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ABSTRACT

Context. State of the art quantitative spectroscopy utilizes synthetic spectra to extract information from observations. For hot, massive
stars, these synthetic spectra are calculated by means of 1D, spherically symmetric, NLTE atmosphere and spectrum-synthesis codes.
Certain stellar atmospheres, however, show strong deviations from spherical symmetry, and need to be treated in 3D.
Aims. We present and test a newly developed 3D radiative transfer code, tailored to the solution of the radiation field in rapidly
expanding stellar atmospheres. We apply our code to the continuum transfer in wind-ablation models, and to the UV resonance line
formation in magnetic winds.
Methods. We have used a 3D finite-volume method for the solution of the time-independent equation of radiative transfer, to study
continuum- and line-scattering problems, currently approximated by a two-level-atom. Convergence has been accelerated by coupling
the formal solver to a non-local approximate Λ-iteration scheme. Particular emphasis has been put on careful tests, by comparing with
alternative solutions for 1D, spherically symmetric model atmospheres. These tests allowed us to understand certain shortcomings of
the methods, and to estimate limiting cases that can actually be calculated.
Results. The typical errors of the converged source functions, when compared to 1D solutions, are of the order of 10−20%, and rapidly
increase for optically thick (τ & 10) continua, mostly due to the order of accuracy of our solution scheme. In circumstellar discs, the
radiation temperatures in the (optically thin) transition region from wind to disc are quite similar to corresponding values in the wind.
For MHD simulations of dynamical magnetospheres, the line profiles, calculated with our new 3D code, agree well with previous
solutions using a 3D-SEI method. When compared with profiles resulting from the so-called analytic dynamical magnetosphere
(ADM) model, however, significant differences become apparent.
Conclusions. Due to similar radiation temperatures in the wind and the transition region to the disc, the same line-strength distribution
can be applied within radiation hydrodynamic calculations for optically thick circumstellar discs in ‘accreting high-mass stars’. To
properly describe the UV line formation in dynamical magnetospheres, the ADM model needs to be further developed, at least in a
large part of the outer wind.
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1. Introduction

Hot, massive stars are key tools to interpret the Universe. For ex-
ample, they both enrich the interstellar medium with highly pro-
cessed material due to their strong stellar winds, as well as end
their lives as supernovae, enriching the surroundings with met-
als even further. Additionally, the latter produce strong shocks
within the interstellar medium, thus triggering star formation.

Massive stars are thought to be the progenitors of massive
black holes (MBH & 25 M�) when their final fate is a direct col-
lapse into a black hole instead of a supernova explosion. The
collapse into a black hole, however, is only possible when the
progenitor stars exhibit a weak wind, or, more generally, do
not lose too much mass during their lifetime. Belczynski et al.
(2016) proposed a low-metallicity environment to explain the
massive black hole merger GW150914 (M1 ≈ 36 M�,M2 ≈

29 M�, Abbott et al. 2016) observed at the Laser Interferometric
Gravitational-Wave Observatory (LIGO), whereas Petit et al.
(2017) showed that magnetic surface fields could also lower the
mass loss to form such progenitor stars.

The physical properties of massive stars are generally de-
rived by means of quantitative spectroscopy, that is by mod-
elling their atmospheres numerically and comparing the cal-

culated synthetic spectra with observations. When using one-
dimensional (1D), spherically symmetric codes (e.g. CMFGEN
(Hillier & Miller 1998), PHOENIX1 (Hauschildt 1992), PoWR
(Gräfener et al. 2002), WM-basic (Pauldrach et al. 2001),
FASTWIND (Puls et al. 2005, Rivero González et al. 2012),
as a non-exhaustive list for massive star atmospheric models),
this has meanwhile become a routine job and is widely applied.
Within the last decade, however, it became more and more evi-
dent, from both the theoretical and observational side, that many
stars differ from spherical symmetry, rendering the results from
1D codes questionable for such objects. The deviations can be
of different origin and shape:

(i) Magnetic winds: Wade et al. (2012) showed within
the Magnetism in Massive Stars (MiMeS) survey, that about
7% of all (Galactic) OB-stars have detectable magnetic fields.
Magneto-hydrodynamic (MHD) calculations from ud-Doula &
Owocki (2002) and ud-Doula et al. (2008) revealed, that large
scale magnetic fields, possibly of fossil origin (Alecian et al.
2013), have a direct impact on the stellar wind by channeling
the wind outflow along magnetic-field lines, often producing
disc-like structures around the magnetic equator. Depending on

1 There is also a 3D version of this code, see below.
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the competition between wind energy and magnetic-field energy
(characterized by the so called Alfvén-radius, RA), and the rota-
tional velocities (characterized by the Kepler-radius, RK), a dy-
namical (RA < RK) or centrifugal (RA > RK) magnetosphere
may form (see also Petit et al. 2013). In the former case, con-
fined material in the equatorial disc falls back onto the stellar
surface, whereas in the latter case, material is supported by cen-
trifugal forces, forming a quite stable and strongly confined disc
structure. Townsend & Owocki (2005) were able to explain the
observed Balmer-line variability in σ Ori E, a magnetic Bp star,
by applying the oblique-rotator model. Recently, Owocki et al.
(2016) developed a simplified model, the ‘analytic dynamical
magnetosphere’ (ADM), in order to provide a framework for the
analysis of magnetic winds, and were able to reproduce the ob-
served Hα-line variations of HD191612. However, a test of the
ADM model for UV resonance lines is still missing, and will be
addressed in this paper.

(ii) Accretion and decretion discs: Both pre-main-sequence
and a significant fraction of massive main-sequence stars are ob-
served to have circumstellar discs, from which material is either
accreted onto the star, or decreted by different mechanisms, re-
spectively. For classical Be stars, Kee et al. (2016) proposed that
the destruction of the circumstellar disc by wind-ablation, that
is by radiative forces along the disc surface, is the major mecha-
nism, which possibly plays also a significant role for stars that al-
ready have ignited hydrogen burning, however are still accreting
material through a disc. These objects will be named ‘accreting
high-mass stars’ within this paper. Although Kee (2015) applied
reasonable approximations in order to derive the incident inten-
sity at the disc’s surface layers, the local ionization stages are
not treated explicitly. Since the line-force depends on the line-
strength distribution function (e.g. Castor et al. 1975, Puls et al.
2000), which crucially depends on the local ionization stages of
the ions and therefore also on the mean intensity, a consistent
treatment of the (pseudo) continuum radiative transfer (RT) is
needed.

(iii) Fast rotation: Stellar rotation is a natural consequence
of the classical star-formation scenario, that means of the col-
lapse of an initially rotating molecular cloud. Within the VLT-
FLAMES Tarantula survey (VFTS), Ramı́rez-Agudelo et al.
(2013) derived the distribution of projected rotational velocities
of (LMC) O-type stars, and found that it peaks at relatively low
values (v sin i ≈ 50 − 100 km s−1), and has an extended tail to-
wards higher ones, thought to be due to binary interaction. For
example, the very rapidly rotating O-star, VFTS102, rotates at a
nearly critical rotation rate (Dufton et al. 2011). Nearly critically
rotating stars are highly distorted, with a ratio of equatorial to
polar radius approaching a value of three half. Additionally, the
emergent flux at the stellar surface becomes latitude-dependent
due to gravity darkening (see von Zeipel 1924 for uniform ro-
tation, and Maeder 1999, Maeder & Meynet 2000 for shellular
rotation).

(iv) Binary interaction: By a detailed investigation of bina-
rity within the VFTS, Sana et al. (2013) found that about 50% of
the observed O-star population in the Tarantula nebula have bi-
nary companions, that will interact with the primary star during
its lifetime via Roche-lobe-overflow, or even merging. Roughly
30% - 40% of these stars have periods less than six days (see
also Sana & Evans 2011), which influences already the main-
sequence evolution. Due to the mass transfer, the donor star will
be stripped and spins down, whereas the companion will spin up
due to the transport of angular momentum (e.g. de Mink et al.
2013). In case of two massive stars being part of the binary sys-
tem, their winds will collide and lead to strong shocks and X-

ray emission (e.g. Prilutskii & Usov 1976, Cherepashchuk 1976,
Stevens et al. 1992, Pittard 2009), in addition to phase-locked
variations of recombination lines (see Sana et al. 2001).

Since all these effects break the symmetry of many observed
objects, a 3D treatment of the RT has to be applied to derive the
(possibly dynamical) spectral energy distributions. This, how-
ever, is computationally expensive due to the dependence of the
radiation field on frequency and direction, in addition to the
three spatial dimensions. Nevertheless, solution schemes have
been developed already from the early 70s on, starting with the
long-characteristics (LC) method (see Jones & Skumanich 1973
and Jones 1973), over the short-characteristics (SC) method (see
Kunasz & Auer 1988), to finite-volume methods (FVM, see
Adam 1990). Within the LC method, the equation of radiative
transfer (EQRT) is solved for a given direction along a ray inter-
secting a considered grid point. Thus, for a 3D grid with N3 grid
points, and assuming on average N/2 grid points along the ray,
N4/2 operations have to be performed to obtain the intensities at
all grid points for a single direction. Each operation consists of
interpolating the physical properties from the 3D grid onto the
ray, and solving the formal integral along all points on the ray.
The SC method solves the EQRT only across each grid cell, with
incident intensities on the cell surfaces obtained by interpolation
from the already known grid points. The number of operations
is thus reduced by a factor of N/2. For both methods, the accu-
racy of the applied interpolation scheme is crucial for the final
performance of the obtained solution.

Instead of considering discrete rays, as in the above methods,
the FVM solves the EQRT for a single direction, by considering
the complete set of rays with the given direction entering the vol-
ume of a grid cell, and assuming that the physical properties at
the corresponding grid point are representative averages for the
complete cell. Though this still gives N3 operations for the so-
lution for a single direction, all interpolations are avoided. Thus,
when compared to the LC or SC method, the amount of work
needed for each operation is reduced considerably. Interestingly,
the development of methods underwent an evolution from com-
putationally most expensive methods (LC) to cheaper methods
(SC and FVM).

The above mentioned tools are called formal solvers, since
they calculate the radiation field for given source- and sink-
terms. However, the most important problem arises in scattering
dominated atmospheres, where the sources (and sinks) depend
on the radiation field, and vice versa. Such atmospheres need to
be calculated by applying, for instance, the so-called Λ-iteration
and associated acceleration techniques (e.g. Cannon 1973).

Meanwhile, various 2D and 3D codes exist, with widely dif-
fering assumptions on the underlying geometry and designated
applications. In this respect, one important point is the assump-
tion of local thermodynamic equilibrium (LTE), which cannot
be applied in expanding atmospheres, when the radiation field
dominates the level populations. For the latter problem, the cou-
pling between the non-LTE (NLTE) rate equations and radiation
field is mostly performed using the aforementioned acceleration
techniques (e.g. the accelerated Λ-iteration, ALI). We briefly
mention specific codes designated to the multi-D RT in stellar
atmospheres (for other applications, there are many more such
codes; e.g. for multi-D codes related to the ionization balance
in the interstellar medium, see Weber et al. 2013 and references
therein):

Wind3D (Lobel & Blomme 2008) is a 3D FVM code, which
has been developed to calculate the line transport in scattering
dominated environments using Cartesian coordinates, and with
level populations approximated by a two-level-atom (TLA). It
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adopts the classical Λ-iteration scheme, which has poor conver-
gence properties for optically thick, scattering-dominated lines.
Wind3D is thus restricted to the treatment of weak lines. For
those, however, Lobel & Blomme (2008) were able to model the
time variations of discrete absorption components (DACs), as
observed for the Si iv 1400 Å doublet of the B0.5Ib supergiant
HD 64760. Together with the hydrodynamic code Zeus3D, they
were able to reproduce these DACs, supporting the suggestion
of Mullan (1984), that they arise from co-rotating interaction re-
gions (see also Cranmer & Owocki 1996).

ASTAROTH (Georgiev et al. 2006 and Zsargó et al. 2006)
is a 2D SC code, which is capable of solving the RT in par-
allel with the NLTE rate equations for axisymmetric problems
with non-monotonic velocity fields. It uses spherical coordinates
and includes a (local) ALI scheme. Many tests have been per-
formed by a comparison to 1D spherically symmetric models
from CMFGEN, giving errors of a few percent only. Zsargó
et al. (2008) applied the code to investigate the H and He ioniza-
tion stages in the envelopes of B[e] supergiants, and modelled,
among others, the Hα line.

IRIS (Ibgui et al. 2013a) is a 3D SC code, which, to
our knowledge, has been only applied for studying laboratory-
generated radiative shocks (Ibgui et al. 2013b) thus far. Ibgui
et al. (2013a) performed test cases (searchlight beam test and
1D plane-parallel models), which show an astonishing accuracy
for the solution of intensity, mean intensity, radiative flux, and
radiation pressure tensor, on non-uniform Cartesian coordinates
and including velocity field gradients. By now, the code assumes
LTE. However, the inclusion of scattering terms is planned for
the future.

