude. Physically, this means that, in addition to the

rapidly accelerating, steep-slope solution that is usually followed in the outer part of a finite-

disk-corrected CAK wind, the flow also has available, as a kind of ‘backup’, a solution with

a much lower acceleration, in which the outward driving now mainly just needs to overcome

the retarding effect of gravity, instead of the much stronger inertia associated with a rapid

acceleration.

1Feldmeier and Shlosman (2001) have recently discussed how maintaining an outflow along the shallow-

slope, w− solution requires in this single-fluid model a special kind of outer boundary condition. (Note also

that these authors use the term ‘runaway’ to mean the rather abrupt shift that can occur from shallow to

steep solutions.)
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Fig. 3.— Log of the gravity-scaled flow acceleration for steep (w+) and shallow (w−) solutions, plotted vs.

the finite disk correction factor f for critical, CAK solutions with power index α = 1/2.
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Fig. 4.— Comparison of the radial variations of the finite-disk correction factor f(r), the ionization

correction factor h(r) for δ = 0.1, and their product h(r)f(r), assuming a ‘beta’ velocity law v(r) = v∞(1−
R∗/r)β , taking here β = 1/2.
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2.3.2. The role of an ionization-correction factor in reducing wind acceleration

As we shall discuss further below (§2.5), this ‘backup solution’ provides an important

key to understanding the KK00 two-component solutions with an abrupt shift to lower

acceleration. However, to facilitate an accurate analysis of the specific solution shift found

by KK00, we need to consider one further effect that they included, namely the reduction

in line-force associated with the shift in wind ionization, as parameterized by the ionization

correction factor (Abbott 1982),

h(r) ∼
[ne

W

]δ

, (18)

where ne is the electron density, the exponent has a typical value δ ≈ 0.1, and W = 0.5(1−µ∗)

is the core-radiation dilution-factor, with µ∗ ≡
√

1 − R2
∗/r

2. Using the mass-continuity

equation, the radial variation of this ionization correction can be written as

h(r) =

[

(1 + µ∗(r))
vc

v(r)

]δ

, (19)

where we have normalized to have h(rc) ≡ 1 at the critical point radius rc ≈ R∗, with critical

velocity vc = v(rc). As illustrated in figure 4, this is a decreasing function of radius, and

as such acts to counter the outward increase in line-driving associated with the finite-disk

correction. Thus, to take account of these ionization effects in the above analysis of the

steepness of wind solutions, we can simply replace the f with hf in eqns. (15)-(17). The

net upshot is that appropriate values of hf are smaller, thus implying somewhat weaker

values for the gravity-scaled acceleration w+. This is generally consistent with the lower

wind accelerations and lower wind terminal speeds found in such models with a non-zero

δ. In the present context, it will moreover prove relevant to explaining the details of the

slope-shift in the KK00 two-component models, as we shall now see.

2.4. Conditions for Thermal-Speed Drift and Maximal Coupling

Let us thus return to a two-component model in which, as given in eqn. (10), the

passive plasma is accelerated against its retarding inertia and gravity by the outward force

from collisions with faster drifting ions. Making use of the definitions for the dimensionless

acceleration w and for the collisional coupling term Rpi [eqn. (3)], we may rewrite eqn. (10)

in the form

g(1 + w) =
kpi

ApAim2
a

ρiG(xpi). (20)

The ion drift yields its maximum possible coupling at the scaled drift speed xpi = 0.968,

where the Chandrasekhar function has its maximum value Gmax = 0.214. We then solve
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eqn. (20) for the passive-plasma density at which this maximal coupling would occur,

ρmax ≈
[

(1 + w)g kT

y

] [

A2
pm

2
a

4π Gmax ln Λ Z2
pZ

2
i e

4

]

, (21)

where y ≡ (Ap/Ai)(ρi/ρp) = ni/np is the relative ion number abundance. Alternatively, for

a given mass loss rate Ṁ , we can convert this to an estimate of the wind velocity at which

such maximal coupling would occur,

vmax ≈
[

Ṁ y

(1 + w)GM kT

]

[

Gmax ln Λ Z2
pZ

2
i e

4

A2
pm

2
a

]

(22)

≈ 560 km/s

[

Ṁ−11 y−3

M1T4

]

[

2

1 + w

] [

Zi

2

]2

. (23)

In the latter equality, we have assumed the specific parameter values ln Λ = 20, Ap ≈ 1,

and Zp ≈ 1, with the scaled quantities defined by Ṁ−11 ≡ Ṁ/(10−11M�/yr), T4 ≡ T/104K,

M1 ≡ M/101M�, and y−3 ≡ y/10−3.

As an example, consider the low-density, B5-star wind computed by KK00. From their

figure 2, we see that this model reaches collisional maximum at r ≈ 1.3R∗, where the outflow

velocity is v ≈ 350 km/s. By comparison, applying their stellar parameters – M1 = .436,

T4 = 1.55, Ṁ−11 = 4.8, Zi = 2, and y−3 = 1.06 – we find that eqn. (23) yields for this

model vmax ≈ (420 km/s) (2/(1 + w)). From KK00 figure 2, we can estimate an inner wind

acceleration factor w ≈ 2, which thus predicts vmax ≈ 280 km/s, only slightly below KK00’s

computational result. In the simple analysis given above, such an acceleration would occur

for hf ≈ 0.71, which seems a reasonable value for the combined effect of the ionization and

finite-disk correction factors.