MULTI3D (Leenaarts & Carlsson 2009) is a 3D SC code
developed to accurately solve the NLTE rate equations in cool
FGK-type stars. Amarsi et al. (2016) used this code to predict,
among other lines, the O i 777nm line for a grid of 3D hydrody-
namical models, by setting up a 23-level model atom. This code,
however, has been developed (and optimized) for the application
to cool stars (with subsonic velocity fields, at most), and cannot
be used in our context.

Phoenix/3D (Hauschildt & Baron 2006 and other papers in
this series) is a 3D LC solver, which is capable of solving the
RT together with the multi-level NLTE rate equations. They use
spherical, cylindrical or Cartesian coordinates, and implemented
a non-local ALI scheme. With the extension from Seelmann
et al. (2010), arbitrary velocity fields can be included as well.
To our knowledge, Phoenix/3D has not been applied, thus far, to
real, multi-dimensional, problems.

In this paper, we develop a 3D solution scheme to calculate
continuum and line source functions in expanding atmospheres.
As a first step, we implement a FVM to determine the formal so-
lution, since this method has already been applied in the context
of 3D structures (e.g. Adam 1990, Stenholm et al. 1991, Lobel
& Blomme 2008), and is supposed to have the lowest compu-
tational cost, when compared to the SC and LC methods. To
calculate optically thick continua and strong lines, an ALI tech-
nique is required, and developed for the first time within the
3D FVM framework by means of a non-local approximate Λ-
operator (ALO, see Sect. 3). In Sect. 4, we present, also for the
first time, an error analysis of the 3D FVM for the case of 1D
spherical atmospheres, both for optically thin and optically thick
environments. This error analysis allows us to understand certain
shortcomings of the methods, and to estimate limiting cases that
can actually be calculated. As first applications for our 3D solver,
we study specific aspects related to the circumstellar discs of ac-

creting high-mass stars (Sect. 5), and to the UV line formation
in magnetic winds (Sect. 6).

2. Basic assumptions

The problems considered within this paper assume an (almost)
stationary atmospheric structure, meaning that the densities, ve-
locities and boundary conditions are assumed to be constant in
time, or are at least changing much slower than the radiation
field. Thus, we use the time-independent EQRT (e.g. Mihalas
1978):

n∇I(r, n, ν) = χ(r, n, ν)
(
S (r, n, ν) − I(r, n, ν)

)
. (1)

In the following, we skip the explicit notation for the spatial (r)
and directional (n) dependencies, and write the frequency de-
pendence as subscript, or, when appropriate, skip also this nota-
tion. The source function, S ν, and the opacity, χν, consist of the
sum of continuum and line processes. By splitting the continuum
emissivity and opacity into true2 and scattering processes, the
corresponding source function can be parameterized by a single
parameter, εc, the ratio of true absorption to total opacity, which
is called the thermalization parameter:

S c = (1 − εc)Jν + εcBν , (2)

where Jν is the mean intensity, and Bν the Planck function. As a
first approach, we treat the line transfer similarly by considering
a TLA only. This is well suited to describe resonance lines, but
for future applications the complete rate equations need to be
taken into account, of course. The line source function in the
TLA approach reads

S L = (1 − εL)J̄ + εLB (3)

εL =
ε′

1 + ε′
, ε′ =

Cul

Aul

[
exp

(
−

hν
kBT

)]
, (4)

with Cul and Aul being the collisional rate (from the upper to the
lower level) and the Einstein-coefficient for spontaneous emis-
sion, respectively. J̄ = 1/4π

∫
IνΦxdxdΩ is the profile-weighted

and frequency-integrated, angle-averaged intensity, the so-called
scattering integral. The profile function, Φx, has been approx-
imated by a Doppler profile. Further, we did not calculate the
profile in frequency space, but rather in the variable xCMF, de-
scribing the comoving frame (CMF) frequency shift from line
centre, in units of a fiducial Doppler width, ∆ν∗D:

xCMF =
νCMF − ν0

∆ν∗D
; ∆ν∗D =

ν0v
∗
th

c
, (5)

where ν0 and v∗th are the line-centre transition frequency, and
the fiducial thermal velocity, respectively. The fiducial width
is required to enable a depth-independent frequency grid. xCMF
is related to the corresponding observer’s frame quantity via
xCMF = xOBS − n · V, with V = u/v∗th the local velocity vector
in units of v∗th. In most cases, we do not label x explicitly to dis-
tinguish between comoving and observer’s frame (nor from the
spatial x-coordinate), since the meaning should be clear wher-
ever it occurs.

2 By true processes, we mean all those processes, which interact with
the thermal pool of the gas, for example photo-ionization and recombi-
nation.
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The profile function (in frequency-space) is

Φν =
1

√
π∆νD

exp
[
−
(νCMF − ν0

∆νD

)2
]

=
1

√
π∆νD

exp
[
−
( xCMF

δ

)2
]
,

(6)
where

δ =

√
2kBT
mA

+ v2
turb

/
v∗th (7)

is the ratio between the local thermal velocity (including micro-
turbulence, see Sect. 3.1) and the fiducial velocity, T is the local
temperature, and mA is the mass of the considered ion. With the
profile function, normalized in x-space,

Φx =
1
√
πδ

exp
[
−
( xCMF

δ

)2
]

=
1
√
πδ

exp
[
−
( xOBS − n · V

δ

)2
]
,

(8)
the line opacity, which needs to be described in frequency-space
(because the RT and Planck function are formulated w.r.t. fre-
quency), is given by

χL(ν) = χ̄0Φν = χ̄LΦx (9)

χ̄0 =
πe2

mec
(g f )

[
nl

gl
−

nu

gu

]
≈
πe2

mec
· f · nl , (10)

with (g f ) the gf-value of the considered transition, and nl, nu, gl,
gu the occupation numbers and statistical weights of the lower
and upper level, respectively. Since nl � nu for resonance lines,
we have neglected stimulated emission on the right-hand side.
χ̄0 is the frequency integrated opacity3, and is related to χ̄L by

χ̄L =
δ

∆νD
χ̄0 =

χ̄0

∆ν∗D
. (11)

We finally parameterize the continuum and line opacities in
terms of the Thomson-opacity, χTh = neσe,

χL = kL · χTh · Φx ⇐⇒ kL :=
χ̄L

χTh
=

χ̄0

∆ν∗Dneσe
(12)

χc = kc · χTh , (13)

where we use kL as a depth-independent parameter, since the
ratio nl/ne remains almost constant in the atmosphere for reso-
nance lines (almost frozen-in ionization).

The radiation field depends on the source functions via the
EQRT, and the source functions depend on the radiation field via
equations (2) and (3). Although this coupled problem could be
solved directly, at least in principle, we note already here that
this would require the inversion of a very large matrix, which
is computationally prohibitive in 3D calculations (see Sect. 3.2).
Thus, we apply a Λ-iteration, for which a formal solution (FS)
of the EQRT is obtained, given the continuum and line source
functions. These are subsequently updated according to Eq. (2)
and (3), given the formal solution of the previous iterate. For
large optical depths and low εc (εL), however, the strong non-
local coupling between the source functions and the radiation
field results in the well known convergence-problem of the clas-
sical Λ-iteration. This problem is based on the fact that, due to
scattering processes, photons can travel over many mean-free-
paths before being destroyed or escaping from the atmosphere.
On the other hand, information is propagated in each iteration

3 We stress that the frequency integrated opacity is often written as
χ̄L, and must not be confused with the quantity defined by the same
symbol as defined here (different normalization!).

step only over roughly one mean-free-path. Therefore, a large
number of iteration steps would be required, until a consistent
solution was obtained (if at all). Thus, acceleration techniques
are urgently needed, and developed in this work in terms of an
ALI scheme using operator-splitting techniques (Cannon 1973).

3. Numerical methods

The ALI scheme can be split into two parts, namely the calcula-
tion of the FS, and the construction of a new iterate, by means of
an approximate Λ-operator. There are various solution schemes
to obtain the FS, differing in required computing power, and us-
ing different assumptions on the geometry and physical prop-
erties of the considered problems, as outlined in the introduc-
tion. Among those, the FVM (Adam 1990) is expected to be the
fastest and most simple one, and is used here as a first step to
tackle 3D radiative transfer problems.

Since we aim at modelling non-monotonic velocity fields,
for which a comoving-frame formulation, if at all, is very com-
plicated to implement, we solve the EQRT in the observer’s
frame. We also use a Cartesian coordinate system, which has the
advantage of constant angular directions w.r.t. the spatial grid.
Anyhow, a description of the atmospheric structure in spherical
coordinates loses its advantages for the problems considered in
this (and future) work.

In the first part of this section, we describe the FVM, and
the angular and frequency integration methods. Main focus is
put on the development of the ALI scheme tailored to the FVM
(Sect. 3.2).

3.1. Finite-volume method

The main ideas of the FVM originate from heat transfer
(Patankar 1980), and have been already applied to radiative
transfer problems in accretion discs by Adam (1990), as well
as to the formation of discrete absorption components in hot star
winds (Lobel & Blomme 2008). Although the derivation of the
discretized EQRT can be found, for instance, in Adam (1990),
we outline the basic ideas in more detail in Appendix A. The
final solution scheme reads:

Iijk = aijkS (c)
ijk + bijkS (L)

ijk + cijkIi−αjk + dijkIij−βk + eijkIijk−γ (14)

fijk = χ(c)
ijk + χ̄(L)

ijk Φ
(ijk)
x +

+
2nx

xi+α − xi−α
+

2ny
yj+β − yj−β

+
2nz

zk+γ − zk−γ

aijk =
χ(c)

ijk

fijk

bijk =
χ̄(L)

ijk Φ
(ijk)
x

fijk

cijk =
2nx

(xi+α − xi−α) · fijk

dijk =
2ny

(yj+β − yj−β) · fijk

eijk =
2nz

(zk+γ − zk−γ) · fijk
,

with α, β, γ set to ±1 for direction-vector components nx, ny, nz ≷
0. All quantities except χc, χ̄L, and the source terms, depend on
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the considered direction n as well as on frequency. Eq. (14) rep-
resents a pure upwind scheme, with projected ∆τ-steps4 calcu-
lated from a central-differencing approach (following Patankar
1980, see also Appendix A). Due to the upwind scheme, and be-
cause the coefficients aijk . . . eijk ∈ [0, 1], the solution method is
unconditionally stable (Adam 1990).

Contrasted to our central-differencing approach, Adam
(1990) and Lobel & Blomme (2008) used backward differences
for the calculation of the ∆τ-steps. We have tested both methods,
and found superior results when using central differences.

Instead of using an equidistant grid, a grid-construction pro-
cedure is applied in order to resolve the important regions of
the atmosphere. In the case of nearly spherical winds, this ba-
sically consists of setting up a 3D spherical grid in the first
octant, with uniformly distributed latitude- and azimuth-angles,
and with radial coordinates such that ∆τc and ∆vr are (nearly)
equidistant. ∆τc and ∆vr are the step-sizes in continuum optical-
depth and radial velocity, respectively. The final (Cartesian) x
(y, z) -coordinates are chosen such that they correspond to the
distribution of the xs (ys, zs) -coordinates from the spherical
grid. If not indicated explicitly, we use Nx = Ny = Nz = 133
grid points for the continuum, and Nx = Ny = Nz = 93
grid points for the line formation, distributed over the com-
plete range, [−Rmax,Rmax]. We allow for a higher grid resolu-
tion within the continuum calculations, since only one frequency
point needs to be considered, and we thus have lower computa-
tion times anyhow. As a comparison, Lobel & Blomme (2008)
used only Nx = Ny = Nz = 71 grid points for their (optically
thin) models. A typical grid in the x-z-plane is shown in the
top panel of Fig. 3. The applied grid resolution is required to
properly resolve the resonance zones (where the CMF line opac-
ity and corresponding profile function is non-negligible), and
to obtain reasonable optical-depth steps within our (first-order5)
method. We emphasize that a large number of grid points would
be required to properly describe the radiation field in the opti-
cally thick limit, since a first-order scheme is generally unable
to reproduce the (second-order) diffusion equation. This prob-
lem, however, arises only at large optical depths (e.g. when con-
sidering the winds of Wolf-Rayet stars), and is only of minor
importance for the winds of OB stars, where the total continuum
optical depth is of the order unity. To consider only the regions
where we actually know the structure of the atmosphere, we cal-
culate the RT within a predefined ‘calculation volume’, defined
by the constraint r(xi, y j, zk) ∈ [R∗, 1.1Rmax].

Angular integration. The mean intensity at each grid point is
obtained from the solutions of the EQRT for many directions,
where the distribution of these directions over the unit sphere
depends on the used quadrature formula. The resulting intensi-
ties are numerically integrated via

Jijk =
1

4π

∫
IijkdΩ ≈

∑
l

wl

∑
m

wmIijk(θm, φl) , (15)

with θm, φl being the co-latitude (measured from the z-axis)
and the azimuth (measured from the x-axis), respectively, and
wm, wl the corresponding integration weights. The projection

4 The projected ∆τ-steps represent the optical depth of the cell for a
given direction, and are easily obtained from Eq. (14) and the definition
of the coefficients cijk . . . eijk, e.g. cijk =: 1/(1 + ∆τx).

5 Actually, our FVM is a first-order scheme only for large optical-
depth steps. For small optical-depth steps, the method becomes second-
order accurate.

Table 1. Mean relative errors of the mean intensity for a zero-
opacity model, using either Gauss-Legendre quadrature, or the
trapezoidal rule with integration nodes from Lobel & Blomme
(2008). The theoretical solution has been calculated from the di-
lution factor and the intensity emitted from the stellar core (see
text). Nx = Ny = Nz = 133 spatial grid points have been used.

Legendre-Integration Trapezoidal Rule

Nθ · Nφ ¿968 512 2105 1037 544
∆̄J[%] 9.4 9.9 9.6 10.4 12.4

factor sin(θm), and the normalization have been included into
wm, wl. Several different techniques and directional distributions
have been tested, including the standard trapezoidal rule with
equidistant θ, φ-grids, as well as using the approach of Lobel &
Blomme (2008), who basically use an ansatz dΩ = const, and
obtain different φ-grids on each θ-level. To obtain a fair angu-
lar resolution of the unit sphere, that means without preferring
certain directions, we split the integration into a sum over all oc-
tants, with the same nodes and weights within each octant. The
mean relative errors6 of the mean intensity for a zero-opacity
model, using Nx = Ny = Nz = 133 grid points and different an-
gular grids, are summarized in Table 1. The corresponding the-
oretical solution has been calculated from J(theo) = WIc, with
W = 1/2

[
1 −

√
1 − (R∗/r)2] the dilution factor, and Ic the inten-

sity emitted from the stellar core.
The best results have been obtained using a Gauss-Legendre

quadrature, for which the integration nodes are fixed, and cannot
be chosen arbitrarily. Using this quadrature, already Nθ · Nφ =
512 grid points would be sufficient for an accurate integration, at
least in principle. We note, however, that the solution in the outer
part of the atmosphere oscillates around the theoretical value,
because the star is not resolved by the angular grid in these re-
gions. This effect becomes even worse for the trapezoidal rule.
The corresponding errors, however, contribute only weakly to
the mean error, because most grid points are located near to the
star. Additionally, the dependence of the profile function on the
local projected velocity (see Eq. 8) requires a much finer angular
resolution in the line case. Thus, to safely avoid artefacts from
the angular integration scheme, we use Nθ · Nφ = 2048 through-
out this paper. This is a factor of three lower than the number
of angular integration points used by Lobel & Blomme (2008),
(Nθ ·Nφ)Wind3D = 6400. We finally note that the calculation of in-
tegration nodes for the Gauss-Legendre quadrature requires the
inversion of a large matrix, which directly shows the advantage
of a Cartesian grid, for which the angular nodes and weights
are the same at all grid points, and can be calculated prior to
the complete solution scheme. Using a spherical grid, Gaussian
quadrature would be computationally very time-consuming, be-
cause the involved angles w.r.t. the coordinate system depend on
position in the atmosphere.

Frequency integration. The integration over frequency is only
performed when solving for J̄ in the line case. Due to its sim-

6 The mean relative error of any quantity q is defined throughout this

paper by ∆̄q :=
1
N

∑N
i=1

|qi − q(theo)
i |

q(theo)
i

, with N the number of grid points

within the calculation volume.
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plicity, we apply the trapezoidal rule with equidistant steps,

J̄ijk =
1

4π

∫
dΩ

∫ ∞

−∞

dxIijkΦ
(ijk)
x ≈

≈
1

4π

∫
dΩ

∑
wxIijkΦ

(ijk)
x . (16)

The integration is performed over the complete frequency range,

xOBS =
[−v∞ − 3vth(Rmax)

v∗th
,
v∞ + 3vth(Rmax)

v∗th

]
, with maximum

velocity, v∞, corresponding thermal velocity, vth(Rmax), and a
rapidly vanishing Doppler profile for |xCMF/δ| > 3 7. To resolve
the profile function everywhere in the atmosphere, we require
∆xCMF/δ . 1/3 at each position, which is achieved by defin-
ing v∗th := v(min)

th , and choosing the number of frequency points,
NF, such that ∆xOBS = (x(max)

OBS − x(min)
OBS )/(NF − 1) . 1/3. v(min)

th is
the minimum thermal velocity (including micro-turbulence) of
the atmosphere. However, since the comoving frame frequency
depends on the projected velocity, the corresponding integration
nodes may not be centred around the profile maximum anymore.
This issue is only of minor importance and has been checked by
a comparison to model calculations that use ∆xOBS . 1/6. In
atmospheres with very low micro-turbulent velocities, a num-
ber of NF ≈ 1200 frequency points would be required, for typ-
ical values of v(min)

th = 10 km s−1 (if no micro-turbulent veloci-
ties were present), and typical wind terminal speeds, v∞ = 2000
km s−1. When using a rather high micro-turbulent velocity, vturb
= 100 km s−1, NF is reduced considerably, by a factor of ten.
Fortunately, such high values are not un-typical in the winds of
hot stars (see next paragraph). Again, when compared to Lobel
& Blomme (2008), who used NF = 100 frequency points for a
thermal velocity of vth = 30 km s−1, we have a much finer re-
solved frequency grid, with ≈ 15 frequency points distributed
over the complete line profile, whereas they resolved the profile
function with only three frequency points.

Microturbulence. To correctly treat the radiative transport in the
line, we need to resolve the resonance zones, and demand that
∆(n · u/vth) ≈ 1/3. Again, for low micro-turbulent velocities, we
would require a resolution of at least 1200 grid points per spa-
tial dimension (for a spherical wind accounting for both hemi-
spheres). On the other hand, including a large micro-turbulent
velocity (vturb = 100 km s−1), as applied here, results in a much
lower required resolution, both in space and frequency. Due to
the linear (cubic) scaling of computation time with the num-
ber of frequency (spatial) grid points, this results in a reduc-
tion of computation time by a factor of 104, when compared
to models without large micro-turbulent velocities. Putting it
the other way round, and already mentioning here that typical
model-calculations take about 50 minutes of wallclock time per
iteration (and using 16 processors, see next paragraph), a large
micro-turbulent velocity is needed thus far to keep the computa-
tion time on a reasonable scale.

Hamann (1981) showed that such micro-turbulent veloci-
ties can indeed be used to correctly model the black absorption
troughs observed in the P Cygni profiles of hot star winds. From
a theoretical point of view, a large velocity dispersion mimicks
the effects of multiply non-monotonic velocity fields, as origi-
nating from the line-driven instability (see, e.g. Lucy 1983, Puls
et al. 1993).

7 Φx(|xCMF/δ| = 3) ≈ 10−4Φx(xCMF/δ = 0)

Parallelization and timing. In the line case, a number of Nθ ×

Nφ × NF formal solutions of the EQRT are required to calcu-
late the scattering integrals. In order to obtain accurate angu-
lar and frequency integrals, the minimum number of integration
nodes is basically fixed, and the computation time can only be
reduced further by parallelization. In our case, the most simple
and straightforward procedure is a parallelization in frequency,
which was done here using OpenMP. The computation time of a
typical model with Nx = Ny = Nz = 93, Nθ · Nφ = 2048, NF =
139 spatial, angular and frequency grid points, respectively, is
about 50 minutes of wallclock time per iteration on a 16 CPU
IntelXeonX5650 (2.67 GHz) machine. As a reference, Wind3D
(Lobel & Blomme 2008) requires about 30 minutes per iteration
for their grid parameters (NWind3D

x = NWind3D
y = NWind3D

z = 71,
NWind3D
θ · NWind3D

φ = 6400, NWind3D
ν = 100, NWind3D

CPU = 16). To
obtain a more meaningful comparison, we scale the computa-
tion time by the number of applied angular and frequency grid
points, and perform a test calculation, which uses the same spa-
tial grid as Lobel & Blomme (2008). Although our CPUs are
more modern and faster, our code performs only slightly bet-
ter than Wind3D, with computation times tWind3D

FS ≈ 0.045s vs.
tour
FS ≈ 0.037s, per iteration, per angular and frequency point, and

per CPU. We note, however, that our algorithm requires at least
a factor of two more operations per formal solution, since we
additionally compute the (non-local) approximate Λ-operator in
parallel (see next section).

3.2. Λ-iteration

By now, we are able to construct a formal solution for a given
source function. In this section, we discuss the iteration pro-
cedure. The following discussion considers the line case alone,
with a frequency-independent background continuum (i.e. con-
stant continuum opacity and source function), assumed to be
known (either in form of an optically thin continuum, or from
previous calculations in the absence of the line). For conve-
nience, we summarize the basic ideas and corresponding accel-
eration techniques via the ALI from first principles.

Matrix equation. To show that the Λ formalism can also be ap-
plied to our 3D formulation, we derive a matrix equation for the
scattering integral, and show that this equation is consistent with
an affine representation of the Λ operator. Since, however, the fi-
nal ALO will be calculated differently, a detailed description of
the involved matrices is skipped in the following.

All 3D quantities are expressed as vectors of length Nx×Ny×

Nz, by introducing a unique ordering of the (i, j, k)-triple:

m := i + Nx · ( j − 1) + NxNy · (k − 1) , (17)

where i, j, k ∈ [1,Nx,y,z], and m ∈ [1,NxNyNz]. Replacing the
(i, j, k)-indices in Eq. (14) with this unique index, m, and after
collecting all intensity terms on the left-hand side, we obtain:

1
bm

Im−
cm

bm
Im−α−

dm

bm
Im−βNx−

em

bm
Im−γNxNy =

am

bm
S (c)

m +S (L)
m . (18)

This equation is written in matrix form,

T · I = Q · S(c) + S(L) + Iinc , (19)

where Iinc refers to the boundary condition. Since we use a TLA
with given opacity (i.e. the opacity does not change during the
iteration), and consider time-independent boundary conditions,
we combine the constant vectors from Eq. (19), Ĩinc := Q · S(c) +
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Iinc. Inverting the matrix T and integrating over all angles and
frequencies gives:

4π J̄ =

∫
Φx · IdΩdx =

=

∫
Φx · T−1 · S(L)dΩdx +

∫
Φx · T−1 · ĨincdΩdx =

=

∫
Φx · T−1dΩdx · S(L) + 4πΦB =

=: 4π
[
Λ · S(L) +ΦB

]
. (20)

The diagonal matrix Φx and the vector ΦB describe the local
profile function, and the contribution of the boundary conditions
and the background continuum to the scattering integral, respec-
tively. As shown below, an explicit calculation of these quanti-
ties is not required to obtain the finally used ALO. We note that
also for the continuum case, which is calculated close (w.r.t. fre-
quency) to the line, Eq. (20) is applicable, with a different Λ-
matrix and boundary contribution though. A comparison of Eq.
(20) with the common Λ-operator formalism (i.e. formally writ-
ing J̄ = Λ[S L]) directly shows that the Λ-operator is an affine
operator, that means a linear operator given by the Λ-matrix plus
a constant displacement vectorΦB (see also Puls 1991), also for
our 3D method.

From equations (3) and (20), we could formulate an explicit
solution of the radiation field already now. This, however, would
require the calculation, storage and inversion of the complete Λ-
matrix, which is computationally prohibitive:

Firstly, the Λ-matrix is a full matrix with NxNyNz × NxNyNz
elements, which would require, for typical grid sizes of N :=
Nx = Ny = Nz = 93, N6 ≈ 6.5 · 1011 numbers, equivalent to 5.2
TB data to be stored in memory, when double-precision numbers
are used. Secondly, the Λ-matrix elements can be obtained, at
least in principle, by inversion (see also Puls 1991),

Λm,n = J̄m(S(L) = en,ΦB = 0) , (21)

with en being the n-th unit vector. Thus, Nx × Ny × Nz formal
solutions would be needed to calculate the complete Λ-matrix,
which again is computationally prohibitive on reasonably well-
resolved grids.

An iterative solution is therefore the only possibility to solve
problems of this kind. Due to the well known convergence prob-
lems of the classical Λ-iteration, we directly focus on the ALI.
For completeness, let us mention here a similar approach, the
‘non-linear multi-grid method’ (see Fabiani Bendicho et al. 1997
and references therein), which has even better convergence prop-
erties, and, in contrast to the ALI method, does not depend on
the spatial resolution of the grid. For simplicity, however, we
only implement an ALI scheme. The ALI is an operator-splitting
technique, which splits the original Λ-operator into the combi-
nation

Λ = Λ∗ + (Λ − Λ∗) , (22)

with an appropriately chosen ALO, Λ∗ (see Cannon 1973).
Appropriately chosen means that Λ∗ should be easily calculated
(preferentially in parallel with the formal solution), and easily
inverted. Moreover, the ALO should reflect the basic physical
properties of the originalΛ-matrix, in order to significantly boost
the convergence.