This generally good agreement with such a detailed numerical calculation thus demon-

strates that eqn. (23) provides a quite useful, simple analytic formula for predicting the

required wind conditions for thermal-speed drift and the associated maximum in collisional

coupling. In particular, it shows that there is only a limited range of wind parameters,

e.g. mass loss rate, over which such a collisional maximum should occur within the wind.

Namely, when this maximal velocity is greater than the wind terminal speed, vmax > v∞,

then throughout the entire wind the velocity should simply follow the standard, single-fluid

solution for a finite-disk-modified CAK model. Moreover, when the maximal velocity is es-

timated to be less than the CAK critical velocity, vmax < vc, then one can expect a fully

decoupled solution, as derived by Babel (1995) for very low-density winds. Since typically

v∞/vc ≈ 10, this suggests that maximal coupling within the wind should be limited to a simi-

lar, factor 10 range of mass loss rates, i.e. within an order of magnitude of Ṁ ≈ 10−11M�/yr,
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assuming that the scaled abundance, mass, and temperature in eqn. (23) are likewise are

also of order unity.

2.5. Slow-Acceleration Solutions for Flows Beyond Maximal Coupling

With this background, let us next consider more carefully these cases for which vc <

vmax < v∞, and specifically examine the reasons for the shift to slow acceleration solutions.

Our aim is to supplement the mathematically formal, Taylor-expansion analysis given by

KK00 [See their eqns. (22)-(25).] with a more physically intuitive discussion.

2.5.1. Physical reasons for slow acceleration vs. ion runaway

As ion drift becomes suprathermal, the collisional coupling set by Rpi ∼ G(xpi) drops

sharply, as ∼ 1/x2
pi in the high-drift-speed limit xpi � 1. (See eqn. (9) and figure 1 here,

and also figure 3 of KK00.) As noted in the introduction, most previous analyses had

anticipated that such a drop in collisional coupling would lead to an ion runaway. The

intuitive expectation for this appears based on our everyday experience that the harder one

pushes on something, the faster it will accelerate. But hidden in the application of this

general notion to the case of ion acceleration are two assumptions: first that the reduction

in frictional drag on the ions would lead to a stronger net outward force, in effect assuming

that the line-force would remain the same; and second, that this stronger net ion force would

act against ion inertia to enhance the ion acceleration.

But as already discussed in §2.3, in the steady-state, coupled flow acceleration leading

up to the collisional coupling maximum, the ion line-force is not balanced against ion inertia,

but rather, as given in eqn. (12), against the collisional drag from the passive plasma. Thus,

when this collisional drag is reduced, the natural steady-state response of the ions is simply

to proportionately reduce the ion line-force, which accordingly implies a lower ion velocity

gradient. As such we thus see that a key fallacy in the expectation of a steady-state ion

runaway is that the line-driving would simply remain fixed, and not, as occurs in the KK00

model, reduce itself in accord with the lower collisional drag it is balancing.

Of course, this reduced collisional force also means that the passive plasma can no

longer be maintained along the steeper slope acceleration; but with the ‘backup’ of the lower-

slope solution discussed above, the protons can still be maintained in a positive, albeit slow

acceleration, with the weaker collisional driving now acting primarily to overcome gravity,
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not inertia. This implies a passive-plasma momentum balance [cf. eqn. (20)] given by

g ≈ kpi

ApAim2
a

ρi

2x2
pi

, (24)

where we’ve used the large-drift-speed limit for the Chandrasekhar function, eqn. (9). Taking

the ratio of eqns. (24) and (20), and applying the latter along a steep acceleration w+ that

leads up to the maximum in collisional coupling, we find the post-maximum drift must satisfy

xpi ≈
√

(1 + w+)/2Gmax = 1.53
√

1 + w+ . (25)

Since typically w+ ≈ 2, we see that collisional coupling of ions to the passive plasma is

maintained at drift speeds that are xpi ≈ 2.6 times the thermal speed. Note here that the

post-maximum suprathermal ion drift depends on the pre-maximum passive-plasma acceler-

ation, since the latter helps determine the density at which this maximum is reached. There

is no tendency for any ion runaway because the assumption of a steady, continuous solution

across this maximum coupling ensures that, if the pre-maximum acceleration is increased,

it simply requires a somewhat larger post-maximum ion drift. Overall, the situation is thus

that both the ions and passive plasma turn over to such a shallow outward acceleration, as

was found in the two-component flow solutions computed by KK00.

2.5.2. Subcritical nature of ion outflow and analogy with the subsonic solar wind

This circumstance of a reduced retarding force leading to a lower, not higher, outward

acceleration is somewhat analogous to what occurs in the subsonic portion of a pressure-

driven outflow, like the solar wind. In this subsonic region, the primary momentum balance is

not that of the outward gas pressure against inerta, but rather a nearly hydrostatic balance

of gas-pressure-gradient force against gravity. If one now imagines applying some new,

outward, body force, then in effect the net gravity is reduced, and so the hydrostatic balance

can be maintained with a smaller pressure gradient. This generally implies a smaller density

gradient, which in turn through the mass continuity relation for a steady flow (ρ ∼ 1/v),

also implies an accordingly smaller velocity gradient. The net result is thus that an increased

outward force leads to a lower outward flow acceleration. [For further discussion of these

general points, see, e.g., Leer and Holzer (1980), and Lamers and Cassinelli (1999).]