ALI. Using Eq. (22), where now the first term acts on the current
iterate of the source function, and the second one on the previous

iterate, we obtain in combination with Eq. (3)

S(n) = ζ · J (n) +Ψ ≈ ζ ·Λ∗[S(n)] + ζ · (Λ−Λ∗)[S(n−1)] +Ψ , (23)

where the approximate relation becomes an exact one for the
converged solution. Here we have used the notation and defini-
tions of the diagonal matrix, ζ := 1 − εL, and the thermal contri-
bution vector, Ψ := εL · Bν(T), from Puls & Herrero (1988).
Again, all quantities are ordered according to Eq. (17). After
some algebra, we obtain

(1 − ζ · Λ∗)S(n) ≈ ζ · (Λ − Λ∗)[S(n−1)] + ζ ·ΦB +Ψ =

ζ ·
(
J̄ (n−1) − Λ∗ · S(n−1)) +Ψ. (24)

Since also the ALO is an affine operator (analogous to the orig-
inal Λ-operator), the displacement vector ΦB only cancels if it
remains constant over subsequent iteration steps, that is, when
the background and the boundary conditions remain constant
over the iteration. (In realistic, multi-level NLTE calculations,
this means in practice that the ALI cycle shows a fast conver-
gence only when the continuum is close to convergence).

Given a previous iterate of the source function, S(n−1), and
the corresponding formal solution, Eq. (24) is used to calculate
the next iterate, S(n). The detailed choice of the ALO is the cru-
cial point, and finally determines the convergence behaviour. We
could, for instance, choose Λ∗ = Λ, which would result in the di-
rect solution via inversion, and is computationally not feasible,
as discussed above. On the other hand, choosing Λ∗ = 0 would
result in the classical Λ-iteration, with the known convergence
problems. Olson et al. (1986) showed that an ALO containing
only the diagonal of the exact Λ-matrix is very efficient, because
the matrix (1 − ζ · Λ∗) becomes diagonal, and Eq. (24) could be
solved by a simple scalar division. Furthermore, the diagonal,
that means the local part, already contributes most to the radia-
tive transfer (at least in the critical optically thick case), and thus,
is quite a good approximation for the original Λ-operator. Such
an ALO corresponds to the well known Jacobi-iteration (see also
Trujillo Bueno & Fabiani Bendicho 1995 for a thoughtful discus-
sion, also about a Gauss-Seidel method with successive overre-
laxation in the context of the ALI).

In 3D calculations, however, a diagonal ALO will not con-
verge fast enough (see Sect. 4.1). To achieve faster convergence
rates, a multi-band ALO is favourable, as already shown by
Olson & Kunasz (1987) for 1D cases, and extended to a 3D,
long-characteristics solver by Hauschildt & Baron (2006). For
such ALOs, the matrix (1 − ζ · Λ∗) is sparse, whereas its in-
verse is a full matrix, and cannot be stored due to the N6 scaling
of required memory. Therefore, we have already formulated Eq.
(24) as a fix-point iteration, A · S(n) = b, which can be solved
for the new iterate by applying Jacobi or Gauss-Seidel meth-
ods. We found that a Jacobi-iteration, coupled with the storage
of the iteration-matrix in coordinate-format (COO)8, is particu-
larly fast and easy, because its computationally most expensive
term is a matrix-vector multiplication, which reduces to NNZ op-
erations only, where NNZ is the number of non-zero elements
(e.g. Tessem 2013).

Constructing the ALO. To construct a multi-band ALO as
aimed at above, we need to to calculate the corresponding el-
ements of the exact Λ-matrix. This could be done, in principle,
by using Eq. (20), which would require the inversion of T. Due

8 In COO, all non-zero entries are stored, together with the row and
column indices of the non-zero elements.
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to the upwind scheme, however, we can simply use Eq. (21), in
combination with Eq. (14) and (16). Since the (m, n)-th element
of the Λ-matrix describes the impact of a non-vanishing source
term at point n ↔ (i′ j′k′) onto a point m ↔ (i jk), the local con-
tribution is given by n = m, whereas the coupling with directly
neighbouring points is found from:

n(i − 1, j, k) = m − 1 for nx > 0
n(i, j − 1, k) = m − Nx for ny > 0
n(i, j, k − 1) = m − NxNy for nz > 0
n(i + 1, j, k) = m + 1 for nx < 0
n(i, j + 1, k) = m + Nx for ny < 0
n(i, j, k + 1) = m + NxNy for nz < 0 .

One big advantage of our method is that the exact elements of
local and neighbouring terms can be easily calculated from Eq.
(14),

Λm,m =
1

4π

∫ ∫
bijkΦ

(ijk)
x dΩdx (25)

Λm,m−1 =
1

4π

∫ ∫
nx>0

bi−1jkcijkΦ
(ijk)
x dΩdx (26)

Λm,m−Nx =
1

4π

∫ ∫
ny>0

bij−1kdijkΦ
(ijk)
x dΩdx (27)

Λm,m−NxNy =
1

4π

∫ ∫
nz>0

bijk−1eijkΦ
(ijk)
x dΩdx (28)

Λm,m+1 =
1

4π

∫ ∫
nx<0

bi+1jkcijkΦ
(ijk)
x dΩdx (29)

Λm,m+Nx =
1

4π

∫ ∫
ny<0

bij+1kdijkΦ
(ijk)
x dΩdx (30)

Λm,m+NxNy =
1

4π

∫ ∫
nz<0

bijk+1eijkΦ
(ijk)
x dΩdx . (31)

We call this ALO ‘direct neighbour’ (DN)-ALO, to discriminate
from the ‘nearest neighbour’ ALO from Hauschildt & Baron
(2006), who use all 26 surrounding grid points and the local
term, whereas we are using the local term and the contribution
from the six direct neighbours only9. Although it would be pos-
sible to include also the other neighbouring terms in our calcula-
tions, we note that the calculation of the ALO elements in paral-
lel to the formal solution requires already 50% of the calculation-
time in our case, which would increase rapidly when including
even more terms for the ALO. On the other hand, the inver-
sion of the ALO, that means the calculation of the new iterate
via Jacobi-iterations, requires only about 0.5% of the calculation
time needed for the complete FS. We emphasize that the ALO
actually needs to be calculated only once, because the opacity of
the (simplified) TLA remains constant over subsequent iteration
cycles. When considering multi-level atoms (as planned in the
future), the situation changes, and the opacity depends on the
occupation numbers, and thus, also on the radiation field. We
therefore implemented the calculation of the ALO in parallel to
the formal solution at each iteration step already at the current
stage of our code.

To accelerate the iteration scheme further, we implemented
the extrapolation technique from Ng (1974, see also Olson
et al. 1986). In order to use independent extrapolations, the Ng-
acceleration is applied in every fifth iteration step. We finally

9 For tests of the convergence properties in Sect. 4.1, we also calcu-
lated a purely diagonal ALO by means of Eq. (25) alone.

note that the convergence behaviour depends on the grid reso-
lution, which determines the optical-depth steps, ∆τx,y,z, and af-
fects the coefficients cijk, dijk, eijk. The finer the grid, the poorer
the convergence behaviour (Kunasz & Olson 1988).

To summarize, we have implemented a 3D FVM in Cartesian
coordinates, to determine the FS for a given source function,
and to calculate, in parallel, a DN-ALO applied within an ALI
scheme.

4. Spherically symmetric models

Before applying our method to first non-spherical test problems,
we have checked its reliability by investigating the convergence
properties, and by comparing our 3D solution for a spherical
wind with an accurate 1D solution. The 1D solution for the line
case has been found by a ray-by-ray solution scheme in p-z-
geometry, which has been formulated in the comoving frame
and accelerated by an appropriate ALO (Puls 1991). The 1D so-
lution for the continuum transport has been found by applying
the Rybicki-algorithm (e.g. Mihalas 1978).

Three major error sources of our 3D code will be discussed
in the following: Firstly, errors occurring due to false conver-
gence (Sect. 4.1), secondly, errors originating from the incorpo-
ration of the boundary conditions and from numerical diffusion
(Sect. 4.2), and finally, errors occurring for optically thick me-
dia, due to the order of accuracy of our method (Sect. 4.3).

The spherically symmetric models to be compared with have
been calculated from a prescribed β-velocity law, the equation of
continuity, and a temperature structure from the 1D code (which
plays almost no role in our test cases).

v(r) = v∞
(
1 − b

R∗
r

)β
(32)

b = 1 −
( vmin

v∞

)1/β

ρ(r) =
Ṁ

4πr2v(r)
. (33)

For opacities and source functions, see Sect. 2, and the required
electron density, ne, has been derived from a completely ionized
H and He plasma, with NHe/NH = 0.1. For all following model
calculations, we used a fixed set of prototypical input parame-
ters, summarized in Table 2. These parameters roughly corre-
spond to the wind from ζ Pup, when assuming an unclumped
wind. Within the line transfer, we considered a generic UV reso-
nance transition, with different line-strengths following Eq. (12).
To calculate the thermal width, we used mA = 12 mp, mp being
the proton mass. The total width of the line profile, however, is
mainly controlled by the (large) turbulent velocities. Different
optical depths,

τr =

∫ Rmax

R∗
χTh kc dz ≈ 0.17 · kc , (34)

(for the model considered in Table 2), and scattering properties
of the model atmosphere were simulated by varying the scaling
factors, kc, kL, and the thermalization parameters, εc, εL, in the
continuum and line case, respectively.

4.1. Convergence behaviour

To test the convergence behaviour of our ALI implementation
with corresponding ALO, we only considered scattering domi-
nated atmospheres by setting εc and εL to 10−6. We discuss the

8
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Fig. 1. Convergence behaviour of the continuum transfer with εc = 10−6 (left), and of the line transfer with εL = 10−6 (right), for
different acceleration techniques applied to the RT, and for a spherical model atmosphere. The optical depth scale varies according
to kc = 10, kL = 10 (top) and kc = 100, kL = 105 (bottom). See text.

Table 2. Input parameters for the spherically symmetric models
used for our test calculations.

Teff[kK] R∗[R�] vmin[km s−1] Ṁ[M�yr−1]
40 19 10 5 · 10−6

β Rmax[R∗] v∞[km s−1] vturb[km s−1]
1 12 2000 100

continuum transfer in the absence of a line, and the line transfer
assuming an optically thin continuum. In both cases, we applied
the classical Λ-iteration, and compare to ALI schemes using a
diagonal or DN-ALO, with Ng-extrapolation switched on or off.

Pure continuum. The left panel of Fig. 1 shows the maximum
relative corrections of the mean intensity after each iteration
step, for an intermediate grid resolution of Nx = Ny = Nz = 93
spatial points and NθNφ = 968 angular points. Two different con-
tinua are shown, referring to an optically thick (kc = 100), and
marginally optically thick (kc = 10) case. Obviously, the classi-
cal Λ-iteration converges only very slowly (if at all) in the high
optical-depth regime, requiring N(classical)

conv = 90 iterations until
the convergence criterion of maximum relative corrections be-
ing less than 10−3 is fulfilled. We emphasize that a (steep) gra-

dient of the ‘convergence curve’ is required to achieve actual
convergence, rather than this (arbitrarily chosen) number. For
the optically thick problem, even the diagonal and also the DN-
ALO have severe convergence problems, with N(diag)

conv = 62 and
N(DN)

conv = 50, respectively. To ensure fast convergence, the Ng-
acceleration is urgently needed, since it boosts the relative cor-
rections significantly, reducing the number of required iterations
for the optically thick problem to N(DN+NG)

conv = 18 (lower left
panel of Fig. 1).

Line case. With the same set-up as above, we display the max-
imum relative corrections of the scattering integral after each
iteration step in the right panel of Fig. 1. We applied two dif-
ferent line-strength parameters, kL = 10, 105, which correspond
to a weak and strong line, respectively. Since the line transport
is restricted to the finite widths of the resonance zones, and is
therefore intrinsically much more local than the continuum, the
convergence behaviour is accelerated significantly already by the
diagonal and DN-ALO. For the strong line, the required number
of iterations until convergence is reduced from N(classical)

conv = 130
to N(diag)

conv = 63, N(DN)
conv = 25 and N(DN+NG)

conv = 18, for the diag-
onal and DN-ALO, excluding or including the Ng-acceleration,
respectively (lower right panel of Fig. 1).
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Fig. 2. Boundary conditions for two different points, r1, r2, and
different directions, n1, n2. Green: A ray originating from the
stellar photosphere. To calculate the intensity at r1 in direction
n1, the intensities at the neighbouring grid points, x(1)

P and r′1,
need to be known. A boundary condition is required for grid
point x(1)

P , while the intensity at r′1 results within the ‘normal’ RT-
scheme. Red: A ray originating from outside the photosphere.
For the grid point r2, a boundary condition has to be specified at
the corresponding phantom point, x(2)

P .

4.2. Boundary conditions and zero-opacity models

Two important points still to be explained refer to the incorpo-
ration of boundary conditions and to numerical diffusion. The
latter can be best understood by considering continuum models
with an opacity set to zero.

Boundary conditions. At the outer boundary, the intensities
coming from outside are set to zero, whereas those coming from
inside are calculated within the RT scheme, and need not to be
specified. Close to the star, the situation is more complicated:
The inner grid points are generally located close to the bound-
ary, but not directly on it, due to the difference of Cartesian and
spherical grids. The intensities at those grid points are calculated
by the standard FVM-RT (Eq. 14), but using different grid cells,
defined by the intersection(s) of the original grid cell with the
(spherical) photosphere (see Fig. 2). The intensity for certain di-
rections needs to be specified at those so-called phantom points.
Figure 2 displays phantom points corresponding to two distinct
grid points, r1, r2, and different ray directions, n1, n2. Radiation
originating from the stellar surface (direction n1 in Fig. 2) is
set to Bν(Teff)10 at the corresponding phantom point, x(1)

P . For
some grid points and ray directions, however (e.g. direction n2
in Fig. 2), even intensities incident onto the photosphere need to
be specified at the corresponding phantom point.

10 We note here that we are considering a core-halo approximation.
For future applications, we will include the diffusion limit at the lower
boundary, of course.

Within the core-halo approximation used here, inwards di-
rected intensities should, in principle, be set to zero at the lower
boundary, that is Iphantom−point = 0. If, on the other hand, the lower
boundary is located at significant optical depths (as for the ma-
jority of the cases considered here), a specification within a sim-
plified diffusion approximation, Iphantom−point ≈ Bν(Teff), is more
appropriate. Although the diffusion approximation is no longer
justified when concentrating on purely scattering atmospheres,
backscattering of photons in such environments mimicks a sim-
ilar effect, at least if the optical depths are not too low.

We have tested this issue by considering an optically thin
model as the most extreme test-bed, using both alternative de-
scriptions for those critical directions. The mean relative errors
for both alternatives are of the same order, and do not signifi-
cantly differ from those arising under more physical conditions
discussed later (with larger optical depths at the lower boundary,
see Sect. 4.3 and Table 3). Thus, we apply Bν(Teff) as the inner
boundary condition for those critical rays as well, also because
this procedure is less time-consuming, since it avoids conditional
clauses in the innermost loop of the code.

Zero-opacity models. Numerical diffusion is a major error
source within the FVM (it also occurs in the SC method, though
to a lesser extent, see Kunasz & Auer 1988 and Ibgui et al. 2013a
for an analysis of this effect in the context of multi-D SC meth-
ods). Quite generally, rays propagating parallel to the grid axes
are nearly undisturbed by this effect, whereas those propagating
at different angles are effectively widened, due to the diffusion
of intensity into neighbouring cells. This diffusion results from
the finite size of the grid cells, and the competition between
the ∆x/∆y, ∆x/∆z and ∆y/∆z terms in the discretized EQRT
(Eq. 14), for any given direction, and can only be minimized
by increasing the grid resolution.

To obtain a qualitative measure of numerical diffusion er-
rors, we performed a searchlight beam test with ray direction
n = (1, 0, 1), by setting the opacity to zero. For consistency, the
critical boundary conditions have been set to zero.

The top panel of Fig. 3 shows the contours of the specific
intensity in the x-z-plane, and the middle panel displays the in-
tensity through an aperture perpendicular to the ray direction. In
our projection, the aperture appears as a straight line in the x-
z-plane, specified by its distance from the origin and the impact
parameter. Finally, the bottom panel of Fig. 3 shows the intensity
along the considered direction, at the centre of the beam.

Evidently, numerical diffusion plays a crucial role. We ex-
pect corresponding errors to be most severe when photons prop-
agate over large distances, for instance, for optically thin con-
tinua, or, in the line case, before they hit the resonance zones.
Since the resonance zones are mostly quite narrow, while the
path-length of freely propagating line photons is usually quite
large (at least if the continuum is comparatively weak, as in most
realistic conditions), numerical diffusion errors are of major sig-
nificance for the line transfer.

To address the impact of numerical diffusion on the final so-
lution, we consider the mean intensity for zero-opacity models.
Figure 4 shows the mean intensity (scaled by its theoretical value
obtained from the dilution factor) for such models on spherical
surfaces at two distinct radii, r = 1.1 R∗ and r = 3 R∗. We find
a clear pattern of the shape of the mean intensities: Close to the
star, the mean intensities are reasonably accurate on the axes, in
contrast to the regions away from the axes, where they become
overestimated. Far from the star, the situation reverses, with rea-
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Fig. 3. Top: Specific intensities for direction n = (1, 0, 1) in the
x-z-plane, for a zero-opacity model. Overplotted is the spatial
grid with a typical size of Nx = Ny = Nz = 133 grid points.
The thick lines indicate the theoretical boundary of the beam.
Middle: Projected intensity profile through the area indicated by
a straight line in the top panel, covering all rays with direction n
and impact parameter p = ±2 R∗, and theoretical intensity pro-
file denoted by dotted lines. The central distance from the origin
is 3 R∗. Bottom: Specific intensity along n, compared to the the-
oretical value indicated by the dotted line.

sonable results away from the axes, and an overestimate on the
axes. This behaviour is explained in the following.

Fig. 4. Contours of the mean intensity for a zero-opacity model,
normalized by its theoretical value, on spherical surfaces, r =
1.1 R∗ (left) and r = 3 R∗ (right). The line of sight is along the
vector n = (1, 1, 1). Nx = Ny = Nz = 133 grid points have been
used.

For a given grid point on or close to a coordinate axis, and far
from the stellar surface, core-rays, that means those originating
from the stellar surface, remain nearly undisturbed by numeri-
cal diffusion. Without diffusion, only such core-rays would con-
tribute to the mean intensity. Due to numerical diffusion, how-
ever, also non-core rays contribute, that means those which form
a certain angle w.r.t. the considered grid axis, since they have
been fed with intensity by corresponding core-rays propagat-
ing in the same direction (widening of the effective aperture,
see above). Consequently, the mean intensity becomes overes-
timated.

For grid points far from the star, and away from the major
axes, core-rays and non-core rays are both affected by numeri-
cal diffusion, resulting in an under- and over-estimation of the
intensity, respectively. Consequently, there is a significant can-
cellation of both effects, and the mean intensity remains close to
its expected value.

At points located on the grid axes close to the star, numerical
diffusion plays only a minor role, mostly because the contribut-
ing non-core rays are propagating almost perpendicular to the
considered axis, which means parallel to one of the other axes,
with negligible diffusion errors.

Away from the axes, and close to the star, contributing non-
core rays are significantly inclined w.r.t. the coordinate axes, and
thus strongly fed by diffusion effects. Thus, the mean intensities
become overestimated.

Due to the different effects for different ray directions and
for different regions in the atmosphere, any symmetry will be
broken. This error cannot be avoided, and is minimized only for
higher grid resolutions. As the important part of the radiative
transfer is mainly located near to the star (where the densities
are largest), and the numerical diffusion errors are not too large
in this regime (up to a radius of r . 3 − 4 R∗), the 3D solution
scheme should deliver at least qualitatively correct results.

4.3. Variation of optical depth

We finally compare the results from our 3D solutions for a spher-
ically symmetric wind with corresponding ones from 1D solu-
tions using spherical coordinates, as a function of optical depth.
Within the continuum transport, the optical depth has been var-
ied by increasing the linear scaling factor, kc = (100, 101, 102),
which defines a radial optical-depth scale, τr = (0.17, 1.7, 17.0),
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Fig. 5. Top: Mean intensities (scaled by the emitted intensity from the stellar core, Ic) for the continuum transport, with εc = 10−6,
and kc = (100, 101, 102) corresponding to τr = (0.17, 1.7, 17.0), from left to right. Bottom: Line source functions (scaled by Ic)
assuming an optically thin continuum, and with εL = 10−6, and kL = (100, 103, 105) from left to right. The red line corresponds
to the accurate 1D solution, the blue line is the solution along the x-axis, and the dots (mainly located in between the red and the
blue line) correspond to the solution of (arbitrarily) selected grid points (only a subset of all grid points is shown to compress the
images).

Table 3. Mean and maximum relative errors of our 3D solution
scheme, when compared to an ‘accurate’ 1D solution. The top
panel shows the errors of the mean intensity for a pure contin-
uum with different kc parameters, while the bottom panel shows
the errors of the line source function with different line strengths
kL and an optically thin background continuum. The thermal
contribution, εc, εL, has been set to 10−6 in both cases.

kc 100 101 102

τr 0.17 1.7 17
∆̄J[%] 3.35 20.29 127.91

∆Jmax[%] 49.28 42.18 151.34

kL 100 103 105

¯∆S L[%] 12.38 18.47 23.00
∆S L, max[%] 61.95 82.50 94.13

at the lowermost point. The solutions for the mean intensities, to-
gether with the 1D solution, are shown in Fig. 5, top panel. The
line transitions have been calculated for the same model, assum-
ing an optically thin continuum in order to extract the error from
the line transport alone. The adopted line-strength parameters,
kL = (100, 103, 105), describe a weak, intermediate and strong
line, respectively. The corresponding solutions are shown in the
bottom panel of Fig. 5. To ensure convergence, we have used the
DN-ALO together with the Ng-acceleration (see Sect. 4.1) for all
test calculations. Thus, the differences between the 1D and 3D
solution originate from the formal solution scheme alone, and
not from a false convergence. The mean and maximum relative
errors are summarized in Table 3.

The mean errors are increasing together with the optical
thickness, because the FVM becomes a first-order scheme for

increasing optical-depth steps11. The errors in the line case do
not exceed roughly 25%, and are generally lower than those for
the continuum, because the RT is much more local (see above)12,
and thus, the error is not being propagated through the complete
grid. On the other hand, numerical diffusion plays a larger role
(see Sect. 4.2), resulting in minimum errors of & 10% even for
very weak lines.

For optically thick continua (with τr & 20), the contin-
uum transfer breaks down, giving mean errors larger than 100%.
Figure 5 shows that the errors for the continuum and line trans-
port are mostly due to an overestimation of the mean intensi-
ties and scattering integrals, respectively. With respect to the lo-
cal distribution of the errors, we find a similar behaviour as for
the zero-opacity models (on vs. away from the axes for differ-
ent radii). The maximum errors are mostly found at the same
locations as in Fig. 4.

Finally, we conclude that the overall error is a combina-
tion of errors introduced by numerical diffusion, and the first-
order scheme for optically thick environments. The line transport
is generally more reliable than the continuum transport, which
should be treated with higher spatial resolution.
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Fig. 6. Emergent line profiles for spherically symmetric models with different line-strengths, kL = (100, 103, 105), from left to right.
The red line corresponds to the accurate 1D solution, and the black line is the solution corresponding to our 3D calculations.

4.4. Emergent flux profile

To calculate the line profiles, we implemented a postprocessing
LC method. Within this method, the converged source function
is used to derive the formal solution along characteristics in a
cylindrical coordinate system, with the z-axis aligned with the
line of sight. The emergent intensity is finally integrated over
the projected stellar disc, which gives the flux (see, e.g. Lamers
et al. 1987, Busche & Hillier 2005, Sundqvist et al. 2012, for
more details). To obtain the source functions at each position of
a given characteristics, a 3D tri-linear interpolation is performed
in log-space. Though this could be applied to the velocity com-
ponents and opacities as well, we calculate those properties from
analytic expressions whenever possible. This way, we avoid er-
rors introduced by the interpolation scheme, which have been
found to be of the order of only few percent for a β-velocity law,
but have rather strong influence for the ADM models, where the
interpolation of shear-velocities is not a simple task.

The emergent profiles for the same models as above are
shown in Fig. 6, with differences between the 1D and 3D mod-
els originating from the line source function alone. Generally,
when compared to the 1D solution, the line profiles from our
3D code overestimate the emission part due to the larger source
functions. The absorption edge is slightly red-shifted from its
theoretical value at xobs ≈ 1 + vth/v∞, because the calculation
volume extends only up to 13.2 R∗ (where v(13.2 R∗) = 0.92 v∞).
This issue, however, could be improved by enlarging the size of
the calculation volume.

Overall, despite the slightly enhanced emission peak, we find
that the line profile can be reproduced by our FVM, in combina-
tion with an accurate postprocessing routine, for a wide range of
line-strength parameters. Thus, our method allows for a qualita-
tive interpretation of line profiles even for the most extreme test
cases, that is for strong scattering lines.

Fig. 7. Density structure for the wind-ablation model with τdisc =
1400, in the x-z-plane.