This analogy with the subsonic portion of a pressure-driven wind suggests that the

behavior of such a two-component line-driven wind must in some ways be considered ‘sub-

critical’, even though the coupled flow has already passed the CAK critical point. As first

discussed by Abbott (1980), the critical point of a CAK wind can be considered quite anal-

ogous to the sonic point of a pressure-driven wind if one takes into account the effect of
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radiation in modifying the restoring force for perturbations. Just as the sonic point in a

pressure-driven wind represents a point beyond which sound waves can no longer propagate

back to the wind base, there exists in a line-driven wind a radiatively modified sound wave,

nowadays called an Abbott wave, which likewise can no longer propagate inward beyond the

CAK critical point.2

In the context of the effectively subcritical behavior of the two-component models, this

suggests the existence of a ‘fast ion-mode Abbott’ wave, applicable to wave propagation for

ions that are not fully coupled to the bulk plasma (KK01). To discern such wave modes, it

is necessary now to carry out a linearized perturbation analysis of the two-component fluid

equations.

In this context, it seems appropriate to emphasize here that the above physical explana-

tions for the slow-acceleration solutions are completely grounded in the inherent assumption

of a steady-state outflow. In particular, these arguments do not guarantee the physical sta-

bilty of such steady-state solutions. As we shall now see, when one includes the possibility

of intrinsic time-variability within a linearized perturbation analysis, the original intuitive

expectation that an increasing line-force could instead work to overcome ion inertia rears

back with a vengeance, leading to a very strong linear instability that may well completely

disrupt such steady, slow accelerations, and lead indeed to a rapid ion runaway.

3. Time-Dependent Perturbation Analysis

3.1. Two-Component Equations for Linear Sinusoidal Perturbations

Let us thus now consider the stability of a steady-state (∂/∂t = 0), two-component,

coupled flow with nearly equal ion and passive-plasma velocities (vp ≈ vi) and accelerations

vpdvp/dr ≈ vidvi/dr. Applying then small-amplitude, sinusoidal velocity perturbations of

the form δvp,i ∼ ei(kr−ωt) to the ion and passive-plasma equations of motion (1) and (2), the

corresponding linearized, first-order, perturbation equations take the form,

−iωδvp −
b

ρp
(δvi − δvp) = 0 (26)

2 The reader should be cautioned here that there exists considerable uncertainty as to the physical

relevance of such Abbott waves; Owocki and Rybicki (1986) applied a Green’s function analysis to show, for

example, that in a simple pure-absorption model such Abbott waves cannot, in fact, carry inward information

faster than an ordinary sound wave. However, recent work, e.g. by Owocki and Puls (1999), suggests that

line-scattering effects may allow a physical information transport that might be appropriately modelled in

terms of such Abbott waves.
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and

−iωδvi +
b

ρi
(δvi − δvp) −

(

δgi

δvi

)

δvi = 0, (27)

where b is the perturbed collisional coupling term, and δgi/δvi is the perturbed ion line-

acceleration, both of which are described in greater detail below.

These equations apply in a frame with stellar velocity v ≈ vp ≈ vi that is nearly comov-

ing with both the passive-plasma and ion mean flows, and thus advection terms proportional

to vp,i ikδvp,i have vanished. We further assume here a WKB approach, whereby variations

in the mean wind are assumed to have a scale v/v′ � 1/k that is much larger than the

perturbation wavelength, thus allowing also neglect of terms proportional to mean-wind ve-

locity gradients v′
p,i. Finally, note that, for simplicity, we are focusing here only on the effect

of perturbations in velocity δvp,i, ignoring, for example, associated perturbations in density

δρp,i. Justification for this approximation is given in the Appendix.

The perturbed collisional coupling term is given by

b ≡
R′

pi(xpi)

vth

√

1 + Ai/Ap

≈
[

1

α
√

1 + Ai/Ap

G′(xpi)

G(xpi)

]

[

α gcak

vth

]

ρp (28)

≡ q(xpi) Ω ρp ,

where the primes denote differentiation. In the second equality here we have used eqns. (12)

and (14), which relate the CAK line-force gcak to the collisional rates for this assumed case

of a still-coupled mean flow, and have noted that the logarithmic derivative R′
pi/Rpi can

simply be replaced by the corresponding derivative of the Chandrasekhar function, G′/G.

The last equality implicitly defines symbols for the two bracketed factors. The Ω represents

a characteristic rate, roughly equal to the growth rate for the line-driven instability in the

single fluid case [cf. eqn. (52) of Owocki and Rybicki (1984)].

The q is a dimensionless, collisional coupling strength that is just directly proportional

to the logarithmic derivative of the Chandrasekhar function (figure 1). In all computations

here, we will assume a fixed proportionality constant such that

q(xpi) =
1

2

G′(xpi)

G(xpi)
, (29)

which is roughly appropriate for typical parameter values, e.g. α = 1/2 and Ai/Ap = 15. In

the analysis below (§§3.2-3.3), the dependence of this collisional coupling strength on the ion

drift speed xpi will play a key role in determining the stability of perturbation eigenmodes.

(See, e.g., figures 5-7.)
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3.2. Analysis for Long-Wavelenth Perturbations

3.2.1. Perturbed line-force in the Sobolev limit

For the perturbed ion line-force δgi, we consider two approximations. First, following

Abbott (1980), we assume that, like the mean force, the perturbed force simply scales with

the velocity gradient, δg ∼ δv′ ∼ ikδv; such a form applies in the limit that the perturbation

wavelength λ = 2π/k is much larger than the Sobolev length L ≡ vth/v
′, over which the

mean flow accelerates by an ion thermal speed vth. A second, more general form, which

applies for arbitrary wavelength perturbations, is analyzed in the next section (§3.3).