Fig. 8. As Fig. 7, but for the radiation temperature. Additionally,
the density contours corresponding to a decrease in line force
by f = 10 (solid) and f = 100 (dashed) are displayed. Both
contours indicate the transition region from wind to disc (see
text). The grey colour corresponds to radiation temperatures less
than the colour-coded minimum value.
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Table 4. Stellar and wind parameters for the wind-ablation
model. The line-strength parameters have been set to α = 0.66,
Q̄ = 2500, and Q0 = 2200.

Teff[kK] R∗[R�] vmin[km s−1] Ṁwind [M�yr−1]
36 9.4 22 1.5 · 10−7

log g β v∞[km s−1]
3.9 1 2200

5. Wind-ablation

Using 3D radiation-hydrodynamic simulations, Kee (2015) and
Kee et al. (2016) modelled the ablation of circumstellar discs
around massive stars, due to radiative line driving. They showed
that a significant line-force arises due to the coupling of non-
radially streaming photons to the non-radial velocity field of cir-
cumstellar discs (see also Kee et al. 2016, their Figure 1). The
line-force has been calculated within a Sobolev-approach, by
means of line-strength distribution functions. Contrasted to the
original formulation by Castor et al. (1975), they followed the
parameterization by Gayley (1995). The full 3D line accelera-
tion can then be written as13

glines ≈
κeQ̄

(1 − α)c(Q0κecρ)α

∫ (
n · ∇ · (n · u)

)αI(n)ndΩ , (35)

where n and u describe the direction of the considered ray and
the velocity-vector, respectively. ρ is the density, Q̄, Q0, and α
describe the line-strength distribution, and were taken from the
calibration of Puls et al. (2000, their Table 2), for the considered
Teff .

For optically thin continua (e.g. in classical Be stars), the
incident intensity I(n) can be directly replaced by the intensity
originating from the stellar core, Ic, and Eq. (35) can be solved
by quadrature, for a given density and velocity structure. For
accreting high-mass stars (see Sect. 1), that means for massive
objects in their late formation phases, however, the circumstellar
discs are optically thick, and at least two major problems arise:

Firstly, due to absorption and scattering processes, the inci-
dent intensity at a considered point needs to be calculated by a
global solution of the radiation field, which is very time consum-
ing in hydrodynamic simulations. Kee (2015) developed an effi-
cient method to delimit the contribution by either calculating the
absorption part alone (giving a lower limit of the incident inten-
sity), or assuming the disc to be optically thin (giving an upper
limit). A comparison between the irradiation obtained from their
method to the irradiation obtained from our 3D code (including
scattering of photons) will be presented in a forthcoming paper,
and shall not be discussed here.

In this paper, we only consider the second problem of op-
tically thick environments: Since the disc partly blocks the ir-
radiation from the star, the radiation field might become con-
siderably reduced. However, it is this (ionizing) radiation field,

11 A first-order scheme is sufficiently accurate if exp(−∆τ) ≈ 1 − ∆τ,
i.e. if the optical-depth steps, ∆τ, are small.

12 We emphasize that for the line transfer, the ratio of the photon de-
struction probability, εL, to the photon escape probability is less than
unity for all our models, indicating that the line-transfer is, in princi-
pal, non-local. However, for the considered spherically symmetric prob-
lems, no multiple resonances arise, and the line is formed within a sin-
gle, well-localized resonance region.

13 Strictly speaking, Eq. (35) holds only when the strongest line is
optically thick. See Kee (2015), Chapter 2, for a complete derivation
and discussion.

which mainly determines the ionization stages of the considered
plasma, and consequently might influence the line-strength dis-
tribution function. To address this issue, we proceed as follows:
First, the radiation field for a specific hydrodynamic structure
(see below) is computed by our 3D code, and the resulting mean
intensity is translated to a corresponding radiation temperature
(using Jν =: W ·Bν(Trad) with dilution factor W; the derived radi-
ation temperature would correspond to Teff if the star had an op-
tically thin, spherically symmetric atmosphere). Corresponding
line-strength parameters could again be obtained from Puls et al.
(2000). In regions where the local radiation temperature is simi-
lar to the effective one, one can safely assume that the parameters
of the line-strength distribution remain at their original input val-
ues, and indeed can be used to calculate the line force throughout
all following hydro-timesteps. If, on the other hand, Trad differed
significantly from Teff , this would imply that these parameters
would need to be consistently adapted within the hydrodynami-
cal evolution.

For our analysis, we used a wind+Keplerian-disc model
similar to the initial conditions for the accreting O7-star sys-
tem as considered by Kee et al. (2016). This model describes
such objects as already defined in the introduction as accret-
ing high-mass stars (see Hosokawa et al. 2010, Kuiper et al.
2016). The wind and stellar parameters are given in Table 4,
following Kee et al. (2016). A radial optical depth of the disc,
τdisc = 1400, has been adopted. We approximated the continuum
by pure Thomson-scattering, εc = 0, to ensure frequency inde-
pendence. This is a fair assumption for the 500-2000 Å range,
where the majority of line-driving happens (e.g. Puls et al. 2000).
Of course, we would expect thermalization in the disc’s deeper
layers. Due to the dominating ρ−α-dependence of the line force
(Eq. 35) and the large densities inside the disc, however, most
of the wind-ablation occurs at the surface layers, and we do not
need to care about the details in the inner parts. This fact is even
more important, since it allows us to apply our 3D FVM method,
although being aware of the large errors of the continuum trans-
fer for optically thick media. To ensure that the transition region
from the wind to the disc is not subject to (larger) numerical un-
certainties, we have performed a test calculation with doubled
grid resolution (N test

x = N test
y = N test

z = 265). Although we found,
as expected, differences in the inner part of the disc, our results
for the outer part and the wind region are (almost) identical. We
can, therefore, safely assume that the obtained solutions, at least
in the aforementioned regions, are only mildly affected by nu-
merical artefacts.

The density structure and radiation temperature (the latter
computed by our code) are shown in Fig. 7 and 8, respectively.
The radiation temperature in the wind (here: along the z-axis)
exceeds the effective temperature by a factor of roughly 1.25.
In order to ensure that this is not a numerical effect, we have
checked this issue by calculating the same wind model, however
applying an optically thin disc with τdisc = 1.4 · 10−3. For such
a model, Trad and Teff turned out to be fairly identical. We thus
conclude that the enhancement of radiation temperature in our
original model is due to additional irradiation of the wind from
the disc, by scattering off photons from the disc. Most likely,
this effect will induce latitudinal line-force components (also to
be addressed in a forthcoming paper).

Wind-ablation dominates in the transition region between
wind and disc. We define this region by calculating the de-
crease in line-force by a certain factor, f , due to density effects
alone, that means assuming the same ionization stages and the
same velocity structure. Such a reduction of line-force or line-
acceleration is easily cast into an enhancement of density via
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Eq. (35),

g(disc)
lines (r,Θ)

g(wind)
lines (r)

<
1
f
↔

(
ρdisc(r,Θ)
ρwind(r)

)α
> f , (36)

where the radius-dependent quantities from the wind can be
measured along the z-axis. In this picture, f should be chosen
such that the corresponding decrease in line-force represents the
border from the wind region to the region where the line-force
is negligible (i.e. inside the disc). As a first guess, we adopted
f = 10, and display the corresponding density contour in Fig. 8.
Since a factor f = 10 seems to be somewhat artificial, we addi-
tionally display the density contour corresponding to f = 100.

From our simulations, we then find that both contours are
located within a range of Trad between roughly 31 and 33 kK,
which is of the same order as the effective temperature, Teff = 36
kK. We thus conclude that the ionization stages at the disc sur-
face are not changing too much, when compared to the ioniza-
tion stages in the wind, and that the line-strength parameteriza-
tion of the wind can also be used to calculate the line-force at the
surface of such optically thick circumstellar discs. Due to signif-
icant scattering of photons off the disc, a multi-D description of
the radiative transfer might need to be incorporated into the hy-
drodynamic simulations, to account for all force-components.

6. Dynamical magnetospheres: HD191612

As a first application to line transitions, we modelled UV res-
onance lines in dynamical magnetospheres, that means atmo-
spheres which form in slowly rotating magnetic OB-stars (in
contrast to the so-called centrifugal magnetospheres, which form
in fast rotating magnetic OB-stars). As a prototypical case, we
considered the Of?p star HD191612, which has a negligible
equatorial rotation speed of vrot ≈ 1.4 km s−1 (Howarth et al.
2007, Sundqvist et al. 2012). Marcolino et al. (2013) already cal-
culated corresponding resonance lines for this star, by extending
the 3D formal solver developed by Sundqvist et al. (2012) to a
‘3D Sobolev with exact integration’ method (SEI, Lamers et al.
1987), and applying this method to a set of 100 two-dimensional
MHD-simulation snapshots, equidistantly distributed over the
azimuth-angle to enable a 3D description of the atmosphere. At
least for the Hα line (where the source function is taken from
prototypical 1D NLTE-calculations), such a patching-technique
produces quite similar results as full 3D MHD simulations (see
ud-Doula et al. 2013). In Sect. 6.1, we use the same simulations
as a benchmark for our 3D code, and compare the obtained line
profiles to those from Marcolino et al. (2013). In Sect. 6.2, we
calculate analogous line profiles for the ADM model developed
by Owocki et al. (2016), to investigate in how far their simpli-
fied description of the magnetosphere can be used as a reason-
able substitute for elaborate MHD simulations. We already note
here, that such a simplified approach would be favourable to
MHD simulations, because it provides (within the applied ap-
proximations) an average, steady state solution for the magne-
tospheric structure, and avoids time-consuming hydrodynamic
simulations.

6.1. MHD models

To understand the behaviour of the line profiles presented below,
we first explain the basic characteristics of (non-rotating) mag-
netic winds. For a more detailed discussion, we refer the reader
to the seminal work by ud-Doula & Owocki (2002) and ud-
Doula et al. (2008). These authors introduced a magnetic dipole

Fig. 9. Upper panel: density structure for an example snapshot
from the MHD simulations for HD191612, as performed by
Sundqvist et al. (2012). Lower panel: azimuthal average of the
MHD simulations. In both figures, the density has been normal-
ized by a typical downflow density, ρc := ṀB=0/

(
4πR2

∗vesc
)
, with

ṀB=0 from Table 5, and vesc ≈ 800 km s−1 the photospheric es-
cape velocity. The velocity field is displayed by arrows, with the
length of the velocity vectors limited to 0.5 vesc. We addition-
ally show the dipole magnetic field of the ADM models used in
Sect. 6.2 (solid lines, and thick solid line for RA = 2.7 R∗). The
corresponding magnetic axis is aligned with the z-axis. The grey
colour corresponds to densities outside the range indicated on
the right.

field as an initial condition, and evolved the (initially spheri-
cal) stellar wind according to the MHD equations. Within ideal
MHD14, the material follows the (closed) magnetic-field lines in
regions where the magnetic energy exceeds the kinetic energy
of the wind (close to the star), whereas, in the opposite case,
the field lines follow the (almost radial) mass flow (far from the
star). The border of both regions can be roughly described by
the Alfvén-Radius, RA ≈ η1/4

∗ , with wind-confinement param-
eter η∗ :=

(
B2

pR2
∗

)
/
(
4ṀB=0v∞

)
, and Bp the polar magnetic-field

strength evaluated at the stellar radius (see ud-Doula & Owocki
2002).

Within closed-field regions, material originating from oppo-
site footpoints shocks (and accumulates) in the equatorial plane.
Due to the 1/ρα-dependence of the line-force (see Eq. 35), the
net-force becomes dominated by gravity, and produces an inflow
along the magnetic field lines in a ‘snake-like’ pattern.

14 Ideal MHD is a fair approximation in hot star winds, due to the high
conductivity.
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Fig. 10. UV resonance-line profiles for the MHD models, as ob-
tained from our 3D-code (black) and from the SEI method by
Marcolino et al. (2013) (red). Two different line-strength param-
eters, κ0 = 0.1 and 1.0, have been used. For convenience, the
line profiles for κ0 = 0.1 have been shifted vertically by 1.5. The
upper and lower panels show the synthetic line profiles for pole-
on and equator-on observers, respectively. The abscissa has been
scaled to v∞ = 2700 km s−1, the ‘observed’ 1D value applied by
Marcolino et al. (2013).

In the open-field regions, the presence of the magnetic field,
together with a frozen-in mass flow, results in a density decrease
when compared with spherically symmetric models, due to the
faster-than-radial expansion of the flow-tube area (see Figure 7
in ud-Doula & Owocki 2002). Consequently, the line-force be-
comes increased, resulting in higher terminal velocities than in
1D non-magnetic models. A single snapshot and an azimuthal
average of the applied MHD simulations are shown in Fig. 9.