In the present context of the line-force on the minor ion component, this Sobolev limit

form gives

δgi

δvi
=

δv′
i

δvi

∂gi

∂v′
i

= ik
αgi

v′
i

= ik Ui

= ik U
ρp

ρi

(30)

= ikL Ω
ρp

ρi

= ikL Ωi .

Here the third equality defines an ion-mode wave-speed Ui , which is a factor ρp/ρi faster than

the usual, single-fluid, Abbott-wave speed U ≡ ∂gcak/∂v′, as defined originally by Abbott

(1980). Note that U = α gcak/v
′ = α v g(1 + w)/vv′ = α v (1 + 1/w), which shows that this

Abbott-wave speed is typically of order the wind speed [and indeed is exactly equal to the

wind speed at the CAK critical point, where wc = α/(1−α)]. The last two equalities – using

the Sobolev length L to relate these wave speeds to corresponding growth rates Ωi and Ω –

will prove useful in the analysis to follow.

3.2.2. Dispersion equation for long-wavelength perturbations

With these forms for the perturbed collisional and line-force terms, we are now in a

position to derive a corresponding dispersion equation for the perturbation eigenmodes.

Converting the two-component perturbation eqns. (26) and (27) into a two-by-two linear

system and then taking the determinant of the coefficient array, we obtain a quadratic
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dispersion relation for the complex frequency ω,

ω2 + Bω + C = 0, (31)

where the coefficients are given by

B = (kL + iq)Ωi + iqΩ ≈ k Ui + iq Ωi (32)

and

C = ikL qΩ Ωi . (33)

The two solution modes are obtained trivially from the quadratic formula,

ω± =
−1 ±

√

1 − 4C/B2

2
B . (34)

Noting that 4C/B2 ∼ ρi/ρp � 1, we can approximate these two mode solutions with the

simpler, explicit forms

ω+ ≈ −C

B
≈ −k U

1 − ikL/q
≈ −k U (35)

and

ω− ≈ −B ≈ −k Ui − iq Ωi ≈ −iq Ωi . (36)

The last approximations for each mode apply for these Sobolev-limit perturbations kL � 1

as long as one avoids pathological regimes for which q → 0, that is, as long as the ion drift

is not too strongly suprathermal (since then q ∼ −1/x2
pi → 0), or too near the drift speed

(xpi = 0.968) for the peak of the Chandrasekhar function (since then G′ ≈ 0 implies q ≈ 0).

3.2.3. Solution eigenmodes for ion-coupling vs. ion-separation

To discern more clearly the character of these perturbation eigenmodes, let us next

derive the associated eigenvectors, to obtain the phase and amplitude relations between the

ion vs. passive-plasma velocity perturbations. From eqn. (26) we find

δvi =

(

1 − iω

qΩ

)

δvp . (37)

For the plus mode, application of eqn. (35) thus yields

δv+
i ≈

(

1 − ikU

qΩ

)

δv+
p =

(

1 − ikL

q

)

δv+
p ≈ +δv+

p , (38)
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(using kL � 1, as above), while for the minus mode, use of eqn. (36) gives

δv−

i ≈
(

1 − Ωi

Ω

)

δv−
p ≈ −ρp

ρi
δv−

p . (39)

From eqn. (38) we thus see that the plus solution represents an “ion-coupling” mode, for

which the velocity perturbations for the ion and passive plasma are essentially identical. The

frequency solution eqn. (35) shows moreover that this ion-coupling mode simply recovers

the single-fluid, Abbott wave, which is marginally stable [Im(w+) → 0] and has an inward

phase propagation at the Abbott speed, ω+/k ≈ −U .

By contrast, eqn. (39) shows that the minus solution represents an “ion-separation”

mode, for which the velocity perturbations for the ions vs. passive plasma have an opposite

phase, with the ion velocity having a much higher amplitude. From eqn. (36) we see that

the real part of the frequency implies that this mode has an essentially dispersionless (since

Re(ω−) ∼ k) inward propagation at the fast ‘ion-mode’ Abbott speed, Ui ≈ 100 U .

Moreover, the large magnitude of the imaginary part of the frequency, Im(w−) ≈ −qΩi,

can imply either a net damping (q > 0) or net amplification (q < 0) of this propagating

wave mode. The damping applies in the high-density limit, with subthermal ion-drift-speed

xpi < 1; the amplification applies in the low-density limit, with suprathermal ion-drift-speed

xpi > 1. (See figure 1.) Applying eqn. (29) in eqn. (36), figure 5 plots the full drift-speed

variation of the ion-separation damping or growth rate Im(ω−), scaled by the characteristic

ion rate Ωi. Note that this characteristic ion rate is very fast,

Ωi =
ρp

ρi

Ω ≈ 100 Ω ≈ 100
gcak

vth

≈ 100
vv′

vth

= 100
v

L
≈ 104 v

R∗

, (40)

that is, typically a factor of 10,000 greater than a characteristic wind expansion rate!

3.2.4. Weakness of spatial growth of ion separation in the long-wavelength limit

Despite this extremely fast apparent temporal growth rate, the spatial growth of such

long-wavelength, ion-separation perturbations generally remains quite modest, since this is

given by ratio of the temporal growth to the (very fast) wave propagation speed,

Λi ≡ Im(ω−)

−Re(ω−)/k

≈ −q Ωi

Ui
(41)

≈ −q

L
.
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Fig. 5.— The imaginary part of the frequency for the ion-separation mode, Im(ω−), scaled in units of the

characteristic ion rate Ωi, and plotted vs. the scaled ion drift speed xpi. The negative values at subthermal

drift speed indicate damping, while the positive values for suprathermal drift speeds indicate instability. For

this case of long-wavelength perturbations kL � 1, the net rate for damping or amplification just depends

on the negative of the collisional coupling strength, −q [eqn. (29)], which in turn is proportional to the

logarithmic derivative of the Chandrasekhar function [cf. figure 1].
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Indeed, in the slow-acceleration, background solution of KK00, the Sobolev length L ≡ vth/v
′

can become quite large, implying a quite weak spatial growth.

Since the peak growth rate occurs at an ion drift speed of xpi ≈ 2.05, where there is

a maximum in −q ≈ 0.41 (figure 1), the spatial growth rate is limited to Λi < 0.41/L =

0.41 v′/vth, and indeed falls to zero at the collisional coupling maximum, where q = 0 and

v = vmax. Thus, if we consider a long-wavelength perturbation applied to the KK00 slow-

acceleration solution at a velocity that is ∆v above vmax, then, in propagating back from the

point of original perturbation to the stable region ahead of the collisional coupling maximum,

the cumulative number of e-folds of amplification is less than

max[# e − folds] = 0.41

∫ rmax

r

−dr/L

= 0.41

∫ r

rmax

dr v′/vth

= 0.41

∫ v

vmax

dv/vth

= 0.41 ∆v/vth . (42)

Considering the near constancy of the velocity in slow-acceleration KK00 solutions, it thus

seems that such solutions may not be too substantially disrupted by growth of such long-

wavelength perturbations. Again, the physical reason is that, despite the very fast temporal

amplification, the perturbation propagates rapidly inward, implying only a modest net am-

plification by the time it reaches the stable regime where v < vmax and q > 0.

On the other hand, the spatial rate of damping of any perturbations in this stable

regime can be quite large, since the positive value of q at low drift speeds is unbounded

(figure 1), and since in the region before maximum coupling the flow acceleration is quite

steep, implying a small Sobolev length L.

The derivation here of this ion-separation mode is a principle result of our analysis. The

strong damping of the ion-separation perturbations for background flows with subthermal

ion drift ensures that such high-density flows remain well-described by a single-fluid model,

with mean properties set by the CAK model, and wave propagation given by the stable,

Abbott mode. For suprathermal ion drift, we find that the ion-separation does become

temporally very unstable, but with nonetheless a rather weak spatial growth.

It is, however, important to emphasize here that this ion-separation instability for such

low-density flows applies even in the long-wavength, Sobolev limit. This is in contrast to the

usual line-driven instability for single-fluid flows, which applies to small-scale perturbations

with kL ∼> 1, and becomes entirely stable in the long-wavength, Sobolev limit kL � 1
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(Abbott 1980; Owocki and Rybicki 1984, 1985). Let us thus next extend our two-component

analysis to examine the nature of both the ion-coupling and ion-separation modes for such

short-scale perturbations, with particular attention to determining whether there can be a

stronger spatial amplification of ion separation at such short scales.

3.3. Generalization for Small-Scale Perturbations

3.3.1. The bridging law for the perturbed Ion line-force

For ion velocity perturbations δvi with an arbitrary scale 1/k relative to the Sobolev

length L, the perturbed ion line-force δgi can be approximated by straightforward extension

of the ‘bridging law’ derived for the single-compoent case (Owocki and Rybicki 1984, 1985)

δgi

δvi
= Ωi

ikL

1 + ikL
, (43)

where, for simplicity, we’ve just used the Sobolev length L to approximate the “bridging-

length” that separates the behavior of short-scale perturbations from that in the large-scale,

Sobolev limit.

3.3.2. Stabilty-dispersion analysis for arbitary scale perturbations

Let us thus apply this perturbed ion-line-force to derive a more general, two-component

dispersion relation. The solutions again are given by the quadratic formula eqn. (34), but

now with coefficients [cf. eqns. (32) and (33)]

B = iqΩ +

(

iq +
kL

1 + ikL

)

Ωi ≈
(

iq +
kL

1 + ikL

)

Ωi (44)

and

C =
ikL

1 + ikL
q Ω Ωi . (45)

Using as before 4C/B2 ∼ ρi/ρp � 1, we again approximate the two eigenmode solutions in

simple, explicit forms [cf. eqns. (35) and (36)],

ω+ ≈ −C

B
≈ −kL

1 + ikL(1 − 1/q)
Ω (46)

and

ω− ≈ −B ≈
(

−iq − kL

1 + ikL

)

Ωi . (47)
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Fig. 6.— Frequency for the generalized dispersion solutions (46)-(47), plotted as contours vs. the ther-

mally scaled ion drift speed xpi [eqn. (6)] and the logarithm of the Sobolev-scaled perturbation-wavenumber,

log[kL], with the upper and lower panels corresponding respectively to the ion-coupling (+) and ion-

separation (-) modes. In the left panels the contours show the log of the phase speed, Re(ω)/k, scaled

either by the Abbott speed U (top) or the faster ion-mode Abbott speed Ui (bottom). In the right panels

the contours of Im(ω) show the corresponding rates for wave damping (solid) or unstable growth (dotted),

separated by the contour (dashed) for neutral stability [Imω = 0], and scaled either by the characteristic rate