Based on such MHD simulations, Sundqvist et al. (2012) cal-
culated corresponding Hα-line profiles, while Marcolino et al.
(2013) investigated the UV resonance line formation. To remain
consistent with the calculations by Marcolino et al. (2013), we
apply εL = 0, and use their description of the line-strength pa-
rameter, κ0, originally introduced by Hamann (1980). κ0 is re-
lated to the line-strength parameter from Eq. (12) by

κ0 =
1

4πmp

Ṁ
R∗v2

∞

1 + IHeYHe

1 + 4YHe
σev

∗
thkL , (37)

Table 5. Stellar and wind parameters of HD191612 (left panel).
Teff , log g, R∗, Ṁ, v∞ have been derived by Howarth et al. (2007),
and Bp is adopted from Wade et al. (2011). For the ADM model,
we adapted the mass-loss rate and terminal velocity at the pole
(right panel), to be consistent with the MHD simulations from
Fig. 9.

Teff[kK] 35
log g 3.5
R∗[R�] 14.5
v∞[km s−1] 2700 v

(pole)
∞ [km s−1] 3963

Ṁ[M�yr−1] 1.6 · 10−6 ṀB=0[M�yr−1] 1.1 · 10−6

Bp[G] 2450
⇒ RA[R∗] 2.7

with IHe = 2 and YHe = NHe/NH = 0.1, the number of free
electrons per helium atom, and helium abundance by number,
respectively.

Although we use a micro-turbulent velocity of vturb = 100
km s−1 for the determination of the source function, we calcu-
late the final line profile (somewhat inconsistently) for vturb =
50 km s−1, as done by Marcolino et al. (2013). The line pro-
files obtained from our 3D code and the SEI line profiles from
Marcolino et al. (2013) are displayed in Fig. 10, for two different
line-strength parameters, κ0 = 0.1 and 1.0, respectively.

The agreement between the two methods is excellent. The
minor differences in the emission part are related to two effects:
Firstly, the methods for determining the source functions (SEI
implying very narrow resonance lines vs. FVM accounting for
much broader ones, due to vturb = 100 km s−1) are quite differ-
ent, and a certain deviation must be present. Secondly, the (gen-
eral) overestimation of the scattering integrals and thus source
functions due to the FVM might play a role as well. Also the
absorption parts of the line profiles observed equator-on (lower
panel of Fig. 10) are not perfectly matched. This (small) effect is
most likely simply due to different formulations of the numerical
solvers.

A comparison of these line profiles with those from corre-
sponding spherically symmetric models has already been per-
formed by Marcolino et al. (2013), and we summarize only the
most important characteristics: (1) The absorption trough for
pole-on and equator-on observers extends beyond the 1D ter-
minal velocity, as expected from the MHD atmospheric struc-
ture. We note that such a large extension has not been observed
for HD191612. (2) The emission for equator-on observers is re-
duced (compared to the 1D case), due to the lower densities in
the emission plane (e.g. the polar plane for line-centre frequen-
cies with xOBS = 0). (3) The particular form of the line profiles is
determined by the different mapping of projected velocities for
different observer directions.

Given the overall agreement of the two different methods, we
conclude that the SEI and our 3D FVM solutions are consistent.
Additionally, we are highly confident that the line formation is
described correctly (at least qualitatively), since both methods
are completely independent. Under this assumption we are able
to study the UV line formation within the ADM model.

6.2. ADM models

Owocki et al. (2016) developed an analytic description of dy-
namical magnetospheres, in order to set a framework simi-
lar to the β-velocity-field prescription for spherically symmet-
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Fig. 11. UV resonance-line profiles obtained from our 3D code,
for the MHD simulation (black, as Fig. 10), and the different
ADM models, (i) to (iv) (see text). The line-strength parameter
has been set to κ0 = 1. The upper and lower panels show the
synthetic profiles for pole-on and equator-on view, respectively.
As in Fig. 10, the abscissa has been scaled to v∞ = 2700 km s−1,
the ‘observed’ 1D value applied by Marcolino et al. (2013).

ric winds. This ADM formalism provides a time-independent,
steady-state solution for dynamical magnetospheres, which is
comparable to the average of several MHD-simulation snap-
shots, and has been corroborated by a comparison of synthetic
Hα lines with observations. The formation of resonance lines
within the ADM framework, however, has not been analysed
yet, and is the focus of this section. For that purpose, we aim
at modelling the MHD atmospheric structure from above with
the ADM method, and compare the resulting line profiles.

Within the ADM method, Owocki et al. (2016) divide the
atmosphere into two major zones. The border between both re-
gions is given by the condition rm = RA, where the apex-radius,
rm, is defined as the distance between the origin and the inter-
section of magnetic equator and closed dipole magnetic-field
line attached to a considered point (see left panel of Fig. B.1
for clarification). In the following, we call these two regions the
‘closed-field region’ (rm < RA) and the ‘outer wind’ (rm > RA).
The closed-field region consists of three different components:

– wind-upflow component: The magnetic loops are fed with
material ejected from the stellar surface. The matter flow fol-

lows the dipole magnetic-field lines, with absolute velocities
calculated from a β-velocity law, using β = 1.

– post-shock component: The collision of outflows following
the B-field lines from opposite foot points leads to a shock at
the magnetic equator, resulting in a hot and dense post-shock
region. The extent of this region is controlled by a (dimen-
sionless) cooling parameter, χ∞, where 1/χ∞ describes the
efficiency of radiative cooling by X-ray emission (see ud-
Doula et al. 2014 for details). In test calculations, however,
this component turned out to have only very small influence
on the UV line formation. Thus, and to keep the model as
simple as possible, we neglect the post-shock component in
this work.

– cooled-downflow component: As the post-shock gas cools,
its density increases, and the line-force decreases. Thus, the
cooled and compressed gas is pulled back onto the stellar
surface by gravity, resulting in a downflow starting at the
magnetic equator. The gas is accelerated from zero velocity
along the B-field lines to the escape speed at the stellar sur-
face.

For their Hα analysis, Owocki et al. (2016) only considered the
cooled downflow, because of the mostly larger densities of this
component. Since the infall occurs in episodic infall events, the
closed-field region is actually highly structured, and the authors
found rather large clumping factors 〈ρ2〉/〈ρ〉 (of the order of sev-
eral tens). Under the assumption of clumps that are optically
thin then, this clumping factor can be used to translate the actual
(structured) density-distribution to the mean opacities and emis-
sivities of recombination lines (ρ2-processes, see e.g. Puls et al.
2008). For the UV resonance line formation (linear in ρ), micro-
clumping has no direct impact on the mean opacities. Therefore,
and because of the different densities and velocities within the
upflow and downflow components, an explicit description of the
structured medium is required when considering UV resonance
lines. As it is not a priori clear how to treat the combination of
the above mentioned components, we consider four different ap-
proaches, and model the closed-field region by:

(i) Applying only the cooled-downflow component.
(ii) Introducing a statistical treatment, where the probabilities

of using either the wind-upflow or the cooled downflow-
component when calculating the radiative transfer are here
defined as

Pw :=
ρw

ρw + ρc
, Pc :=

ρc

ρw + ρc
= 1 − Pw .

This approach preferentially chooses the component with
higher density and lower velocity15, in other words that com-
ponent with the larger timescale for the matter flow.

(iii) Introducing flux-tubes that alternating consist of the down-
flow and upflow component.

(iv) Applying only the wind-upflow component.

The models are ordered such that the contribution of the wind-
upflow component is increasing from model (i) to (iv).

As a zeroth-order approximation, Owocki et al. (2016)
model the outer wind (at rm > RA) by the wind-upflow compo-
nent, that means by a flow following closed magnetic-field lines
even in that region. This is a fair assumption for modelling the
polar regions, since it accounts for the faster than radial decline
of the density (see also Owocki & ud-Doula 2004). Moreover,
the magnetic field lines are nearly radial in these regions, thus

15 Both quantities are connected by the continuity equation.
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resulting in a nearly radial outflow similar to the MHD simu-
lations. On the other hand, the velocity vectors near the equa-
torial regions are modelled with a large latitudinal component,
whereas they are radially directed within the (more realistic)
MHD simulations. Thus, a match of the ADM and MHD mag-
netospheric structure in the equatorial region cannot be achieved
within the standard formulation. With respect to UV line forma-
tion, this is the major drawback of the ADM formalism, and will
influence the line formation (see below).

To set the base density, Owocki et al. (2016) introduced the
mass-loss rate of the star if it had no magnetic field, ṀB=0, which
determines the loop-feeding rate. With the input parameters from
Table 5, the dynamical magnetosphere can be modelled accord-
ing to the recipe from Owocki et al. (2016)16. We used the val-
ues of ṀB=0 and v

(pole)
∞ in Table 5, right panel, to adapt the

ADM model to the MHD simulations. For our model parame-
ters, the Alfvén-Radius, RA = 2.7 R∗, has been calculated from
the mass-loss rate, terminal velocity and magnetic-field strength.
We stress that the adopted mass-loss rate is not necessarily the
‘true’ one, nor the mass-loss rate the star would have if no mag-
netic field was present. For the applied ADM models, the re-
sulting density stratification, magnetic-field lines and velocity
vectors in the xz-plane are shown in the left panel of Fig. B.1.
Here and in the following, the equatorial plane coincides with
the plane of the magnetic equator, since we assume the magnetic
axis to be aligned with the z-axis.

Compared to the MHD structure (see Fig. 9), the ADM den-
sities in the closed-field region are best represented by model
(ii) and (iii), that is by a combination of downflow and upflow
component. In the outer wind near the equator, the densities are
underestimated due to the aforementioned different description
of the velocity field (see Fig. B.1, left panel).

Once again we apply εL = 0, and compare the corresponding
line profiles with line-strength parameter, κ0 = 1, for equator-
on and pole-on observers, with the line profiles obtained from
the MHD simulations (see Fig. 11). For clarification, Fig. B.1
additionally displays all line profiles with their emission and ab-
sorption parts. The differences between the profile-sets can be
explained as follows.

For pole-on observers: With increasing contribution from
the upflow component, the emission peak becomes broader, be-
cause the emitting volume at intermediate to high velocities in-
creases. Simultaneously, the cooled downflow component with
only low absolute velocities decreases, resulting in a lower emis-
sion peak near the line centre. An exception is model (i), for
which the emission peak at low frequency shifts is lowest, be-
cause the emission of the upflow component near the star (with
high densities and low velocities) is missing. When compared to
the line profiles from the MHD simulations, the best result is ob-
tained for model (ii), that is for the statistical description of up-
flow and downflow component in the closed-field region. Even
for this model, however, we only get a relatively poor match with
the MHD profiles. Since our ADM models cover a large range
of combinations of upflow and downflow component (including
the most extreme cases of a pure upflow and a pure downflow),
this finding suggests that the outer wind region is inadequately
modelled. Indeed, the major differences of the line profiles can
be explained (at least qualitatively) by the different description
of the outer wind: (1) In the ADM models, the emission peaks
close to line centre (i.e. at xOBS ≈ 0, with corresponding reso-
nance zones at projected velocities n · u ≈ 0) are underestimated

16 We have increased the wind-upflow and cooled-downflow densities
by a factor of two, which is missing in their original equations.

compared to the MHD model, since within all ADM models also
the mass flow in the outer wind is adopted to follow closed mag-
netic field lines. This assumption becomes problematic in equa-
torial regions, since here the ADM wind flows almost perpendic-
ular to the plane, whereas it is almost radial in the MHD case.
Consequently, when viewed pole on, only large projected veloci-
ties are present in the corresponding area of the equatorial plane,
where the latter creates a large part of low-velocity emission in
the MHD model. This part is now missing in the ADM models,
and the emitting area is almost limited to the downflow compo-
nent (with generally low projected velocities). Thus, the profile
becomes shallower than in the MHD case. (2) Within the blue
absorption trough, the absorption column in front of the star is
slightly decreased, because the velocity vectors are once again
following the magnetic field lines, and do not perfectly match
the MHD simulations. The differences of the line profiles can
thus be explained by the different description of the outer wind
region alone.

For equator-on observers, the emission peak of the ADM
models becomes stronger and shifted to the blue side with in-
creasing contribution of the upflow component. Additionally, the
absorption part on the blue side increases, while it decreases on
the red side. This behaviour is readily explained: As the upflow
contribution in front of the star (with projected velocities di-
rected towards the observer, thus affecting the blue side of the
profile) grows, the downwind contribution (with projected ve-
locities directed away from the observer, and affecting the red
side of the profile) is diminished. Consequently, the absorption
in front of the star increases on the blue side, and decreases on
the red one. Again, when compared to the MHD model, none of
the obtained profiles provides a good agreement. While model
(iv) reproduces the absorption part on the blue side relatively
well, the red-sided absorption part is highly underestimated.
On the other hand, a better model for the red-sided absorption
(e.g. model iii) underestimates the absorption part on the blue
side. In fact, it is not possible to simultaneously model the blue
and red absorption by only tuning the composition of the closed-
field region, suggesting that (at least) the outer wind needs to
be treated differently. For instance, assuming a radial outflow
in the equatorial plane of the outer wind region would increase
the blue-sided absorption (and emission), while preserving the
rather good behaviour of model (iii) on the red side.