Ω for the ion-coupling case (top), or by the faster ion-rate Ωi for the ion-separation case (bottom). Contours

are generally spaced equally in increments of 0.25 in the contoured variable, except in the upper right, for

which the spacing jumps from 0.1 to 1, as labelled.
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Applying these eigenfrequencies into eqn. (37), we obtain the corresponding generalized

velocity eigenvector relations [cf. eqns. (38) and (39)] for the ion-coupling mode

δv+
i

δv+
p

= 1 +
ikL

q(1 + ikL) − ikL
, (48)

and the ion-separation mode

δv−
i

δv−
p

=

[

−1 +
ikL

q(1 + ikL)

]

ρp

ρi

. (49)

3.3.3. Eigenmode properties vs. wavenumber and ion-drift-speed

Figure 6 plots contours of the frequency solutions (46) and (47) as functions of both the

perturbation wavenumber k and the ion drift speed xpi, again using eqn. (29) to evaluate the

coupling strength q(xpi). The real parts of the frequency plotted in the left panels determine

the phase speed while the imaginary parts plotted in the right panels determine the level

of wave damping [Im(ω) < 0; solid curves] or unstable growth [Im(ω) > 0, dotted curves].

For completeness, we have plotted results for both the ion-coupling (top) and ion-separation

(bottom) modes, though the latter is really of greater interest here. Moreover, as can be seen

from figure 6, the behavior of the coupled modes is rather more complex, and so let’s first

concentrate on interpreting the separation mode results depicted in the bottom two panels.

From the lower left panel, we see that the phase propagation speed of this separation

mode is (except near where q ≈ 1) nearly independent of the drift speed xpi, with a wavenum-

ber variation that scales as Re(ω−)/k = −Ui/(1 + k2L2). As noted in §3.2, for kL � 1 this

gives fast inward propagation at the ion-mode speed Ui. But here we see that for kL � 1

this propagation speed declines as Ui/(kL)2.

The lower right panel shows the key result for the damping or growth rates of this

separation mode. As in the long-wavelength case, with increasing ion-drift speed, the strong

damping for low drift (solid curves) first diminishes to marginal stability [Im(ω) = 0; dashed

curve], and then becomes a strong amplification (dotted curves) for large drift-speeds. But

note now that, for shorter-scale perturbations kL > 1, the transition to instability begins at

lower, mildly subthermal drift speeds. In particular, in the short-wavelength limit kL � 1,

the onset of instability occurs at xpi ≈ 0.404, for which q(xpi) ≈ 1.

Indeed, from the top panels we see this critical, q = 1 drift speed is one of two key

separators (the other being the thermal drift speed x ≈ 0.968, for which q ≈ 0) for various

domains in the real and imaginary parts of the coupled-mode frequency ω+.
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In the limit of strong coupling (q � 1, xpi � 1), the ω+ mode reduces to the standard

instability “bridging-law” derived for the single-fluid case (Owocki and Rybicki 1984; 1985),

with unstable growth at the rate Ω in the short-wavelength limit kL � 1, but (as found in

§3.2.1) marginally stable, fast inward-wave propagation at the Abbott (1980) speed U in the

long-wavelength, Sobolev limit kL � 1.

However, the top right panel of figure 6 shows that, for the higher xpi (and lower q) that

signify weaker collisional coupling, the short-scale (kL � 1) growth rate for this coupled

mode is modified, and even becomes a net damping for xpi > 0.4, for which q < 1. We

thus see that the critical, q = 1 drift-speed separates the domain for the usual line-driven

instabilty at xpi � 1 from a stable region 0.4 ∼< xpi ∼< 1. This confirms speculations by

Springmann (1993) that frictional dissipation might damp the line-driven instabilty for drift

speeds approaching the thermal speed. But note that for large thermal speeds, xpi > 1, the

reduction in this frictional dissipation leads again to a net instability for this ion-coupling

mode.

Finally, the top left panel again shows a rather elaborate behavior for the coupled-mode

phase speed. In the strong coupling limit, xpi � 1, this scales as U/[1 + (kL)2], and so

declines as U/(kL)2 at high wavenumbers kL � 1. But as the drift approaches the critical

value at which q = 1, this decline becomes weaker, allowing the phase speed to remain

relatively large, and even to exceed the usual value ∼ U in a small domain (too limited to

show up in this contour plot) near xpi ≈ 0.4 and log(kL) ≈ 0.6. This then shifts to slower

propagation for xpi ≈ 1, and then again to faster propagation for large ion-drift xpi > 1.

3.3.4. Strong spatial amplification of ion-separation for short-wavelength perturbations

Overall, though, the most significant results of this extended perturbation analysis are in

regards to properties of the ion-separation mode. First, note that small-scale perturbations

actually become unstable to ion separation for mean flows with an ion drift of about a half

the thermal-speed. This suggests that low-density flows could already become disrupted by

ion separation even before reaching the maximal coupling that in steady-state models like

KK00 leads to the turnover to low acceleration.

Moreover, in contrast to the long-wavelength results of §3.2, such short-scale ion-separation

perturbations also generally have a quite strong spatial amplification. From eqn. (47), we

find the spatial growth varies with the perturbation wavenumber k as

Λi ≡ Im(ω−)

−Re(ω−)/k
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Fig. 7.— Contours of the spatial growth (dotted) or damping (solid) rate Λi [eqn. (50)] for the ion

separation mode, scaled by the Sobolev length L, and plotted again vs. the ion drift speed xpi and the

logarithm of the scaled perturbation wavenumber kL. The positive and negative contours are each evenly

spaced logarithmically with two contours per decade. The dashed contour shows the zero growth rate that

separates unstable amplification (Λi > 0, dotted) from stable damping (Λi < 0, solid).
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≈ −q + (1 − q)(kL)2

L
. (50)

Figure 7 plots contours of the scaled spatial growth rate Λi L as a function of drift speed

xpi and the logarithm of the scaled wavenumber, log(kL). Note that in the long wavelength

limit, kL � 1, we again recover the result of §3.2, namely only a weak spatial growth rate

Λi L ≈ −q. However, for short wavelengths, the decline in phase speed allows this spatial

growth to become quite strong, scaling as Λi L ≈ (1− q)(kL)2 in the short-wavelength limit

kL � 1.

Note, however, that the spatial propagation and growth derived in this way now only

applies to each particular wavenumber perturbation. Unlike the nearly non-dispersive propa-

gation of the long-wavelength case kL � 1, the phase propagation for arbitrary scales is now

generally a strong function of the wavenumber, and so is highly dispersive. This means, for

example, that one can no longer simply describe the group propagation of a locally confined

perturbation, which consists of a Fourier composition of a large range of wavenumbers.

Generally, determing of the asymptotic properties of such localized perturbations re-

quires an analyis of the perturbation Green’s function, for example, using the ‘pinch-point’

method described by Bers (1983). Our preliminary calculations3 indicate that the ion-

separation instability found here is of the ‘absolute’ type, meaning that any localized per-

turbation should yield an exponential growth within the flow region it is introduced. This

is to be contrasted with the ‘advective’ or ‘drift’ type of instability of the long-wavelength

limit, for which the perturbation propagates away so rapidly that the region of introduction

does not undergo a persistent exponential growth (Bers 1983; Owocki and Rybicki 1986).

Finally, we further emphasize that determining the ultimate outcome of this ion-separation

instability will require a nonlinear analysis that includes complex plasma effects, e.g. two-

stream instabilities, anomalous (collisionless) coupling, etc. Nonetheless, given the strong

growth rates, it does seem likely that the ions could quickly become decoupled from the

passive plasma. In this context, the counterintuitive lower-accelerations found in steady-

state solutions appear indeed to be somewhat artificial, whereas the general intuition that

the limited nature of collisional coupling should lead to ion runaway may in fact be a more

accurate model of what could actually occur in such low-density, line-driven stellar winds.

3 Through a straightforward extension of the analysis given in Appendix B of Owocki and Rybicki (1986),

it can be shown that the Green’s function for the ion-separation mode here follows the form given in their

eqn. (B9), with just an added multiplicative factor e−qΩit. Inspection of this form indicates that the flow is

absolutely unstable to ion separation whenever q < 1.
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4. Summary and Future Work

In summary, let us list some key results and conclusions of the analyses in this paper:

1. We derive a simple but quite general scaling relation [eqn. (23)] for the stellar and

wind parameters – gravity, wind temperature, mass loss rate and flow speed – at which

a line-driven flow reaches the potential decoupling associated with suprathermal ion

drift. This simple scaling is in good agreement with the conditions for which the

detailed models of KK00 find instead a turnover to slow acceleration.

2. The KK00 slow-acceleration solutions arise physically from the lower ion line-force

made possible by the lower collisional drag. As a result the overall steady flow switches

to shallow-slope CAK solutions, for which the line-force mostly just needs to overcome

the relatively weak retarding force of gravity.

3. In the ion momentum balance, the dominance of collisional drag over the ions’ own

inertia is characteristic of a subcritical flow, even beyond the usual CAK critical point.

Moreover, such subcritical ion flow is consistent with the properties of a new “ion-mode

Abbott-wave”, which has a propagation speed that at its maximum is about a factor

100 faster than the usual Abbott-wave, and which thus can in principal propagate

signals to the stellar base from anywhere in the wind.

4. But such fast ion waves are very strongly damped whenever the ion drift is substantially

subthermal, and so they seem unlikely to be of much direct physical relevance for high-

density, CAK-type winds.

5. On the other hand, in low-density winds with suprathermal ion drift these waves be-

come unstable to ion separation, with a huge characteristic temporal growth rate.

6. For perturbations on a scale much larger than the Sobolev length, however, the fast

propagation causes the spatial growth of this instability to remain rather small, imply-

ing the KK00 solution should not be too disrupted by such large-scale perturbations.

7. For perturbations on a scale at or below the Sobolev length, the onset of instability

occurs even before the flow has reached this point of maximal coupling, roughly when

the ion drift speed is about half a thermal speed. Moreover, the generally lower prop-

agation speed now means that such small-scale perturbations also have very strong

spatial growth.

8. Together these properties imply that low-density flows should become disrupted by

ion separation even before reaching the point at which the KK00 steady-state analysis
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predicts a turnover to slow acceleration, and this casts some doubt on the practical

relevance of such steady, slow-acceleration solutions.