Taking all this evidence together, we conclude that the
(present) ADM model needs to be improved for the modelling
of UV resonance lines, at least in the outer wind. Such a re-
formulation then needs to include a consistent description of the
actual velocity and density stratification, accounting for the del-
icate interplay between B-field and wind.

7. Summary and conclusions

In this paper, we introduced a newly developed 3D FVM code,
which solves the equation of radiative transfer for continuum-
and line-scattering problems (the latter approximated by a two-
level-atom in the present version). An observer’s-frame formu-
lation allows us to consider arbitrary velocity fields (and density
structures).

Within the ALI scheme, the code iterates the source func-
tions to convergence, using a non-local approximate Λ-operator,
and extrapolating subsequent iterates by the Ng-formalism. For
the most challenging problems of optically thick, scattering
dominated atmospheres, we obtained a satisfying convergence
behaviour, with relative corrections between subsequent iterates
of less than 10−3 within 20 iteration steps. Due to this conver-
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gence behaviour, we were able to analyse the performance of
the 3D FVM for such optically thick, scattering dominated at-
mospheres.

A comparison of spherically symmetric problems calculated
with our 3D code and an accurate 1D solver shows that the FVM
requires a relatively high spatial resolution. Continuum errors
are of the order of . 20% for marginally optically thick atmo-
spheres, that is for typical O-star conditions, however increase
rapidly for larger optical depths, due to the first-order scheme.
These errors can only be reduced by applying either a higher
grid resolution, or when using more accurate solution schemes
(e.g. the SC method with appropriate interpolations). To anal-
yse rapidly expanding stellar winds with large continuum optical
depths, the development of a 3D SC method is planned for the
future in our group.

The line transfer, on the other hand, performs much better,
with relative errors less than 25% even for strong lines. The re-
sulting profiles as obtained from a postprocessing LC method
are reasonably accurate.

Due to significant numerical diffusion, intrinsic to the FVM,
we found a minimum error (for optically thin continua and weak
lines) of roughly 10%. Additionally, any symmetry of a consid-
ered problem is broken, due to the distinct behaviour of numeri-
cal diffusion for different ray directions and in different regions
of the atmosphere. Numerical diffusion errors, however, could be
minimized by increasing the grid resolution in the outer parts of
the atmosphere. Accounting for the sound reproduction of line
profiles for spherically symmetric models, we conclude that our
code is ready to be used also for arbitrary 3D atmospheric struc-
tures, at least if the continuum displays an only moderate optical
depth.

As a first application to continuum-scattering problems, we
estimated the radiation temperatures of wind-ablation models,
focusing on the transition region between a line-driven wind and
the optically thick circumstellar disc (as present during the late
phases of massive star formation in accreting high mass stars).
We found a reduction of radiation temperatures by only few per-
cent, which indicates that the ionization stages in this region are
(almost) the same as in the wind. Thus, a line-distribution for-
malism with the same set of line-strength parameters as used in
the wind can be applied to obtain the line acceleration that fi-
nally ablates the disc. Because of the numerical inaccuracies of
the FVM, our findings must be taken with caution, and possibly
rechecked with more elaborate methods or a much higher grid
resolution. To analyse the complete evolution of optically thick
circumstellar discs, the impact of continuum scattering on lati-
tudinal forces still needs to be investigated, and is left to future
studies.

As a benchmark for our code regarding the line transfer in
non-spherical models, we considered the same MHD simula-
tions of dynamical magnetospheres as used by Marcolino et al.
(2013), and compared the resulting UV resonance-line profiles
to those obtained from their 3D-SEI analysis. The profiles as
viewed both polar-on and equator-on are in excellent agreement,
indicating that our 3D FVM performs well also for such atmo-
spheric models. We additionally applied the analytic dynami-
cal magnetosphere framework (ADM, Owocki et al. 2016), and
modelled the corresponding atmospheric structure by adopting
four different descriptions of the closed-field regions. A compar-
ison between the obtained line profiles and those for the MHD
simulations from above showed significant differences. These
were explained by the (somewhat insufficient) description of the
outer wind region within the (present) ADM formulation, pri-

marily in the equatorial plane. An improvement of the underly-
ing assumptions is planned for future work.

Acknowledgements. We thank our anonymous referee for valuable comments
and suggestions. Many thanks to V. Petit and S. Owocki for fruitful discussions
about the ADM. LH gratefully acknowledges support from the German Research
Foundation, DFG, under grant PU 117/9-1. NDK acknowledges support from
the German DFG under grant KU 2849/3-1, which funds the Emmy Noether re-
search group on “Accretion Flows and Feedback in Realistic Models of Massive
Star Formation”. JOS acknowledges funding from the European Unions Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement no. 656725.

References
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016, Physical Review Letters,

116, 061102
Adam, J. 1990, A&A, 240, 541
Alecian, E., Wade, G. A., Catala, C., et al. 2013, MNRAS, 429, 1001
Amarsi, A. M., Asplund, M., Collet, R., & Leenaarts, J. 2016, MNRAS, 455,

3735
Belczynski, K., Holz, D. E., Bulik, T., & O’Shaughnessy, R. 2016, Nature, 534,

512
Busche, J. R. & Hillier, D. J. 2005, AJ, 129, 454
Cannon, C. J. 1973, ApJ, 185, 621
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157
Cherepashchuk, A. M. 1976, Soviet Astronomy Letters, 2, 138
Cranmer, S. R. & Owocki, S. P. 1996, ApJ, 462, 469
de Mink, S. E., Langer, N., Izzard, R. G., Sana, H., & de Koter, A. 2013, ApJ,

764, 166
Dufton, P. L., Dunstall, P. R., Evans, C. J., et al. 2011, ApJ, 743, L22
Fabiani Bendicho, P., Trujillo Bueno, J., & Auer, L. 1997, A&A, 324, 161
Gayley, K. G. 1995, ApJ, 454, 410
Georgiev, L. N., Hillier, D. J., & Zsargó, J. 2006, A&A, 458, 597
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Appendix A: The discretized EQRT within the FVM

Following the ideas of Patankar (1980) and Adam (1990), we
here describe the discretization scheme of the time-independent
equation of radiative transfer, Eq. (1). At each grid point, Eq.
(1) is integrated over a finite control volume (see Fig. A.1).
Applying Gauss’s theorem, we obtain:

∫
∂V

In · dS =

∫
V
χ
(
S − I

)
dV . (A.1)

Here and in the following, we omit the notation for the explicit
frequency dependence. The left-hand side of Eq. (A.1) describes
the intensity propagating into and out of the control-volume sur-
faces, and the right-hand side corresponds to the grid-cell contri-
bution from sources and sinks. Assuming that the variables at the
grid points are appropriate mean values within the correspond-
ing control volume, the right-hand side is easily integrated, and
gives for grid point (i,j,k),

∫
χ(S − I) dV =

= χijk(S ijk−Iijk)(xi+1/2−xi−1/2)(yj+1/2−yj−1/2)(zk+1/2−xk−1/2) .
(A.2)

i,j,k+1/2
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Fig. A.1. Geometry used within the control-volume approach:
The discretized 3D spatial grid is shown in blue. The dashed
lines indicate the control volume, corresponding to a grid-point
(i,j,k). The control-volume surfaces are located at the centre be-
tween the grid-point coordinates.

Since we are using Cartesian coordinates, the integral on the left-
hand side can be readily calculated:

∫
In · dS =

=nx

∫ yj+1/2

yj−1/2

∫ zk+1/2

zk−1/2

I(xi+1/2, y, z) − I(xi−1/2, y, z) dydz+

+ny

∫ xi+1/2

xi−1/2

∫ zk+1/2

zk−1/2

I(x, yj+1/2, z) − I(x, yj−1/2, z) dxdz+

+nz

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

I(x, y, zk+1/2) − I(x, y, zk−1/2) dxdy . (A.3)

Again, assuming that the intensities at the midpoints of the
control-volume surfaces are representative averages of the cor-
responding surfaces, we obtain:

∫
In · dS =

=nx(Ii+1/2,j,k − Ii−1/2,j,k)(yj+1/2 − yj−1/2)(zk+1/2 − xk−1/2)+
+ny(Ii,j+1/2,k − Ii,j−1/2,k)(xi+1/2 − xi−1/2)(zk+1/2 − xk−1/2)+
+nz(Ii,j,k+1/2 − Ii,j,k−1/2)(xi+1/2 − xi−1/2)(yj+1/2 − yj−1/2) .

(A.4)

Since the control-volume coordinates are positioned at the mid-
points of the grid coordinates, we substitute:

xi+1/2 − xi−1/2 =
xi+1 − xi−1

2
, (A.5)

yj+1/2 − yj−1/2 =
yj+1 − yj−1

2
, (A.6)

zk+1/2 − zk−1/2 =
zk+1 − zk−1

2
. (A.7)
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Finally, we use the upwind approximation to replace the (un-
known) intensities at the control-volume surfaces:

Ii+1/2,j,k → Ii,j,k

Ii−1/2,j,k → Ii−1,j,k

α := 1

 for nx > 0 ,
Ii+1/2,j,k → Ii+1,j,k

Ii−1/2,j,k → Ii,j,k

α := −1

 for nx < 0 ,

Ii,j+1/2,k → Ii,j,k

Ii,j−1/2,k → Ii,j−1,k

β := 1

 for ny > 0 ,
Ii,j+1/2,k → Ii,j+1,k

Ii,j−1/2,k → Ii,j,k

β := −1

 for ny < 0 ,

Ii,j,k+1/2 → Ii,j,k

Ii,j,k−1/2 → Ii,j,k−1

γ := 1

 for nz > 0 ,
Ii,j,k+1/2 → Ii,j,k+1

Ii,j,k−1/2 → Ii,j,k

γ := −1

 for nz < 0 .

Combining equations (A.1), (A.2), (A.4), (A.5)-(A.7), and the
definitions of α, β, γ, the discretized EQRT finally reads:

nx(Iijk − Ii−αjk)
yj+β − yj−β

2
zk+γ − zk−γ

2
+

+ny(Iijk − Iij−βk)
xi+α − xi−α

2
zk+γ − zk−γ

2
+

+nz(Iijk − Iijk−γ)
xi+α − xi−α

2
yj+β − yj−β

2
=

=
[
χ(c)

ijkS (c)
ijk + χ̄(L)

ijk Φ
ijk
x S (L)

ijk − (χ(c)
ijk + χ̄(L)

ijk Φ
ijk
x )Iijk

]
×

×
xi+α − xi−α

2
yj+β − yj−β

2
zk+γ − zk−γ

2
, (A.8)

where we already have separated the continuum and line contri-
bution of the opacity and source function. Collecting terms, and
solving for Iijk leads to:

Iijk =
χ(c)

ijk

χ(c)
ijk + χ̄(L)

ijk Φ
(ijk)
x + 2nx

xi+α−xi−α
+

2ny
yj+β−yj−β

+
2nz

zk+γ−zk−γ

S (c)
ijk+

+
χ̄(L)

ijk Φ
(ijk)
x

χ(c)
ijk + χ̄(L)

ijk Φ
(ijk)
x + 2nx

xi+α−xi−α
+

2ny
yj+β−yj−β

+
2nz

zk+γ−zk−γ

S (L)
ijk +

+

2nx
xi+α−xi−α

χ(c)
ijk + χ̄(L)

ijk Φ
(ijk)
x + 2nx

xi+α−xi−α
+

2ny
yj+β−yj−β

+
2nz

zk+γ−zk−γ

Ii−αjk+

+

2ny
yj+β−yj−β

χ(c)
ijk + χ̄(L)

ijk Φ
(ijk)
x + 2nx

xi+α−xi−α
+

2ny
yj+β−yj−β

+
2nz

zk+γ−zk−γ

Iij−βk+

+

2nz
zk+γ−zk−γ

χ(c)
ijk + χ̄(L)

ijk Φ
(ijk)
x + 2nx

xi+α−xi−α
+

2ny
yj+β−yj−β

+
2nz

zk+γ−zk−γ

Iijk−γ .

(A.9)

Appendix B: UV line profiles for different ADM
models
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Fig. B.1. Left panel: As Fig. 9, but for the corresponding ADM model structures. To clarify the definition of the apex radius, rm,
we have displayed a specific value, rm=2 R∗, as a red arrow, where this value corresponds to all points located on the red magnetic-
field line. In the closed-field region (inside rm=RA, displayed by a thick line), the models contain, from top to bottom: (i) The
cooled-downflow component alone. (ii) A statistical approach for the downflow and upflow component. (iii) Alternating flux tubes
with cooled-downflow and wind-upflow component. (iv) The wind-upflow component alone. Middle panel: As Fig. 11, for pole-on
observers, and for the different ADM models (i) to (iv). The dashed and dotted lines display the emission part and the absorption
part of the line profiles, respectively. Right panel: As middle panel, but for equator-on observers.
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