Within this context, however, it should be emphasized that our examination here of

the physical origin of these slow acceleration solutions helps to affirm quite clearly that,

within the steady-state assumption on which it was based, the KK00 analysis was entirely

sound. These authors thus deserve considerable credit for being the first to rigorously solve

a partially coupled, two-component extension of the classical CAK model, and for thereby

uncovering an initially counterintuitive result that exposes hidden subtleties in the physics

of line driving and collisional coupling.

There are, moreover, several potentially important caveats to our present conclusions

that still need to be examined in future work. First, the stability analysis here is based on

only a two-fluid model, treating the ions and passive plasma as distinct components that

only interact via Coulomb collisions. We also assume a constant, common temperature for

both these components. The first steps in extending this analysis might, therefore, parallel

those taken in the follow-up steady-state analysis by KK01, namely to compute explicit

energy equations for each component, and also to include the negatively charged electrons,

and along with these the associated polarization electric field.

Even in a linear limit, such an extended perturbation analysis could begin to address

key questions on the role of frictional heating in the onset of ion runaway. Moreover, with

inclusion of perturbations in the polarization electric field, one could begin to examine the

potential role of two-stream or other collective effects. In principle, these might contribute

a damping that could reduce the level of instability. However, given the large growth rate

found here for the ion-separation mode, complete negation of the linear instability by such

plasma effects seems rather unlikely.

Nonetheless, the nonlinear outcome of this instability is still entirely uncertain. It could

lead indeed to an effectively complete ion runaway, or might instead saturate at an ion drift

of only a few thermal speeds, owing perhaps to dissipation from plasma wave modes excited

by two-stream instabilities. Such collective effects have been quite extensively studied in the

context of space plasma studies applied to, e.g. the solar wind or planetary magnetospheres,

typically through quite elaborate numerical simulations (e.g., Scudder 1996).

In the context here of including the additional strong effect of radiative driving and

the very rapid time scales of the associated ion-separation instability, analogous numerical

simulations would be a formidable challenge to develop, and probably very computationally

expensive to carry out. For example, since the strongest spatial ampflification occurs for

perturbations at scales below the Sobolev length, one cannot rely on a local, Sobolev treat-
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ment line-driving. Instead, as for the usual line-driven instability, one must apply nonlocal,

integral treatment of the line-driving force. Moreover, as in these instability simulatons, the

likely complexity of ion runaway simulation results will likewise pose a major challenge for

conceptual interpretation.

On the other hand, as in that case, and even in the example here, such challenges for

interpreting more realistically complex phenomena are often key to developing new insights

and paradigms of simplification, and so lead to a deeper understanding of even the seemingly

well-estabilished, basic model. Indeed, building on the thought-provoking results of KK00,

the analysis here has led to discovery of a surprisingly rich new phenomenology of wave

eigenmodes, and along the way also to some fresh perspectives on the quarter-century-old

CAK paradigm. One can readily anticipate that still further twists, surprises, and new

insights must await determined researchers seeking to understand better the subtle physical

intricacies of flows driven by line scattering of radiation.
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Appendix: Justification for the Neglect of Density Perturbations

We examine here the neglect of perturbations in density δρp,i in favor of velocity per-

turbations δvp,i in the analysis of §3. First, note that, in the momentum equations (1) and

(2), the collisional force on each component depends on the density of the other component.

Using the fact that in the mean flow the collision force Rp,i ≈ ρigi ≈ ρpgcak [eqns. (12)

and (14)], we thus see that accounting for density perturbations requires additional terms of

the form (δρi/ρi)gcak and (δρp/ρp)gi in respectively the perturbed momentum equations (26)

and (27) for the passive-plasma and ion components. To compare these terms with the ones

retained in eqns. (26) and (27), we need to relate the density and velocity perturbations.

Using the perturbed mass conservation equations, which for both species imply

−iωδρ + ik ρ δv = 0 , (51)

we immediately find δρ/ρ = δv/(ω/k), and so the additional density perturbation terms can

thus be written as gcakδvi/(ω/k) and giδvp/(ω/k). Comparing these with the corresponding

collisional perturbations δvib/ρp and δvpb/ρi, we find using eqn. (28) that they have a ratio

gcak/(ω/k)

αqΩ
=

vth

αq ω/k
(52)

for both the passive-plasma and the ion momentum equations.
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The real part of ω/k is just the phase velocity, and for the solutions derived in §3, this

is either of order the Abbott speed U for the ion-coupling mode, or the still faster ion-mode

Abbott-speed Ui ≈ 100U for the ion-separation mode. Since the Abbott-speed is itself on

the order of the wind flow speed, U ≈ v, we thus see that ratio in eqn. (52) is typically

very small, of order vth/v � 1, which thus justifies the neglect of these density perturbation

terms in the analysis of §3.

If such terms are nonetheless included, the dispersion equation (cf. eqn. (31) becomes a

quartic in frequency ω, and thus yields two new eigenmodes in addition to the coupled and

separation modes discussed in §3. From direct solution of this quartic, we have confirmed,

however, that both of these two additional solutions have typical frequencies of order ω ∼
(vth/v)Ω or less, and thus are negligibly small compared to the dominant modes, for which

either ω+ ∼ Ω or ω− ∼ Ωi ∼ 100Ω.

Finally, we note that we have also neglected such density perturbations in derivations

of the perturbed ion-line-force δgi. As noted by Owocki and Rybicki (1984), specifically in

the discussion surrounding their eqn. (18), neglect of such terms in this context is consistent

with the basic WKB approximation used in this analysis.
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